[PATCH] Represent laptop_mode as jiffies internally
[linux-2.6/verdex.git] / drivers / mtd / chips / cfi_cmdset_0002.c
blobaed10bd5c3c3869cb52732d764004753a30aa319
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
18 * This code is GPL
20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <asm/io.h>
31 #include <asm/byteorder.h>
33 #include <linux/errno.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/interrupt.h>
37 #include <linux/mtd/compatmac.h>
38 #include <linux/mtd/map.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/cfi.h>
41 #include <linux/mtd/xip.h>
43 #define AMD_BOOTLOC_BUG
44 #define FORCE_WORD_WRITE 0
46 #define MAX_WORD_RETRIES 3
48 #define MANUFACTURER_AMD 0x0001
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF008A 0x005a
53 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
54 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
56 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
57 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
58 static void cfi_amdstd_sync (struct mtd_info *);
59 static int cfi_amdstd_suspend (struct mtd_info *);
60 static void cfi_amdstd_resume (struct mtd_info *);
61 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static void cfi_amdstd_destroy(struct mtd_info *);
65 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
66 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
68 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
69 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
70 #include "fwh_lock.h"
72 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
73 .probe = NULL, /* Not usable directly */
74 .destroy = cfi_amdstd_destroy,
75 .name = "cfi_cmdset_0002",
76 .module = THIS_MODULE
80 /* #define DEBUG_CFI_FEATURES */
83 #ifdef DEBUG_CFI_FEATURES
84 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
86 const char* erase_suspend[3] = {
87 "Not supported", "Read only", "Read/write"
89 const char* top_bottom[6] = {
90 "No WP", "8x8KiB sectors at top & bottom, no WP",
91 "Bottom boot", "Top boot",
92 "Uniform, Bottom WP", "Uniform, Top WP"
95 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
96 printk(" Address sensitive unlock: %s\n",
97 (extp->SiliconRevision & 1) ? "Not required" : "Required");
99 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
100 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
101 else
102 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
104 if (extp->BlkProt == 0)
105 printk(" Block protection: Not supported\n");
106 else
107 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
110 printk(" Temporary block unprotect: %s\n",
111 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
112 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
113 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
114 printk(" Burst mode: %s\n",
115 extp->BurstMode ? "Supported" : "Not supported");
116 if (extp->PageMode == 0)
117 printk(" Page mode: Not supported\n");
118 else
119 printk(" Page mode: %d word page\n", extp->PageMode << 2);
121 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
122 extp->VppMin >> 4, extp->VppMin & 0xf);
123 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
124 extp->VppMax >> 4, extp->VppMax & 0xf);
126 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
127 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
128 else
129 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
131 #endif
133 #ifdef AMD_BOOTLOC_BUG
134 /* Wheee. Bring me the head of someone at AMD. */
135 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
137 struct map_info *map = mtd->priv;
138 struct cfi_private *cfi = map->fldrv_priv;
139 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
140 __u8 major = extp->MajorVersion;
141 __u8 minor = extp->MinorVersion;
143 if (((major << 8) | minor) < 0x3131) {
144 /* CFI version 1.0 => don't trust bootloc */
145 if (cfi->id & 0x80) {
146 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
147 extp->TopBottom = 3; /* top boot */
148 } else {
149 extp->TopBottom = 2; /* bottom boot */
153 #endif
155 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
157 struct map_info *map = mtd->priv;
158 struct cfi_private *cfi = map->fldrv_priv;
159 if (cfi->cfiq->BufWriteTimeoutTyp) {
160 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
161 mtd->write = cfi_amdstd_write_buffers;
165 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
167 /* Setup for chips with a secsi area */
168 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
169 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
172 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
174 struct map_info *map = mtd->priv;
175 struct cfi_private *cfi = map->fldrv_priv;
176 if ((cfi->cfiq->NumEraseRegions == 1) &&
177 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
178 mtd->erase = cfi_amdstd_erase_chip;
183 static struct cfi_fixup cfi_fixup_table[] = {
184 #ifdef AMD_BOOTLOC_BUG
185 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
186 #endif
187 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
188 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
189 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
190 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
191 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
192 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
193 #if !FORCE_WORD_WRITE
194 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
195 #endif
196 { 0, 0, NULL, NULL }
198 static struct cfi_fixup jedec_fixup_table[] = {
199 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
200 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
201 { 0, 0, NULL, NULL }
204 static struct cfi_fixup fixup_table[] = {
205 /* The CFI vendor ids and the JEDEC vendor IDs appear
206 * to be common. It is like the devices id's are as
207 * well. This table is to pick all cases where
208 * we know that is the case.
210 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
211 { 0, 0, NULL, NULL }
215 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
217 struct cfi_private *cfi = map->fldrv_priv;
218 struct mtd_info *mtd;
219 int i;
221 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
222 if (!mtd) {
223 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
224 return NULL;
226 memset(mtd, 0, sizeof(*mtd));
227 mtd->priv = map;
228 mtd->type = MTD_NORFLASH;
230 /* Fill in the default mtd operations */
231 mtd->erase = cfi_amdstd_erase_varsize;
232 mtd->write = cfi_amdstd_write_words;
233 mtd->read = cfi_amdstd_read;
234 mtd->sync = cfi_amdstd_sync;
235 mtd->suspend = cfi_amdstd_suspend;
236 mtd->resume = cfi_amdstd_resume;
237 mtd->flags = MTD_CAP_NORFLASH;
238 mtd->name = map->name;
240 if (cfi->cfi_mode==CFI_MODE_CFI){
241 unsigned char bootloc;
243 * It's a real CFI chip, not one for which the probe
244 * routine faked a CFI structure. So we read the feature
245 * table from it.
247 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
248 struct cfi_pri_amdstd *extp;
250 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
251 if (!extp) {
252 kfree(mtd);
253 return NULL;
256 if (extp->MajorVersion != '1' ||
257 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
258 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
259 "version %c.%c.\n", extp->MajorVersion,
260 extp->MinorVersion);
261 kfree(extp);
262 kfree(mtd);
263 return NULL;
266 /* Install our own private info structure */
267 cfi->cmdset_priv = extp;
269 /* Apply cfi device specific fixups */
270 cfi_fixup(mtd, cfi_fixup_table);
272 #ifdef DEBUG_CFI_FEATURES
273 /* Tell the user about it in lots of lovely detail */
274 cfi_tell_features(extp);
275 #endif
277 bootloc = extp->TopBottom;
278 if ((bootloc != 2) && (bootloc != 3)) {
279 printk(KERN_WARNING "%s: CFI does not contain boot "
280 "bank location. Assuming top.\n", map->name);
281 bootloc = 2;
284 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
285 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
287 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
288 int j = (cfi->cfiq->NumEraseRegions-1)-i;
289 __u32 swap;
291 swap = cfi->cfiq->EraseRegionInfo[i];
292 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
293 cfi->cfiq->EraseRegionInfo[j] = swap;
296 /* Set the default CFI lock/unlock addresses */
297 cfi->addr_unlock1 = 0x555;
298 cfi->addr_unlock2 = 0x2aa;
299 /* Modify the unlock address if we are in compatibility mode */
300 if ( /* x16 in x8 mode */
301 ((cfi->device_type == CFI_DEVICETYPE_X8) &&
302 (cfi->cfiq->InterfaceDesc == 2)) ||
303 /* x32 in x16 mode */
304 ((cfi->device_type == CFI_DEVICETYPE_X16) &&
305 (cfi->cfiq->InterfaceDesc == 4)))
307 cfi->addr_unlock1 = 0xaaa;
308 cfi->addr_unlock2 = 0x555;
311 } /* CFI mode */
312 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
313 /* Apply jedec specific fixups */
314 cfi_fixup(mtd, jedec_fixup_table);
316 /* Apply generic fixups */
317 cfi_fixup(mtd, fixup_table);
319 for (i=0; i< cfi->numchips; i++) {
320 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
321 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
322 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
325 map->fldrv = &cfi_amdstd_chipdrv;
327 return cfi_amdstd_setup(mtd);
331 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
333 struct map_info *map = mtd->priv;
334 struct cfi_private *cfi = map->fldrv_priv;
335 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
336 unsigned long offset = 0;
337 int i,j;
339 printk(KERN_NOTICE "number of %s chips: %d\n",
340 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
341 /* Select the correct geometry setup */
342 mtd->size = devsize * cfi->numchips;
344 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
345 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
346 * mtd->numeraseregions, GFP_KERNEL);
347 if (!mtd->eraseregions) {
348 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
349 goto setup_err;
352 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
353 unsigned long ernum, ersize;
354 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
355 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
357 if (mtd->erasesize < ersize) {
358 mtd->erasesize = ersize;
360 for (j=0; j<cfi->numchips; j++) {
361 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
362 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
363 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
365 offset += (ersize * ernum);
367 if (offset != devsize) {
368 /* Argh */
369 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
370 goto setup_err;
372 #if 0
373 // debug
374 for (i=0; i<mtd->numeraseregions;i++){
375 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
376 i,mtd->eraseregions[i].offset,
377 mtd->eraseregions[i].erasesize,
378 mtd->eraseregions[i].numblocks);
380 #endif
382 /* FIXME: erase-suspend-program is broken. See
383 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
384 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
386 __module_get(THIS_MODULE);
387 return mtd;
389 setup_err:
390 if(mtd) {
391 kfree(mtd->eraseregions);
392 kfree(mtd);
394 kfree(cfi->cmdset_priv);
395 kfree(cfi->cfiq);
396 return NULL;
400 * Return true if the chip is ready.
402 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
403 * non-suspended sector) and is indicated by no toggle bits toggling.
405 * Note that anything more complicated than checking if no bits are toggling
406 * (including checking DQ5 for an error status) is tricky to get working
407 * correctly and is therefore not done (particulary with interleaved chips
408 * as each chip must be checked independantly of the others).
410 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
412 map_word d, t;
414 d = map_read(map, addr);
415 t = map_read(map, addr);
417 return map_word_equal(map, d, t);
421 * Return true if the chip is ready and has the correct value.
423 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
424 * non-suspended sector) and it is indicated by no bits toggling.
426 * Error are indicated by toggling bits or bits held with the wrong value,
427 * or with bits toggling.
429 * Note that anything more complicated than checking if no bits are toggling
430 * (including checking DQ5 for an error status) is tricky to get working
431 * correctly and is therefore not done (particulary with interleaved chips
432 * as each chip must be checked independantly of the others).
435 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
437 map_word oldd, curd;
439 oldd = map_read(map, addr);
440 curd = map_read(map, addr);
442 return map_word_equal(map, oldd, curd) &&
443 map_word_equal(map, curd, expected);
446 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
448 DECLARE_WAITQUEUE(wait, current);
449 struct cfi_private *cfi = map->fldrv_priv;
450 unsigned long timeo;
451 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
453 resettime:
454 timeo = jiffies + HZ;
455 retry:
456 switch (chip->state) {
458 case FL_STATUS:
459 for (;;) {
460 if (chip_ready(map, adr))
461 break;
463 if (time_after(jiffies, timeo)) {
464 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
465 spin_unlock(chip->mutex);
466 return -EIO;
468 spin_unlock(chip->mutex);
469 cfi_udelay(1);
470 spin_lock(chip->mutex);
471 /* Someone else might have been playing with it. */
472 goto retry;
475 case FL_READY:
476 case FL_CFI_QUERY:
477 case FL_JEDEC_QUERY:
478 return 0;
480 case FL_ERASING:
481 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
482 goto sleep;
484 if (!(mode == FL_READY || mode == FL_POINT
485 || !cfip
486 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
487 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1))))
488 goto sleep;
490 /* We could check to see if we're trying to access the sector
491 * that is currently being erased. However, no user will try
492 * anything like that so we just wait for the timeout. */
494 /* Erase suspend */
495 /* It's harmless to issue the Erase-Suspend and Erase-Resume
496 * commands when the erase algorithm isn't in progress. */
497 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
498 chip->oldstate = FL_ERASING;
499 chip->state = FL_ERASE_SUSPENDING;
500 chip->erase_suspended = 1;
501 for (;;) {
502 if (chip_ready(map, adr))
503 break;
505 if (time_after(jiffies, timeo)) {
506 /* Should have suspended the erase by now.
507 * Send an Erase-Resume command as either
508 * there was an error (so leave the erase
509 * routine to recover from it) or we trying to
510 * use the erase-in-progress sector. */
511 map_write(map, CMD(0x30), chip->in_progress_block_addr);
512 chip->state = FL_ERASING;
513 chip->oldstate = FL_READY;
514 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
515 return -EIO;
518 spin_unlock(chip->mutex);
519 cfi_udelay(1);
520 spin_lock(chip->mutex);
521 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
522 So we can just loop here. */
524 chip->state = FL_READY;
525 return 0;
527 case FL_XIP_WHILE_ERASING:
528 if (mode != FL_READY && mode != FL_POINT &&
529 (!cfip || !(cfip->EraseSuspend&2)))
530 goto sleep;
531 chip->oldstate = chip->state;
532 chip->state = FL_READY;
533 return 0;
535 case FL_POINT:
536 /* Only if there's no operation suspended... */
537 if (mode == FL_READY && chip->oldstate == FL_READY)
538 return 0;
540 default:
541 sleep:
542 set_current_state(TASK_UNINTERRUPTIBLE);
543 add_wait_queue(&chip->wq, &wait);
544 spin_unlock(chip->mutex);
545 schedule();
546 remove_wait_queue(&chip->wq, &wait);
547 spin_lock(chip->mutex);
548 goto resettime;
553 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
555 struct cfi_private *cfi = map->fldrv_priv;
557 switch(chip->oldstate) {
558 case FL_ERASING:
559 chip->state = chip->oldstate;
560 map_write(map, CMD(0x30), chip->in_progress_block_addr);
561 chip->oldstate = FL_READY;
562 chip->state = FL_ERASING;
563 break;
565 case FL_XIP_WHILE_ERASING:
566 chip->state = chip->oldstate;
567 chip->oldstate = FL_READY;
568 break;
570 case FL_READY:
571 case FL_STATUS:
572 /* We should really make set_vpp() count, rather than doing this */
573 DISABLE_VPP(map);
574 break;
575 default:
576 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
578 wake_up(&chip->wq);
581 #ifdef CONFIG_MTD_XIP
584 * No interrupt what so ever can be serviced while the flash isn't in array
585 * mode. This is ensured by the xip_disable() and xip_enable() functions
586 * enclosing any code path where the flash is known not to be in array mode.
587 * And within a XIP disabled code path, only functions marked with __xipram
588 * may be called and nothing else (it's a good thing to inspect generated
589 * assembly to make sure inline functions were actually inlined and that gcc
590 * didn't emit calls to its own support functions). Also configuring MTD CFI
591 * support to a single buswidth and a single interleave is also recommended.
594 static void xip_disable(struct map_info *map, struct flchip *chip,
595 unsigned long adr)
597 /* TODO: chips with no XIP use should ignore and return */
598 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
599 local_irq_disable();
602 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
603 unsigned long adr)
605 struct cfi_private *cfi = map->fldrv_priv;
607 if (chip->state != FL_POINT && chip->state != FL_READY) {
608 map_write(map, CMD(0xf0), adr);
609 chip->state = FL_READY;
611 (void) map_read(map, adr);
612 xip_iprefetch();
613 local_irq_enable();
617 * When a delay is required for the flash operation to complete, the
618 * xip_udelay() function is polling for both the given timeout and pending
619 * (but still masked) hardware interrupts. Whenever there is an interrupt
620 * pending then the flash erase operation is suspended, array mode restored
621 * and interrupts unmasked. Task scheduling might also happen at that
622 * point. The CPU eventually returns from the interrupt or the call to
623 * schedule() and the suspended flash operation is resumed for the remaining
624 * of the delay period.
626 * Warning: this function _will_ fool interrupt latency tracing tools.
629 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
630 unsigned long adr, int usec)
632 struct cfi_private *cfi = map->fldrv_priv;
633 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
634 map_word status, OK = CMD(0x80);
635 unsigned long suspended, start = xip_currtime();
636 flstate_t oldstate;
638 do {
639 cpu_relax();
640 if (xip_irqpending() && extp &&
641 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
642 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
644 * Let's suspend the erase operation when supported.
645 * Note that we currently don't try to suspend
646 * interleaved chips if there is already another
647 * operation suspended (imagine what happens
648 * when one chip was already done with the current
649 * operation while another chip suspended it, then
650 * we resume the whole thing at once). Yes, it
651 * can happen!
653 map_write(map, CMD(0xb0), adr);
654 usec -= xip_elapsed_since(start);
655 suspended = xip_currtime();
656 do {
657 if (xip_elapsed_since(suspended) > 100000) {
659 * The chip doesn't want to suspend
660 * after waiting for 100 msecs.
661 * This is a critical error but there
662 * is not much we can do here.
664 return;
666 status = map_read(map, adr);
667 } while (!map_word_andequal(map, status, OK, OK));
669 /* Suspend succeeded */
670 oldstate = chip->state;
671 if (!map_word_bitsset(map, status, CMD(0x40)))
672 break;
673 chip->state = FL_XIP_WHILE_ERASING;
674 chip->erase_suspended = 1;
675 map_write(map, CMD(0xf0), adr);
676 (void) map_read(map, adr);
677 asm volatile (".rep 8; nop; .endr");
678 local_irq_enable();
679 spin_unlock(chip->mutex);
680 asm volatile (".rep 8; nop; .endr");
681 cond_resched();
684 * We're back. However someone else might have
685 * decided to go write to the chip if we are in
686 * a suspended erase state. If so let's wait
687 * until it's done.
689 spin_lock(chip->mutex);
690 while (chip->state != FL_XIP_WHILE_ERASING) {
691 DECLARE_WAITQUEUE(wait, current);
692 set_current_state(TASK_UNINTERRUPTIBLE);
693 add_wait_queue(&chip->wq, &wait);
694 spin_unlock(chip->mutex);
695 schedule();
696 remove_wait_queue(&chip->wq, &wait);
697 spin_lock(chip->mutex);
699 /* Disallow XIP again */
700 local_irq_disable();
702 /* Resume the write or erase operation */
703 map_write(map, CMD(0x30), adr);
704 chip->state = oldstate;
705 start = xip_currtime();
706 } else if (usec >= 1000000/HZ) {
708 * Try to save on CPU power when waiting delay
709 * is at least a system timer tick period.
710 * No need to be extremely accurate here.
712 xip_cpu_idle();
714 status = map_read(map, adr);
715 } while (!map_word_andequal(map, status, OK, OK)
716 && xip_elapsed_since(start) < usec);
719 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
722 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
723 * the flash is actively programming or erasing since we have to poll for
724 * the operation to complete anyway. We can't do that in a generic way with
725 * a XIP setup so do it before the actual flash operation in this case
726 * and stub it out from INVALIDATE_CACHE_UDELAY.
728 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
729 INVALIDATE_CACHED_RANGE(map, from, size)
731 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
732 UDELAY(map, chip, adr, usec)
735 * Extra notes:
737 * Activating this XIP support changes the way the code works a bit. For
738 * example the code to suspend the current process when concurrent access
739 * happens is never executed because xip_udelay() will always return with the
740 * same chip state as it was entered with. This is why there is no care for
741 * the presence of add_wait_queue() or schedule() calls from within a couple
742 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
743 * The queueing and scheduling are always happening within xip_udelay().
745 * Similarly, get_chip() and put_chip() just happen to always be executed
746 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
747 * is in array mode, therefore never executing many cases therein and not
748 * causing any problem with XIP.
751 #else
753 #define xip_disable(map, chip, adr)
754 #define xip_enable(map, chip, adr)
755 #define XIP_INVAL_CACHED_RANGE(x...)
757 #define UDELAY(map, chip, adr, usec) \
758 do { \
759 spin_unlock(chip->mutex); \
760 cfi_udelay(usec); \
761 spin_lock(chip->mutex); \
762 } while (0)
764 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
765 do { \
766 spin_unlock(chip->mutex); \
767 INVALIDATE_CACHED_RANGE(map, adr, len); \
768 cfi_udelay(usec); \
769 spin_lock(chip->mutex); \
770 } while (0)
772 #endif
774 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
776 unsigned long cmd_addr;
777 struct cfi_private *cfi = map->fldrv_priv;
778 int ret;
780 adr += chip->start;
782 /* Ensure cmd read/writes are aligned. */
783 cmd_addr = adr & ~(map_bankwidth(map)-1);
785 spin_lock(chip->mutex);
786 ret = get_chip(map, chip, cmd_addr, FL_READY);
787 if (ret) {
788 spin_unlock(chip->mutex);
789 return ret;
792 if (chip->state != FL_POINT && chip->state != FL_READY) {
793 map_write(map, CMD(0xf0), cmd_addr);
794 chip->state = FL_READY;
797 map_copy_from(map, buf, adr, len);
799 put_chip(map, chip, cmd_addr);
801 spin_unlock(chip->mutex);
802 return 0;
806 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
808 struct map_info *map = mtd->priv;
809 struct cfi_private *cfi = map->fldrv_priv;
810 unsigned long ofs;
811 int chipnum;
812 int ret = 0;
814 /* ofs: offset within the first chip that the first read should start */
816 chipnum = (from >> cfi->chipshift);
817 ofs = from - (chipnum << cfi->chipshift);
820 *retlen = 0;
822 while (len) {
823 unsigned long thislen;
825 if (chipnum >= cfi->numchips)
826 break;
828 if ((len + ofs -1) >> cfi->chipshift)
829 thislen = (1<<cfi->chipshift) - ofs;
830 else
831 thislen = len;
833 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
834 if (ret)
835 break;
837 *retlen += thislen;
838 len -= thislen;
839 buf += thislen;
841 ofs = 0;
842 chipnum++;
844 return ret;
848 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
850 DECLARE_WAITQUEUE(wait, current);
851 unsigned long timeo = jiffies + HZ;
852 struct cfi_private *cfi = map->fldrv_priv;
854 retry:
855 spin_lock(chip->mutex);
857 if (chip->state != FL_READY){
858 #if 0
859 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
860 #endif
861 set_current_state(TASK_UNINTERRUPTIBLE);
862 add_wait_queue(&chip->wq, &wait);
864 spin_unlock(chip->mutex);
866 schedule();
867 remove_wait_queue(&chip->wq, &wait);
868 #if 0
869 if(signal_pending(current))
870 return -EINTR;
871 #endif
872 timeo = jiffies + HZ;
874 goto retry;
877 adr += chip->start;
879 chip->state = FL_READY;
881 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
882 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
883 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
885 map_copy_from(map, buf, adr, len);
887 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
888 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
889 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
890 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
892 wake_up(&chip->wq);
893 spin_unlock(chip->mutex);
895 return 0;
898 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
900 struct map_info *map = mtd->priv;
901 struct cfi_private *cfi = map->fldrv_priv;
902 unsigned long ofs;
903 int chipnum;
904 int ret = 0;
907 /* ofs: offset within the first chip that the first read should start */
909 /* 8 secsi bytes per chip */
910 chipnum=from>>3;
911 ofs=from & 7;
914 *retlen = 0;
916 while (len) {
917 unsigned long thislen;
919 if (chipnum >= cfi->numchips)
920 break;
922 if ((len + ofs -1) >> 3)
923 thislen = (1<<3) - ofs;
924 else
925 thislen = len;
927 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
928 if (ret)
929 break;
931 *retlen += thislen;
932 len -= thislen;
933 buf += thislen;
935 ofs = 0;
936 chipnum++;
938 return ret;
942 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
944 struct cfi_private *cfi = map->fldrv_priv;
945 unsigned long timeo = jiffies + HZ;
947 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
948 * have a max write time of a few hundreds usec). However, we should
949 * use the maximum timeout value given by the chip at probe time
950 * instead. Unfortunately, struct flchip does have a field for
951 * maximum timeout, only for typical which can be far too short
952 * depending of the conditions. The ' + 1' is to avoid having a
953 * timeout of 0 jiffies if HZ is smaller than 1000.
955 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
956 int ret = 0;
957 map_word oldd;
958 int retry_cnt = 0;
960 adr += chip->start;
962 spin_lock(chip->mutex);
963 ret = get_chip(map, chip, adr, FL_WRITING);
964 if (ret) {
965 spin_unlock(chip->mutex);
966 return ret;
969 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
970 __func__, adr, datum.x[0] );
973 * Check for a NOP for the case when the datum to write is already
974 * present - it saves time and works around buggy chips that corrupt
975 * data at other locations when 0xff is written to a location that
976 * already contains 0xff.
978 oldd = map_read(map, adr);
979 if (map_word_equal(map, oldd, datum)) {
980 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
981 __func__);
982 goto op_done;
985 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
986 ENABLE_VPP(map);
987 xip_disable(map, chip, adr);
988 retry:
989 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
990 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
991 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
992 map_write(map, datum, adr);
993 chip->state = FL_WRITING;
995 INVALIDATE_CACHE_UDELAY(map, chip,
996 adr, map_bankwidth(map),
997 chip->word_write_time);
999 /* See comment above for timeout value. */
1000 timeo = jiffies + uWriteTimeout;
1001 for (;;) {
1002 if (chip->state != FL_WRITING) {
1003 /* Someone's suspended the write. Sleep */
1004 DECLARE_WAITQUEUE(wait, current);
1006 set_current_state(TASK_UNINTERRUPTIBLE);
1007 add_wait_queue(&chip->wq, &wait);
1008 spin_unlock(chip->mutex);
1009 schedule();
1010 remove_wait_queue(&chip->wq, &wait);
1011 timeo = jiffies + (HZ / 2); /* FIXME */
1012 spin_lock(chip->mutex);
1013 continue;
1016 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1017 xip_enable(map, chip, adr);
1018 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1019 xip_disable(map, chip, adr);
1020 break;
1023 if (chip_ready(map, adr))
1024 break;
1026 /* Latency issues. Drop the lock, wait a while and retry */
1027 UDELAY(map, chip, adr, 1);
1029 /* Did we succeed? */
1030 if (!chip_good(map, adr, datum)) {
1031 /* reset on all failures. */
1032 map_write( map, CMD(0xF0), chip->start );
1033 /* FIXME - should have reset delay before continuing */
1035 if (++retry_cnt <= MAX_WORD_RETRIES)
1036 goto retry;
1038 ret = -EIO;
1040 xip_enable(map, chip, adr);
1041 op_done:
1042 chip->state = FL_READY;
1043 put_chip(map, chip, adr);
1044 spin_unlock(chip->mutex);
1046 return ret;
1050 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1051 size_t *retlen, const u_char *buf)
1053 struct map_info *map = mtd->priv;
1054 struct cfi_private *cfi = map->fldrv_priv;
1055 int ret = 0;
1056 int chipnum;
1057 unsigned long ofs, chipstart;
1058 DECLARE_WAITQUEUE(wait, current);
1060 *retlen = 0;
1061 if (!len)
1062 return 0;
1064 chipnum = to >> cfi->chipshift;
1065 ofs = to - (chipnum << cfi->chipshift);
1066 chipstart = cfi->chips[chipnum].start;
1068 /* If it's not bus-aligned, do the first byte write */
1069 if (ofs & (map_bankwidth(map)-1)) {
1070 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1071 int i = ofs - bus_ofs;
1072 int n = 0;
1073 map_word tmp_buf;
1075 retry:
1076 spin_lock(cfi->chips[chipnum].mutex);
1078 if (cfi->chips[chipnum].state != FL_READY) {
1079 #if 0
1080 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1081 #endif
1082 set_current_state(TASK_UNINTERRUPTIBLE);
1083 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1085 spin_unlock(cfi->chips[chipnum].mutex);
1087 schedule();
1088 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1089 #if 0
1090 if(signal_pending(current))
1091 return -EINTR;
1092 #endif
1093 goto retry;
1096 /* Load 'tmp_buf' with old contents of flash */
1097 tmp_buf = map_read(map, bus_ofs+chipstart);
1099 spin_unlock(cfi->chips[chipnum].mutex);
1101 /* Number of bytes to copy from buffer */
1102 n = min_t(int, len, map_bankwidth(map)-i);
1104 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1106 ret = do_write_oneword(map, &cfi->chips[chipnum],
1107 bus_ofs, tmp_buf);
1108 if (ret)
1109 return ret;
1111 ofs += n;
1112 buf += n;
1113 (*retlen) += n;
1114 len -= n;
1116 if (ofs >> cfi->chipshift) {
1117 chipnum ++;
1118 ofs = 0;
1119 if (chipnum == cfi->numchips)
1120 return 0;
1124 /* We are now aligned, write as much as possible */
1125 while(len >= map_bankwidth(map)) {
1126 map_word datum;
1128 datum = map_word_load(map, buf);
1130 ret = do_write_oneword(map, &cfi->chips[chipnum],
1131 ofs, datum);
1132 if (ret)
1133 return ret;
1135 ofs += map_bankwidth(map);
1136 buf += map_bankwidth(map);
1137 (*retlen) += map_bankwidth(map);
1138 len -= map_bankwidth(map);
1140 if (ofs >> cfi->chipshift) {
1141 chipnum ++;
1142 ofs = 0;
1143 if (chipnum == cfi->numchips)
1144 return 0;
1145 chipstart = cfi->chips[chipnum].start;
1149 /* Write the trailing bytes if any */
1150 if (len & (map_bankwidth(map)-1)) {
1151 map_word tmp_buf;
1153 retry1:
1154 spin_lock(cfi->chips[chipnum].mutex);
1156 if (cfi->chips[chipnum].state != FL_READY) {
1157 #if 0
1158 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1159 #endif
1160 set_current_state(TASK_UNINTERRUPTIBLE);
1161 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1163 spin_unlock(cfi->chips[chipnum].mutex);
1165 schedule();
1166 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1167 #if 0
1168 if(signal_pending(current))
1169 return -EINTR;
1170 #endif
1171 goto retry1;
1174 tmp_buf = map_read(map, ofs + chipstart);
1176 spin_unlock(cfi->chips[chipnum].mutex);
1178 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1180 ret = do_write_oneword(map, &cfi->chips[chipnum],
1181 ofs, tmp_buf);
1182 if (ret)
1183 return ret;
1185 (*retlen) += len;
1188 return 0;
1193 * FIXME: interleaved mode not tested, and probably not supported!
1195 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1196 unsigned long adr, const u_char *buf,
1197 int len)
1199 struct cfi_private *cfi = map->fldrv_priv;
1200 unsigned long timeo = jiffies + HZ;
1201 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1202 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1203 int ret = -EIO;
1204 unsigned long cmd_adr;
1205 int z, words;
1206 map_word datum;
1208 adr += chip->start;
1209 cmd_adr = adr;
1211 spin_lock(chip->mutex);
1212 ret = get_chip(map, chip, adr, FL_WRITING);
1213 if (ret) {
1214 spin_unlock(chip->mutex);
1215 return ret;
1218 datum = map_word_load(map, buf);
1220 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1221 __func__, adr, datum.x[0] );
1223 XIP_INVAL_CACHED_RANGE(map, adr, len);
1224 ENABLE_VPP(map);
1225 xip_disable(map, chip, cmd_adr);
1227 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1228 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1229 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1231 /* Write Buffer Load */
1232 map_write(map, CMD(0x25), cmd_adr);
1234 chip->state = FL_WRITING_TO_BUFFER;
1236 /* Write length of data to come */
1237 words = len / map_bankwidth(map);
1238 map_write(map, CMD(words - 1), cmd_adr);
1239 /* Write data */
1240 z = 0;
1241 while(z < words * map_bankwidth(map)) {
1242 datum = map_word_load(map, buf);
1243 map_write(map, datum, adr + z);
1245 z += map_bankwidth(map);
1246 buf += map_bankwidth(map);
1248 z -= map_bankwidth(map);
1250 adr += z;
1252 /* Write Buffer Program Confirm: GO GO GO */
1253 map_write(map, CMD(0x29), cmd_adr);
1254 chip->state = FL_WRITING;
1256 INVALIDATE_CACHE_UDELAY(map, chip,
1257 adr, map_bankwidth(map),
1258 chip->word_write_time);
1260 timeo = jiffies + uWriteTimeout;
1262 for (;;) {
1263 if (chip->state != FL_WRITING) {
1264 /* Someone's suspended the write. Sleep */
1265 DECLARE_WAITQUEUE(wait, current);
1267 set_current_state(TASK_UNINTERRUPTIBLE);
1268 add_wait_queue(&chip->wq, &wait);
1269 spin_unlock(chip->mutex);
1270 schedule();
1271 remove_wait_queue(&chip->wq, &wait);
1272 timeo = jiffies + (HZ / 2); /* FIXME */
1273 spin_lock(chip->mutex);
1274 continue;
1277 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1278 break;
1280 if (chip_ready(map, adr)) {
1281 xip_enable(map, chip, adr);
1282 goto op_done;
1285 /* Latency issues. Drop the lock, wait a while and retry */
1286 UDELAY(map, chip, adr, 1);
1289 /* reset on all failures. */
1290 map_write( map, CMD(0xF0), chip->start );
1291 xip_enable(map, chip, adr);
1292 /* FIXME - should have reset delay before continuing */
1294 printk(KERN_WARNING "MTD %s(): software timeout\n",
1295 __func__ );
1297 ret = -EIO;
1298 op_done:
1299 chip->state = FL_READY;
1300 put_chip(map, chip, adr);
1301 spin_unlock(chip->mutex);
1303 return ret;
1307 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1308 size_t *retlen, const u_char *buf)
1310 struct map_info *map = mtd->priv;
1311 struct cfi_private *cfi = map->fldrv_priv;
1312 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1313 int ret = 0;
1314 int chipnum;
1315 unsigned long ofs;
1317 *retlen = 0;
1318 if (!len)
1319 return 0;
1321 chipnum = to >> cfi->chipshift;
1322 ofs = to - (chipnum << cfi->chipshift);
1324 /* If it's not bus-aligned, do the first word write */
1325 if (ofs & (map_bankwidth(map)-1)) {
1326 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1327 if (local_len > len)
1328 local_len = len;
1329 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1330 local_len, retlen, buf);
1331 if (ret)
1332 return ret;
1333 ofs += local_len;
1334 buf += local_len;
1335 len -= local_len;
1337 if (ofs >> cfi->chipshift) {
1338 chipnum ++;
1339 ofs = 0;
1340 if (chipnum == cfi->numchips)
1341 return 0;
1345 /* Write buffer is worth it only if more than one word to write... */
1346 while (len >= map_bankwidth(map) * 2) {
1347 /* We must not cross write block boundaries */
1348 int size = wbufsize - (ofs & (wbufsize-1));
1350 if (size > len)
1351 size = len;
1352 if (size % map_bankwidth(map))
1353 size -= size % map_bankwidth(map);
1355 ret = do_write_buffer(map, &cfi->chips[chipnum],
1356 ofs, buf, size);
1357 if (ret)
1358 return ret;
1360 ofs += size;
1361 buf += size;
1362 (*retlen) += size;
1363 len -= size;
1365 if (ofs >> cfi->chipshift) {
1366 chipnum ++;
1367 ofs = 0;
1368 if (chipnum == cfi->numchips)
1369 return 0;
1373 if (len) {
1374 size_t retlen_dregs = 0;
1376 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1377 len, &retlen_dregs, buf);
1379 *retlen += retlen_dregs;
1380 return ret;
1383 return 0;
1388 * Handle devices with one erase region, that only implement
1389 * the chip erase command.
1391 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1393 struct cfi_private *cfi = map->fldrv_priv;
1394 unsigned long timeo = jiffies + HZ;
1395 unsigned long int adr;
1396 DECLARE_WAITQUEUE(wait, current);
1397 int ret = 0;
1399 adr = cfi->addr_unlock1;
1401 spin_lock(chip->mutex);
1402 ret = get_chip(map, chip, adr, FL_WRITING);
1403 if (ret) {
1404 spin_unlock(chip->mutex);
1405 return ret;
1408 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1409 __func__, chip->start );
1411 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1412 ENABLE_VPP(map);
1413 xip_disable(map, chip, adr);
1415 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1416 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1417 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1418 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1419 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1420 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1422 chip->state = FL_ERASING;
1423 chip->erase_suspended = 0;
1424 chip->in_progress_block_addr = adr;
1426 INVALIDATE_CACHE_UDELAY(map, chip,
1427 adr, map->size,
1428 chip->erase_time*500);
1430 timeo = jiffies + (HZ*20);
1432 for (;;) {
1433 if (chip->state != FL_ERASING) {
1434 /* Someone's suspended the erase. Sleep */
1435 set_current_state(TASK_UNINTERRUPTIBLE);
1436 add_wait_queue(&chip->wq, &wait);
1437 spin_unlock(chip->mutex);
1438 schedule();
1439 remove_wait_queue(&chip->wq, &wait);
1440 spin_lock(chip->mutex);
1441 continue;
1443 if (chip->erase_suspended) {
1444 /* This erase was suspended and resumed.
1445 Adjust the timeout */
1446 timeo = jiffies + (HZ*20); /* FIXME */
1447 chip->erase_suspended = 0;
1450 if (chip_ready(map, adr))
1451 break;
1453 if (time_after(jiffies, timeo)) {
1454 printk(KERN_WARNING "MTD %s(): software timeout\n",
1455 __func__ );
1456 break;
1459 /* Latency issues. Drop the lock, wait a while and retry */
1460 UDELAY(map, chip, adr, 1000000/HZ);
1462 /* Did we succeed? */
1463 if (!chip_good(map, adr, map_word_ff(map))) {
1464 /* reset on all failures. */
1465 map_write( map, CMD(0xF0), chip->start );
1466 /* FIXME - should have reset delay before continuing */
1468 ret = -EIO;
1471 chip->state = FL_READY;
1472 xip_enable(map, chip, adr);
1473 put_chip(map, chip, adr);
1474 spin_unlock(chip->mutex);
1476 return ret;
1480 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1482 struct cfi_private *cfi = map->fldrv_priv;
1483 unsigned long timeo = jiffies + HZ;
1484 DECLARE_WAITQUEUE(wait, current);
1485 int ret = 0;
1487 adr += chip->start;
1489 spin_lock(chip->mutex);
1490 ret = get_chip(map, chip, adr, FL_ERASING);
1491 if (ret) {
1492 spin_unlock(chip->mutex);
1493 return ret;
1496 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1497 __func__, adr );
1499 XIP_INVAL_CACHED_RANGE(map, adr, len);
1500 ENABLE_VPP(map);
1501 xip_disable(map, chip, adr);
1503 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1504 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1505 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1506 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1507 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1508 map_write(map, CMD(0x30), adr);
1510 chip->state = FL_ERASING;
1511 chip->erase_suspended = 0;
1512 chip->in_progress_block_addr = adr;
1514 INVALIDATE_CACHE_UDELAY(map, chip,
1515 adr, len,
1516 chip->erase_time*500);
1518 timeo = jiffies + (HZ*20);
1520 for (;;) {
1521 if (chip->state != FL_ERASING) {
1522 /* Someone's suspended the erase. Sleep */
1523 set_current_state(TASK_UNINTERRUPTIBLE);
1524 add_wait_queue(&chip->wq, &wait);
1525 spin_unlock(chip->mutex);
1526 schedule();
1527 remove_wait_queue(&chip->wq, &wait);
1528 spin_lock(chip->mutex);
1529 continue;
1531 if (chip->erase_suspended) {
1532 /* This erase was suspended and resumed.
1533 Adjust the timeout */
1534 timeo = jiffies + (HZ*20); /* FIXME */
1535 chip->erase_suspended = 0;
1538 if (chip_ready(map, adr)) {
1539 xip_enable(map, chip, adr);
1540 break;
1543 if (time_after(jiffies, timeo)) {
1544 xip_enable(map, chip, adr);
1545 printk(KERN_WARNING "MTD %s(): software timeout\n",
1546 __func__ );
1547 break;
1550 /* Latency issues. Drop the lock, wait a while and retry */
1551 UDELAY(map, chip, adr, 1000000/HZ);
1553 /* Did we succeed? */
1554 if (!chip_good(map, adr, map_word_ff(map))) {
1555 /* reset on all failures. */
1556 map_write( map, CMD(0xF0), chip->start );
1557 /* FIXME - should have reset delay before continuing */
1559 ret = -EIO;
1562 chip->state = FL_READY;
1563 put_chip(map, chip, adr);
1564 spin_unlock(chip->mutex);
1565 return ret;
1569 int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1571 unsigned long ofs, len;
1572 int ret;
1574 ofs = instr->addr;
1575 len = instr->len;
1577 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1578 if (ret)
1579 return ret;
1581 instr->state = MTD_ERASE_DONE;
1582 mtd_erase_callback(instr);
1584 return 0;
1588 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1590 struct map_info *map = mtd->priv;
1591 struct cfi_private *cfi = map->fldrv_priv;
1592 int ret = 0;
1594 if (instr->addr != 0)
1595 return -EINVAL;
1597 if (instr->len != mtd->size)
1598 return -EINVAL;
1600 ret = do_erase_chip(map, &cfi->chips[0]);
1601 if (ret)
1602 return ret;
1604 instr->state = MTD_ERASE_DONE;
1605 mtd_erase_callback(instr);
1607 return 0;
1611 static void cfi_amdstd_sync (struct mtd_info *mtd)
1613 struct map_info *map = mtd->priv;
1614 struct cfi_private *cfi = map->fldrv_priv;
1615 int i;
1616 struct flchip *chip;
1617 int ret = 0;
1618 DECLARE_WAITQUEUE(wait, current);
1620 for (i=0; !ret && i<cfi->numchips; i++) {
1621 chip = &cfi->chips[i];
1623 retry:
1624 spin_lock(chip->mutex);
1626 switch(chip->state) {
1627 case FL_READY:
1628 case FL_STATUS:
1629 case FL_CFI_QUERY:
1630 case FL_JEDEC_QUERY:
1631 chip->oldstate = chip->state;
1632 chip->state = FL_SYNCING;
1633 /* No need to wake_up() on this state change -
1634 * as the whole point is that nobody can do anything
1635 * with the chip now anyway.
1637 case FL_SYNCING:
1638 spin_unlock(chip->mutex);
1639 break;
1641 default:
1642 /* Not an idle state */
1643 add_wait_queue(&chip->wq, &wait);
1645 spin_unlock(chip->mutex);
1647 schedule();
1649 remove_wait_queue(&chip->wq, &wait);
1651 goto retry;
1655 /* Unlock the chips again */
1657 for (i--; i >=0; i--) {
1658 chip = &cfi->chips[i];
1660 spin_lock(chip->mutex);
1662 if (chip->state == FL_SYNCING) {
1663 chip->state = chip->oldstate;
1664 wake_up(&chip->wq);
1666 spin_unlock(chip->mutex);
1671 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1673 struct map_info *map = mtd->priv;
1674 struct cfi_private *cfi = map->fldrv_priv;
1675 int i;
1676 struct flchip *chip;
1677 int ret = 0;
1679 for (i=0; !ret && i<cfi->numchips; i++) {
1680 chip = &cfi->chips[i];
1682 spin_lock(chip->mutex);
1684 switch(chip->state) {
1685 case FL_READY:
1686 case FL_STATUS:
1687 case FL_CFI_QUERY:
1688 case FL_JEDEC_QUERY:
1689 chip->oldstate = chip->state;
1690 chip->state = FL_PM_SUSPENDED;
1691 /* No need to wake_up() on this state change -
1692 * as the whole point is that nobody can do anything
1693 * with the chip now anyway.
1695 case FL_PM_SUSPENDED:
1696 break;
1698 default:
1699 ret = -EAGAIN;
1700 break;
1702 spin_unlock(chip->mutex);
1705 /* Unlock the chips again */
1707 if (ret) {
1708 for (i--; i >=0; i--) {
1709 chip = &cfi->chips[i];
1711 spin_lock(chip->mutex);
1713 if (chip->state == FL_PM_SUSPENDED) {
1714 chip->state = chip->oldstate;
1715 wake_up(&chip->wq);
1717 spin_unlock(chip->mutex);
1721 return ret;
1725 static void cfi_amdstd_resume(struct mtd_info *mtd)
1727 struct map_info *map = mtd->priv;
1728 struct cfi_private *cfi = map->fldrv_priv;
1729 int i;
1730 struct flchip *chip;
1732 for (i=0; i<cfi->numchips; i++) {
1734 chip = &cfi->chips[i];
1736 spin_lock(chip->mutex);
1738 if (chip->state == FL_PM_SUSPENDED) {
1739 chip->state = FL_READY;
1740 map_write(map, CMD(0xF0), chip->start);
1741 wake_up(&chip->wq);
1743 else
1744 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1746 spin_unlock(chip->mutex);
1750 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1752 struct map_info *map = mtd->priv;
1753 struct cfi_private *cfi = map->fldrv_priv;
1755 kfree(cfi->cmdset_priv);
1756 kfree(cfi->cfiq);
1757 kfree(cfi);
1758 kfree(mtd->eraseregions);
1761 static char im_name[]="cfi_cmdset_0002";
1764 static int __init cfi_amdstd_init(void)
1766 inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002);
1767 return 0;
1771 static void __exit cfi_amdstd_exit(void)
1773 inter_module_unregister(im_name);
1777 module_init(cfi_amdstd_init);
1778 module_exit(cfi_amdstd_exit);
1780 MODULE_LICENSE("GPL");
1781 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1782 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");