[PATCH] Represent laptop_mode as jiffies internally
[linux-2.6/verdex.git] / drivers / mtd / devices / doc2001.c
blob681a9c73a2a321850404d4856f4738be47e17d15
2 /*
3 * Linux driver for Disk-On-Chip Millennium
4 * (c) 1999 Machine Vision Holdings, Inc.
5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
7 * $Id: doc2001.c,v 1.49 2005/11/07 11:14:24 gleixner Exp $
8 */
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <asm/errno.h>
13 #include <asm/io.h>
14 #include <asm/uaccess.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/bitops.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/doc2000.h>
28 /* #define ECC_DEBUG */
30 /* I have no idea why some DoC chips can not use memcop_form|to_io().
31 * This may be due to the different revisions of the ASIC controller built-in or
32 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
33 * this:*/
34 #undef USE_MEMCPY
36 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
37 size_t *retlen, u_char *buf);
38 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
39 size_t *retlen, const u_char *buf);
40 static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
41 size_t *retlen, u_char *buf, u_char *eccbuf,
42 struct nand_oobinfo *oobsel);
43 static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
44 size_t *retlen, const u_char *buf, u_char *eccbuf,
45 struct nand_oobinfo *oobsel);
46 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
47 size_t *retlen, u_char *buf);
48 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
49 size_t *retlen, const u_char *buf);
50 static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
52 static struct mtd_info *docmillist = NULL;
54 /* Perform the required delay cycles by reading from the NOP register */
55 static void DoC_Delay(void __iomem * docptr, unsigned short cycles)
57 volatile char dummy;
58 int i;
60 for (i = 0; i < cycles; i++)
61 dummy = ReadDOC(docptr, NOP);
64 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
65 static int _DoC_WaitReady(void __iomem * docptr)
67 unsigned short c = 0xffff;
69 DEBUG(MTD_DEBUG_LEVEL3,
70 "_DoC_WaitReady called for out-of-line wait\n");
72 /* Out-of-line routine to wait for chip response */
73 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c)
76 if (c == 0)
77 DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
79 return (c == 0);
82 static inline int DoC_WaitReady(void __iomem * docptr)
84 /* This is inline, to optimise the common case, where it's ready instantly */
85 int ret = 0;
87 /* 4 read form NOP register should be issued in prior to the read from CDSNControl
88 see Software Requirement 11.4 item 2. */
89 DoC_Delay(docptr, 4);
91 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
92 /* Call the out-of-line routine to wait */
93 ret = _DoC_WaitReady(docptr);
95 /* issue 2 read from NOP register after reading from CDSNControl register
96 see Software Requirement 11.4 item 2. */
97 DoC_Delay(docptr, 2);
99 return ret;
102 /* DoC_Command: Send a flash command to the flash chip through the CDSN IO register
103 with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
104 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
106 static void DoC_Command(void __iomem * docptr, unsigned char command,
107 unsigned char xtraflags)
109 /* Assert the CLE (Command Latch Enable) line to the flash chip */
110 WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
111 DoC_Delay(docptr, 4);
113 /* Send the command */
114 WriteDOC(command, docptr, Mil_CDSN_IO);
115 WriteDOC(0x00, docptr, WritePipeTerm);
117 /* Lower the CLE line */
118 WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
119 DoC_Delay(docptr, 4);
122 /* DoC_Address: Set the current address for the flash chip through the CDSN IO register
123 with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
124 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
126 static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs,
127 unsigned char xtraflags1, unsigned char xtraflags2)
129 /* Assert the ALE (Address Latch Enable) line to the flash chip */
130 WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
131 DoC_Delay(docptr, 4);
133 /* Send the address */
134 switch (numbytes)
136 case 1:
137 /* Send single byte, bits 0-7. */
138 WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
139 WriteDOC(0x00, docptr, WritePipeTerm);
140 break;
141 case 2:
142 /* Send bits 9-16 followed by 17-23 */
143 WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
144 WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
145 WriteDOC(0x00, docptr, WritePipeTerm);
146 break;
147 case 3:
148 /* Send 0-7, 9-16, then 17-23 */
149 WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
150 WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
151 WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
152 WriteDOC(0x00, docptr, WritePipeTerm);
153 break;
154 default:
155 return;
158 /* Lower the ALE line */
159 WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl);
160 DoC_Delay(docptr, 4);
163 /* DoC_SelectChip: Select a given flash chip within the current floor */
164 static int DoC_SelectChip(void __iomem * docptr, int chip)
166 /* Select the individual flash chip requested */
167 WriteDOC(chip, docptr, CDSNDeviceSelect);
168 DoC_Delay(docptr, 4);
170 /* Wait for it to be ready */
171 return DoC_WaitReady(docptr);
174 /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
175 static int DoC_SelectFloor(void __iomem * docptr, int floor)
177 /* Select the floor (bank) of chips required */
178 WriteDOC(floor, docptr, FloorSelect);
180 /* Wait for the chip to be ready */
181 return DoC_WaitReady(docptr);
184 /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
185 static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
187 int mfr, id, i, j;
188 volatile char dummy;
190 /* Page in the required floor/chip
191 FIXME: is this supported by Millennium ?? */
192 DoC_SelectFloor(doc->virtadr, floor);
193 DoC_SelectChip(doc->virtadr, chip);
195 /* Reset the chip, see Software Requirement 11.4 item 1. */
196 DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP);
197 DoC_WaitReady(doc->virtadr);
199 /* Read the NAND chip ID: 1. Send ReadID command */
200 DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP);
202 /* Read the NAND chip ID: 2. Send address byte zero */
203 DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00);
205 /* Read the manufacturer and device id codes of the flash device through
206 CDSN IO register see Software Requirement 11.4 item 5.*/
207 dummy = ReadDOC(doc->virtadr, ReadPipeInit);
208 DoC_Delay(doc->virtadr, 2);
209 mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO);
211 DoC_Delay(doc->virtadr, 2);
212 id = ReadDOC(doc->virtadr, Mil_CDSN_IO);
213 dummy = ReadDOC(doc->virtadr, LastDataRead);
215 /* No response - return failure */
216 if (mfr == 0xff || mfr == 0)
217 return 0;
219 /* FIXME: to deal with multi-flash on multi-Millennium case more carefully */
220 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
221 if ( id == nand_flash_ids[i].id) {
222 /* Try to identify manufacturer */
223 for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
224 if (nand_manuf_ids[j].id == mfr)
225 break;
227 printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, "
228 "Chip ID: %2.2X (%s:%s)\n",
229 mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name);
230 doc->mfr = mfr;
231 doc->id = id;
232 doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1;
233 break;
237 if (nand_flash_ids[i].name == NULL)
238 return 0;
239 else
240 return 1;
243 /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
244 static void DoC_ScanChips(struct DiskOnChip *this)
246 int floor, chip;
247 int numchips[MAX_FLOORS_MIL];
248 int ret;
250 this->numchips = 0;
251 this->mfr = 0;
252 this->id = 0;
254 /* For each floor, find the number of valid chips it contains */
255 for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) {
256 numchips[floor] = 0;
257 for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) {
258 ret = DoC_IdentChip(this, floor, chip);
259 if (ret) {
260 numchips[floor]++;
261 this->numchips++;
265 /* If there are none at all that we recognise, bail */
266 if (!this->numchips) {
267 printk("No flash chips recognised.\n");
268 return;
271 /* Allocate an array to hold the information for each chip */
272 this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
273 if (!this->chips){
274 printk("No memory for allocating chip info structures\n");
275 return;
278 /* Fill out the chip array with {floor, chipno} for each
279 * detected chip in the device. */
280 for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) {
281 for (chip = 0 ; chip < numchips[floor] ; chip++) {
282 this->chips[ret].floor = floor;
283 this->chips[ret].chip = chip;
284 this->chips[ret].curadr = 0;
285 this->chips[ret].curmode = 0x50;
286 ret++;
290 /* Calculate and print the total size of the device */
291 this->totlen = this->numchips * (1 << this->chipshift);
292 printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
293 this->numchips ,this->totlen >> 20);
296 static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
298 int tmp1, tmp2, retval;
300 if (doc1->physadr == doc2->physadr)
301 return 1;
303 /* Use the alias resolution register which was set aside for this
304 * purpose. If it's value is the same on both chips, they might
305 * be the same chip, and we write to one and check for a change in
306 * the other. It's unclear if this register is usuable in the
307 * DoC 2000 (it's in the Millenium docs), but it seems to work. */
308 tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
309 tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
310 if (tmp1 != tmp2)
311 return 0;
313 WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution);
314 tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
315 if (tmp2 == (tmp1+1) % 0xff)
316 retval = 1;
317 else
318 retval = 0;
320 /* Restore register contents. May not be necessary, but do it just to
321 * be safe. */
322 WriteDOC(tmp1, doc1->virtadr, AliasResolution);
324 return retval;
327 static const char im_name[] = "DoCMil_init";
329 /* This routine is made available to other mtd code via
330 * inter_module_register. It must only be accessed through
331 * inter_module_get which will bump the use count of this module. The
332 * addresses passed back in mtd are valid as long as the use count of
333 * this module is non-zero, i.e. between inter_module_get and
334 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
336 static void DoCMil_init(struct mtd_info *mtd)
338 struct DiskOnChip *this = mtd->priv;
339 struct DiskOnChip *old = NULL;
341 /* We must avoid being called twice for the same device. */
342 if (docmillist)
343 old = docmillist->priv;
345 while (old) {
346 if (DoCMil_is_alias(this, old)) {
347 printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at "
348 "0x%lX - already configured\n", this->physadr);
349 iounmap(this->virtadr);
350 kfree(mtd);
351 return;
353 if (old->nextdoc)
354 old = old->nextdoc->priv;
355 else
356 old = NULL;
359 mtd->name = "DiskOnChip Millennium";
360 printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n",
361 this->physadr);
363 mtd->type = MTD_NANDFLASH;
364 mtd->flags = MTD_CAP_NANDFLASH;
365 mtd->ecctype = MTD_ECC_RS_DiskOnChip;
366 mtd->size = 0;
368 /* FIXME: erase size is not always 8KiB */
369 mtd->erasesize = 0x2000;
371 mtd->oobblock = 512;
372 mtd->oobsize = 16;
373 mtd->owner = THIS_MODULE;
374 mtd->erase = doc_erase;
375 mtd->point = NULL;
376 mtd->unpoint = NULL;
377 mtd->read = doc_read;
378 mtd->write = doc_write;
379 mtd->read_ecc = doc_read_ecc;
380 mtd->write_ecc = doc_write_ecc;
381 mtd->read_oob = doc_read_oob;
382 mtd->write_oob = doc_write_oob;
383 mtd->sync = NULL;
385 this->totlen = 0;
386 this->numchips = 0;
387 this->curfloor = -1;
388 this->curchip = -1;
390 /* Ident all the chips present. */
391 DoC_ScanChips(this);
393 if (!this->totlen) {
394 kfree(mtd);
395 iounmap(this->virtadr);
396 } else {
397 this->nextdoc = docmillist;
398 docmillist = mtd;
399 mtd->size = this->totlen;
400 add_mtd_device(mtd);
401 return;
405 static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
406 size_t *retlen, u_char *buf)
408 /* Just a special case of doc_read_ecc */
409 return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
412 static int doc_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
413 size_t *retlen, u_char *buf, u_char *eccbuf,
414 struct nand_oobinfo *oobsel)
416 int i, ret;
417 volatile char dummy;
418 unsigned char syndrome[6];
419 struct DiskOnChip *this = mtd->priv;
420 void __iomem *docptr = this->virtadr;
421 struct Nand *mychip = &this->chips[from >> (this->chipshift)];
423 /* Don't allow read past end of device */
424 if (from >= this->totlen)
425 return -EINVAL;
427 /* Don't allow a single read to cross a 512-byte block boundary */
428 if (from + len > ((from | 0x1ff) + 1))
429 len = ((from | 0x1ff) + 1) - from;
431 /* Find the chip which is to be used and select it */
432 if (this->curfloor != mychip->floor) {
433 DoC_SelectFloor(docptr, mychip->floor);
434 DoC_SelectChip(docptr, mychip->chip);
435 } else if (this->curchip != mychip->chip) {
436 DoC_SelectChip(docptr, mychip->chip);
438 this->curfloor = mychip->floor;
439 this->curchip = mychip->chip;
441 /* issue the Read0 or Read1 command depend on which half of the page
442 we are accessing. Polling the Flash Ready bit after issue 3 bytes
443 address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/
444 DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP);
445 DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00);
446 DoC_WaitReady(docptr);
448 if (eccbuf) {
449 /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
450 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
451 WriteDOC (DOC_ECC_EN, docptr, ECCConf);
452 } else {
453 /* disable the ECC engine */
454 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
455 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
458 /* Read the data via the internal pipeline through CDSN IO register,
459 see Pipelined Read Operations 11.3 */
460 dummy = ReadDOC(docptr, ReadPipeInit);
461 #ifndef USE_MEMCPY
462 for (i = 0; i < len-1; i++) {
463 /* N.B. you have to increase the source address in this way or the
464 ECC logic will not work properly */
465 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
467 #else
468 memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
469 #endif
470 buf[len - 1] = ReadDOC(docptr, LastDataRead);
472 /* Let the caller know we completed it */
473 *retlen = len;
474 ret = 0;
476 if (eccbuf) {
477 /* Read the ECC data from Spare Data Area,
478 see Reed-Solomon EDC/ECC 11.1 */
479 dummy = ReadDOC(docptr, ReadPipeInit);
480 #ifndef USE_MEMCPY
481 for (i = 0; i < 5; i++) {
482 /* N.B. you have to increase the source address in this way or the
483 ECC logic will not work properly */
484 eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
486 #else
487 memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5);
488 #endif
489 eccbuf[5] = ReadDOC(docptr, LastDataRead);
491 /* Flush the pipeline */
492 dummy = ReadDOC(docptr, ECCConf);
493 dummy = ReadDOC(docptr, ECCConf);
495 /* Check the ECC Status */
496 if (ReadDOC(docptr, ECCConf) & 0x80) {
497 int nb_errors;
498 /* There was an ECC error */
499 #ifdef ECC_DEBUG
500 printk("DiskOnChip ECC Error: Read at %lx\n", (long)from);
501 #endif
502 /* Read the ECC syndrom through the DiskOnChip ECC logic.
503 These syndrome will be all ZERO when there is no error */
504 for (i = 0; i < 6; i++) {
505 syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i);
507 nb_errors = doc_decode_ecc(buf, syndrome);
508 #ifdef ECC_DEBUG
509 printk("ECC Errors corrected: %x\n", nb_errors);
510 #endif
511 if (nb_errors < 0) {
512 /* We return error, but have actually done the read. Not that
513 this can be told to user-space, via sys_read(), but at least
514 MTD-aware stuff can know about it by checking *retlen */
515 ret = -EIO;
519 #ifdef PSYCHO_DEBUG
520 printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
521 (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
522 eccbuf[4], eccbuf[5]);
523 #endif
525 /* disable the ECC engine */
526 WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
529 return ret;
532 static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
533 size_t *retlen, const u_char *buf)
535 char eccbuf[6];
536 return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL);
539 static int doc_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
540 size_t *retlen, const u_char *buf, u_char *eccbuf,
541 struct nand_oobinfo *oobsel)
543 int i,ret = 0;
544 volatile char dummy;
545 struct DiskOnChip *this = mtd->priv;
546 void __iomem *docptr = this->virtadr;
547 struct Nand *mychip = &this->chips[to >> (this->chipshift)];
549 /* Don't allow write past end of device */
550 if (to >= this->totlen)
551 return -EINVAL;
553 #if 0
554 /* Don't allow a single write to cross a 512-byte block boundary */
555 if (to + len > ( (to | 0x1ff) + 1))
556 len = ((to | 0x1ff) + 1) - to;
557 #else
558 /* Don't allow writes which aren't exactly one block */
559 if (to & 0x1ff || len != 0x200)
560 return -EINVAL;
561 #endif
563 /* Find the chip which is to be used and select it */
564 if (this->curfloor != mychip->floor) {
565 DoC_SelectFloor(docptr, mychip->floor);
566 DoC_SelectChip(docptr, mychip->chip);
567 } else if (this->curchip != mychip->chip) {
568 DoC_SelectChip(docptr, mychip->chip);
570 this->curfloor = mychip->floor;
571 this->curchip = mychip->chip;
573 /* Reset the chip, see Software Requirement 11.4 item 1. */
574 DoC_Command(docptr, NAND_CMD_RESET, 0x00);
575 DoC_WaitReady(docptr);
576 /* Set device to main plane of flash */
577 DoC_Command(docptr, NAND_CMD_READ0, 0x00);
579 /* issue the Serial Data In command to initial the Page Program process */
580 DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
581 DoC_Address(docptr, 3, to, 0x00, 0x00);
582 DoC_WaitReady(docptr);
584 if (eccbuf) {
585 /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
586 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
587 WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
588 } else {
589 /* disable the ECC engine */
590 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
591 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
594 /* Write the data via the internal pipeline through CDSN IO register,
595 see Pipelined Write Operations 11.2 */
596 #ifndef USE_MEMCPY
597 for (i = 0; i < len; i++) {
598 /* N.B. you have to increase the source address in this way or the
599 ECC logic will not work properly */
600 WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
602 #else
603 memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
604 #endif
605 WriteDOC(0x00, docptr, WritePipeTerm);
607 if (eccbuf) {
608 /* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic
609 see Reed-Solomon EDC/ECC 11.1 */
610 WriteDOC(0, docptr, NOP);
611 WriteDOC(0, docptr, NOP);
612 WriteDOC(0, docptr, NOP);
614 /* Read the ECC data through the DiskOnChip ECC logic */
615 for (i = 0; i < 6; i++) {
616 eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i);
619 /* ignore the ECC engine */
620 WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
622 #ifndef USE_MEMCPY
623 /* Write the ECC data to flash */
624 for (i = 0; i < 6; i++) {
625 /* N.B. you have to increase the source address in this way or the
626 ECC logic will not work properly */
627 WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i);
629 #else
630 memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6);
631 #endif
633 /* write the block status BLOCK_USED (0x5555) at the end of ECC data
634 FIXME: this is only a hack for programming the IPL area for LinuxBIOS
635 and should be replace with proper codes in user space utilities */
636 WriteDOC(0x55, docptr, Mil_CDSN_IO);
637 WriteDOC(0x55, docptr, Mil_CDSN_IO + 1);
639 WriteDOC(0x00, docptr, WritePipeTerm);
641 #ifdef PSYCHO_DEBUG
642 printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
643 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
644 eccbuf[4], eccbuf[5]);
645 #endif
648 /* Commit the Page Program command and wait for ready
649 see Software Requirement 11.4 item 1.*/
650 DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
651 DoC_WaitReady(docptr);
653 /* Read the status of the flash device through CDSN IO register
654 see Software Requirement 11.4 item 5.*/
655 DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
656 dummy = ReadDOC(docptr, ReadPipeInit);
657 DoC_Delay(docptr, 2);
658 if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
659 printk("Error programming flash\n");
660 /* Error in programming
661 FIXME: implement Bad Block Replacement (in nftl.c ??) */
662 *retlen = 0;
663 ret = -EIO;
665 dummy = ReadDOC(docptr, LastDataRead);
667 /* Let the caller know we completed it */
668 *retlen = len;
670 return ret;
673 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
674 size_t *retlen, u_char *buf)
676 #ifndef USE_MEMCPY
677 int i;
678 #endif
679 volatile char dummy;
680 struct DiskOnChip *this = mtd->priv;
681 void __iomem *docptr = this->virtadr;
682 struct Nand *mychip = &this->chips[ofs >> this->chipshift];
684 /* Find the chip which is to be used and select it */
685 if (this->curfloor != mychip->floor) {
686 DoC_SelectFloor(docptr, mychip->floor);
687 DoC_SelectChip(docptr, mychip->chip);
688 } else if (this->curchip != mychip->chip) {
689 DoC_SelectChip(docptr, mychip->chip);
691 this->curfloor = mychip->floor;
692 this->curchip = mychip->chip;
694 /* disable the ECC engine */
695 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
696 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
698 /* issue the Read2 command to set the pointer to the Spare Data Area.
699 Polling the Flash Ready bit after issue 3 bytes address in
700 Sequence Read Mode, see Software Requirement 11.4 item 1.*/
701 DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
702 DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00);
703 DoC_WaitReady(docptr);
705 /* Read the data out via the internal pipeline through CDSN IO register,
706 see Pipelined Read Operations 11.3 */
707 dummy = ReadDOC(docptr, ReadPipeInit);
708 #ifndef USE_MEMCPY
709 for (i = 0; i < len-1; i++) {
710 /* N.B. you have to increase the source address in this way or the
711 ECC logic will not work properly */
712 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
714 #else
715 memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
716 #endif
717 buf[len - 1] = ReadDOC(docptr, LastDataRead);
719 *retlen = len;
721 return 0;
724 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
725 size_t *retlen, const u_char *buf)
727 #ifndef USE_MEMCPY
728 int i;
729 #endif
730 volatile char dummy;
731 int ret = 0;
732 struct DiskOnChip *this = mtd->priv;
733 void __iomem *docptr = this->virtadr;
734 struct Nand *mychip = &this->chips[ofs >> this->chipshift];
736 /* Find the chip which is to be used and select it */
737 if (this->curfloor != mychip->floor) {
738 DoC_SelectFloor(docptr, mychip->floor);
739 DoC_SelectChip(docptr, mychip->chip);
740 } else if (this->curchip != mychip->chip) {
741 DoC_SelectChip(docptr, mychip->chip);
743 this->curfloor = mychip->floor;
744 this->curchip = mychip->chip;
746 /* disable the ECC engine */
747 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
748 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
750 /* Reset the chip, see Software Requirement 11.4 item 1. */
751 DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP);
752 DoC_WaitReady(docptr);
753 /* issue the Read2 command to set the pointer to the Spare Data Area. */
754 DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
756 /* issue the Serial Data In command to initial the Page Program process */
757 DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
758 DoC_Address(docptr, 3, ofs, 0x00, 0x00);
760 /* Write the data via the internal pipeline through CDSN IO register,
761 see Pipelined Write Operations 11.2 */
762 #ifndef USE_MEMCPY
763 for (i = 0; i < len; i++) {
764 /* N.B. you have to increase the source address in this way or the
765 ECC logic will not work properly */
766 WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
768 #else
769 memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
770 #endif
771 WriteDOC(0x00, docptr, WritePipeTerm);
773 /* Commit the Page Program command and wait for ready
774 see Software Requirement 11.4 item 1.*/
775 DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
776 DoC_WaitReady(docptr);
778 /* Read the status of the flash device through CDSN IO register
779 see Software Requirement 11.4 item 5.*/
780 DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
781 dummy = ReadDOC(docptr, ReadPipeInit);
782 DoC_Delay(docptr, 2);
783 if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
784 printk("Error programming oob data\n");
785 /* FIXME: implement Bad Block Replacement (in nftl.c ??) */
786 *retlen = 0;
787 ret = -EIO;
789 dummy = ReadDOC(docptr, LastDataRead);
791 *retlen = len;
793 return ret;
796 int doc_erase (struct mtd_info *mtd, struct erase_info *instr)
798 volatile char dummy;
799 struct DiskOnChip *this = mtd->priv;
800 __u32 ofs = instr->addr;
801 __u32 len = instr->len;
802 void __iomem *docptr = this->virtadr;
803 struct Nand *mychip = &this->chips[ofs >> this->chipshift];
805 if (len != mtd->erasesize)
806 printk(KERN_WARNING "Erase not right size (%x != %x)n",
807 len, mtd->erasesize);
809 /* Find the chip which is to be used and select it */
810 if (this->curfloor != mychip->floor) {
811 DoC_SelectFloor(docptr, mychip->floor);
812 DoC_SelectChip(docptr, mychip->chip);
813 } else if (this->curchip != mychip->chip) {
814 DoC_SelectChip(docptr, mychip->chip);
816 this->curfloor = mychip->floor;
817 this->curchip = mychip->chip;
819 instr->state = MTD_ERASE_PENDING;
821 /* issue the Erase Setup command */
822 DoC_Command(docptr, NAND_CMD_ERASE1, 0x00);
823 DoC_Address(docptr, 2, ofs, 0x00, 0x00);
825 /* Commit the Erase Start command and wait for ready
826 see Software Requirement 11.4 item 1.*/
827 DoC_Command(docptr, NAND_CMD_ERASE2, 0x00);
828 DoC_WaitReady(docptr);
830 instr->state = MTD_ERASING;
832 /* Read the status of the flash device through CDSN IO register
833 see Software Requirement 11.4 item 5.
834 FIXME: it seems that we are not wait long enough, some blocks are not
835 erased fully */
836 DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
837 dummy = ReadDOC(docptr, ReadPipeInit);
838 DoC_Delay(docptr, 2);
839 if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
840 printk("Error Erasing at 0x%x\n", ofs);
841 /* There was an error
842 FIXME: implement Bad Block Replacement (in nftl.c ??) */
843 instr->state = MTD_ERASE_FAILED;
844 } else
845 instr->state = MTD_ERASE_DONE;
846 dummy = ReadDOC(docptr, LastDataRead);
848 mtd_erase_callback(instr);
850 return 0;
853 /****************************************************************************
855 * Module stuff
857 ****************************************************************************/
859 static int __init init_doc2001(void)
861 inter_module_register(im_name, THIS_MODULE, &DoCMil_init);
862 return 0;
865 static void __exit cleanup_doc2001(void)
867 struct mtd_info *mtd;
868 struct DiskOnChip *this;
870 while ((mtd=docmillist)) {
871 this = mtd->priv;
872 docmillist = this->nextdoc;
874 del_mtd_device(mtd);
876 iounmap(this->virtadr);
877 kfree(this->chips);
878 kfree(mtd);
880 inter_module_unregister(im_name);
883 module_exit(cleanup_doc2001);
884 module_init(init_doc2001);
886 MODULE_LICENSE("GPL");
887 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
888 MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium");