2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #include <linux/pktcdvd.h>
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/suspend.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
64 #include <asm/uaccess.h>
67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
69 #define DPRINTK(fmt, args...)
73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
75 #define VPRINTK(fmt, args...)
78 #define MAX_SPEED 0xffff
80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
82 static struct pktcdvd_device
*pkt_devs
[MAX_WRITERS
];
83 static struct proc_dir_entry
*pkt_proc
;
85 static struct mutex ctl_mutex
; /* Serialize open/close/setup/teardown */
86 static mempool_t
*psd_pool
;
89 static void pkt_bio_finished(struct pktcdvd_device
*pd
)
91 BUG_ON(atomic_read(&pd
->cdrw
.pending_bios
) <= 0);
92 if (atomic_dec_and_test(&pd
->cdrw
.pending_bios
)) {
93 VPRINTK("pktcdvd: queue empty\n");
94 atomic_set(&pd
->iosched
.attention
, 1);
99 static void pkt_bio_destructor(struct bio
*bio
)
101 kfree(bio
->bi_io_vec
);
105 static struct bio
*pkt_bio_alloc(int nr_iovecs
)
107 struct bio_vec
*bvl
= NULL
;
110 bio
= kmalloc(sizeof(struct bio
), GFP_KERNEL
);
115 bvl
= kcalloc(nr_iovecs
, sizeof(struct bio_vec
), GFP_KERNEL
);
119 bio
->bi_max_vecs
= nr_iovecs
;
120 bio
->bi_io_vec
= bvl
;
121 bio
->bi_destructor
= pkt_bio_destructor
;
132 * Allocate a packet_data struct
134 static struct packet_data
*pkt_alloc_packet_data(int frames
)
137 struct packet_data
*pkt
;
139 pkt
= kzalloc(sizeof(struct packet_data
), GFP_KERNEL
);
143 pkt
->frames
= frames
;
144 pkt
->w_bio
= pkt_bio_alloc(frames
);
148 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++) {
149 pkt
->pages
[i
] = alloc_page(GFP_KERNEL
|__GFP_ZERO
);
154 spin_lock_init(&pkt
->lock
);
156 for (i
= 0; i
< frames
; i
++) {
157 struct bio
*bio
= pkt_bio_alloc(1);
160 pkt
->r_bios
[i
] = bio
;
166 for (i
= 0; i
< frames
; i
++) {
167 struct bio
*bio
= pkt
->r_bios
[i
];
173 for (i
= 0; i
< frames
/ FRAMES_PER_PAGE
; i
++)
175 __free_page(pkt
->pages
[i
]);
184 * Free a packet_data struct
186 static void pkt_free_packet_data(struct packet_data
*pkt
)
190 for (i
= 0; i
< pkt
->frames
; i
++) {
191 struct bio
*bio
= pkt
->r_bios
[i
];
195 for (i
= 0; i
< pkt
->frames
/ FRAMES_PER_PAGE
; i
++)
196 __free_page(pkt
->pages
[i
]);
201 static void pkt_shrink_pktlist(struct pktcdvd_device
*pd
)
203 struct packet_data
*pkt
, *next
;
205 BUG_ON(!list_empty(&pd
->cdrw
.pkt_active_list
));
207 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_free_list
, list
) {
208 pkt_free_packet_data(pkt
);
210 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
213 static int pkt_grow_pktlist(struct pktcdvd_device
*pd
, int nr_packets
)
215 struct packet_data
*pkt
;
217 BUG_ON(!list_empty(&pd
->cdrw
.pkt_free_list
));
219 while (nr_packets
> 0) {
220 pkt
= pkt_alloc_packet_data(pd
->settings
.size
>> 2);
222 pkt_shrink_pktlist(pd
);
225 pkt
->id
= nr_packets
;
227 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
233 static void *pkt_rb_alloc(gfp_t gfp_mask
, void *data
)
235 return kmalloc(sizeof(struct pkt_rb_node
), gfp_mask
);
238 static void pkt_rb_free(void *ptr
, void *data
)
243 static inline struct pkt_rb_node
*pkt_rbtree_next(struct pkt_rb_node
*node
)
245 struct rb_node
*n
= rb_next(&node
->rb_node
);
248 return rb_entry(n
, struct pkt_rb_node
, rb_node
);
251 static void pkt_rbtree_erase(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
253 rb_erase(&node
->rb_node
, &pd
->bio_queue
);
254 mempool_free(node
, pd
->rb_pool
);
255 pd
->bio_queue_size
--;
256 BUG_ON(pd
->bio_queue_size
< 0);
260 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
262 static struct pkt_rb_node
*pkt_rbtree_find(struct pktcdvd_device
*pd
, sector_t s
)
264 struct rb_node
*n
= pd
->bio_queue
.rb_node
;
265 struct rb_node
*next
;
266 struct pkt_rb_node
*tmp
;
269 BUG_ON(pd
->bio_queue_size
> 0);
274 tmp
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
275 if (s
<= tmp
->bio
->bi_sector
)
284 if (s
> tmp
->bio
->bi_sector
) {
285 tmp
= pkt_rbtree_next(tmp
);
289 BUG_ON(s
> tmp
->bio
->bi_sector
);
294 * Insert a node into the pd->bio_queue rb tree.
296 static void pkt_rbtree_insert(struct pktcdvd_device
*pd
, struct pkt_rb_node
*node
)
298 struct rb_node
**p
= &pd
->bio_queue
.rb_node
;
299 struct rb_node
*parent
= NULL
;
300 sector_t s
= node
->bio
->bi_sector
;
301 struct pkt_rb_node
*tmp
;
305 tmp
= rb_entry(parent
, struct pkt_rb_node
, rb_node
);
306 if (s
< tmp
->bio
->bi_sector
)
311 rb_link_node(&node
->rb_node
, parent
, p
);
312 rb_insert_color(&node
->rb_node
, &pd
->bio_queue
);
313 pd
->bio_queue_size
++;
317 * Add a bio to a single linked list defined by its head and tail pointers.
319 static void pkt_add_list_last(struct bio
*bio
, struct bio
**list_head
, struct bio
**list_tail
)
323 BUG_ON((*list_head
) == NULL
);
324 (*list_tail
)->bi_next
= bio
;
327 BUG_ON((*list_head
) != NULL
);
334 * Remove and return the first bio from a single linked list defined by its
335 * head and tail pointers.
337 static inline struct bio
*pkt_get_list_first(struct bio
**list_head
, struct bio
**list_tail
)
341 if (*list_head
== NULL
)
345 *list_head
= bio
->bi_next
;
346 if (*list_head
== NULL
)
354 * Send a packet_command to the underlying block device and
355 * wait for completion.
357 static int pkt_generic_packet(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
359 char sense
[SCSI_SENSE_BUFFERSIZE
];
362 DECLARE_COMPLETION(wait
);
365 q
= bdev_get_queue(pd
->bdev
);
367 rq
= blk_get_request(q
, (cgc
->data_direction
== CGC_DATA_WRITE
) ? WRITE
: READ
,
370 rq
->rq_disk
= pd
->bdev
->bd_disk
;
374 rq
->data
= cgc
->buffer
;
375 rq
->data_len
= cgc
->buflen
;
377 memset(sense
, 0, sizeof(sense
));
379 rq
->flags
|= REQ_BLOCK_PC
| REQ_HARDBARRIER
;
381 rq
->flags
|= REQ_QUIET
;
382 memcpy(rq
->cmd
, cgc
->cmd
, CDROM_PACKET_SIZE
);
383 if (sizeof(rq
->cmd
) > CDROM_PACKET_SIZE
)
384 memset(rq
->cmd
+ CDROM_PACKET_SIZE
, 0, sizeof(rq
->cmd
) - CDROM_PACKET_SIZE
);
385 rq
->cmd_len
= COMMAND_SIZE(rq
->cmd
[0]);
388 rq
->flags
|= REQ_NOMERGE
;
390 rq
->end_io
= blk_end_sync_rq
;
391 elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 1);
392 generic_unplug_device(q
);
393 wait_for_completion(&wait
);
403 * A generic sense dump / resolve mechanism should be implemented across
404 * all ATAPI + SCSI devices.
406 static void pkt_dump_sense(struct packet_command
*cgc
)
408 static char *info
[9] = { "No sense", "Recovered error", "Not ready",
409 "Medium error", "Hardware error", "Illegal request",
410 "Unit attention", "Data protect", "Blank check" };
412 struct request_sense
*sense
= cgc
->sense
;
415 for (i
= 0; i
< CDROM_PACKET_SIZE
; i
++)
416 printk(" %02x", cgc
->cmd
[i
]);
420 printk("no sense\n");
424 printk("sense %02x.%02x.%02x", sense
->sense_key
, sense
->asc
, sense
->ascq
);
426 if (sense
->sense_key
> 8) {
427 printk(" (INVALID)\n");
431 printk(" (%s)\n", info
[sense
->sense_key
]);
435 * flush the drive cache to media
437 static int pkt_flush_cache(struct pktcdvd_device
*pd
)
439 struct packet_command cgc
;
441 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
442 cgc
.cmd
[0] = GPCMD_FLUSH_CACHE
;
446 * the IMMED bit -- we default to not setting it, although that
447 * would allow a much faster close, this is safer
452 return pkt_generic_packet(pd
, &cgc
);
456 * speed is given as the normal factor, e.g. 4 for 4x
458 static int pkt_set_speed(struct pktcdvd_device
*pd
, unsigned write_speed
, unsigned read_speed
)
460 struct packet_command cgc
;
461 struct request_sense sense
;
464 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
466 cgc
.cmd
[0] = GPCMD_SET_SPEED
;
467 cgc
.cmd
[2] = (read_speed
>> 8) & 0xff;
468 cgc
.cmd
[3] = read_speed
& 0xff;
469 cgc
.cmd
[4] = (write_speed
>> 8) & 0xff;
470 cgc
.cmd
[5] = write_speed
& 0xff;
472 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
473 pkt_dump_sense(&cgc
);
479 * Queue a bio for processing by the low-level CD device. Must be called
480 * from process context.
482 static void pkt_queue_bio(struct pktcdvd_device
*pd
, struct bio
*bio
)
484 spin_lock(&pd
->iosched
.lock
);
485 if (bio_data_dir(bio
) == READ
) {
486 pkt_add_list_last(bio
, &pd
->iosched
.read_queue
,
487 &pd
->iosched
.read_queue_tail
);
489 pkt_add_list_last(bio
, &pd
->iosched
.write_queue
,
490 &pd
->iosched
.write_queue_tail
);
492 spin_unlock(&pd
->iosched
.lock
);
494 atomic_set(&pd
->iosched
.attention
, 1);
495 wake_up(&pd
->wqueue
);
499 * Process the queued read/write requests. This function handles special
500 * requirements for CDRW drives:
501 * - A cache flush command must be inserted before a read request if the
502 * previous request was a write.
503 * - Switching between reading and writing is slow, so don't do it more often
505 * - Optimize for throughput at the expense of latency. This means that streaming
506 * writes will never be interrupted by a read, but if the drive has to seek
507 * before the next write, switch to reading instead if there are any pending
509 * - Set the read speed according to current usage pattern. When only reading
510 * from the device, it's best to use the highest possible read speed, but
511 * when switching often between reading and writing, it's better to have the
512 * same read and write speeds.
514 static void pkt_iosched_process_queue(struct pktcdvd_device
*pd
)
517 if (atomic_read(&pd
->iosched
.attention
) == 0)
519 atomic_set(&pd
->iosched
.attention
, 0);
523 int reads_queued
, writes_queued
;
525 spin_lock(&pd
->iosched
.lock
);
526 reads_queued
= (pd
->iosched
.read_queue
!= NULL
);
527 writes_queued
= (pd
->iosched
.write_queue
!= NULL
);
528 spin_unlock(&pd
->iosched
.lock
);
530 if (!reads_queued
&& !writes_queued
)
533 if (pd
->iosched
.writing
) {
534 int need_write_seek
= 1;
535 spin_lock(&pd
->iosched
.lock
);
536 bio
= pd
->iosched
.write_queue
;
537 spin_unlock(&pd
->iosched
.lock
);
538 if (bio
&& (bio
->bi_sector
== pd
->iosched
.last_write
))
540 if (need_write_seek
&& reads_queued
) {
541 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
542 VPRINTK("pktcdvd: write, waiting\n");
546 pd
->iosched
.writing
= 0;
549 if (!reads_queued
&& writes_queued
) {
550 if (atomic_read(&pd
->cdrw
.pending_bios
) > 0) {
551 VPRINTK("pktcdvd: read, waiting\n");
554 pd
->iosched
.writing
= 1;
558 spin_lock(&pd
->iosched
.lock
);
559 if (pd
->iosched
.writing
) {
560 bio
= pkt_get_list_first(&pd
->iosched
.write_queue
,
561 &pd
->iosched
.write_queue_tail
);
563 bio
= pkt_get_list_first(&pd
->iosched
.read_queue
,
564 &pd
->iosched
.read_queue_tail
);
566 spin_unlock(&pd
->iosched
.lock
);
571 if (bio_data_dir(bio
) == READ
)
572 pd
->iosched
.successive_reads
+= bio
->bi_size
>> 10;
574 pd
->iosched
.successive_reads
= 0;
575 pd
->iosched
.last_write
= bio
->bi_sector
+ bio_sectors(bio
);
577 if (pd
->iosched
.successive_reads
>= HI_SPEED_SWITCH
) {
578 if (pd
->read_speed
== pd
->write_speed
) {
579 pd
->read_speed
= MAX_SPEED
;
580 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
583 if (pd
->read_speed
!= pd
->write_speed
) {
584 pd
->read_speed
= pd
->write_speed
;
585 pkt_set_speed(pd
, pd
->write_speed
, pd
->read_speed
);
589 atomic_inc(&pd
->cdrw
.pending_bios
);
590 generic_make_request(bio
);
595 * Special care is needed if the underlying block device has a small
596 * max_phys_segments value.
598 static int pkt_set_segment_merging(struct pktcdvd_device
*pd
, request_queue_t
*q
)
600 if ((pd
->settings
.size
<< 9) / CD_FRAMESIZE
<= q
->max_phys_segments
) {
602 * The cdrom device can handle one segment/frame
604 clear_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
606 } else if ((pd
->settings
.size
<< 9) / PAGE_SIZE
<= q
->max_phys_segments
) {
608 * We can handle this case at the expense of some extra memory
609 * copies during write operations
611 set_bit(PACKET_MERGE_SEGS
, &pd
->flags
);
614 printk("pktcdvd: cdrom max_phys_segments too small\n");
620 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
622 static void pkt_copy_bio_data(struct bio
*src_bio
, int seg
, int offs
, struct page
*dst_page
, int dst_offs
)
624 unsigned int copy_size
= CD_FRAMESIZE
;
626 while (copy_size
> 0) {
627 struct bio_vec
*src_bvl
= bio_iovec_idx(src_bio
, seg
);
628 void *vfrom
= kmap_atomic(src_bvl
->bv_page
, KM_USER0
) +
629 src_bvl
->bv_offset
+ offs
;
630 void *vto
= page_address(dst_page
) + dst_offs
;
631 int len
= min_t(int, copy_size
, src_bvl
->bv_len
- offs
);
634 memcpy(vto
, vfrom
, len
);
635 kunmap_atomic(vfrom
, KM_USER0
);
645 * Copy all data for this packet to pkt->pages[], so that
646 * a) The number of required segments for the write bio is minimized, which
647 * is necessary for some scsi controllers.
648 * b) The data can be used as cache to avoid read requests if we receive a
649 * new write request for the same zone.
651 static void pkt_make_local_copy(struct packet_data
*pkt
, struct bio_vec
*bvec
)
655 /* Copy all data to pkt->pages[] */
658 for (f
= 0; f
< pkt
->frames
; f
++) {
659 if (bvec
[f
].bv_page
!= pkt
->pages
[p
]) {
660 void *vfrom
= kmap_atomic(bvec
[f
].bv_page
, KM_USER0
) + bvec
[f
].bv_offset
;
661 void *vto
= page_address(pkt
->pages
[p
]) + offs
;
662 memcpy(vto
, vfrom
, CD_FRAMESIZE
);
663 kunmap_atomic(vfrom
, KM_USER0
);
664 bvec
[f
].bv_page
= pkt
->pages
[p
];
665 bvec
[f
].bv_offset
= offs
;
667 BUG_ON(bvec
[f
].bv_offset
!= offs
);
669 offs
+= CD_FRAMESIZE
;
670 if (offs
>= PAGE_SIZE
) {
677 static int pkt_end_io_read(struct bio
*bio
, unsigned int bytes_done
, int err
)
679 struct packet_data
*pkt
= bio
->bi_private
;
680 struct pktcdvd_device
*pd
= pkt
->pd
;
686 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio
,
687 (unsigned long long)pkt
->sector
, (unsigned long long)bio
->bi_sector
, err
);
690 atomic_inc(&pkt
->io_errors
);
691 if (atomic_dec_and_test(&pkt
->io_wait
)) {
692 atomic_inc(&pkt
->run_sm
);
693 wake_up(&pd
->wqueue
);
695 pkt_bio_finished(pd
);
700 static int pkt_end_io_packet_write(struct bio
*bio
, unsigned int bytes_done
, int err
)
702 struct packet_data
*pkt
= bio
->bi_private
;
703 struct pktcdvd_device
*pd
= pkt
->pd
;
709 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt
->id
, err
);
711 pd
->stats
.pkt_ended
++;
713 pkt_bio_finished(pd
);
714 atomic_dec(&pkt
->io_wait
);
715 atomic_inc(&pkt
->run_sm
);
716 wake_up(&pd
->wqueue
);
721 * Schedule reads for the holes in a packet
723 static void pkt_gather_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
728 char written
[PACKET_MAX_SIZE
];
730 BUG_ON(!pkt
->orig_bios
);
732 atomic_set(&pkt
->io_wait
, 0);
733 atomic_set(&pkt
->io_errors
, 0);
736 * Figure out which frames we need to read before we can write.
738 memset(written
, 0, sizeof(written
));
739 spin_lock(&pkt
->lock
);
740 for (bio
= pkt
->orig_bios
; bio
; bio
= bio
->bi_next
) {
741 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
742 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
743 pd
->stats
.secs_w
+= num_frames
* (CD_FRAMESIZE
>> 9);
744 BUG_ON(first_frame
< 0);
745 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
746 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++)
749 spin_unlock(&pkt
->lock
);
751 if (pkt
->cache_valid
) {
752 VPRINTK("pkt_gather_data: zone %llx cached\n",
753 (unsigned long long)pkt
->sector
);
758 * Schedule reads for missing parts of the packet.
760 for (f
= 0; f
< pkt
->frames
; f
++) {
764 bio
= pkt
->r_bios
[f
];
766 bio
->bi_max_vecs
= 1;
767 bio
->bi_sector
= pkt
->sector
+ f
* (CD_FRAMESIZE
>> 9);
768 bio
->bi_bdev
= pd
->bdev
;
769 bio
->bi_end_io
= pkt_end_io_read
;
770 bio
->bi_private
= pkt
;
772 p
= (f
* CD_FRAMESIZE
) / PAGE_SIZE
;
773 offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
774 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
775 f
, pkt
->pages
[p
], offset
);
776 if (!bio_add_page(bio
, pkt
->pages
[p
], CD_FRAMESIZE
, offset
))
779 atomic_inc(&pkt
->io_wait
);
781 pkt_queue_bio(pd
, bio
);
786 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
787 frames_read
, (unsigned long long)pkt
->sector
);
788 pd
->stats
.pkt_started
++;
789 pd
->stats
.secs_rg
+= frames_read
* (CD_FRAMESIZE
>> 9);
793 * Find a packet matching zone, or the least recently used packet if
796 static struct packet_data
*pkt_get_packet_data(struct pktcdvd_device
*pd
, int zone
)
798 struct packet_data
*pkt
;
800 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_free_list
, list
) {
801 if (pkt
->sector
== zone
|| pkt
->list
.next
== &pd
->cdrw
.pkt_free_list
) {
802 list_del_init(&pkt
->list
);
803 if (pkt
->sector
!= zone
)
804 pkt
->cache_valid
= 0;
812 static void pkt_put_packet_data(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
814 if (pkt
->cache_valid
) {
815 list_add(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
817 list_add_tail(&pkt
->list
, &pd
->cdrw
.pkt_free_list
);
822 * recover a failed write, query for relocation if possible
824 * returns 1 if recovery is possible, or 0 if not
827 static int pkt_start_recovery(struct packet_data
*pkt
)
830 * FIXME. We need help from the file system to implement
835 struct request
*rq
= pkt
->rq
;
836 struct pktcdvd_device
*pd
= rq
->rq_disk
->private_data
;
837 struct block_device
*pkt_bdev
;
838 struct super_block
*sb
= NULL
;
839 unsigned long old_block
, new_block
;
842 pkt_bdev
= bdget(kdev_t_to_nr(pd
->pkt_dev
));
844 sb
= get_super(pkt_bdev
);
851 if (!sb
->s_op
|| !sb
->s_op
->relocate_blocks
)
854 old_block
= pkt
->sector
/ (CD_FRAMESIZE
>> 9);
855 if (sb
->s_op
->relocate_blocks(sb
, old_block
, &new_block
))
858 new_sector
= new_block
* (CD_FRAMESIZE
>> 9);
859 pkt
->sector
= new_sector
;
861 pkt
->bio
->bi_sector
= new_sector
;
862 pkt
->bio
->bi_next
= NULL
;
863 pkt
->bio
->bi_flags
= 1 << BIO_UPTODATE
;
864 pkt
->bio
->bi_idx
= 0;
866 BUG_ON(pkt
->bio
->bi_rw
!= (1 << BIO_RW
));
867 BUG_ON(pkt
->bio
->bi_vcnt
!= pkt
->frames
);
868 BUG_ON(pkt
->bio
->bi_size
!= pkt
->frames
* CD_FRAMESIZE
);
869 BUG_ON(pkt
->bio
->bi_end_io
!= pkt_end_io_packet_write
);
870 BUG_ON(pkt
->bio
->bi_private
!= pkt
);
881 static inline void pkt_set_state(struct packet_data
*pkt
, enum packet_data_state state
)
884 static const char *state_name
[] = {
885 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
887 enum packet_data_state old_state
= pkt
->state
;
888 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt
->id
, (unsigned long long)pkt
->sector
,
889 state_name
[old_state
], state_name
[state
]);
895 * Scan the work queue to see if we can start a new packet.
896 * returns non-zero if any work was done.
898 static int pkt_handle_queue(struct pktcdvd_device
*pd
)
900 struct packet_data
*pkt
, *p
;
901 struct bio
*bio
= NULL
;
902 sector_t zone
= 0; /* Suppress gcc warning */
903 struct pkt_rb_node
*node
, *first_node
;
906 VPRINTK("handle_queue\n");
908 atomic_set(&pd
->scan_queue
, 0);
910 if (list_empty(&pd
->cdrw
.pkt_free_list
)) {
911 VPRINTK("handle_queue: no pkt\n");
916 * Try to find a zone we are not already working on.
918 spin_lock(&pd
->lock
);
919 first_node
= pkt_rbtree_find(pd
, pd
->current_sector
);
921 n
= rb_first(&pd
->bio_queue
);
923 first_node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
928 zone
= ZONE(bio
->bi_sector
, pd
);
929 list_for_each_entry(p
, &pd
->cdrw
.pkt_active_list
, list
) {
930 if (p
->sector
== zone
) {
937 node
= pkt_rbtree_next(node
);
939 n
= rb_first(&pd
->bio_queue
);
941 node
= rb_entry(n
, struct pkt_rb_node
, rb_node
);
943 if (node
== first_node
)
946 spin_unlock(&pd
->lock
);
948 VPRINTK("handle_queue: no bio\n");
952 pkt
= pkt_get_packet_data(pd
, zone
);
954 pd
->current_sector
= zone
+ pd
->settings
.size
;
956 BUG_ON(pkt
->frames
!= pd
->settings
.size
>> 2);
960 * Scan work queue for bios in the same zone and link them
963 spin_lock(&pd
->lock
);
964 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone
);
965 while ((node
= pkt_rbtree_find(pd
, zone
)) != NULL
) {
967 VPRINTK("pkt_handle_queue: found zone=%llx\n",
968 (unsigned long long)ZONE(bio
->bi_sector
, pd
));
969 if (ZONE(bio
->bi_sector
, pd
) != zone
)
971 pkt_rbtree_erase(pd
, node
);
972 spin_lock(&pkt
->lock
);
973 pkt_add_list_last(bio
, &pkt
->orig_bios
, &pkt
->orig_bios_tail
);
974 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
975 spin_unlock(&pkt
->lock
);
977 spin_unlock(&pd
->lock
);
979 pkt
->sleep_time
= max(PACKET_WAIT_TIME
, 1);
980 pkt_set_state(pkt
, PACKET_WAITING_STATE
);
981 atomic_set(&pkt
->run_sm
, 1);
983 spin_lock(&pd
->cdrw
.active_list_lock
);
984 list_add(&pkt
->list
, &pd
->cdrw
.pkt_active_list
);
985 spin_unlock(&pd
->cdrw
.active_list_lock
);
991 * Assemble a bio to write one packet and queue the bio for processing
992 * by the underlying block device.
994 static void pkt_start_write(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
999 struct bio_vec
*bvec
= pkt
->w_bio
->bi_io_vec
;
1001 for (f
= 0; f
< pkt
->frames
; f
++) {
1002 bvec
[f
].bv_page
= pkt
->pages
[(f
* CD_FRAMESIZE
) / PAGE_SIZE
];
1003 bvec
[f
].bv_offset
= (f
* CD_FRAMESIZE
) % PAGE_SIZE
;
1007 * Fill-in bvec with data from orig_bios.
1010 spin_lock(&pkt
->lock
);
1011 for (bio
= pkt
->orig_bios
; bio
; bio
= bio
->bi_next
) {
1012 int segment
= bio
->bi_idx
;
1014 int first_frame
= (bio
->bi_sector
- pkt
->sector
) / (CD_FRAMESIZE
>> 9);
1015 int num_frames
= bio
->bi_size
/ CD_FRAMESIZE
;
1016 BUG_ON(first_frame
< 0);
1017 BUG_ON(first_frame
+ num_frames
> pkt
->frames
);
1018 for (f
= first_frame
; f
< first_frame
+ num_frames
; f
++) {
1019 struct bio_vec
*src_bvl
= bio_iovec_idx(bio
, segment
);
1021 while (src_offs
>= src_bvl
->bv_len
) {
1022 src_offs
-= src_bvl
->bv_len
;
1024 BUG_ON(segment
>= bio
->bi_vcnt
);
1025 src_bvl
= bio_iovec_idx(bio
, segment
);
1028 if (src_bvl
->bv_len
- src_offs
>= CD_FRAMESIZE
) {
1029 bvec
[f
].bv_page
= src_bvl
->bv_page
;
1030 bvec
[f
].bv_offset
= src_bvl
->bv_offset
+ src_offs
;
1032 pkt_copy_bio_data(bio
, segment
, src_offs
,
1033 bvec
[f
].bv_page
, bvec
[f
].bv_offset
);
1035 src_offs
+= CD_FRAMESIZE
;
1039 pkt_set_state(pkt
, PACKET_WRITE_WAIT_STATE
);
1040 spin_unlock(&pkt
->lock
);
1042 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1043 frames_write
, (unsigned long long)pkt
->sector
);
1044 BUG_ON(frames_write
!= pkt
->write_size
);
1046 if (test_bit(PACKET_MERGE_SEGS
, &pd
->flags
) || (pkt
->write_size
< pkt
->frames
)) {
1047 pkt_make_local_copy(pkt
, bvec
);
1048 pkt
->cache_valid
= 1;
1050 pkt
->cache_valid
= 0;
1053 /* Start the write request */
1054 bio_init(pkt
->w_bio
);
1055 pkt
->w_bio
->bi_max_vecs
= PACKET_MAX_SIZE
;
1056 pkt
->w_bio
->bi_sector
= pkt
->sector
;
1057 pkt
->w_bio
->bi_bdev
= pd
->bdev
;
1058 pkt
->w_bio
->bi_end_io
= pkt_end_io_packet_write
;
1059 pkt
->w_bio
->bi_private
= pkt
;
1060 for (f
= 0; f
< pkt
->frames
; f
++)
1061 if (!bio_add_page(pkt
->w_bio
, bvec
[f
].bv_page
, CD_FRAMESIZE
, bvec
[f
].bv_offset
))
1063 VPRINTK("pktcdvd: vcnt=%d\n", pkt
->w_bio
->bi_vcnt
);
1065 atomic_set(&pkt
->io_wait
, 1);
1066 pkt
->w_bio
->bi_rw
= WRITE
;
1067 pkt_queue_bio(pd
, pkt
->w_bio
);
1070 static void pkt_finish_packet(struct packet_data
*pkt
, int uptodate
)
1072 struct bio
*bio
, *next
;
1075 pkt
->cache_valid
= 0;
1077 /* Finish all bios corresponding to this packet */
1078 bio
= pkt
->orig_bios
;
1080 next
= bio
->bi_next
;
1081 bio
->bi_next
= NULL
;
1082 bio_endio(bio
, bio
->bi_size
, uptodate
? 0 : -EIO
);
1085 pkt
->orig_bios
= pkt
->orig_bios_tail
= NULL
;
1088 static void pkt_run_state_machine(struct pktcdvd_device
*pd
, struct packet_data
*pkt
)
1092 VPRINTK("run_state_machine: pkt %d\n", pkt
->id
);
1095 switch (pkt
->state
) {
1096 case PACKET_WAITING_STATE
:
1097 if ((pkt
->write_size
< pkt
->frames
) && (pkt
->sleep_time
> 0))
1100 pkt
->sleep_time
= 0;
1101 pkt_gather_data(pd
, pkt
);
1102 pkt_set_state(pkt
, PACKET_READ_WAIT_STATE
);
1105 case PACKET_READ_WAIT_STATE
:
1106 if (atomic_read(&pkt
->io_wait
) > 0)
1109 if (atomic_read(&pkt
->io_errors
) > 0) {
1110 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1112 pkt_start_write(pd
, pkt
);
1116 case PACKET_WRITE_WAIT_STATE
:
1117 if (atomic_read(&pkt
->io_wait
) > 0)
1120 if (test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
)) {
1121 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1123 pkt_set_state(pkt
, PACKET_RECOVERY_STATE
);
1127 case PACKET_RECOVERY_STATE
:
1128 if (pkt_start_recovery(pkt
)) {
1129 pkt_start_write(pd
, pkt
);
1131 VPRINTK("No recovery possible\n");
1132 pkt_set_state(pkt
, PACKET_FINISHED_STATE
);
1136 case PACKET_FINISHED_STATE
:
1137 uptodate
= test_bit(BIO_UPTODATE
, &pkt
->w_bio
->bi_flags
);
1138 pkt_finish_packet(pkt
, uptodate
);
1148 static void pkt_handle_packets(struct pktcdvd_device
*pd
)
1150 struct packet_data
*pkt
, *next
;
1152 VPRINTK("pkt_handle_packets\n");
1155 * Run state machine for active packets
1157 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1158 if (atomic_read(&pkt
->run_sm
) > 0) {
1159 atomic_set(&pkt
->run_sm
, 0);
1160 pkt_run_state_machine(pd
, pkt
);
1165 * Move no longer active packets to the free list
1167 spin_lock(&pd
->cdrw
.active_list_lock
);
1168 list_for_each_entry_safe(pkt
, next
, &pd
->cdrw
.pkt_active_list
, list
) {
1169 if (pkt
->state
== PACKET_FINISHED_STATE
) {
1170 list_del(&pkt
->list
);
1171 pkt_put_packet_data(pd
, pkt
);
1172 pkt_set_state(pkt
, PACKET_IDLE_STATE
);
1173 atomic_set(&pd
->scan_queue
, 1);
1176 spin_unlock(&pd
->cdrw
.active_list_lock
);
1179 static void pkt_count_states(struct pktcdvd_device
*pd
, int *states
)
1181 struct packet_data
*pkt
;
1184 for (i
= 0; i
< PACKET_NUM_STATES
; i
++)
1187 spin_lock(&pd
->cdrw
.active_list_lock
);
1188 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1189 states
[pkt
->state
]++;
1191 spin_unlock(&pd
->cdrw
.active_list_lock
);
1195 * kcdrwd is woken up when writes have been queued for one of our
1196 * registered devices
1198 static int kcdrwd(void *foobar
)
1200 struct pktcdvd_device
*pd
= foobar
;
1201 struct packet_data
*pkt
;
1202 long min_sleep_time
, residue
;
1204 set_user_nice(current
, -20);
1207 DECLARE_WAITQUEUE(wait
, current
);
1210 * Wait until there is something to do
1212 add_wait_queue(&pd
->wqueue
, &wait
);
1214 set_current_state(TASK_INTERRUPTIBLE
);
1216 /* Check if we need to run pkt_handle_queue */
1217 if (atomic_read(&pd
->scan_queue
) > 0)
1220 /* Check if we need to run the state machine for some packet */
1221 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1222 if (atomic_read(&pkt
->run_sm
) > 0)
1226 /* Check if we need to process the iosched queues */
1227 if (atomic_read(&pd
->iosched
.attention
) != 0)
1230 /* Otherwise, go to sleep */
1231 if (PACKET_DEBUG
> 1) {
1232 int states
[PACKET_NUM_STATES
];
1233 pkt_count_states(pd
, states
);
1234 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1235 states
[0], states
[1], states
[2], states
[3],
1236 states
[4], states
[5]);
1239 min_sleep_time
= MAX_SCHEDULE_TIMEOUT
;
1240 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1241 if (pkt
->sleep_time
&& pkt
->sleep_time
< min_sleep_time
)
1242 min_sleep_time
= pkt
->sleep_time
;
1245 generic_unplug_device(bdev_get_queue(pd
->bdev
));
1247 VPRINTK("kcdrwd: sleeping\n");
1248 residue
= schedule_timeout(min_sleep_time
);
1249 VPRINTK("kcdrwd: wake up\n");
1251 /* make swsusp happy with our thread */
1254 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
1255 if (!pkt
->sleep_time
)
1257 pkt
->sleep_time
-= min_sleep_time
- residue
;
1258 if (pkt
->sleep_time
<= 0) {
1259 pkt
->sleep_time
= 0;
1260 atomic_inc(&pkt
->run_sm
);
1264 if (signal_pending(current
)) {
1265 flush_signals(current
);
1267 if (kthread_should_stop())
1271 set_current_state(TASK_RUNNING
);
1272 remove_wait_queue(&pd
->wqueue
, &wait
);
1274 if (kthread_should_stop())
1278 * if pkt_handle_queue returns true, we can queue
1281 while (pkt_handle_queue(pd
))
1285 * Handle packet state machine
1287 pkt_handle_packets(pd
);
1290 * Handle iosched queues
1292 pkt_iosched_process_queue(pd
);
1298 static void pkt_print_settings(struct pktcdvd_device
*pd
)
1300 printk("pktcdvd: %s packets, ", pd
->settings
.fp
? "Fixed" : "Variable");
1301 printk("%u blocks, ", pd
->settings
.size
>> 2);
1302 printk("Mode-%c disc\n", pd
->settings
.block_mode
== 8 ? '1' : '2');
1305 static int pkt_mode_sense(struct pktcdvd_device
*pd
, struct packet_command
*cgc
, int page_code
, int page_control
)
1307 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1309 cgc
->cmd
[0] = GPCMD_MODE_SENSE_10
;
1310 cgc
->cmd
[2] = page_code
| (page_control
<< 6);
1311 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1312 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1313 cgc
->data_direction
= CGC_DATA_READ
;
1314 return pkt_generic_packet(pd
, cgc
);
1317 static int pkt_mode_select(struct pktcdvd_device
*pd
, struct packet_command
*cgc
)
1319 memset(cgc
->cmd
, 0, sizeof(cgc
->cmd
));
1320 memset(cgc
->buffer
, 0, 2);
1321 cgc
->cmd
[0] = GPCMD_MODE_SELECT_10
;
1322 cgc
->cmd
[1] = 0x10; /* PF */
1323 cgc
->cmd
[7] = cgc
->buflen
>> 8;
1324 cgc
->cmd
[8] = cgc
->buflen
& 0xff;
1325 cgc
->data_direction
= CGC_DATA_WRITE
;
1326 return pkt_generic_packet(pd
, cgc
);
1329 static int pkt_get_disc_info(struct pktcdvd_device
*pd
, disc_information
*di
)
1331 struct packet_command cgc
;
1334 /* set up command and get the disc info */
1335 init_cdrom_command(&cgc
, di
, sizeof(*di
), CGC_DATA_READ
);
1336 cgc
.cmd
[0] = GPCMD_READ_DISC_INFO
;
1337 cgc
.cmd
[8] = cgc
.buflen
= 2;
1340 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1343 /* not all drives have the same disc_info length, so requeue
1344 * packet with the length the drive tells us it can supply
1346 cgc
.buflen
= be16_to_cpu(di
->disc_information_length
) +
1347 sizeof(di
->disc_information_length
);
1349 if (cgc
.buflen
> sizeof(disc_information
))
1350 cgc
.buflen
= sizeof(disc_information
);
1352 cgc
.cmd
[8] = cgc
.buflen
;
1353 return pkt_generic_packet(pd
, &cgc
);
1356 static int pkt_get_track_info(struct pktcdvd_device
*pd
, __u16 track
, __u8 type
, track_information
*ti
)
1358 struct packet_command cgc
;
1361 init_cdrom_command(&cgc
, ti
, 8, CGC_DATA_READ
);
1362 cgc
.cmd
[0] = GPCMD_READ_TRACK_RZONE_INFO
;
1363 cgc
.cmd
[1] = type
& 3;
1364 cgc
.cmd
[4] = (track
& 0xff00) >> 8;
1365 cgc
.cmd
[5] = track
& 0xff;
1369 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1372 cgc
.buflen
= be16_to_cpu(ti
->track_information_length
) +
1373 sizeof(ti
->track_information_length
);
1375 if (cgc
.buflen
> sizeof(track_information
))
1376 cgc
.buflen
= sizeof(track_information
);
1378 cgc
.cmd
[8] = cgc
.buflen
;
1379 return pkt_generic_packet(pd
, &cgc
);
1382 static int pkt_get_last_written(struct pktcdvd_device
*pd
, long *last_written
)
1384 disc_information di
;
1385 track_information ti
;
1389 if ((ret
= pkt_get_disc_info(pd
, &di
)))
1392 last_track
= (di
.last_track_msb
<< 8) | di
.last_track_lsb
;
1393 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1396 /* if this track is blank, try the previous. */
1399 if ((ret
= pkt_get_track_info(pd
, last_track
, 1, &ti
)))
1403 /* if last recorded field is valid, return it. */
1405 *last_written
= be32_to_cpu(ti
.last_rec_address
);
1407 /* make it up instead */
1408 *last_written
= be32_to_cpu(ti
.track_start
) +
1409 be32_to_cpu(ti
.track_size
);
1411 *last_written
-= (be32_to_cpu(ti
.free_blocks
) + 7);
1417 * write mode select package based on pd->settings
1419 static int pkt_set_write_settings(struct pktcdvd_device
*pd
)
1421 struct packet_command cgc
;
1422 struct request_sense sense
;
1423 write_param_page
*wp
;
1427 /* doesn't apply to DVD+RW or DVD-RAM */
1428 if ((pd
->mmc3_profile
== 0x1a) || (pd
->mmc3_profile
== 0x12))
1431 memset(buffer
, 0, sizeof(buffer
));
1432 init_cdrom_command(&cgc
, buffer
, sizeof(*wp
), CGC_DATA_READ
);
1434 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1435 pkt_dump_sense(&cgc
);
1439 size
= 2 + ((buffer
[0] << 8) | (buffer
[1] & 0xff));
1440 pd
->mode_offset
= (buffer
[6] << 8) | (buffer
[7] & 0xff);
1441 if (size
> sizeof(buffer
))
1442 size
= sizeof(buffer
);
1447 init_cdrom_command(&cgc
, buffer
, size
, CGC_DATA_READ
);
1449 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WRITE_PARMS_PAGE
, 0))) {
1450 pkt_dump_sense(&cgc
);
1455 * write page is offset header + block descriptor length
1457 wp
= (write_param_page
*) &buffer
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1459 wp
->fp
= pd
->settings
.fp
;
1460 wp
->track_mode
= pd
->settings
.track_mode
;
1461 wp
->write_type
= pd
->settings
.write_type
;
1462 wp
->data_block_type
= pd
->settings
.block_mode
;
1464 wp
->multi_session
= 0;
1466 #ifdef PACKET_USE_LS
1471 if (wp
->data_block_type
== PACKET_BLOCK_MODE1
) {
1472 wp
->session_format
= 0;
1474 } else if (wp
->data_block_type
== PACKET_BLOCK_MODE2
) {
1475 wp
->session_format
= 0x20;
1479 memcpy(&wp
->mcn
[1], PACKET_MCN
, sizeof(wp
->mcn
) - 1);
1485 printk("pktcdvd: write mode wrong %d\n", wp
->data_block_type
);
1488 wp
->packet_size
= cpu_to_be32(pd
->settings
.size
>> 2);
1490 cgc
.buflen
= cgc
.cmd
[8] = size
;
1491 if ((ret
= pkt_mode_select(pd
, &cgc
))) {
1492 pkt_dump_sense(&cgc
);
1496 pkt_print_settings(pd
);
1501 * 1 -- we can write to this track, 0 -- we can't
1503 static int pkt_writable_track(struct pktcdvd_device
*pd
, track_information
*ti
)
1505 switch (pd
->mmc3_profile
) {
1506 case 0x1a: /* DVD+RW */
1507 case 0x12: /* DVD-RAM */
1508 /* The track is always writable on DVD+RW/DVD-RAM */
1514 if (!ti
->packet
|| !ti
->fp
)
1518 * "good" settings as per Mt Fuji.
1520 if (ti
->rt
== 0 && ti
->blank
== 0)
1523 if (ti
->rt
== 0 && ti
->blank
== 1)
1526 if (ti
->rt
== 1 && ti
->blank
== 0)
1529 printk("pktcdvd: bad state %d-%d-%d\n", ti
->rt
, ti
->blank
, ti
->packet
);
1534 * 1 -- we can write to this disc, 0 -- we can't
1536 static int pkt_writable_disc(struct pktcdvd_device
*pd
, disc_information
*di
)
1538 switch (pd
->mmc3_profile
) {
1539 case 0x0a: /* CD-RW */
1540 case 0xffff: /* MMC3 not supported */
1542 case 0x1a: /* DVD+RW */
1543 case 0x13: /* DVD-RW */
1544 case 0x12: /* DVD-RAM */
1547 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd
->mmc3_profile
);
1552 * for disc type 0xff we should probably reserve a new track.
1553 * but i'm not sure, should we leave this to user apps? probably.
1555 if (di
->disc_type
== 0xff) {
1556 printk("pktcdvd: Unknown disc. No track?\n");
1560 if (di
->disc_type
!= 0x20 && di
->disc_type
!= 0) {
1561 printk("pktcdvd: Wrong disc type (%x)\n", di
->disc_type
);
1565 if (di
->erasable
== 0) {
1566 printk("pktcdvd: Disc not erasable\n");
1570 if (di
->border_status
== PACKET_SESSION_RESERVED
) {
1571 printk("pktcdvd: Can't write to last track (reserved)\n");
1578 static int pkt_probe_settings(struct pktcdvd_device
*pd
)
1580 struct packet_command cgc
;
1581 unsigned char buf
[12];
1582 disc_information di
;
1583 track_information ti
;
1586 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1587 cgc
.cmd
[0] = GPCMD_GET_CONFIGURATION
;
1589 ret
= pkt_generic_packet(pd
, &cgc
);
1590 pd
->mmc3_profile
= ret
? 0xffff : buf
[6] << 8 | buf
[7];
1592 memset(&di
, 0, sizeof(disc_information
));
1593 memset(&ti
, 0, sizeof(track_information
));
1595 if ((ret
= pkt_get_disc_info(pd
, &di
))) {
1596 printk("failed get_disc\n");
1600 if (!pkt_writable_disc(pd
, &di
))
1603 pd
->type
= di
.erasable
? PACKET_CDRW
: PACKET_CDR
;
1605 track
= 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1606 if ((ret
= pkt_get_track_info(pd
, track
, 1, &ti
))) {
1607 printk("pktcdvd: failed get_track\n");
1611 if (!pkt_writable_track(pd
, &ti
)) {
1612 printk("pktcdvd: can't write to this track\n");
1617 * we keep packet size in 512 byte units, makes it easier to
1618 * deal with request calculations.
1620 pd
->settings
.size
= be32_to_cpu(ti
.fixed_packet_size
) << 2;
1621 if (pd
->settings
.size
== 0) {
1622 printk("pktcdvd: detected zero packet size!\n");
1625 if (pd
->settings
.size
> PACKET_MAX_SECTORS
) {
1626 printk("pktcdvd: packet size is too big\n");
1629 pd
->settings
.fp
= ti
.fp
;
1630 pd
->offset
= (be32_to_cpu(ti
.track_start
) << 2) & (pd
->settings
.size
- 1);
1633 pd
->nwa
= be32_to_cpu(ti
.next_writable
);
1634 set_bit(PACKET_NWA_VALID
, &pd
->flags
);
1638 * in theory we could use lra on -RW media as well and just zero
1639 * blocks that haven't been written yet, but in practice that
1640 * is just a no-go. we'll use that for -R, naturally.
1643 pd
->lra
= be32_to_cpu(ti
.last_rec_address
);
1644 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
1646 pd
->lra
= 0xffffffff;
1647 set_bit(PACKET_LRA_VALID
, &pd
->flags
);
1653 pd
->settings
.link_loss
= 7;
1654 pd
->settings
.write_type
= 0; /* packet */
1655 pd
->settings
.track_mode
= ti
.track_mode
;
1658 * mode1 or mode2 disc
1660 switch (ti
.data_mode
) {
1662 pd
->settings
.block_mode
= PACKET_BLOCK_MODE1
;
1665 pd
->settings
.block_mode
= PACKET_BLOCK_MODE2
;
1668 printk("pktcdvd: unknown data mode\n");
1675 * enable/disable write caching on drive
1677 static int pkt_write_caching(struct pktcdvd_device
*pd
, int set
)
1679 struct packet_command cgc
;
1680 struct request_sense sense
;
1681 unsigned char buf
[64];
1684 memset(buf
, 0, sizeof(buf
));
1685 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_READ
);
1687 cgc
.buflen
= pd
->mode_offset
+ 12;
1690 * caching mode page might not be there, so quiet this command
1694 if ((ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_WCACHING_PAGE
, 0)))
1697 buf
[pd
->mode_offset
+ 10] |= (!!set
<< 2);
1699 cgc
.buflen
= cgc
.cmd
[8] = 2 + ((buf
[0] << 8) | (buf
[1] & 0xff));
1700 ret
= pkt_mode_select(pd
, &cgc
);
1702 printk("pktcdvd: write caching control failed\n");
1703 pkt_dump_sense(&cgc
);
1704 } else if (!ret
&& set
)
1705 printk("pktcdvd: enabled write caching on %s\n", pd
->name
);
1709 static int pkt_lock_door(struct pktcdvd_device
*pd
, int lockflag
)
1711 struct packet_command cgc
;
1713 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
1714 cgc
.cmd
[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL
;
1715 cgc
.cmd
[4] = lockflag
? 1 : 0;
1716 return pkt_generic_packet(pd
, &cgc
);
1720 * Returns drive maximum write speed
1722 static int pkt_get_max_speed(struct pktcdvd_device
*pd
, unsigned *write_speed
)
1724 struct packet_command cgc
;
1725 struct request_sense sense
;
1726 unsigned char buf
[256+18];
1727 unsigned char *cap_buf
;
1730 memset(buf
, 0, sizeof(buf
));
1731 cap_buf
= &buf
[sizeof(struct mode_page_header
) + pd
->mode_offset
];
1732 init_cdrom_command(&cgc
, buf
, sizeof(buf
), CGC_DATA_UNKNOWN
);
1735 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
1737 cgc
.buflen
= pd
->mode_offset
+ cap_buf
[1] + 2 +
1738 sizeof(struct mode_page_header
);
1739 ret
= pkt_mode_sense(pd
, &cgc
, GPMODE_CAPABILITIES_PAGE
, 0);
1741 pkt_dump_sense(&cgc
);
1746 offset
= 20; /* Obsoleted field, used by older drives */
1747 if (cap_buf
[1] >= 28)
1748 offset
= 28; /* Current write speed selected */
1749 if (cap_buf
[1] >= 30) {
1750 /* If the drive reports at least one "Logical Unit Write
1751 * Speed Performance Descriptor Block", use the information
1752 * in the first block. (contains the highest speed)
1754 int num_spdb
= (cap_buf
[30] << 8) + cap_buf
[31];
1759 *write_speed
= (cap_buf
[offset
] << 8) | cap_buf
[offset
+ 1];
1763 /* These tables from cdrecord - I don't have orange book */
1764 /* standard speed CD-RW (1-4x) */
1765 static char clv_to_speed
[16] = {
1766 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1767 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1769 /* high speed CD-RW (-10x) */
1770 static char hs_clv_to_speed
[16] = {
1771 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1772 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1774 /* ultra high speed CD-RW */
1775 static char us_clv_to_speed
[16] = {
1776 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1777 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1781 * reads the maximum media speed from ATIP
1783 static int pkt_media_speed(struct pktcdvd_device
*pd
, unsigned *speed
)
1785 struct packet_command cgc
;
1786 struct request_sense sense
;
1787 unsigned char buf
[64];
1788 unsigned int size
, st
, sp
;
1791 init_cdrom_command(&cgc
, buf
, 2, CGC_DATA_READ
);
1793 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
1795 cgc
.cmd
[2] = 4; /* READ ATIP */
1797 ret
= pkt_generic_packet(pd
, &cgc
);
1799 pkt_dump_sense(&cgc
);
1802 size
= ((unsigned int) buf
[0]<<8) + buf
[1] + 2;
1803 if (size
> sizeof(buf
))
1806 init_cdrom_command(&cgc
, buf
, size
, CGC_DATA_READ
);
1808 cgc
.cmd
[0] = GPCMD_READ_TOC_PMA_ATIP
;
1812 ret
= pkt_generic_packet(pd
, &cgc
);
1814 pkt_dump_sense(&cgc
);
1818 if (!buf
[6] & 0x40) {
1819 printk("pktcdvd: Disc type is not CD-RW\n");
1822 if (!buf
[6] & 0x4) {
1823 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1827 st
= (buf
[6] >> 3) & 0x7; /* disc sub-type */
1829 sp
= buf
[16] & 0xf; /* max speed from ATIP A1 field */
1831 /* Info from cdrecord */
1833 case 0: /* standard speed */
1834 *speed
= clv_to_speed
[sp
];
1836 case 1: /* high speed */
1837 *speed
= hs_clv_to_speed
[sp
];
1839 case 2: /* ultra high speed */
1840 *speed
= us_clv_to_speed
[sp
];
1843 printk("pktcdvd: Unknown disc sub-type %d\n",st
);
1847 printk("pktcdvd: Max. media speed: %d\n",*speed
);
1850 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp
,st
);
1855 static int pkt_perform_opc(struct pktcdvd_device
*pd
)
1857 struct packet_command cgc
;
1858 struct request_sense sense
;
1861 VPRINTK("pktcdvd: Performing OPC\n");
1863 init_cdrom_command(&cgc
, NULL
, 0, CGC_DATA_NONE
);
1865 cgc
.timeout
= 60*HZ
;
1866 cgc
.cmd
[0] = GPCMD_SEND_OPC
;
1868 if ((ret
= pkt_generic_packet(pd
, &cgc
)))
1869 pkt_dump_sense(&cgc
);
1873 static int pkt_open_write(struct pktcdvd_device
*pd
)
1876 unsigned int write_speed
, media_write_speed
, read_speed
;
1878 if ((ret
= pkt_probe_settings(pd
))) {
1879 VPRINTK("pktcdvd: %s failed probe\n", pd
->name
);
1883 if ((ret
= pkt_set_write_settings(pd
))) {
1884 DPRINTK("pktcdvd: %s failed saving write settings\n", pd
->name
);
1888 pkt_write_caching(pd
, USE_WCACHING
);
1890 if ((ret
= pkt_get_max_speed(pd
, &write_speed
)))
1891 write_speed
= 16 * 177;
1892 switch (pd
->mmc3_profile
) {
1893 case 0x13: /* DVD-RW */
1894 case 0x1a: /* DVD+RW */
1895 case 0x12: /* DVD-RAM */
1896 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed
);
1899 if ((ret
= pkt_media_speed(pd
, &media_write_speed
)))
1900 media_write_speed
= 16;
1901 write_speed
= min(write_speed
, media_write_speed
* 177);
1902 DPRINTK("pktcdvd: write speed %ux\n", write_speed
/ 176);
1905 read_speed
= write_speed
;
1907 if ((ret
= pkt_set_speed(pd
, write_speed
, read_speed
))) {
1908 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd
->name
);
1911 pd
->write_speed
= write_speed
;
1912 pd
->read_speed
= read_speed
;
1914 if ((ret
= pkt_perform_opc(pd
))) {
1915 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd
->name
);
1922 * called at open time.
1924 static int pkt_open_dev(struct pktcdvd_device
*pd
, int write
)
1931 * We need to re-open the cdrom device without O_NONBLOCK to be able
1932 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1933 * so bdget() can't fail.
1935 bdget(pd
->bdev
->bd_dev
);
1936 if ((ret
= blkdev_get(pd
->bdev
, FMODE_READ
, O_RDONLY
)))
1939 if ((ret
= bd_claim(pd
->bdev
, pd
)))
1942 if ((ret
= pkt_get_last_written(pd
, &lba
))) {
1943 printk("pktcdvd: pkt_get_last_written failed\n");
1947 set_capacity(pd
->disk
, lba
<< 2);
1948 set_capacity(pd
->bdev
->bd_disk
, lba
<< 2);
1949 bd_set_size(pd
->bdev
, (loff_t
)lba
<< 11);
1951 q
= bdev_get_queue(pd
->bdev
);
1953 if ((ret
= pkt_open_write(pd
)))
1956 * Some CDRW drives can not handle writes larger than one packet,
1957 * even if the size is a multiple of the packet size.
1959 spin_lock_irq(q
->queue_lock
);
1960 blk_queue_max_sectors(q
, pd
->settings
.size
);
1961 spin_unlock_irq(q
->queue_lock
);
1962 set_bit(PACKET_WRITABLE
, &pd
->flags
);
1964 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
1965 clear_bit(PACKET_WRITABLE
, &pd
->flags
);
1968 if ((ret
= pkt_set_segment_merging(pd
, q
)))
1972 if (!pkt_grow_pktlist(pd
, CONFIG_CDROM_PKTCDVD_BUFFERS
)) {
1973 printk("pktcdvd: not enough memory for buffers\n");
1977 printk("pktcdvd: %lukB available on disc\n", lba
<< 1);
1983 bd_release(pd
->bdev
);
1985 blkdev_put(pd
->bdev
);
1991 * called when the device is closed. makes sure that the device flushes
1992 * the internal cache before we close.
1994 static void pkt_release_dev(struct pktcdvd_device
*pd
, int flush
)
1996 if (flush
&& pkt_flush_cache(pd
))
1997 DPRINTK("pktcdvd: %s not flushing cache\n", pd
->name
);
1999 pkt_lock_door(pd
, 0);
2001 pkt_set_speed(pd
, MAX_SPEED
, MAX_SPEED
);
2002 bd_release(pd
->bdev
);
2003 blkdev_put(pd
->bdev
);
2005 pkt_shrink_pktlist(pd
);
2008 static struct pktcdvd_device
*pkt_find_dev_from_minor(int dev_minor
)
2010 if (dev_minor
>= MAX_WRITERS
)
2012 return pkt_devs
[dev_minor
];
2015 static int pkt_open(struct inode
*inode
, struct file
*file
)
2017 struct pktcdvd_device
*pd
= NULL
;
2020 VPRINTK("pktcdvd: entering open\n");
2022 mutex_lock(&ctl_mutex
);
2023 pd
= pkt_find_dev_from_minor(iminor(inode
));
2028 BUG_ON(pd
->refcnt
< 0);
2031 if (pd
->refcnt
> 1) {
2032 if ((file
->f_mode
& FMODE_WRITE
) &&
2033 !test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2038 ret
= pkt_open_dev(pd
, file
->f_mode
& FMODE_WRITE
);
2042 * needed here as well, since ext2 (among others) may change
2043 * the blocksize at mount time
2045 set_blocksize(inode
->i_bdev
, CD_FRAMESIZE
);
2048 mutex_unlock(&ctl_mutex
);
2054 VPRINTK("pktcdvd: failed open (%d)\n", ret
);
2055 mutex_unlock(&ctl_mutex
);
2059 static int pkt_close(struct inode
*inode
, struct file
*file
)
2061 struct pktcdvd_device
*pd
= inode
->i_bdev
->bd_disk
->private_data
;
2064 mutex_lock(&ctl_mutex
);
2066 BUG_ON(pd
->refcnt
< 0);
2067 if (pd
->refcnt
== 0) {
2068 int flush
= test_bit(PACKET_WRITABLE
, &pd
->flags
);
2069 pkt_release_dev(pd
, flush
);
2071 mutex_unlock(&ctl_mutex
);
2076 static void *psd_pool_alloc(gfp_t gfp_mask
, void *data
)
2078 return kmalloc(sizeof(struct packet_stacked_data
), gfp_mask
);
2081 static void psd_pool_free(void *ptr
, void *data
)
2086 static int pkt_end_io_read_cloned(struct bio
*bio
, unsigned int bytes_done
, int err
)
2088 struct packet_stacked_data
*psd
= bio
->bi_private
;
2089 struct pktcdvd_device
*pd
= psd
->pd
;
2095 bio_endio(psd
->bio
, psd
->bio
->bi_size
, err
);
2096 mempool_free(psd
, psd_pool
);
2097 pkt_bio_finished(pd
);
2101 static int pkt_make_request(request_queue_t
*q
, struct bio
*bio
)
2103 struct pktcdvd_device
*pd
;
2104 char b
[BDEVNAME_SIZE
];
2106 struct packet_data
*pkt
;
2107 int was_empty
, blocked_bio
;
2108 struct pkt_rb_node
*node
;
2112 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio
->bi_bdev
, b
));
2117 * Clone READ bios so we can have our own bi_end_io callback.
2119 if (bio_data_dir(bio
) == READ
) {
2120 struct bio
*cloned_bio
= bio_clone(bio
, GFP_NOIO
);
2121 struct packet_stacked_data
*psd
= mempool_alloc(psd_pool
, GFP_NOIO
);
2125 cloned_bio
->bi_bdev
= pd
->bdev
;
2126 cloned_bio
->bi_private
= psd
;
2127 cloned_bio
->bi_end_io
= pkt_end_io_read_cloned
;
2128 pd
->stats
.secs_r
+= bio
->bi_size
>> 9;
2129 pkt_queue_bio(pd
, cloned_bio
);
2133 if (!test_bit(PACKET_WRITABLE
, &pd
->flags
)) {
2134 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2135 pd
->name
, (unsigned long long)bio
->bi_sector
);
2139 if (!bio
->bi_size
|| (bio
->bi_size
% CD_FRAMESIZE
)) {
2140 printk("pktcdvd: wrong bio size\n");
2144 blk_queue_bounce(q
, &bio
);
2146 zone
= ZONE(bio
->bi_sector
, pd
);
2147 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2148 (unsigned long long)bio
->bi_sector
,
2149 (unsigned long long)(bio
->bi_sector
+ bio_sectors(bio
)));
2151 /* Check if we have to split the bio */
2153 struct bio_pair
*bp
;
2157 last_zone
= ZONE(bio
->bi_sector
+ bio_sectors(bio
) - 1, pd
);
2158 if (last_zone
!= zone
) {
2159 BUG_ON(last_zone
!= zone
+ pd
->settings
.size
);
2160 first_sectors
= last_zone
- bio
->bi_sector
;
2161 bp
= bio_split(bio
, bio_split_pool
, first_sectors
);
2163 pkt_make_request(q
, &bp
->bio1
);
2164 pkt_make_request(q
, &bp
->bio2
);
2165 bio_pair_release(bp
);
2171 * If we find a matching packet in state WAITING or READ_WAIT, we can
2172 * just append this bio to that packet.
2174 spin_lock(&pd
->cdrw
.active_list_lock
);
2176 list_for_each_entry(pkt
, &pd
->cdrw
.pkt_active_list
, list
) {
2177 if (pkt
->sector
== zone
) {
2178 spin_lock(&pkt
->lock
);
2179 if ((pkt
->state
== PACKET_WAITING_STATE
) ||
2180 (pkt
->state
== PACKET_READ_WAIT_STATE
)) {
2181 pkt_add_list_last(bio
, &pkt
->orig_bios
,
2182 &pkt
->orig_bios_tail
);
2183 pkt
->write_size
+= bio
->bi_size
/ CD_FRAMESIZE
;
2184 if ((pkt
->write_size
>= pkt
->frames
) &&
2185 (pkt
->state
== PACKET_WAITING_STATE
)) {
2186 atomic_inc(&pkt
->run_sm
);
2187 wake_up(&pd
->wqueue
);
2189 spin_unlock(&pkt
->lock
);
2190 spin_unlock(&pd
->cdrw
.active_list_lock
);
2195 spin_unlock(&pkt
->lock
);
2198 spin_unlock(&pd
->cdrw
.active_list_lock
);
2201 * No matching packet found. Store the bio in the work queue.
2203 node
= mempool_alloc(pd
->rb_pool
, GFP_NOIO
);
2205 spin_lock(&pd
->lock
);
2206 BUG_ON(pd
->bio_queue_size
< 0);
2207 was_empty
= (pd
->bio_queue_size
== 0);
2208 pkt_rbtree_insert(pd
, node
);
2209 spin_unlock(&pd
->lock
);
2212 * Wake up the worker thread.
2214 atomic_set(&pd
->scan_queue
, 1);
2216 /* This wake_up is required for correct operation */
2217 wake_up(&pd
->wqueue
);
2218 } else if (!list_empty(&pd
->cdrw
.pkt_free_list
) && !blocked_bio
) {
2220 * This wake up is not required for correct operation,
2221 * but improves performance in some cases.
2223 wake_up(&pd
->wqueue
);
2227 bio_io_error(bio
, bio
->bi_size
);
2233 static int pkt_merge_bvec(request_queue_t
*q
, struct bio
*bio
, struct bio_vec
*bvec
)
2235 struct pktcdvd_device
*pd
= q
->queuedata
;
2236 sector_t zone
= ZONE(bio
->bi_sector
, pd
);
2237 int used
= ((bio
->bi_sector
- zone
) << 9) + bio
->bi_size
;
2238 int remaining
= (pd
->settings
.size
<< 9) - used
;
2242 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2243 * boundary, pkt_make_request() will split the bio.
2245 remaining2
= PAGE_SIZE
- bio
->bi_size
;
2246 remaining
= max(remaining
, remaining2
);
2248 BUG_ON(remaining
< 0);
2252 static void pkt_init_queue(struct pktcdvd_device
*pd
)
2254 request_queue_t
*q
= pd
->disk
->queue
;
2256 blk_queue_make_request(q
, pkt_make_request
);
2257 blk_queue_hardsect_size(q
, CD_FRAMESIZE
);
2258 blk_queue_max_sectors(q
, PACKET_MAX_SECTORS
);
2259 blk_queue_merge_bvec(q
, pkt_merge_bvec
);
2263 static int pkt_seq_show(struct seq_file
*m
, void *p
)
2265 struct pktcdvd_device
*pd
= m
->private;
2267 char bdev_buf
[BDEVNAME_SIZE
];
2268 int states
[PACKET_NUM_STATES
];
2270 seq_printf(m
, "Writer %s mapped to %s:\n", pd
->name
,
2271 bdevname(pd
->bdev
, bdev_buf
));
2273 seq_printf(m
, "\nSettings:\n");
2274 seq_printf(m
, "\tpacket size:\t\t%dkB\n", pd
->settings
.size
/ 2);
2276 if (pd
->settings
.write_type
== 0)
2280 seq_printf(m
, "\twrite type:\t\t%s\n", msg
);
2282 seq_printf(m
, "\tpacket type:\t\t%s\n", pd
->settings
.fp
? "Fixed" : "Variable");
2283 seq_printf(m
, "\tlink loss:\t\t%d\n", pd
->settings
.link_loss
);
2285 seq_printf(m
, "\ttrack mode:\t\t%d\n", pd
->settings
.track_mode
);
2287 if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE1
)
2289 else if (pd
->settings
.block_mode
== PACKET_BLOCK_MODE2
)
2293 seq_printf(m
, "\tblock mode:\t\t%s\n", msg
);
2295 seq_printf(m
, "\nStatistics:\n");
2296 seq_printf(m
, "\tpackets started:\t%lu\n", pd
->stats
.pkt_started
);
2297 seq_printf(m
, "\tpackets ended:\t\t%lu\n", pd
->stats
.pkt_ended
);
2298 seq_printf(m
, "\twritten:\t\t%lukB\n", pd
->stats
.secs_w
>> 1);
2299 seq_printf(m
, "\tread gather:\t\t%lukB\n", pd
->stats
.secs_rg
>> 1);
2300 seq_printf(m
, "\tread:\t\t\t%lukB\n", pd
->stats
.secs_r
>> 1);
2302 seq_printf(m
, "\nMisc:\n");
2303 seq_printf(m
, "\treference count:\t%d\n", pd
->refcnt
);
2304 seq_printf(m
, "\tflags:\t\t\t0x%lx\n", pd
->flags
);
2305 seq_printf(m
, "\tread speed:\t\t%ukB/s\n", pd
->read_speed
);
2306 seq_printf(m
, "\twrite speed:\t\t%ukB/s\n", pd
->write_speed
);
2307 seq_printf(m
, "\tstart offset:\t\t%lu\n", pd
->offset
);
2308 seq_printf(m
, "\tmode page offset:\t%u\n", pd
->mode_offset
);
2310 seq_printf(m
, "\nQueue state:\n");
2311 seq_printf(m
, "\tbios queued:\t\t%d\n", pd
->bio_queue_size
);
2312 seq_printf(m
, "\tbios pending:\t\t%d\n", atomic_read(&pd
->cdrw
.pending_bios
));
2313 seq_printf(m
, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd
->current_sector
);
2315 pkt_count_states(pd
, states
);
2316 seq_printf(m
, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2317 states
[0], states
[1], states
[2], states
[3], states
[4], states
[5]);
2322 static int pkt_seq_open(struct inode
*inode
, struct file
*file
)
2324 return single_open(file
, pkt_seq_show
, PDE(inode
)->data
);
2327 static struct file_operations pkt_proc_fops
= {
2328 .open
= pkt_seq_open
,
2330 .llseek
= seq_lseek
,
2331 .release
= single_release
2334 static int pkt_new_dev(struct pktcdvd_device
*pd
, dev_t dev
)
2338 char b
[BDEVNAME_SIZE
];
2339 struct proc_dir_entry
*proc
;
2340 struct block_device
*bdev
;
2342 if (pd
->pkt_dev
== dev
) {
2343 printk("pktcdvd: Recursive setup not allowed\n");
2346 for (i
= 0; i
< MAX_WRITERS
; i
++) {
2347 struct pktcdvd_device
*pd2
= pkt_devs
[i
];
2350 if (pd2
->bdev
->bd_dev
== dev
) {
2351 printk("pktcdvd: %s already setup\n", bdevname(pd2
->bdev
, b
));
2354 if (pd2
->pkt_dev
== dev
) {
2355 printk("pktcdvd: Can't chain pktcdvd devices\n");
2363 ret
= blkdev_get(bdev
, FMODE_READ
, O_RDONLY
| O_NONBLOCK
);
2367 /* This is safe, since we have a reference from open(). */
2368 __module_get(THIS_MODULE
);
2371 set_blocksize(bdev
, CD_FRAMESIZE
);
2375 atomic_set(&pd
->cdrw
.pending_bios
, 0);
2376 pd
->cdrw
.thread
= kthread_run(kcdrwd
, pd
, "%s", pd
->name
);
2377 if (IS_ERR(pd
->cdrw
.thread
)) {
2378 printk("pktcdvd: can't start kernel thread\n");
2383 proc
= create_proc_entry(pd
->name
, 0, pkt_proc
);
2386 proc
->proc_fops
= &pkt_proc_fops
;
2388 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd
->name
, bdevname(bdev
, b
));
2393 /* This is safe: open() is still holding a reference. */
2394 module_put(THIS_MODULE
);
2398 static int pkt_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2400 struct pktcdvd_device
*pd
= inode
->i_bdev
->bd_disk
->private_data
;
2402 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd
, imajor(inode
), iminor(inode
));
2406 * forward selected CDROM ioctls to CD-ROM, for UDF
2408 case CDROMMULTISESSION
:
2409 case CDROMREADTOCENTRY
:
2410 case CDROM_LAST_WRITTEN
:
2411 case CDROM_SEND_PACKET
:
2412 case SCSI_IOCTL_SEND_COMMAND
:
2413 return blkdev_ioctl(pd
->bdev
->bd_inode
, file
, cmd
, arg
);
2417 * The door gets locked when the device is opened, so we
2418 * have to unlock it or else the eject command fails.
2420 if (pd
->refcnt
== 1)
2421 pkt_lock_door(pd
, 0);
2422 return blkdev_ioctl(pd
->bdev
->bd_inode
, file
, cmd
, arg
);
2425 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd
->name
, cmd
);
2432 static int pkt_media_changed(struct gendisk
*disk
)
2434 struct pktcdvd_device
*pd
= disk
->private_data
;
2435 struct gendisk
*attached_disk
;
2441 attached_disk
= pd
->bdev
->bd_disk
;
2444 return attached_disk
->fops
->media_changed(attached_disk
);
2447 static struct block_device_operations pktcdvd_ops
= {
2448 .owner
= THIS_MODULE
,
2450 .release
= pkt_close
,
2452 .media_changed
= pkt_media_changed
,
2456 * Set up mapping from pktcdvd device to CD-ROM device.
2458 static int pkt_setup_dev(struct pkt_ctrl_command
*ctrl_cmd
)
2462 struct pktcdvd_device
*pd
;
2463 struct gendisk
*disk
;
2464 dev_t dev
= new_decode_dev(ctrl_cmd
->dev
);
2466 for (idx
= 0; idx
< MAX_WRITERS
; idx
++)
2469 if (idx
== MAX_WRITERS
) {
2470 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS
);
2474 pd
= kzalloc(sizeof(struct pktcdvd_device
), GFP_KERNEL
);
2478 pd
->rb_pool
= mempool_create(PKT_RB_POOL_SIZE
, pkt_rb_alloc
, pkt_rb_free
, NULL
);
2482 disk
= alloc_disk(1);
2487 INIT_LIST_HEAD(&pd
->cdrw
.pkt_free_list
);
2488 INIT_LIST_HEAD(&pd
->cdrw
.pkt_active_list
);
2489 spin_lock_init(&pd
->cdrw
.active_list_lock
);
2491 spin_lock_init(&pd
->lock
);
2492 spin_lock_init(&pd
->iosched
.lock
);
2493 sprintf(pd
->name
, "pktcdvd%d", idx
);
2494 init_waitqueue_head(&pd
->wqueue
);
2495 pd
->bio_queue
= RB_ROOT
;
2497 disk
->major
= pkt_major
;
2498 disk
->first_minor
= idx
;
2499 disk
->fops
= &pktcdvd_ops
;
2500 disk
->flags
= GENHD_FL_REMOVABLE
;
2501 sprintf(disk
->disk_name
, "pktcdvd%d", idx
);
2502 disk
->private_data
= pd
;
2503 disk
->queue
= blk_alloc_queue(GFP_KERNEL
);
2507 pd
->pkt_dev
= MKDEV(disk
->major
, disk
->first_minor
);
2508 ret
= pkt_new_dev(pd
, dev
);
2514 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2518 blk_cleanup_queue(disk
->queue
);
2523 mempool_destroy(pd
->rb_pool
);
2529 * Tear down mapping from pktcdvd device to CD-ROM device.
2531 static int pkt_remove_dev(struct pkt_ctrl_command
*ctrl_cmd
)
2533 struct pktcdvd_device
*pd
;
2535 dev_t pkt_dev
= new_decode_dev(ctrl_cmd
->pkt_dev
);
2537 for (idx
= 0; idx
< MAX_WRITERS
; idx
++) {
2539 if (pd
&& (pd
->pkt_dev
== pkt_dev
))
2542 if (idx
== MAX_WRITERS
) {
2543 DPRINTK("pktcdvd: dev not setup\n");
2550 if (!IS_ERR(pd
->cdrw
.thread
))
2551 kthread_stop(pd
->cdrw
.thread
);
2553 blkdev_put(pd
->bdev
);
2555 remove_proc_entry(pd
->name
, pkt_proc
);
2556 DPRINTK("pktcdvd: writer %s unmapped\n", pd
->name
);
2558 del_gendisk(pd
->disk
);
2559 blk_cleanup_queue(pd
->disk
->queue
);
2562 pkt_devs
[idx
] = NULL
;
2563 mempool_destroy(pd
->rb_pool
);
2566 /* This is safe: open() is still holding a reference. */
2567 module_put(THIS_MODULE
);
2571 static void pkt_get_status(struct pkt_ctrl_command
*ctrl_cmd
)
2573 struct pktcdvd_device
*pd
= pkt_find_dev_from_minor(ctrl_cmd
->dev_index
);
2575 ctrl_cmd
->dev
= new_encode_dev(pd
->bdev
->bd_dev
);
2576 ctrl_cmd
->pkt_dev
= new_encode_dev(pd
->pkt_dev
);
2579 ctrl_cmd
->pkt_dev
= 0;
2581 ctrl_cmd
->num_devices
= MAX_WRITERS
;
2584 static int pkt_ctl_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
2586 void __user
*argp
= (void __user
*)arg
;
2587 struct pkt_ctrl_command ctrl_cmd
;
2590 if (cmd
!= PACKET_CTRL_CMD
)
2593 if (copy_from_user(&ctrl_cmd
, argp
, sizeof(struct pkt_ctrl_command
)))
2596 switch (ctrl_cmd
.command
) {
2597 case PKT_CTRL_CMD_SETUP
:
2598 if (!capable(CAP_SYS_ADMIN
))
2600 mutex_lock(&ctl_mutex
);
2601 ret
= pkt_setup_dev(&ctrl_cmd
);
2602 mutex_unlock(&ctl_mutex
);
2604 case PKT_CTRL_CMD_TEARDOWN
:
2605 if (!capable(CAP_SYS_ADMIN
))
2607 mutex_lock(&ctl_mutex
);
2608 ret
= pkt_remove_dev(&ctrl_cmd
);
2609 mutex_unlock(&ctl_mutex
);
2611 case PKT_CTRL_CMD_STATUS
:
2612 mutex_lock(&ctl_mutex
);
2613 pkt_get_status(&ctrl_cmd
);
2614 mutex_unlock(&ctl_mutex
);
2620 if (copy_to_user(argp
, &ctrl_cmd
, sizeof(struct pkt_ctrl_command
)))
2626 static struct file_operations pkt_ctl_fops
= {
2627 .ioctl
= pkt_ctl_ioctl
,
2628 .owner
= THIS_MODULE
,
2631 static struct miscdevice pkt_misc
= {
2632 .minor
= MISC_DYNAMIC_MINOR
,
2634 .devfs_name
= "pktcdvd/control",
2635 .fops
= &pkt_ctl_fops
2638 static int __init
pkt_init(void)
2642 psd_pool
= mempool_create(PSD_POOL_SIZE
, psd_pool_alloc
, psd_pool_free
, NULL
);
2646 ret
= register_blkdev(pkt_major
, "pktcdvd");
2648 printk("pktcdvd: Unable to register block device\n");
2654 ret
= misc_register(&pkt_misc
);
2656 printk("pktcdvd: Unable to register misc device\n");
2660 mutex_init(&ctl_mutex
);
2662 pkt_proc
= proc_mkdir("pktcdvd", proc_root_driver
);
2667 unregister_blkdev(pkt_major
, "pktcdvd");
2669 mempool_destroy(psd_pool
);
2673 static void __exit
pkt_exit(void)
2675 remove_proc_entry("pktcdvd", proc_root_driver
);
2676 misc_deregister(&pkt_misc
);
2677 unregister_blkdev(pkt_major
, "pktcdvd");
2678 mempool_destroy(psd_pool
);
2681 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2682 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2683 MODULE_LICENSE("GPL");
2685 module_init(pkt_init
);
2686 module_exit(pkt_exit
);