4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
40 #include "intelfbhw.h"
43 int min_m
, max_m
, min_m1
, max_m1
;
44 int min_m2
, max_m2
, min_n
, max_n
;
45 int min_p
, max_p
, min_p1
, max_p1
;
46 int min_vco
, max_vco
, p_transition_clk
, ref_clk
;
47 int p_inc_lo
, p_inc_hi
;
54 static struct pll_min_max plls
[PLLS_MAX
] = {
58 930000, 1400000, 165000, 48000,
64 1400000, 2800000, 200000, 96000,
68 int intelfbhw_get_chipset(struct pci_dev
*pdev
, struct intelfb_info
*dinfo
)
74 switch (pdev
->device
) {
75 case PCI_DEVICE_ID_INTEL_830M
:
76 dinfo
->name
= "Intel(R) 830M";
77 dinfo
->chipset
= INTEL_830M
;
79 dinfo
->pll_index
= PLLS_I8xx
;
81 case PCI_DEVICE_ID_INTEL_845G
:
82 dinfo
->name
= "Intel(R) 845G";
83 dinfo
->chipset
= INTEL_845G
;
85 dinfo
->pll_index
= PLLS_I8xx
;
87 case PCI_DEVICE_ID_INTEL_854
:
89 dinfo
->name
= "Intel(R) 854";
90 dinfo
->chipset
= INTEL_854
;
92 case PCI_DEVICE_ID_INTEL_85XGM
:
95 dinfo
->pll_index
= PLLS_I8xx
;
96 pci_read_config_dword(pdev
, INTEL_85X_CAPID
, &tmp
);
97 switch ((tmp
>> INTEL_85X_VARIANT_SHIFT
) &
98 INTEL_85X_VARIANT_MASK
) {
99 case INTEL_VAR_855GME
:
100 dinfo
->name
= "Intel(R) 855GME";
101 dinfo
->chipset
= INTEL_855GME
;
103 case INTEL_VAR_855GM
:
104 dinfo
->name
= "Intel(R) 855GM";
105 dinfo
->chipset
= INTEL_855GM
;
107 case INTEL_VAR_852GME
:
108 dinfo
->name
= "Intel(R) 852GME";
109 dinfo
->chipset
= INTEL_852GME
;
111 case INTEL_VAR_852GM
:
112 dinfo
->name
= "Intel(R) 852GM";
113 dinfo
->chipset
= INTEL_852GM
;
116 dinfo
->name
= "Intel(R) 852GM/855GM";
117 dinfo
->chipset
= INTEL_85XGM
;
121 case PCI_DEVICE_ID_INTEL_865G
:
122 dinfo
->name
= "Intel(R) 865G";
123 dinfo
->chipset
= INTEL_865G
;
125 dinfo
->pll_index
= PLLS_I8xx
;
127 case PCI_DEVICE_ID_INTEL_915G
:
128 dinfo
->name
= "Intel(R) 915G";
129 dinfo
->chipset
= INTEL_915G
;
131 dinfo
->pll_index
= PLLS_I9xx
;
133 case PCI_DEVICE_ID_INTEL_915GM
:
134 dinfo
->name
= "Intel(R) 915GM";
135 dinfo
->chipset
= INTEL_915GM
;
137 dinfo
->pll_index
= PLLS_I9xx
;
139 case PCI_DEVICE_ID_INTEL_945G
:
140 dinfo
->name
= "Intel(R) 945G";
141 dinfo
->chipset
= INTEL_945G
;
143 dinfo
->pll_index
= PLLS_I9xx
;
145 case PCI_DEVICE_ID_INTEL_945GM
:
146 dinfo
->name
= "Intel(R) 945GM";
147 dinfo
->chipset
= INTEL_945GM
;
149 dinfo
->pll_index
= PLLS_I9xx
;
151 case PCI_DEVICE_ID_INTEL_945GME
:
152 dinfo
->name
= "Intel(R) 945GME";
153 dinfo
->chipset
= INTEL_945GME
;
155 dinfo
->pll_index
= PLLS_I9xx
;
157 case PCI_DEVICE_ID_INTEL_965G
:
158 dinfo
->name
= "Intel(R) 965G";
159 dinfo
->chipset
= INTEL_965G
;
161 dinfo
->pll_index
= PLLS_I9xx
;
163 case PCI_DEVICE_ID_INTEL_965GM
:
164 dinfo
->name
= "Intel(R) 965GM";
165 dinfo
->chipset
= INTEL_965GM
;
167 dinfo
->pll_index
= PLLS_I9xx
;
174 int intelfbhw_get_memory(struct pci_dev
*pdev
, int *aperture_size
,
177 struct pci_dev
*bridge_dev
;
181 if (!pdev
|| !aperture_size
|| !stolen_size
)
184 /* Find the bridge device. It is always 0:0.0 */
185 if (!(bridge_dev
= pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
186 ERR_MSG("cannot find bridge device\n");
190 /* Get the fb aperture size and "stolen" memory amount. */
192 pci_read_config_word(bridge_dev
, INTEL_GMCH_CTRL
, &tmp
);
193 pci_dev_put(bridge_dev
);
195 switch (pdev
->device
) {
196 case PCI_DEVICE_ID_INTEL_915G
:
197 case PCI_DEVICE_ID_INTEL_915GM
:
198 case PCI_DEVICE_ID_INTEL_945G
:
199 case PCI_DEVICE_ID_INTEL_945GM
:
200 case PCI_DEVICE_ID_INTEL_945GME
:
201 case PCI_DEVICE_ID_INTEL_965G
:
202 case PCI_DEVICE_ID_INTEL_965GM
:
203 /* 915, 945 and 965 chipsets support a 256MB aperture.
204 Aperture size is determined by inspected the
205 base address of the aperture. */
206 if (pci_resource_start(pdev
, 2) & 0x08000000)
207 *aperture_size
= MB(128);
209 *aperture_size
= MB(256);
212 if ((tmp
& INTEL_GMCH_MEM_MASK
) == INTEL_GMCH_MEM_64M
)
213 *aperture_size
= MB(64);
215 *aperture_size
= MB(128);
219 /* Stolen memory size is reduced by the GTT and the popup.
220 GTT is 1K per MB of aperture size, and popup is 4K. */
221 stolen_overhead
= (*aperture_size
/ MB(1)) + 4;
222 switch(pdev
->device
) {
223 case PCI_DEVICE_ID_INTEL_830M
:
224 case PCI_DEVICE_ID_INTEL_845G
:
225 switch (tmp
& INTEL_830_GMCH_GMS_MASK
) {
226 case INTEL_830_GMCH_GMS_STOLEN_512
:
227 *stolen_size
= KB(512) - KB(stolen_overhead
);
229 case INTEL_830_GMCH_GMS_STOLEN_1024
:
230 *stolen_size
= MB(1) - KB(stolen_overhead
);
232 case INTEL_830_GMCH_GMS_STOLEN_8192
:
233 *stolen_size
= MB(8) - KB(stolen_overhead
);
235 case INTEL_830_GMCH_GMS_LOCAL
:
236 ERR_MSG("only local memory found\n");
238 case INTEL_830_GMCH_GMS_DISABLED
:
239 ERR_MSG("video memory is disabled\n");
242 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
243 tmp
& INTEL_830_GMCH_GMS_MASK
);
248 switch (tmp
& INTEL_855_GMCH_GMS_MASK
) {
249 case INTEL_855_GMCH_GMS_STOLEN_1M
:
250 *stolen_size
= MB(1) - KB(stolen_overhead
);
252 case INTEL_855_GMCH_GMS_STOLEN_4M
:
253 *stolen_size
= MB(4) - KB(stolen_overhead
);
255 case INTEL_855_GMCH_GMS_STOLEN_8M
:
256 *stolen_size
= MB(8) - KB(stolen_overhead
);
258 case INTEL_855_GMCH_GMS_STOLEN_16M
:
259 *stolen_size
= MB(16) - KB(stolen_overhead
);
261 case INTEL_855_GMCH_GMS_STOLEN_32M
:
262 *stolen_size
= MB(32) - KB(stolen_overhead
);
264 case INTEL_915G_GMCH_GMS_STOLEN_48M
:
265 *stolen_size
= MB(48) - KB(stolen_overhead
);
267 case INTEL_915G_GMCH_GMS_STOLEN_64M
:
268 *stolen_size
= MB(64) - KB(stolen_overhead
);
270 case INTEL_855_GMCH_GMS_DISABLED
:
271 ERR_MSG("video memory is disabled\n");
274 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
275 tmp
& INTEL_855_GMCH_GMS_MASK
);
281 int intelfbhw_check_non_crt(struct intelfb_info
*dinfo
)
285 if (INREG(LVDS
) & PORT_ENABLE
)
287 if (INREG(DVOA
) & PORT_ENABLE
)
289 if (INREG(DVOB
) & PORT_ENABLE
)
291 if (INREG(DVOC
) & PORT_ENABLE
)
297 const char * intelfbhw_dvo_to_string(int dvo
)
301 else if (dvo
& DVOB_PORT
)
303 else if (dvo
& DVOC_PORT
)
305 else if (dvo
& LVDS_PORT
)
312 int intelfbhw_validate_mode(struct intelfb_info
*dinfo
,
313 struct fb_var_screeninfo
*var
)
319 DBG_MSG("intelfbhw_validate_mode\n");
322 bytes_per_pixel
= var
->bits_per_pixel
/ 8;
323 if (bytes_per_pixel
== 3)
326 /* Check if enough video memory. */
327 tmp
= var
->yres_virtual
* var
->xres_virtual
* bytes_per_pixel
;
328 if (tmp
> dinfo
->fb
.size
) {
329 WRN_MSG("Not enough video ram for mode "
330 "(%d KByte vs %d KByte).\n",
331 BtoKB(tmp
), BtoKB(dinfo
->fb
.size
));
335 /* Check if x/y limits are OK. */
336 if (var
->xres
- 1 > HACTIVE_MASK
) {
337 WRN_MSG("X resolution too large (%d vs %d).\n",
338 var
->xres
, HACTIVE_MASK
+ 1);
341 if (var
->yres
- 1 > VACTIVE_MASK
) {
342 WRN_MSG("Y resolution too large (%d vs %d).\n",
343 var
->yres
, VACTIVE_MASK
+ 1);
347 WRN_MSG("X resolution too small (%d vs 4).\n", var
->xres
);
351 WRN_MSG("Y resolution too small (%d vs 4).\n", var
->yres
);
355 /* Check for doublescan modes. */
356 if (var
->vmode
& FB_VMODE_DOUBLE
) {
357 WRN_MSG("Mode is double-scan.\n");
361 if ((var
->vmode
& FB_VMODE_INTERLACED
) && (var
->yres
& 1)) {
362 WRN_MSG("Odd number of lines in interlaced mode\n");
366 /* Check if clock is OK. */
367 tmp
= 1000000000 / var
->pixclock
;
368 if (tmp
< MIN_CLOCK
) {
369 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
370 (tmp
+ 500) / 1000, MIN_CLOCK
/ 1000);
373 if (tmp
> MAX_CLOCK
) {
374 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
375 (tmp
+ 500) / 1000, MAX_CLOCK
/ 1000);
382 int intelfbhw_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
384 struct intelfb_info
*dinfo
= GET_DINFO(info
);
385 u32 offset
, xoffset
, yoffset
;
388 DBG_MSG("intelfbhw_pan_display\n");
391 xoffset
= ROUND_DOWN_TO(var
->xoffset
, 8);
392 yoffset
= var
->yoffset
;
394 if ((xoffset
+ var
->xres
> var
->xres_virtual
) ||
395 (yoffset
+ var
->yres
> var
->yres_virtual
))
398 offset
= (yoffset
* dinfo
->pitch
) +
399 (xoffset
* var
->bits_per_pixel
) / 8;
401 offset
+= dinfo
->fb
.offset
<< 12;
403 dinfo
->vsync
.pan_offset
= offset
;
404 if ((var
->activate
& FB_ACTIVATE_VBL
) &&
405 !intelfbhw_enable_irq(dinfo
))
406 dinfo
->vsync
.pan_display
= 1;
408 dinfo
->vsync
.pan_display
= 0;
409 OUTREG(DSPABASE
, offset
);
415 /* Blank the screen. */
416 void intelfbhw_do_blank(int blank
, struct fb_info
*info
)
418 struct intelfb_info
*dinfo
= GET_DINFO(info
);
422 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank
);
425 /* Turn plane A on or off */
426 tmp
= INREG(DSPACNTR
);
428 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
430 tmp
|= DISPPLANE_PLANE_ENABLE
;
431 OUTREG(DSPACNTR
, tmp
);
433 tmp
= INREG(DSPABASE
);
434 OUTREG(DSPABASE
, tmp
);
436 /* Turn off/on the HW cursor */
438 DBG_MSG("cursor_on is %d\n", dinfo
->cursor_on
);
440 if (dinfo
->cursor_on
) {
442 intelfbhw_cursor_hide(dinfo
);
444 intelfbhw_cursor_show(dinfo
);
445 dinfo
->cursor_on
= 1;
447 dinfo
->cursor_blanked
= blank
;
450 tmp
= INREG(ADPA
) & ~ADPA_DPMS_CONTROL_MASK
;
452 case FB_BLANK_UNBLANK
:
453 case FB_BLANK_NORMAL
:
456 case FB_BLANK_VSYNC_SUSPEND
:
459 case FB_BLANK_HSYNC_SUSPEND
:
462 case FB_BLANK_POWERDOWN
:
472 void intelfbhw_setcolreg(struct intelfb_info
*dinfo
, unsigned regno
,
473 unsigned red
, unsigned green
, unsigned blue
,
476 u32 palette_reg
= (dinfo
->pipe
== PIPE_A
) ?
477 PALETTE_A
: PALETTE_B
;
480 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
481 regno
, red
, green
, blue
);
484 OUTREG(palette_reg
+ (regno
<< 2),
485 (red
<< PALETTE_8_RED_SHIFT
) |
486 (green
<< PALETTE_8_GREEN_SHIFT
) |
487 (blue
<< PALETTE_8_BLUE_SHIFT
));
491 int intelfbhw_read_hw_state(struct intelfb_info
*dinfo
,
492 struct intelfb_hwstate
*hw
, int flag
)
497 DBG_MSG("intelfbhw_read_hw_state\n");
503 /* Read in as much of the HW state as possible. */
504 hw
->vga0_divisor
= INREG(VGA0_DIVISOR
);
505 hw
->vga1_divisor
= INREG(VGA1_DIVISOR
);
506 hw
->vga_pd
= INREG(VGAPD
);
507 hw
->dpll_a
= INREG(DPLL_A
);
508 hw
->dpll_b
= INREG(DPLL_B
);
509 hw
->fpa0
= INREG(FPA0
);
510 hw
->fpa1
= INREG(FPA1
);
511 hw
->fpb0
= INREG(FPB0
);
512 hw
->fpb1
= INREG(FPB1
);
518 /* This seems to be a problem with the 852GM/855GM */
519 for (i
= 0; i
< PALETTE_8_ENTRIES
; i
++) {
520 hw
->palette_a
[i
] = INREG(PALETTE_A
+ (i
<< 2));
521 hw
->palette_b
[i
] = INREG(PALETTE_B
+ (i
<< 2));
528 hw
->htotal_a
= INREG(HTOTAL_A
);
529 hw
->hblank_a
= INREG(HBLANK_A
);
530 hw
->hsync_a
= INREG(HSYNC_A
);
531 hw
->vtotal_a
= INREG(VTOTAL_A
);
532 hw
->vblank_a
= INREG(VBLANK_A
);
533 hw
->vsync_a
= INREG(VSYNC_A
);
534 hw
->src_size_a
= INREG(SRC_SIZE_A
);
535 hw
->bclrpat_a
= INREG(BCLRPAT_A
);
536 hw
->htotal_b
= INREG(HTOTAL_B
);
537 hw
->hblank_b
= INREG(HBLANK_B
);
538 hw
->hsync_b
= INREG(HSYNC_B
);
539 hw
->vtotal_b
= INREG(VTOTAL_B
);
540 hw
->vblank_b
= INREG(VBLANK_B
);
541 hw
->vsync_b
= INREG(VSYNC_B
);
542 hw
->src_size_b
= INREG(SRC_SIZE_B
);
543 hw
->bclrpat_b
= INREG(BCLRPAT_B
);
548 hw
->adpa
= INREG(ADPA
);
549 hw
->dvoa
= INREG(DVOA
);
550 hw
->dvob
= INREG(DVOB
);
551 hw
->dvoc
= INREG(DVOC
);
552 hw
->dvoa_srcdim
= INREG(DVOA_SRCDIM
);
553 hw
->dvob_srcdim
= INREG(DVOB_SRCDIM
);
554 hw
->dvoc_srcdim
= INREG(DVOC_SRCDIM
);
555 hw
->lvds
= INREG(LVDS
);
560 hw
->pipe_a_conf
= INREG(PIPEACONF
);
561 hw
->pipe_b_conf
= INREG(PIPEBCONF
);
562 hw
->disp_arb
= INREG(DISPARB
);
567 hw
->cursor_a_control
= INREG(CURSOR_A_CONTROL
);
568 hw
->cursor_b_control
= INREG(CURSOR_B_CONTROL
);
569 hw
->cursor_a_base
= INREG(CURSOR_A_BASEADDR
);
570 hw
->cursor_b_base
= INREG(CURSOR_B_BASEADDR
);
575 for (i
= 0; i
< 4; i
++) {
576 hw
->cursor_a_palette
[i
] = INREG(CURSOR_A_PALETTE0
+ (i
<< 2));
577 hw
->cursor_b_palette
[i
] = INREG(CURSOR_B_PALETTE0
+ (i
<< 2));
583 hw
->cursor_size
= INREG(CURSOR_SIZE
);
588 hw
->disp_a_ctrl
= INREG(DSPACNTR
);
589 hw
->disp_b_ctrl
= INREG(DSPBCNTR
);
590 hw
->disp_a_base
= INREG(DSPABASE
);
591 hw
->disp_b_base
= INREG(DSPBBASE
);
592 hw
->disp_a_stride
= INREG(DSPASTRIDE
);
593 hw
->disp_b_stride
= INREG(DSPBSTRIDE
);
598 hw
->vgacntrl
= INREG(VGACNTRL
);
603 hw
->add_id
= INREG(ADD_ID
);
608 for (i
= 0; i
< 7; i
++) {
609 hw
->swf0x
[i
] = INREG(SWF00
+ (i
<< 2));
610 hw
->swf1x
[i
] = INREG(SWF10
+ (i
<< 2));
612 hw
->swf3x
[i
] = INREG(SWF30
+ (i
<< 2));
615 for (i
= 0; i
< 8; i
++)
616 hw
->fence
[i
] = INREG(FENCE
+ (i
<< 2));
618 hw
->instpm
= INREG(INSTPM
);
619 hw
->mem_mode
= INREG(MEM_MODE
);
620 hw
->fw_blc_0
= INREG(FW_BLC_0
);
621 hw
->fw_blc_1
= INREG(FW_BLC_1
);
623 hw
->hwstam
= INREG16(HWSTAM
);
624 hw
->ier
= INREG16(IER
);
625 hw
->iir
= INREG16(IIR
);
626 hw
->imr
= INREG16(IMR
);
632 static int calc_vclock3(int index
, int m
, int n
, int p
)
634 if (p
== 0 || n
== 0)
636 return plls
[index
].ref_clk
* m
/ n
/ p
;
639 static int calc_vclock(int index
, int m1
, int m2
, int n
, int p1
, int p2
,
642 struct pll_min_max
*pll
= &plls
[index
];
645 m
= (5 * (m1
+ 2)) + (m2
+ 2);
647 vco
= pll
->ref_clk
* m
/ n
;
649 if (index
== PLLS_I8xx
)
650 p
= ((p1
+ 2) * (1 << (p2
+ 1)));
652 p
= ((p1
) * (p2
? 5 : 10));
657 static void intelfbhw_get_p1p2(struct intelfb_info
*dinfo
, int dpll
,
658 int *o_p1
, int *o_p2
)
662 if (IS_I9XX(dinfo
)) {
663 if (dpll
& DPLL_P1_FORCE_DIV2
)
666 p1
= (dpll
>> DPLL_P1_SHIFT
) & 0xff;
670 p2
= (dpll
>> DPLL_I9XX_P2_SHIFT
) & DPLL_P2_MASK
;
672 if (dpll
& DPLL_P1_FORCE_DIV2
)
675 p1
= (dpll
>> DPLL_P1_SHIFT
) & DPLL_P1_MASK
;
676 p2
= (dpll
>> DPLL_P2_SHIFT
) & DPLL_P2_MASK
;
685 void intelfbhw_print_hw_state(struct intelfb_info
*dinfo
,
686 struct intelfb_hwstate
*hw
)
689 int i
, m1
, m2
, n
, p1
, p2
;
690 int index
= dinfo
->pll_index
;
691 DBG_MSG("intelfbhw_print_hw_state\n");
695 /* Read in as much of the HW state as possible. */
696 printk("hw state dump start\n");
697 printk(" VGA0_DIVISOR: 0x%08x\n", hw
->vga0_divisor
);
698 printk(" VGA1_DIVISOR: 0x%08x\n", hw
->vga1_divisor
);
699 printk(" VGAPD: 0x%08x\n", hw
->vga_pd
);
700 n
= (hw
->vga0_divisor
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
701 m1
= (hw
->vga0_divisor
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
702 m2
= (hw
->vga0_divisor
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
704 intelfbhw_get_p1p2(dinfo
, hw
->vga_pd
, &p1
, &p2
);
706 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
708 printk(" VGA0: clock is %d\n",
709 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
711 n
= (hw
->vga1_divisor
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
712 m1
= (hw
->vga1_divisor
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
713 m2
= (hw
->vga1_divisor
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
715 intelfbhw_get_p1p2(dinfo
, hw
->vga_pd
, &p1
, &p2
);
716 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
718 printk(" VGA1: clock is %d\n",
719 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
721 printk(" DPLL_A: 0x%08x\n", hw
->dpll_a
);
722 printk(" DPLL_B: 0x%08x\n", hw
->dpll_b
);
723 printk(" FPA0: 0x%08x\n", hw
->fpa0
);
724 printk(" FPA1: 0x%08x\n", hw
->fpa1
);
725 printk(" FPB0: 0x%08x\n", hw
->fpb0
);
726 printk(" FPB1: 0x%08x\n", hw
->fpb1
);
728 n
= (hw
->fpa0
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
729 m1
= (hw
->fpa0
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
730 m2
= (hw
->fpa0
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
732 intelfbhw_get_p1p2(dinfo
, hw
->dpll_a
, &p1
, &p2
);
734 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
736 printk(" PLLA0: clock is %d\n",
737 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
739 n
= (hw
->fpa1
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
740 m1
= (hw
->fpa1
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
741 m2
= (hw
->fpa1
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
743 intelfbhw_get_p1p2(dinfo
, hw
->dpll_a
, &p1
, &p2
);
745 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
747 printk(" PLLA1: clock is %d\n",
748 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
751 printk(" PALETTE_A:\n");
752 for (i
= 0; i
< PALETTE_8_ENTRIES
)
753 printk(" %3d: 0x%08x\n", i
, hw
->palette_a
[i
]);
754 printk(" PALETTE_B:\n");
755 for (i
= 0; i
< PALETTE_8_ENTRIES
)
756 printk(" %3d: 0x%08x\n", i
, hw
->palette_b
[i
]);
759 printk(" HTOTAL_A: 0x%08x\n", hw
->htotal_a
);
760 printk(" HBLANK_A: 0x%08x\n", hw
->hblank_a
);
761 printk(" HSYNC_A: 0x%08x\n", hw
->hsync_a
);
762 printk(" VTOTAL_A: 0x%08x\n", hw
->vtotal_a
);
763 printk(" VBLANK_A: 0x%08x\n", hw
->vblank_a
);
764 printk(" VSYNC_A: 0x%08x\n", hw
->vsync_a
);
765 printk(" SRC_SIZE_A: 0x%08x\n", hw
->src_size_a
);
766 printk(" BCLRPAT_A: 0x%08x\n", hw
->bclrpat_a
);
767 printk(" HTOTAL_B: 0x%08x\n", hw
->htotal_b
);
768 printk(" HBLANK_B: 0x%08x\n", hw
->hblank_b
);
769 printk(" HSYNC_B: 0x%08x\n", hw
->hsync_b
);
770 printk(" VTOTAL_B: 0x%08x\n", hw
->vtotal_b
);
771 printk(" VBLANK_B: 0x%08x\n", hw
->vblank_b
);
772 printk(" VSYNC_B: 0x%08x\n", hw
->vsync_b
);
773 printk(" SRC_SIZE_B: 0x%08x\n", hw
->src_size_b
);
774 printk(" BCLRPAT_B: 0x%08x\n", hw
->bclrpat_b
);
776 printk(" ADPA: 0x%08x\n", hw
->adpa
);
777 printk(" DVOA: 0x%08x\n", hw
->dvoa
);
778 printk(" DVOB: 0x%08x\n", hw
->dvob
);
779 printk(" DVOC: 0x%08x\n", hw
->dvoc
);
780 printk(" DVOA_SRCDIM: 0x%08x\n", hw
->dvoa_srcdim
);
781 printk(" DVOB_SRCDIM: 0x%08x\n", hw
->dvob_srcdim
);
782 printk(" DVOC_SRCDIM: 0x%08x\n", hw
->dvoc_srcdim
);
783 printk(" LVDS: 0x%08x\n", hw
->lvds
);
785 printk(" PIPEACONF: 0x%08x\n", hw
->pipe_a_conf
);
786 printk(" PIPEBCONF: 0x%08x\n", hw
->pipe_b_conf
);
787 printk(" DISPARB: 0x%08x\n", hw
->disp_arb
);
789 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw
->cursor_a_control
);
790 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw
->cursor_b_control
);
791 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw
->cursor_a_base
);
792 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw
->cursor_b_base
);
794 printk(" CURSOR_A_PALETTE: ");
795 for (i
= 0; i
< 4; i
++) {
796 printk("0x%08x", hw
->cursor_a_palette
[i
]);
801 printk(" CURSOR_B_PALETTE: ");
802 for (i
= 0; i
< 4; i
++) {
803 printk("0x%08x", hw
->cursor_b_palette
[i
]);
809 printk(" CURSOR_SIZE: 0x%08x\n", hw
->cursor_size
);
811 printk(" DSPACNTR: 0x%08x\n", hw
->disp_a_ctrl
);
812 printk(" DSPBCNTR: 0x%08x\n", hw
->disp_b_ctrl
);
813 printk(" DSPABASE: 0x%08x\n", hw
->disp_a_base
);
814 printk(" DSPBBASE: 0x%08x\n", hw
->disp_b_base
);
815 printk(" DSPASTRIDE: 0x%08x\n", hw
->disp_a_stride
);
816 printk(" DSPBSTRIDE: 0x%08x\n", hw
->disp_b_stride
);
818 printk(" VGACNTRL: 0x%08x\n", hw
->vgacntrl
);
819 printk(" ADD_ID: 0x%08x\n", hw
->add_id
);
821 for (i
= 0; i
< 7; i
++) {
822 printk(" SWF0%d 0x%08x\n", i
,
825 for (i
= 0; i
< 7; i
++) {
826 printk(" SWF1%d 0x%08x\n", i
,
829 for (i
= 0; i
< 3; i
++) {
830 printk(" SWF3%d 0x%08x\n", i
,
833 for (i
= 0; i
< 8; i
++)
834 printk(" FENCE%d 0x%08x\n", i
,
837 printk(" INSTPM 0x%08x\n", hw
->instpm
);
838 printk(" MEM_MODE 0x%08x\n", hw
->mem_mode
);
839 printk(" FW_BLC_0 0x%08x\n", hw
->fw_blc_0
);
840 printk(" FW_BLC_1 0x%08x\n", hw
->fw_blc_1
);
842 printk(" HWSTAM 0x%04x\n", hw
->hwstam
);
843 printk(" IER 0x%04x\n", hw
->ier
);
844 printk(" IIR 0x%04x\n", hw
->iir
);
845 printk(" IMR 0x%04x\n", hw
->imr
);
846 printk("hw state dump end\n");
852 /* Split the M parameter into M1 and M2. */
853 static int splitm(int index
, unsigned int m
, unsigned int *retm1
,
858 struct pll_min_max
*pll
= &plls
[index
];
860 /* no point optimising too much - brute force m */
861 for (m1
= pll
->min_m1
; m1
< pll
->max_m1
+ 1; m1
++) {
862 for (m2
= pll
->min_m2
; m2
< pll
->max_m2
+ 1; m2
++) {
863 testm
= (5 * (m1
+ 2)) + (m2
+ 2);
865 *retm1
= (unsigned int)m1
;
866 *retm2
= (unsigned int)m2
;
874 /* Split the P parameter into P1 and P2. */
875 static int splitp(int index
, unsigned int p
, unsigned int *retp1
,
879 struct pll_min_max
*pll
= &plls
[index
];
881 if (index
== PLLS_I9xx
) {
882 p2
= (p
% 10) ? 1 : 0;
884 p1
= p
/ (p2
? 5 : 10);
886 *retp1
= (unsigned int)p1
;
887 *retp2
= (unsigned int)p2
;
895 p1
= (p
/ (1 << (p2
+ 1))) - 2;
896 if (p
% 4 == 0 && p1
< pll
->min_p1
) {
898 p1
= (p
/ (1 << (p2
+ 1))) - 2;
900 if (p1
< pll
->min_p1
|| p1
> pll
->max_p1
||
901 (p1
+ 2) * (1 << (p2
+ 1)) != p
) {
904 *retp1
= (unsigned int)p1
;
905 *retp2
= (unsigned int)p2
;
910 static int calc_pll_params(int index
, int clock
, u32
*retm1
, u32
*retm2
,
911 u32
*retn
, u32
*retp1
, u32
*retp2
, u32
*retclock
)
913 u32 m1
, m2
, n
, p1
, p2
, n1
, testm
;
914 u32 f_vco
, p
, p_best
= 0, m
, f_out
= 0;
915 u32 err_max
, err_target
, err_best
= 10000000;
916 u32 n_best
= 0, m_best
= 0, f_best
, f_err
;
917 u32 p_min
, p_max
, p_inc
, div_max
;
918 struct pll_min_max
*pll
= &plls
[index
];
920 /* Accept 0.5% difference, but aim for 0.1% */
921 err_max
= 5 * clock
/ 1000;
922 err_target
= clock
/ 1000;
924 DBG_MSG("Clock is %d\n", clock
);
926 div_max
= pll
->max_vco
/ clock
;
928 p_inc
= (clock
<= pll
->p_transition_clk
) ? pll
->p_inc_lo
: pll
->p_inc_hi
;
930 p_max
= ROUND_DOWN_TO(div_max
, p_inc
);
931 if (p_min
< pll
->min_p
)
933 if (p_max
> pll
->max_p
)
936 DBG_MSG("p range is %d-%d (%d)\n", p_min
, p_max
, p_inc
);
940 if (splitp(index
, p
, &p1
, &p2
)) {
941 WRN_MSG("cannot split p = %d\n", p
);
949 m
= ROUND_UP_TO(f_vco
* n
, pll
->ref_clk
) / pll
->ref_clk
;
954 for (testm
= m
- 1; testm
<= m
; testm
++) {
955 f_out
= calc_vclock3(index
, testm
, n
, p
);
956 if (splitm(index
, testm
, &m1
, &m2
)) {
957 WRN_MSG("cannot split m = %d\n",
962 f_err
= clock
- f_out
;
963 else/* slightly bias the error for bigger clocks */
964 f_err
= f_out
- clock
+ 1;
966 if (f_err
< err_best
) {
975 } while ((n
<= pll
->max_n
) && (f_out
>= clock
));
977 } while ((p
<= p_max
));
980 WRN_MSG("cannot find parameters for clock %d\n", clock
);
986 splitm(index
, m
, &m1
, &m2
);
987 splitp(index
, p
, &p1
, &p2
);
990 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
991 "f: %d (%d), VCO: %d\n",
992 m
, m1
, m2
, n
, n1
, p
, p1
, p2
,
993 calc_vclock3(index
, m
, n
, p
),
994 calc_vclock(index
, m1
, m2
, n1
, p1
, p2
, 0),
995 calc_vclock3(index
, m
, n
, p
) * p
);
1001 *retclock
= calc_vclock(index
, m1
, m2
, n1
, p1
, p2
, 0);
1006 static __inline__
int check_overflow(u32 value
, u32 limit
,
1007 const char *description
)
1009 if (value
> limit
) {
1010 WRN_MSG("%s value %d exceeds limit %d\n",
1011 description
, value
, limit
);
1017 /* It is assumed that hw is filled in with the initial state information. */
1018 int intelfbhw_mode_to_hw(struct intelfb_info
*dinfo
,
1019 struct intelfb_hwstate
*hw
,
1020 struct fb_var_screeninfo
*var
)
1023 u32
*dpll
, *fp0
, *fp1
;
1024 u32 m1
, m2
, n
, p1
, p2
, clock_target
, clock
;
1025 u32 hsync_start
, hsync_end
, hblank_start
, hblank_end
, htotal
, hactive
;
1026 u32 vsync_start
, vsync_end
, vblank_start
, vblank_end
, vtotal
, vactive
;
1027 u32 vsync_pol
, hsync_pol
;
1028 u32
*vs
, *vb
, *vt
, *hs
, *hb
, *ht
, *ss
, *pipe_conf
;
1029 u32 stride_alignment
;
1031 DBG_MSG("intelfbhw_mode_to_hw\n");
1034 hw
->vgacntrl
|= VGA_DISABLE
;
1036 /* Check whether pipe A or pipe B is enabled. */
1037 if (hw
->pipe_a_conf
& PIPECONF_ENABLE
)
1039 else if (hw
->pipe_b_conf
& PIPECONF_ENABLE
)
1042 /* Set which pipe's registers will be set. */
1043 if (pipe
== PIPE_B
) {
1053 ss
= &hw
->src_size_b
;
1054 pipe_conf
= &hw
->pipe_b_conf
;
1065 ss
= &hw
->src_size_a
;
1066 pipe_conf
= &hw
->pipe_a_conf
;
1069 /* Use ADPA register for sync control. */
1070 hw
->adpa
&= ~ADPA_USE_VGA_HVPOLARITY
;
1073 hsync_pol
= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ?
1074 ADPA_SYNC_ACTIVE_HIGH
: ADPA_SYNC_ACTIVE_LOW
;
1075 vsync_pol
= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ?
1076 ADPA_SYNC_ACTIVE_HIGH
: ADPA_SYNC_ACTIVE_LOW
;
1077 hw
->adpa
&= ~((ADPA_SYNC_ACTIVE_MASK
<< ADPA_VSYNC_ACTIVE_SHIFT
) |
1078 (ADPA_SYNC_ACTIVE_MASK
<< ADPA_HSYNC_ACTIVE_SHIFT
));
1079 hw
->adpa
|= (hsync_pol
<< ADPA_HSYNC_ACTIVE_SHIFT
) |
1080 (vsync_pol
<< ADPA_VSYNC_ACTIVE_SHIFT
);
1082 /* Connect correct pipe to the analog port DAC */
1083 hw
->adpa
&= ~(PIPE_MASK
<< ADPA_PIPE_SELECT_SHIFT
);
1084 hw
->adpa
|= (pipe
<< ADPA_PIPE_SELECT_SHIFT
);
1086 /* Set DPMS state to D0 (on) */
1087 hw
->adpa
&= ~ADPA_DPMS_CONTROL_MASK
;
1088 hw
->adpa
|= ADPA_DPMS_D0
;
1090 hw
->adpa
|= ADPA_DAC_ENABLE
;
1092 *dpll
|= (DPLL_VCO_ENABLE
| DPLL_VGA_MODE_DISABLE
);
1093 *dpll
&= ~(DPLL_RATE_SELECT_MASK
| DPLL_REFERENCE_SELECT_MASK
);
1094 *dpll
|= (DPLL_REFERENCE_DEFAULT
| DPLL_RATE_SELECT_FP0
);
1096 /* Desired clock in kHz */
1097 clock_target
= 1000000000 / var
->pixclock
;
1099 if (calc_pll_params(dinfo
->pll_index
, clock_target
, &m1
, &m2
,
1100 &n
, &p1
, &p2
, &clock
)) {
1101 WRN_MSG("calc_pll_params failed\n");
1105 /* Check for overflow. */
1106 if (check_overflow(p1
, DPLL_P1_MASK
, "PLL P1 parameter"))
1108 if (check_overflow(p2
, DPLL_P2_MASK
, "PLL P2 parameter"))
1110 if (check_overflow(m1
, FP_DIVISOR_MASK
, "PLL M1 parameter"))
1112 if (check_overflow(m2
, FP_DIVISOR_MASK
, "PLL M2 parameter"))
1114 if (check_overflow(n
, FP_DIVISOR_MASK
, "PLL N parameter"))
1117 *dpll
&= ~DPLL_P1_FORCE_DIV2
;
1118 *dpll
&= ~((DPLL_P2_MASK
<< DPLL_P2_SHIFT
) |
1119 (DPLL_P1_MASK
<< DPLL_P1_SHIFT
));
1121 if (IS_I9XX(dinfo
)) {
1122 *dpll
|= (p2
<< DPLL_I9XX_P2_SHIFT
);
1123 *dpll
|= (1 << (p1
- 1)) << DPLL_P1_SHIFT
;
1125 *dpll
|= (p2
<< DPLL_P2_SHIFT
) | (p1
<< DPLL_P1_SHIFT
);
1127 *fp0
= (n
<< FP_N_DIVISOR_SHIFT
) |
1128 (m1
<< FP_M1_DIVISOR_SHIFT
) |
1129 (m2
<< FP_M2_DIVISOR_SHIFT
);
1132 hw
->dvob
&= ~PORT_ENABLE
;
1133 hw
->dvoc
&= ~PORT_ENABLE
;
1135 /* Use display plane A. */
1136 hw
->disp_a_ctrl
|= DISPPLANE_PLANE_ENABLE
;
1137 hw
->disp_a_ctrl
&= ~DISPPLANE_GAMMA_ENABLE
;
1138 hw
->disp_a_ctrl
&= ~DISPPLANE_PIXFORMAT_MASK
;
1139 switch (intelfb_var_to_depth(var
)) {
1141 hw
->disp_a_ctrl
|= DISPPLANE_8BPP
| DISPPLANE_GAMMA_ENABLE
;
1144 hw
->disp_a_ctrl
|= DISPPLANE_15_16BPP
;
1147 hw
->disp_a_ctrl
|= DISPPLANE_16BPP
;
1150 hw
->disp_a_ctrl
|= DISPPLANE_32BPP_NO_ALPHA
;
1153 hw
->disp_a_ctrl
&= ~(PIPE_MASK
<< DISPPLANE_SEL_PIPE_SHIFT
);
1154 hw
->disp_a_ctrl
|= (pipe
<< DISPPLANE_SEL_PIPE_SHIFT
);
1156 /* Set CRTC registers. */
1157 hactive
= var
->xres
;
1158 hsync_start
= hactive
+ var
->right_margin
;
1159 hsync_end
= hsync_start
+ var
->hsync_len
;
1160 htotal
= hsync_end
+ var
->left_margin
;
1161 hblank_start
= hactive
;
1162 hblank_end
= htotal
;
1164 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1165 hactive
, hsync_start
, hsync_end
, htotal
, hblank_start
,
1168 vactive
= var
->yres
;
1169 if (var
->vmode
& FB_VMODE_INTERLACED
)
1170 vactive
--; /* the chip adds 2 halflines automatically */
1171 vsync_start
= vactive
+ var
->lower_margin
;
1172 vsync_end
= vsync_start
+ var
->vsync_len
;
1173 vtotal
= vsync_end
+ var
->upper_margin
;
1174 vblank_start
= vactive
;
1175 vblank_end
= vtotal
;
1176 vblank_end
= vsync_end
+ 1;
1178 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1179 vactive
, vsync_start
, vsync_end
, vtotal
, vblank_start
,
1182 /* Adjust for register values, and check for overflow. */
1184 if (check_overflow(hactive
, HACTIVE_MASK
, "CRTC hactive"))
1187 if (check_overflow(hsync_start
, HSYNCSTART_MASK
, "CRTC hsync_start"))
1190 if (check_overflow(hsync_end
, HSYNCEND_MASK
, "CRTC hsync_end"))
1193 if (check_overflow(htotal
, HTOTAL_MASK
, "CRTC htotal"))
1196 if (check_overflow(hblank_start
, HBLANKSTART_MASK
, "CRTC hblank_start"))
1199 if (check_overflow(hblank_end
, HBLANKEND_MASK
, "CRTC hblank_end"))
1203 if (check_overflow(vactive
, VACTIVE_MASK
, "CRTC vactive"))
1206 if (check_overflow(vsync_start
, VSYNCSTART_MASK
, "CRTC vsync_start"))
1209 if (check_overflow(vsync_end
, VSYNCEND_MASK
, "CRTC vsync_end"))
1212 if (check_overflow(vtotal
, VTOTAL_MASK
, "CRTC vtotal"))
1215 if (check_overflow(vblank_start
, VBLANKSTART_MASK
, "CRTC vblank_start"))
1218 if (check_overflow(vblank_end
, VBLANKEND_MASK
, "CRTC vblank_end"))
1221 *ht
= (htotal
<< HTOTAL_SHIFT
) | (hactive
<< HACTIVE_SHIFT
);
1222 *hb
= (hblank_start
<< HBLANKSTART_SHIFT
) |
1223 (hblank_end
<< HSYNCEND_SHIFT
);
1224 *hs
= (hsync_start
<< HSYNCSTART_SHIFT
) | (hsync_end
<< HSYNCEND_SHIFT
);
1226 *vt
= (vtotal
<< VTOTAL_SHIFT
) | (vactive
<< VACTIVE_SHIFT
);
1227 *vb
= (vblank_start
<< VBLANKSTART_SHIFT
) |
1228 (vblank_end
<< VSYNCEND_SHIFT
);
1229 *vs
= (vsync_start
<< VSYNCSTART_SHIFT
) | (vsync_end
<< VSYNCEND_SHIFT
);
1230 *ss
= (hactive
<< SRC_SIZE_HORIZ_SHIFT
) |
1231 (vactive
<< SRC_SIZE_VERT_SHIFT
);
1233 hw
->disp_a_stride
= dinfo
->pitch
;
1234 DBG_MSG("pitch is %d\n", hw
->disp_a_stride
);
1236 hw
->disp_a_base
= hw
->disp_a_stride
* var
->yoffset
+
1237 var
->xoffset
* var
->bits_per_pixel
/ 8;
1239 hw
->disp_a_base
+= dinfo
->fb
.offset
<< 12;
1241 /* Check stride alignment. */
1242 stride_alignment
= IS_I9XX(dinfo
) ? STRIDE_ALIGNMENT_I9XX
:
1244 if (hw
->disp_a_stride
% stride_alignment
!= 0) {
1245 WRN_MSG("display stride %d has bad alignment %d\n",
1246 hw
->disp_a_stride
, stride_alignment
);
1250 /* Set the palette to 8-bit mode. */
1251 *pipe_conf
&= ~PIPECONF_GAMMA
;
1253 if (var
->vmode
& FB_VMODE_INTERLACED
)
1254 *pipe_conf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
1256 *pipe_conf
&= ~PIPECONF_INTERLACE_MASK
;
1261 /* Program a (non-VGA) video mode. */
1262 int intelfbhw_program_mode(struct intelfb_info
*dinfo
,
1263 const struct intelfb_hwstate
*hw
, int blank
)
1267 const u32
*dpll
, *fp0
, *fp1
, *pipe_conf
;
1268 const u32
*hs
, *ht
, *hb
, *vs
, *vt
, *vb
, *ss
;
1269 u32 dpll_reg
, fp0_reg
, fp1_reg
, pipe_conf_reg
, pipe_stat_reg
;
1270 u32 hsync_reg
, htotal_reg
, hblank_reg
;
1271 u32 vsync_reg
, vtotal_reg
, vblank_reg
;
1273 u32 count
, tmp_val
[3];
1275 /* Assume single pipe, display plane A, analog CRT. */
1278 DBG_MSG("intelfbhw_program_mode\n");
1282 tmp
= INREG(VGACNTRL
);
1284 OUTREG(VGACNTRL
, tmp
);
1286 /* Check whether pipe A or pipe B is enabled. */
1287 if (hw
->pipe_a_conf
& PIPECONF_ENABLE
)
1289 else if (hw
->pipe_b_conf
& PIPECONF_ENABLE
)
1294 if (pipe
== PIPE_B
) {
1298 pipe_conf
= &hw
->pipe_b_conf
;
1305 ss
= &hw
->src_size_b
;
1309 pipe_conf_reg
= PIPEBCONF
;
1310 pipe_stat_reg
= PIPEBSTAT
;
1311 hsync_reg
= HSYNC_B
;
1312 htotal_reg
= HTOTAL_B
;
1313 hblank_reg
= HBLANK_B
;
1314 vsync_reg
= VSYNC_B
;
1315 vtotal_reg
= VTOTAL_B
;
1316 vblank_reg
= VBLANK_B
;
1317 src_size_reg
= SRC_SIZE_B
;
1322 pipe_conf
= &hw
->pipe_a_conf
;
1329 ss
= &hw
->src_size_a
;
1333 pipe_conf_reg
= PIPEACONF
;
1334 pipe_stat_reg
= PIPEASTAT
;
1335 hsync_reg
= HSYNC_A
;
1336 htotal_reg
= HTOTAL_A
;
1337 hblank_reg
= HBLANK_A
;
1338 vsync_reg
= VSYNC_A
;
1339 vtotal_reg
= VTOTAL_A
;
1340 vblank_reg
= VBLANK_A
;
1341 src_size_reg
= SRC_SIZE_A
;
1345 tmp
= INREG(pipe_conf_reg
);
1346 tmp
&= ~PIPECONF_ENABLE
;
1347 OUTREG(pipe_conf_reg
, tmp
);
1351 tmp_val
[count
% 3] = INREG(PIPEA_DSL
);
1352 if ((tmp_val
[0] == tmp_val
[1]) && (tmp_val
[1] == tmp_val
[2]))
1356 if (count
% 200 == 0) {
1357 tmp
= INREG(pipe_conf_reg
);
1358 tmp
&= ~PIPECONF_ENABLE
;
1359 OUTREG(pipe_conf_reg
, tmp
);
1361 } while (count
< 2000);
1363 OUTREG(ADPA
, INREG(ADPA
) & ~ADPA_DAC_ENABLE
);
1365 /* Disable planes A and B. */
1366 tmp
= INREG(DSPACNTR
);
1367 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
1368 OUTREG(DSPACNTR
, tmp
);
1369 tmp
= INREG(DSPBCNTR
);
1370 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
1371 OUTREG(DSPBCNTR
, tmp
);
1373 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1376 OUTREG(DVOB
, INREG(DVOB
) & ~PORT_ENABLE
);
1377 OUTREG(DVOC
, INREG(DVOC
) & ~PORT_ENABLE
);
1378 OUTREG(ADPA
, INREG(ADPA
) & ~ADPA_DAC_ENABLE
);
1382 tmp
&= ~ADPA_DPMS_CONTROL_MASK
;
1383 tmp
|= ADPA_DPMS_D3
;
1386 /* do some funky magic - xyzzy */
1387 OUTREG(0x61204, 0xabcd0000);
1390 tmp
= INREG(dpll_reg
);
1391 tmp
&= ~DPLL_VCO_ENABLE
;
1392 OUTREG(dpll_reg
, tmp
);
1394 /* Set PLL parameters */
1395 OUTREG(fp0_reg
, *fp0
);
1396 OUTREG(fp1_reg
, *fp1
);
1399 OUTREG(dpll_reg
, *dpll
);
1402 OUTREG(DVOB
, hw
->dvob
);
1403 OUTREG(DVOC
, hw
->dvoc
);
1405 /* undo funky magic */
1406 OUTREG(0x61204, 0x00000000);
1409 OUTREG(ADPA
, INREG(ADPA
) | ADPA_DAC_ENABLE
);
1410 OUTREG(ADPA
, (hw
->adpa
& ~(ADPA_DPMS_CONTROL_MASK
)) | ADPA_DPMS_D3
);
1412 /* Set pipe parameters */
1413 OUTREG(hsync_reg
, *hs
);
1414 OUTREG(hblank_reg
, *hb
);
1415 OUTREG(htotal_reg
, *ht
);
1416 OUTREG(vsync_reg
, *vs
);
1417 OUTREG(vblank_reg
, *vb
);
1418 OUTREG(vtotal_reg
, *vt
);
1419 OUTREG(src_size_reg
, *ss
);
1421 switch (dinfo
->info
->var
.vmode
& (FB_VMODE_INTERLACED
|
1422 FB_VMODE_ODD_FLD_FIRST
)) {
1423 case FB_VMODE_INTERLACED
| FB_VMODE_ODD_FLD_FIRST
:
1424 OUTREG(pipe_stat_reg
, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN
);
1426 case FB_VMODE_INTERLACED
: /* even lines first */
1427 OUTREG(pipe_stat_reg
, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN
);
1429 default: /* non-interlaced */
1430 OUTREG(pipe_stat_reg
, 0xFFFF); /* clear all status bits only */
1433 OUTREG(pipe_conf_reg
, *pipe_conf
| PIPECONF_ENABLE
);
1437 tmp
&= ~ADPA_DPMS_CONTROL_MASK
;
1438 tmp
|= ADPA_DPMS_D0
;
1441 /* setup display plane */
1442 if (dinfo
->pdev
->device
== PCI_DEVICE_ID_INTEL_830M
) {
1444 * i830M errata: the display plane must be enabled
1445 * to allow writes to the other bits in the plane
1448 tmp
= INREG(DSPACNTR
);
1449 if ((tmp
& DISPPLANE_PLANE_ENABLE
) != DISPPLANE_PLANE_ENABLE
) {
1450 tmp
|= DISPPLANE_PLANE_ENABLE
;
1451 OUTREG(DSPACNTR
, tmp
);
1453 hw
->disp_a_ctrl
|DISPPLANE_PLANE_ENABLE
);
1458 OUTREG(DSPACNTR
, hw
->disp_a_ctrl
& ~DISPPLANE_PLANE_ENABLE
);
1459 OUTREG(DSPASTRIDE
, hw
->disp_a_stride
);
1460 OUTREG(DSPABASE
, hw
->disp_a_base
);
1464 tmp
= INREG(DSPACNTR
);
1465 tmp
|= DISPPLANE_PLANE_ENABLE
;
1466 OUTREG(DSPACNTR
, tmp
);
1467 OUTREG(DSPABASE
, hw
->disp_a_base
);
1473 /* forward declarations */
1474 static void refresh_ring(struct intelfb_info
*dinfo
);
1475 static void reset_state(struct intelfb_info
*dinfo
);
1476 static void do_flush(struct intelfb_info
*dinfo
);
1478 static u32
get_ring_space(struct intelfb_info
*dinfo
)
1482 if (dinfo
->ring_tail
>= dinfo
->ring_head
)
1483 ring_space
= dinfo
->ring
.size
-
1484 (dinfo
->ring_tail
- dinfo
->ring_head
);
1486 ring_space
= dinfo
->ring_head
- dinfo
->ring_tail
;
1488 if (ring_space
> RING_MIN_FREE
)
1489 ring_space
-= RING_MIN_FREE
;
1496 static int wait_ring(struct intelfb_info
*dinfo
, int n
)
1500 u32 last_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1503 DBG_MSG("wait_ring: %d\n", n
);
1506 end
= jiffies
+ (HZ
* 3);
1507 while (dinfo
->ring_space
< n
) {
1508 dinfo
->ring_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1509 dinfo
->ring_space
= get_ring_space(dinfo
);
1511 if (dinfo
->ring_head
!= last_head
) {
1512 end
= jiffies
+ (HZ
* 3);
1513 last_head
= dinfo
->ring_head
;
1516 if (time_before(end
, jiffies
)) {
1520 refresh_ring(dinfo
);
1522 end
= jiffies
+ (HZ
* 3);
1525 WRN_MSG("ring buffer : space: %d wanted %d\n",
1526 dinfo
->ring_space
, n
);
1527 WRN_MSG("lockup - turning off hardware "
1529 dinfo
->ring_lockup
= 1;
1538 static void do_flush(struct intelfb_info
*dinfo
)
1541 OUT_RING(MI_FLUSH
| MI_WRITE_DIRTY_STATE
| MI_INVALIDATE_MAP_CACHE
);
1546 void intelfbhw_do_sync(struct intelfb_info
*dinfo
)
1549 DBG_MSG("intelfbhw_do_sync\n");
1556 * Send a flush, then wait until the ring is empty. This is what
1557 * the XFree86 driver does, and actually it doesn't seem a lot worse
1558 * than the recommended method (both have problems).
1561 wait_ring(dinfo
, dinfo
->ring
.size
- RING_MIN_FREE
);
1562 dinfo
->ring_space
= dinfo
->ring
.size
- RING_MIN_FREE
;
1565 static void refresh_ring(struct intelfb_info
*dinfo
)
1568 DBG_MSG("refresh_ring\n");
1571 dinfo
->ring_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1572 dinfo
->ring_tail
= INREG(PRI_RING_TAIL
) & RING_TAIL_MASK
;
1573 dinfo
->ring_space
= get_ring_space(dinfo
);
1576 static void reset_state(struct intelfb_info
*dinfo
)
1582 DBG_MSG("reset_state\n");
1585 for (i
= 0; i
< FENCE_NUM
; i
++)
1586 OUTREG(FENCE
+ (i
<< 2), 0);
1588 /* Flush the ring buffer if it's enabled. */
1589 tmp
= INREG(PRI_RING_LENGTH
);
1590 if (tmp
& RING_ENABLE
) {
1592 DBG_MSG("reset_state: ring was enabled\n");
1594 refresh_ring(dinfo
);
1595 intelfbhw_do_sync(dinfo
);
1599 OUTREG(PRI_RING_LENGTH
, 0);
1600 OUTREG(PRI_RING_HEAD
, 0);
1601 OUTREG(PRI_RING_TAIL
, 0);
1602 OUTREG(PRI_RING_START
, 0);
1605 /* Stop the 2D engine, and turn off the ring buffer. */
1606 void intelfbhw_2d_stop(struct intelfb_info
*dinfo
)
1609 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1610 dinfo
->accel
, dinfo
->ring_active
);
1616 dinfo
->ring_active
= 0;
1621 * Enable the ring buffer, and initialise the 2D engine.
1622 * It is assumed that the graphics engine has been stopped by previously
1623 * calling intelfb_2d_stop().
1625 void intelfbhw_2d_start(struct intelfb_info
*dinfo
)
1628 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1629 dinfo
->accel
, dinfo
->ring_active
);
1635 /* Initialise the primary ring buffer. */
1636 OUTREG(PRI_RING_LENGTH
, 0);
1637 OUTREG(PRI_RING_TAIL
, 0);
1638 OUTREG(PRI_RING_HEAD
, 0);
1640 OUTREG(PRI_RING_START
, dinfo
->ring
.physical
& RING_START_MASK
);
1641 OUTREG(PRI_RING_LENGTH
,
1642 ((dinfo
->ring
.size
- GTT_PAGE_SIZE
) & RING_LENGTH_MASK
) |
1643 RING_NO_REPORT
| RING_ENABLE
);
1644 refresh_ring(dinfo
);
1645 dinfo
->ring_active
= 1;
1648 /* 2D fillrect (solid fill or invert) */
1649 void intelfbhw_do_fillrect(struct intelfb_info
*dinfo
, u32 x
, u32 y
, u32 w
,
1650 u32 h
, u32 color
, u32 pitch
, u32 bpp
, u32 rop
)
1652 u32 br00
, br09
, br13
, br14
, br16
;
1655 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1656 "rop 0x%02x\n", x
, y
, w
, h
, color
, pitch
, bpp
, rop
);
1659 br00
= COLOR_BLT_CMD
;
1660 br09
= dinfo
->fb_start
+ (y
* pitch
+ x
* (bpp
/ 8));
1661 br13
= (rop
<< ROP_SHIFT
) | pitch
;
1662 br14
= (h
<< HEIGHT_SHIFT
) | ((w
* (bpp
/ 8)) << WIDTH_SHIFT
);
1667 br13
|= COLOR_DEPTH_8
;
1670 br13
|= COLOR_DEPTH_16
;
1673 br13
|= COLOR_DEPTH_32
;
1674 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1688 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo
->ring_head
,
1689 dinfo
->ring_tail
, dinfo
->ring_space
);
1694 intelfbhw_do_bitblt(struct intelfb_info
*dinfo
, u32 curx
, u32 cury
,
1695 u32 dstx
, u32 dsty
, u32 w
, u32 h
, u32 pitch
, u32 bpp
)
1697 u32 br00
, br09
, br11
, br12
, br13
, br22
, br23
, br26
;
1700 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1701 curx
, cury
, dstx
, dsty
, w
, h
, pitch
, bpp
);
1704 br00
= XY_SRC_COPY_BLT_CMD
;
1705 br09
= dinfo
->fb_start
;
1706 br11
= (pitch
<< PITCH_SHIFT
);
1707 br12
= dinfo
->fb_start
;
1708 br13
= (SRC_ROP_GXCOPY
<< ROP_SHIFT
) | (pitch
<< PITCH_SHIFT
);
1709 br22
= (dstx
<< WIDTH_SHIFT
) | (dsty
<< HEIGHT_SHIFT
);
1710 br23
= ((dstx
+ w
) << WIDTH_SHIFT
) |
1711 ((dsty
+ h
) << HEIGHT_SHIFT
);
1712 br26
= (curx
<< WIDTH_SHIFT
) | (cury
<< HEIGHT_SHIFT
);
1716 br13
|= COLOR_DEPTH_8
;
1719 br13
|= COLOR_DEPTH_16
;
1722 br13
|= COLOR_DEPTH_32
;
1723 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1739 int intelfbhw_do_drawglyph(struct intelfb_info
*dinfo
, u32 fg
, u32 bg
, u32 w
,
1740 u32 h
, const u8
* cdat
, u32 x
, u32 y
, u32 pitch
,
1743 int nbytes
, ndwords
, pad
, tmp
;
1744 u32 br00
, br09
, br13
, br18
, br19
, br22
, br23
;
1745 int dat
, ix
, iy
, iw
;
1749 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x
, y
, w
, h
);
1752 /* size in bytes of a padded scanline */
1753 nbytes
= ROUND_UP_TO(w
, 16) / 8;
1755 /* Total bytes of padded scanline data to write out. */
1756 nbytes
= nbytes
* h
;
1759 * Check if the glyph data exceeds the immediate mode limit.
1760 * It would take a large font (1K pixels) to hit this limit.
1762 if (nbytes
> MAX_MONO_IMM_SIZE
)
1765 /* Src data is packaged a dword (32-bit) at a time. */
1766 ndwords
= ROUND_UP_TO(nbytes
, 4) / 4;
1769 * Ring has to be padded to a quad word. But because the command starts
1770 with 7 bytes, pad only if there is an even number of ndwords
1772 pad
= !(ndwords
% 2);
1774 tmp
= (XY_MONO_SRC_IMM_BLT_CMD
& DW_LENGTH_MASK
) + ndwords
;
1775 br00
= (XY_MONO_SRC_IMM_BLT_CMD
& ~DW_LENGTH_MASK
) | tmp
;
1776 br09
= dinfo
->fb_start
;
1777 br13
= (SRC_ROP_GXCOPY
<< ROP_SHIFT
) | (pitch
<< PITCH_SHIFT
);
1780 br22
= (x
<< WIDTH_SHIFT
) | (y
<< HEIGHT_SHIFT
);
1781 br23
= ((x
+ w
) << WIDTH_SHIFT
) | ((y
+ h
) << HEIGHT_SHIFT
);
1785 br13
|= COLOR_DEPTH_8
;
1788 br13
|= COLOR_DEPTH_16
;
1791 br13
|= COLOR_DEPTH_32
;
1792 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1796 START_RING(8 + ndwords
);
1805 iw
= ROUND_UP_TO(w
, 8) / 8;
1808 for (j
= 0; j
< 2; ++j
) {
1809 for (i
= 0; i
< 2; ++i
) {
1810 if (ix
!= iw
|| i
== 0)
1811 dat
|= cdat
[iy
*iw
+ ix
++] << (i
+j
*2)*8;
1813 if (ix
== iw
&& iy
!= (h
-1)) {
1827 /* HW cursor functions. */
1828 void intelfbhw_cursor_init(struct intelfb_info
*dinfo
)
1833 DBG_MSG("intelfbhw_cursor_init\n");
1836 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1837 if (!dinfo
->cursor
.physical
)
1839 tmp
= INREG(CURSOR_A_CONTROL
);
1840 tmp
&= ~(CURSOR_MODE_MASK
| CURSOR_MOBILE_GAMMA_ENABLE
|
1841 CURSOR_MEM_TYPE_LOCAL
|
1842 (1 << CURSOR_PIPE_SELECT_SHIFT
));
1843 tmp
|= CURSOR_MODE_DISABLE
;
1844 OUTREG(CURSOR_A_CONTROL
, tmp
);
1845 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1847 tmp
= INREG(CURSOR_CONTROL
);
1848 tmp
&= ~(CURSOR_FORMAT_MASK
| CURSOR_GAMMA_ENABLE
|
1849 CURSOR_ENABLE
| CURSOR_STRIDE_MASK
);
1850 tmp
= CURSOR_FORMAT_3C
;
1851 OUTREG(CURSOR_CONTROL
, tmp
);
1852 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.offset
<< 12);
1853 tmp
= (64 << CURSOR_SIZE_H_SHIFT
) |
1854 (64 << CURSOR_SIZE_V_SHIFT
);
1855 OUTREG(CURSOR_SIZE
, tmp
);
1859 void intelfbhw_cursor_hide(struct intelfb_info
*dinfo
)
1864 DBG_MSG("intelfbhw_cursor_hide\n");
1867 dinfo
->cursor_on
= 0;
1868 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1869 if (!dinfo
->cursor
.physical
)
1871 tmp
= INREG(CURSOR_A_CONTROL
);
1872 tmp
&= ~CURSOR_MODE_MASK
;
1873 tmp
|= CURSOR_MODE_DISABLE
;
1874 OUTREG(CURSOR_A_CONTROL
, tmp
);
1876 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1878 tmp
= INREG(CURSOR_CONTROL
);
1879 tmp
&= ~CURSOR_ENABLE
;
1880 OUTREG(CURSOR_CONTROL
, tmp
);
1884 void intelfbhw_cursor_show(struct intelfb_info
*dinfo
)
1889 DBG_MSG("intelfbhw_cursor_show\n");
1892 dinfo
->cursor_on
= 1;
1894 if (dinfo
->cursor_blanked
)
1897 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1898 if (!dinfo
->cursor
.physical
)
1900 tmp
= INREG(CURSOR_A_CONTROL
);
1901 tmp
&= ~CURSOR_MODE_MASK
;
1902 tmp
|= CURSOR_MODE_64_4C_AX
;
1903 OUTREG(CURSOR_A_CONTROL
, tmp
);
1905 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1907 tmp
= INREG(CURSOR_CONTROL
);
1908 tmp
|= CURSOR_ENABLE
;
1909 OUTREG(CURSOR_CONTROL
, tmp
);
1913 void intelfbhw_cursor_setpos(struct intelfb_info
*dinfo
, int x
, int y
)
1918 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x
, y
);
1922 * Sets the position. The coordinates are assumed to already
1923 * have any offset adjusted. Assume that the cursor is never
1924 * completely off-screen, and that x, y are always >= 0.
1927 tmp
= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
) |
1928 ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1929 OUTREG(CURSOR_A_POSITION
, tmp
);
1932 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1935 void intelfbhw_cursor_setcolor(struct intelfb_info
*dinfo
, u32 bg
, u32 fg
)
1938 DBG_MSG("intelfbhw_cursor_setcolor\n");
1941 OUTREG(CURSOR_A_PALETTE0
, bg
& CURSOR_PALETTE_MASK
);
1942 OUTREG(CURSOR_A_PALETTE1
, fg
& CURSOR_PALETTE_MASK
);
1943 OUTREG(CURSOR_A_PALETTE2
, fg
& CURSOR_PALETTE_MASK
);
1944 OUTREG(CURSOR_A_PALETTE3
, bg
& CURSOR_PALETTE_MASK
);
1947 void intelfbhw_cursor_load(struct intelfb_info
*dinfo
, int width
, int height
,
1950 u8 __iomem
*addr
= (u8 __iomem
*)dinfo
->cursor
.virtual;
1951 int i
, j
, w
= width
/ 8;
1952 int mod
= width
% 8, t_mask
, d_mask
;
1955 DBG_MSG("intelfbhw_cursor_load\n");
1958 if (!dinfo
->cursor
.virtual)
1961 t_mask
= 0xff >> mod
;
1962 d_mask
= ~(0xff >> mod
);
1963 for (i
= height
; i
--; ) {
1964 for (j
= 0; j
< w
; j
++) {
1965 writeb(0x00, addr
+ j
);
1966 writeb(*(data
++), addr
+ j
+8);
1969 writeb(t_mask
, addr
+ j
);
1970 writeb(*(data
++) & d_mask
, addr
+ j
+8);
1976 void intelfbhw_cursor_reset(struct intelfb_info
*dinfo
)
1978 u8 __iomem
*addr
= (u8 __iomem
*)dinfo
->cursor
.virtual;
1982 DBG_MSG("intelfbhw_cursor_reset\n");
1985 if (!dinfo
->cursor
.virtual)
1988 for (i
= 64; i
--; ) {
1989 for (j
= 0; j
< 8; j
++) {
1990 writeb(0xff, addr
+ j
+0);
1991 writeb(0x00, addr
+ j
+8);
1997 static irqreturn_t
intelfbhw_irq(int irq
, void *dev_id
)
2000 struct intelfb_info
*dinfo
= dev_id
;
2002 spin_lock(&dinfo
->int_lock
);
2005 if (dinfo
->info
->var
.vmode
& FB_VMODE_INTERLACED
)
2006 tmp
&= PIPE_A_EVENT_INTERRUPT
;
2008 tmp
&= VSYNC_PIPE_A_INTERRUPT
; /* non-interlaced */
2011 spin_unlock(&dinfo
->int_lock
);
2012 return IRQ_RETVAL(0); /* not us */
2015 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2016 OUTREG(PIPEASTAT
, INREG(PIPEASTAT
));
2019 if (dinfo
->vsync
.pan_display
) {
2020 dinfo
->vsync
.pan_display
= 0;
2021 OUTREG(DSPABASE
, dinfo
->vsync
.pan_offset
);
2024 dinfo
->vsync
.count
++;
2025 wake_up_interruptible(&dinfo
->vsync
.wait
);
2027 spin_unlock(&dinfo
->int_lock
);
2029 return IRQ_RETVAL(1);
2032 int intelfbhw_enable_irq(struct intelfb_info
*dinfo
)
2035 if (!test_and_set_bit(0, &dinfo
->irq_flags
)) {
2036 if (request_irq(dinfo
->pdev
->irq
, intelfbhw_irq
, IRQF_SHARED
,
2037 "intelfb", dinfo
)) {
2038 clear_bit(0, &dinfo
->irq_flags
);
2042 spin_lock_irq(&dinfo
->int_lock
);
2043 OUTREG16(HWSTAM
, 0xfffe); /* i830 DRM uses ffff */
2046 spin_lock_irq(&dinfo
->int_lock
);
2048 if (dinfo
->info
->var
.vmode
& FB_VMODE_INTERLACED
)
2049 tmp
= PIPE_A_EVENT_INTERRUPT
;
2051 tmp
= VSYNC_PIPE_A_INTERRUPT
; /* non-interlaced */
2052 if (tmp
!= INREG16(IER
)) {
2053 DBG_MSG("changing IER to 0x%X\n", tmp
);
2057 spin_unlock_irq(&dinfo
->int_lock
);
2061 void intelfbhw_disable_irq(struct intelfb_info
*dinfo
)
2063 if (test_and_clear_bit(0, &dinfo
->irq_flags
)) {
2064 if (dinfo
->vsync
.pan_display
) {
2065 dinfo
->vsync
.pan_display
= 0;
2066 OUTREG(DSPABASE
, dinfo
->vsync
.pan_offset
);
2068 spin_lock_irq(&dinfo
->int_lock
);
2069 OUTREG16(HWSTAM
, 0xffff);
2070 OUTREG16(IMR
, 0xffff);
2073 OUTREG16(IIR
, INREG16(IIR
)); /* clear IRQ requests */
2074 spin_unlock_irq(&dinfo
->int_lock
);
2076 free_irq(dinfo
->pdev
->irq
, dinfo
);
2080 int intelfbhw_wait_for_vsync(struct intelfb_info
*dinfo
, u32 pipe
)
2082 struct intelfb_vsync
*vsync
;
2088 vsync
= &dinfo
->vsync
;
2094 ret
= intelfbhw_enable_irq(dinfo
);
2098 count
= vsync
->count
;
2099 ret
= wait_event_interruptible_timeout(vsync
->wait
,
2100 count
!= vsync
->count
, HZ
/ 10);
2104 DBG_MSG("wait_for_vsync timed out!\n");