[PATCH] Represent laptop_mode as jiffies internally
[linux-2.6/verdex.git] / drivers / net / cassini.c
blob8f1573e658a5f7f808778ab3375be5b9602945b1
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
69 #include <linux/config.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
96 #include <net/checksum.h>
98 #include <asm/atomic.h>
99 #include <asm/system.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
104 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106 #define CAS_NCPUS num_online_cpus()
108 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define USE_NAPI
110 #define cas_skb_release(x) netif_receive_skb(x)
111 #else
112 #define cas_skb_release(x) netif_rx(x)
113 #endif
115 /* select which firmware to use */
116 #define USE_HP_WORKAROUND
117 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
118 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
120 #include "cassini.h"
122 #define USE_TX_COMPWB /* use completion writeback registers */
123 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
124 #define USE_RX_BLANK /* hw interrupt mitigation */
125 #undef USE_ENTROPY_DEV /* don't test for entropy device */
127 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
128 * also, we need to make cp->lock finer-grained.
130 #undef USE_PCI_INTB
131 #undef USE_PCI_INTC
132 #undef USE_PCI_INTD
133 #undef USE_QOS
135 #undef USE_VPD_DEBUG /* debug vpd information if defined */
137 /* rx processing options */
138 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
139 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
140 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
141 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
142 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
144 #define DRV_MODULE_NAME "cassini"
145 #define PFX DRV_MODULE_NAME ": "
146 #define DRV_MODULE_VERSION "1.4"
147 #define DRV_MODULE_RELDATE "1 July 2004"
149 #define CAS_DEF_MSG_ENABLE \
150 (NETIF_MSG_DRV | \
151 NETIF_MSG_PROBE | \
152 NETIF_MSG_LINK | \
153 NETIF_MSG_TIMER | \
154 NETIF_MSG_IFDOWN | \
155 NETIF_MSG_IFUP | \
156 NETIF_MSG_RX_ERR | \
157 NETIF_MSG_TX_ERR)
159 /* length of time before we decide the hardware is borked,
160 * and dev->tx_timeout() should be called to fix the problem
162 #define CAS_TX_TIMEOUT (HZ)
163 #define CAS_LINK_TIMEOUT (22*HZ/10)
164 #define CAS_LINK_FAST_TIMEOUT (1)
166 /* timeout values for state changing. these specify the number
167 * of 10us delays to be used before giving up.
169 #define STOP_TRIES_PHY 1000
170 #define STOP_TRIES 5000
172 /* specify a minimum frame size to deal with some fifo issues
173 * max mtu == 2 * page size - ethernet header - 64 - swivel =
174 * 2 * page_size - 0x50
176 #define CAS_MIN_FRAME 97
177 #define CAS_1000MB_MIN_FRAME 255
178 #define CAS_MIN_MTU 60
179 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
181 #if 1
183 * Eliminate these and use separate atomic counters for each, to
184 * avoid a race condition.
186 #else
187 #define CAS_RESET_MTU 1
188 #define CAS_RESET_ALL 2
189 #define CAS_RESET_SPARE 3
190 #endif
192 static char version[] __devinitdata =
193 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197 MODULE_LICENSE("GPL");
198 MODULE_PARM(cassini_debug, "i");
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 MODULE_PARM(link_mode, "i");
201 MODULE_PARM_DESC(link_mode, "default link mode");
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 * Value in seconds, for user input.
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 MODULE_PARM(linkdown_timeout, "i");
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 static int link_transition_timeout;
224 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
225 static int link_mode;
227 static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246 static void cas_set_link_modes(struct cas *cp);
248 static inline void cas_lock_tx(struct cas *cp)
250 int i;
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
256 static inline void cas_lock_all(struct cas *cp)
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
270 #define cas_lock_all_save(cp, flags) \
271 do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275 } while (0)
277 static inline void cas_unlock_tx(struct cas *cp)
279 int i;
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
285 static inline void cas_unlock_all(struct cas *cp)
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
291 #define cas_unlock_all_restore(cp, flags) \
292 do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 } while (0)
298 static void cas_disable_irq(struct cas *cp, const int ring)
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310 #ifdef USE_PCI_INTB
311 case 1:
312 #endif
313 #ifdef USE_PCI_INTC
314 case 2:
315 #endif
316 #ifdef USE_PCI_INTD
317 case 3:
318 #endif
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322 #endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
331 static inline void cas_mask_intr(struct cas *cp)
333 int i;
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
339 static inline void cas_buffer_init(cas_page_t *cp)
341 struct page *page = cp->buffer;
342 atomic_set((atomic_t *)&page->lru.next, 1);
345 static inline int cas_buffer_count(cas_page_t *cp)
347 struct page *page = cp->buffer;
348 return atomic_read((atomic_t *)&page->lru.next);
351 static inline void cas_buffer_inc(cas_page_t *cp)
353 struct page *page = cp->buffer;
354 atomic_inc((atomic_t *)&page->lru.next);
357 static inline void cas_buffer_dec(cas_page_t *cp)
359 struct page *page = cp->buffer;
360 atomic_dec((atomic_t *)&page->lru.next);
363 static void cas_enable_irq(struct cas *cp, const int ring)
365 if (ring == 0) { /* all but TX_DONE */
366 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
367 return;
370 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
371 switch (ring) {
372 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
373 #ifdef USE_PCI_INTB
374 case 1:
375 #endif
376 #ifdef USE_PCI_INTC
377 case 2:
378 #endif
379 #ifdef USE_PCI_INTD
380 case 3:
381 #endif
382 writel(INTRN_MASK_RX_EN, cp->regs +
383 REG_PLUS_INTRN_MASK(ring));
384 break;
385 #endif
386 default:
387 break;
392 static inline void cas_unmask_intr(struct cas *cp)
394 int i;
396 for (i = 0; i < N_RX_COMP_RINGS; i++)
397 cas_enable_irq(cp, i);
400 static inline void cas_entropy_gather(struct cas *cp)
402 #ifdef USE_ENTROPY_DEV
403 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
404 return;
406 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
407 readl(cp->regs + REG_ENTROPY_IV),
408 sizeof(uint64_t)*8);
409 #endif
412 static inline void cas_entropy_reset(struct cas *cp)
414 #ifdef USE_ENTROPY_DEV
415 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
416 return;
418 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
419 cp->regs + REG_BIM_LOCAL_DEV_EN);
420 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
421 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
423 /* if we read back 0x0, we don't have an entropy device */
424 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
425 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
426 #endif
429 /* access to the phy. the following assumes that we've initialized the MIF to
430 * be in frame rather than bit-bang mode
432 static u16 cas_phy_read(struct cas *cp, int reg)
434 u32 cmd;
435 int limit = STOP_TRIES_PHY;
437 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
438 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440 cmd |= MIF_FRAME_TURN_AROUND_MSB;
441 writel(cmd, cp->regs + REG_MIF_FRAME);
443 /* poll for completion */
444 while (limit-- > 0) {
445 udelay(10);
446 cmd = readl(cp->regs + REG_MIF_FRAME);
447 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
448 return (cmd & MIF_FRAME_DATA_MASK);
450 return 0xFFFF; /* -1 */
453 static int cas_phy_write(struct cas *cp, int reg, u16 val)
455 int limit = STOP_TRIES_PHY;
456 u32 cmd;
458 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
459 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
460 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
461 cmd |= MIF_FRAME_TURN_AROUND_MSB;
462 cmd |= val & MIF_FRAME_DATA_MASK;
463 writel(cmd, cp->regs + REG_MIF_FRAME);
465 /* poll for completion */
466 while (limit-- > 0) {
467 udelay(10);
468 cmd = readl(cp->regs + REG_MIF_FRAME);
469 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
470 return 0;
472 return -1;
475 static void cas_phy_powerup(struct cas *cp)
477 u16 ctl = cas_phy_read(cp, MII_BMCR);
479 if ((ctl & BMCR_PDOWN) == 0)
480 return;
481 ctl &= ~BMCR_PDOWN;
482 cas_phy_write(cp, MII_BMCR, ctl);
485 static void cas_phy_powerdown(struct cas *cp)
487 u16 ctl = cas_phy_read(cp, MII_BMCR);
489 if (ctl & BMCR_PDOWN)
490 return;
491 ctl |= BMCR_PDOWN;
492 cas_phy_write(cp, MII_BMCR, ctl);
495 /* cp->lock held. note: the last put_page will free the buffer */
496 static int cas_page_free(struct cas *cp, cas_page_t *page)
498 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
499 PCI_DMA_FROMDEVICE);
500 cas_buffer_dec(page);
501 __free_pages(page->buffer, cp->page_order);
502 kfree(page);
503 return 0;
506 #ifdef RX_COUNT_BUFFERS
507 #define RX_USED_ADD(x, y) ((x)->used += (y))
508 #define RX_USED_SET(x, y) ((x)->used = (y))
509 #else
510 #define RX_USED_ADD(x, y)
511 #define RX_USED_SET(x, y)
512 #endif
514 /* local page allocation routines for the receive buffers. jumbo pages
515 * require at least 8K contiguous and 8K aligned buffers.
517 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
519 cas_page_t *page;
521 page = kmalloc(sizeof(cas_page_t), flags);
522 if (!page)
523 return NULL;
525 INIT_LIST_HEAD(&page->list);
526 RX_USED_SET(page, 0);
527 page->buffer = alloc_pages(flags, cp->page_order);
528 if (!page->buffer)
529 goto page_err;
530 cas_buffer_init(page);
531 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
532 cp->page_size, PCI_DMA_FROMDEVICE);
533 return page;
535 page_err:
536 kfree(page);
537 return NULL;
540 /* initialize spare pool of rx buffers, but allocate during the open */
541 static void cas_spare_init(struct cas *cp)
543 spin_lock(&cp->rx_inuse_lock);
544 INIT_LIST_HEAD(&cp->rx_inuse_list);
545 spin_unlock(&cp->rx_inuse_lock);
547 spin_lock(&cp->rx_spare_lock);
548 INIT_LIST_HEAD(&cp->rx_spare_list);
549 cp->rx_spares_needed = RX_SPARE_COUNT;
550 spin_unlock(&cp->rx_spare_lock);
553 /* used on close. free all the spare buffers. */
554 static void cas_spare_free(struct cas *cp)
556 struct list_head list, *elem, *tmp;
558 /* free spare buffers */
559 INIT_LIST_HEAD(&list);
560 spin_lock(&cp->rx_spare_lock);
561 list_splice(&cp->rx_spare_list, &list);
562 INIT_LIST_HEAD(&cp->rx_spare_list);
563 spin_unlock(&cp->rx_spare_lock);
564 list_for_each_safe(elem, tmp, &list) {
565 cas_page_free(cp, list_entry(elem, cas_page_t, list));
568 INIT_LIST_HEAD(&list);
569 #if 1
571 * Looks like Adrian had protected this with a different
572 * lock than used everywhere else to manipulate this list.
574 spin_lock(&cp->rx_inuse_lock);
575 list_splice(&cp->rx_inuse_list, &list);
576 INIT_LIST_HEAD(&cp->rx_inuse_list);
577 spin_unlock(&cp->rx_inuse_lock);
578 #else
579 spin_lock(&cp->rx_spare_lock);
580 list_splice(&cp->rx_inuse_list, &list);
581 INIT_LIST_HEAD(&cp->rx_inuse_list);
582 spin_unlock(&cp->rx_spare_lock);
583 #endif
584 list_for_each_safe(elem, tmp, &list) {
585 cas_page_free(cp, list_entry(elem, cas_page_t, list));
589 /* replenish spares if needed */
590 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
592 struct list_head list, *elem, *tmp;
593 int needed, i;
595 /* check inuse list. if we don't need any more free buffers,
596 * just free it
599 /* make a local copy of the list */
600 INIT_LIST_HEAD(&list);
601 spin_lock(&cp->rx_inuse_lock);
602 list_splice(&cp->rx_inuse_list, &list);
603 INIT_LIST_HEAD(&cp->rx_inuse_list);
604 spin_unlock(&cp->rx_inuse_lock);
606 list_for_each_safe(elem, tmp, &list) {
607 cas_page_t *page = list_entry(elem, cas_page_t, list);
609 if (cas_buffer_count(page) > 1)
610 continue;
612 list_del(elem);
613 spin_lock(&cp->rx_spare_lock);
614 if (cp->rx_spares_needed > 0) {
615 list_add(elem, &cp->rx_spare_list);
616 cp->rx_spares_needed--;
617 spin_unlock(&cp->rx_spare_lock);
618 } else {
619 spin_unlock(&cp->rx_spare_lock);
620 cas_page_free(cp, page);
624 /* put any inuse buffers back on the list */
625 if (!list_empty(&list)) {
626 spin_lock(&cp->rx_inuse_lock);
627 list_splice(&list, &cp->rx_inuse_list);
628 spin_unlock(&cp->rx_inuse_lock);
631 spin_lock(&cp->rx_spare_lock);
632 needed = cp->rx_spares_needed;
633 spin_unlock(&cp->rx_spare_lock);
634 if (!needed)
635 return;
637 /* we still need spares, so try to allocate some */
638 INIT_LIST_HEAD(&list);
639 i = 0;
640 while (i < needed) {
641 cas_page_t *spare = cas_page_alloc(cp, flags);
642 if (!spare)
643 break;
644 list_add(&spare->list, &list);
645 i++;
648 spin_lock(&cp->rx_spare_lock);
649 list_splice(&list, &cp->rx_spare_list);
650 cp->rx_spares_needed -= i;
651 spin_unlock(&cp->rx_spare_lock);
654 /* pull a page from the list. */
655 static cas_page_t *cas_page_dequeue(struct cas *cp)
657 struct list_head *entry;
658 int recover;
660 spin_lock(&cp->rx_spare_lock);
661 if (list_empty(&cp->rx_spare_list)) {
662 /* try to do a quick recovery */
663 spin_unlock(&cp->rx_spare_lock);
664 cas_spare_recover(cp, GFP_ATOMIC);
665 spin_lock(&cp->rx_spare_lock);
666 if (list_empty(&cp->rx_spare_list)) {
667 if (netif_msg_rx_err(cp))
668 printk(KERN_ERR "%s: no spare buffers "
669 "available.\n", cp->dev->name);
670 spin_unlock(&cp->rx_spare_lock);
671 return NULL;
675 entry = cp->rx_spare_list.next;
676 list_del(entry);
677 recover = ++cp->rx_spares_needed;
678 spin_unlock(&cp->rx_spare_lock);
680 /* trigger the timer to do the recovery */
681 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
682 #if 1
683 atomic_inc(&cp->reset_task_pending);
684 atomic_inc(&cp->reset_task_pending_spare);
685 schedule_work(&cp->reset_task);
686 #else
687 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
688 schedule_work(&cp->reset_task);
689 #endif
691 return list_entry(entry, cas_page_t, list);
695 static void cas_mif_poll(struct cas *cp, const int enable)
697 u32 cfg;
699 cfg = readl(cp->regs + REG_MIF_CFG);
700 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
702 if (cp->phy_type & CAS_PHY_MII_MDIO1)
703 cfg |= MIF_CFG_PHY_SELECT;
705 /* poll and interrupt on link status change. */
706 if (enable) {
707 cfg |= MIF_CFG_POLL_EN;
708 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
709 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
711 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
712 cp->regs + REG_MIF_MASK);
713 writel(cfg, cp->regs + REG_MIF_CFG);
716 /* Must be invoked under cp->lock */
717 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
719 u16 ctl;
720 #if 1
721 int lcntl;
722 int changed = 0;
723 int oldstate = cp->lstate;
724 int link_was_not_down = !(oldstate == link_down);
725 #endif
726 /* Setup link parameters */
727 if (!ep)
728 goto start_aneg;
729 lcntl = cp->link_cntl;
730 if (ep->autoneg == AUTONEG_ENABLE)
731 cp->link_cntl = BMCR_ANENABLE;
732 else {
733 cp->link_cntl = 0;
734 if (ep->speed == SPEED_100)
735 cp->link_cntl |= BMCR_SPEED100;
736 else if (ep->speed == SPEED_1000)
737 cp->link_cntl |= CAS_BMCR_SPEED1000;
738 if (ep->duplex == DUPLEX_FULL)
739 cp->link_cntl |= BMCR_FULLDPLX;
741 #if 1
742 changed = (lcntl != cp->link_cntl);
743 #endif
744 start_aneg:
745 if (cp->lstate == link_up) {
746 printk(KERN_INFO "%s: PCS link down.\n",
747 cp->dev->name);
748 } else {
749 if (changed) {
750 printk(KERN_INFO "%s: link configuration changed\n",
751 cp->dev->name);
754 cp->lstate = link_down;
755 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
756 if (!cp->hw_running)
757 return;
758 #if 1
760 * WTZ: If the old state was link_up, we turn off the carrier
761 * to replicate everything we do elsewhere on a link-down
762 * event when we were already in a link-up state..
764 if (oldstate == link_up)
765 netif_carrier_off(cp->dev);
766 if (changed && link_was_not_down) {
768 * WTZ: This branch will simply schedule a full reset after
769 * we explicitly changed link modes in an ioctl. See if this
770 * fixes the link-problems we were having for forced mode.
772 atomic_inc(&cp->reset_task_pending);
773 atomic_inc(&cp->reset_task_pending_all);
774 schedule_work(&cp->reset_task);
775 cp->timer_ticks = 0;
776 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
777 return;
779 #endif
780 if (cp->phy_type & CAS_PHY_SERDES) {
781 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
783 if (cp->link_cntl & BMCR_ANENABLE) {
784 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
785 cp->lstate = link_aneg;
786 } else {
787 if (cp->link_cntl & BMCR_FULLDPLX)
788 val |= PCS_MII_CTRL_DUPLEX;
789 val &= ~PCS_MII_AUTONEG_EN;
790 cp->lstate = link_force_ok;
792 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
793 writel(val, cp->regs + REG_PCS_MII_CTRL);
795 } else {
796 cas_mif_poll(cp, 0);
797 ctl = cas_phy_read(cp, MII_BMCR);
798 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
799 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
800 ctl |= cp->link_cntl;
801 if (ctl & BMCR_ANENABLE) {
802 ctl |= BMCR_ANRESTART;
803 cp->lstate = link_aneg;
804 } else {
805 cp->lstate = link_force_ok;
807 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
808 cas_phy_write(cp, MII_BMCR, ctl);
809 cas_mif_poll(cp, 1);
812 cp->timer_ticks = 0;
813 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
816 /* Must be invoked under cp->lock. */
817 static int cas_reset_mii_phy(struct cas *cp)
819 int limit = STOP_TRIES_PHY;
820 u16 val;
822 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
823 udelay(100);
824 while (limit--) {
825 val = cas_phy_read(cp, MII_BMCR);
826 if ((val & BMCR_RESET) == 0)
827 break;
828 udelay(10);
830 return (limit <= 0);
833 static void cas_saturn_firmware_load(struct cas *cp)
835 cas_saturn_patch_t *patch = cas_saturn_patch;
837 cas_phy_powerdown(cp);
839 /* expanded memory access mode */
840 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
842 /* pointer configuration for new firmware */
843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
844 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
845 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
846 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
847 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
848 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
849 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
850 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
852 /* download new firmware */
853 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
854 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
855 while (patch->addr) {
856 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
857 patch++;
860 /* enable firmware */
861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
862 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
866 /* phy initialization */
867 static void cas_phy_init(struct cas *cp)
869 u16 val;
871 /* if we're in MII/GMII mode, set up phy */
872 if (CAS_PHY_MII(cp->phy_type)) {
873 writel(PCS_DATAPATH_MODE_MII,
874 cp->regs + REG_PCS_DATAPATH_MODE);
876 cas_mif_poll(cp, 0);
877 cas_reset_mii_phy(cp); /* take out of isolate mode */
879 if (PHY_LUCENT_B0 == cp->phy_id) {
880 /* workaround link up/down issue with lucent */
881 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
882 cas_phy_write(cp, MII_BMCR, 0x00f1);
883 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
885 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
886 /* workarounds for broadcom phy */
887 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
888 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
889 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
890 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
891 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
892 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
893 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
894 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
895 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
896 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
897 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
899 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
900 val = cas_phy_read(cp, BROADCOM_MII_REG4);
901 val = cas_phy_read(cp, BROADCOM_MII_REG4);
902 if (val & 0x0080) {
903 /* link workaround */
904 cas_phy_write(cp, BROADCOM_MII_REG4,
905 val & ~0x0080);
908 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
909 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
910 SATURN_PCFG_FSI : 0x0,
911 cp->regs + REG_SATURN_PCFG);
913 /* load firmware to address 10Mbps auto-negotiation
914 * issue. NOTE: this will need to be changed if the
915 * default firmware gets fixed.
917 if (PHY_NS_DP83065 == cp->phy_id) {
918 cas_saturn_firmware_load(cp);
920 cas_phy_powerup(cp);
923 /* advertise capabilities */
924 val = cas_phy_read(cp, MII_BMCR);
925 val &= ~BMCR_ANENABLE;
926 cas_phy_write(cp, MII_BMCR, val);
927 udelay(10);
929 cas_phy_write(cp, MII_ADVERTISE,
930 cas_phy_read(cp, MII_ADVERTISE) |
931 (ADVERTISE_10HALF | ADVERTISE_10FULL |
932 ADVERTISE_100HALF | ADVERTISE_100FULL |
933 CAS_ADVERTISE_PAUSE |
934 CAS_ADVERTISE_ASYM_PAUSE));
936 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
937 /* make sure that we don't advertise half
938 * duplex to avoid a chip issue
940 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
941 val &= ~CAS_ADVERTISE_1000HALF;
942 val |= CAS_ADVERTISE_1000FULL;
943 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
946 } else {
947 /* reset pcs for serdes */
948 u32 val;
949 int limit;
951 writel(PCS_DATAPATH_MODE_SERDES,
952 cp->regs + REG_PCS_DATAPATH_MODE);
954 /* enable serdes pins on saturn */
955 if (cp->cas_flags & CAS_FLAG_SATURN)
956 writel(0, cp->regs + REG_SATURN_PCFG);
958 /* Reset PCS unit. */
959 val = readl(cp->regs + REG_PCS_MII_CTRL);
960 val |= PCS_MII_RESET;
961 writel(val, cp->regs + REG_PCS_MII_CTRL);
963 limit = STOP_TRIES;
964 while (limit-- > 0) {
965 udelay(10);
966 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
967 PCS_MII_RESET) == 0)
968 break;
970 if (limit <= 0)
971 printk(KERN_WARNING "%s: PCS reset bit would not "
972 "clear [%08x].\n", cp->dev->name,
973 readl(cp->regs + REG_PCS_STATE_MACHINE));
975 /* Make sure PCS is disabled while changing advertisement
976 * configuration.
978 writel(0x0, cp->regs + REG_PCS_CFG);
980 /* Advertise all capabilities except half-duplex. */
981 val = readl(cp->regs + REG_PCS_MII_ADVERT);
982 val &= ~PCS_MII_ADVERT_HD;
983 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
984 PCS_MII_ADVERT_ASYM_PAUSE);
985 writel(val, cp->regs + REG_PCS_MII_ADVERT);
987 /* enable PCS */
988 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
990 /* pcs workaround: enable sync detect */
991 writel(PCS_SERDES_CTRL_SYNCD_EN,
992 cp->regs + REG_PCS_SERDES_CTRL);
997 static int cas_pcs_link_check(struct cas *cp)
999 u32 stat, state_machine;
1000 int retval = 0;
1002 /* The link status bit latches on zero, so you must
1003 * read it twice in such a case to see a transition
1004 * to the link being up.
1006 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1007 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1008 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1010 /* The remote-fault indication is only valid
1011 * when autoneg has completed.
1013 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1014 PCS_MII_STATUS_REMOTE_FAULT)) ==
1015 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1016 if (netif_msg_link(cp))
1017 printk(KERN_INFO "%s: PCS RemoteFault\n",
1018 cp->dev->name);
1021 /* work around link detection issue by querying the PCS state
1022 * machine directly.
1024 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1025 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1026 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1027 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1028 stat |= PCS_MII_STATUS_LINK_STATUS;
1031 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1032 if (cp->lstate != link_up) {
1033 if (cp->opened) {
1034 cp->lstate = link_up;
1035 cp->link_transition = LINK_TRANSITION_LINK_UP;
1037 cas_set_link_modes(cp);
1038 netif_carrier_on(cp->dev);
1041 } else if (cp->lstate == link_up) {
1042 cp->lstate = link_down;
1043 if (link_transition_timeout != 0 &&
1044 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1045 !cp->link_transition_jiffies_valid) {
1047 * force a reset, as a workaround for the
1048 * link-failure problem. May want to move this to a
1049 * point a bit earlier in the sequence. If we had
1050 * generated a reset a short time ago, we'll wait for
1051 * the link timer to check the status until a
1052 * timer expires (link_transistion_jiffies_valid is
1053 * true when the timer is running.) Instead of using
1054 * a system timer, we just do a check whenever the
1055 * link timer is running - this clears the flag after
1056 * a suitable delay.
1058 retval = 1;
1059 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1060 cp->link_transition_jiffies = jiffies;
1061 cp->link_transition_jiffies_valid = 1;
1062 } else {
1063 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1065 netif_carrier_off(cp->dev);
1066 if (cp->opened && netif_msg_link(cp)) {
1067 printk(KERN_INFO "%s: PCS link down.\n",
1068 cp->dev->name);
1071 /* Cassini only: if you force a mode, there can be
1072 * sync problems on link down. to fix that, the following
1073 * things need to be checked:
1074 * 1) read serialink state register
1075 * 2) read pcs status register to verify link down.
1076 * 3) if link down and serial link == 0x03, then you need
1077 * to global reset the chip.
1079 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1080 /* should check to see if we're in a forced mode */
1081 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1082 if (stat == 0x03)
1083 return 1;
1085 } else if (cp->lstate == link_down) {
1086 if (link_transition_timeout != 0 &&
1087 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1088 !cp->link_transition_jiffies_valid) {
1089 /* force a reset, as a workaround for the
1090 * link-failure problem. May want to move
1091 * this to a point a bit earlier in the
1092 * sequence.
1094 retval = 1;
1095 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1096 cp->link_transition_jiffies = jiffies;
1097 cp->link_transition_jiffies_valid = 1;
1098 } else {
1099 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1103 return retval;
1106 static int cas_pcs_interrupt(struct net_device *dev,
1107 struct cas *cp, u32 status)
1109 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1112 return 0;
1113 return cas_pcs_link_check(cp);
1116 static int cas_txmac_interrupt(struct net_device *dev,
1117 struct cas *cp, u32 status)
1119 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121 if (!txmac_stat)
1122 return 0;
1124 if (netif_msg_intr(cp))
1125 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1126 cp->dev->name, txmac_stat);
1128 /* Defer timer expiration is quite normal,
1129 * don't even log the event.
1131 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133 return 0;
1135 spin_lock(&cp->stat_lock[0]);
1136 if (txmac_stat & MAC_TX_UNDERRUN) {
1137 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1138 dev->name);
1139 cp->net_stats[0].tx_fifo_errors++;
1142 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1143 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1144 dev->name);
1145 cp->net_stats[0].tx_errors++;
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1151 if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 cp->net_stats[0].collisions += 0x10000;
1154 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 cp->net_stats[0].collisions += 0x10000;
1159 if (txmac_stat & MAC_TX_COLL_LATE) {
1160 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 cp->net_stats[0].collisions += 0x10000;
1163 spin_unlock(&cp->stat_lock[0]);
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1168 return 0;
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 cas_hp_inst_t *inst;
1174 u32 val;
1175 int i;
1177 i = 0;
1178 while ((inst = firmware) && inst->note) {
1179 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199 ++firmware;
1200 ++i;
1204 static void cas_init_rx_dma(struct cas *cp)
1206 u64 desc_dma = cp->block_dvma;
1207 u32 val;
1208 int i, size;
1210 /* rx free descriptors */
1211 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS > 1) &&
1215 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1216 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 writel(val, cp->regs + REG_RX_CFG);
1219 val = (unsigned long) cp->init_rxds[0] -
1220 (unsigned long) cp->init_block;
1221 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 /* rx desc 2 is for IPSEC packets. however,
1227 * we don't it that for that purpose.
1229 val = (unsigned long) cp->init_rxds[1] -
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 REG_PLUS_RX_DB1_LOW);
1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1235 REG_PLUS_RX_KICK1);
1238 /* rx completion registers */
1239 val = (unsigned long) cp->init_rxcs[0] -
1240 (unsigned long) cp->init_block;
1241 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 /* rx comp 2-4 */
1246 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 val = (unsigned long) cp->init_rxcs[i] -
1248 (unsigned long) cp->init_block;
1249 writel((desc_dma + val) >> 32, cp->regs +
1250 REG_PLUS_RX_CBN_HI(i));
1251 writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 REG_PLUS_RX_CBN_LOW(i));
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1260 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS > 1)
1268 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 writel(INTR_RX_DONE_ALT,
1273 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1276 /* set up pause thresholds */
1277 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283 /* zero out dma reassembly buffers */
1284 for (i = 0; i < 64; i++) {
1285 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295 /* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301 writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 writel(val, cp->regs + REG_RX_AE_THRESH);
1312 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1320 writel(0x0, cp->regs + REG_RX_RED);
1322 /* receive page sizes. default == 2K (0x800) */
1323 val = 0;
1324 if (cp->page_size == 0x1000)
1325 val = 0x1;
1326 else if (cp->page_size == 0x2000)
1327 val = 0x2;
1328 else if (cp->page_size == 0x4000)
1329 val = 0x3;
1331 /* round mtu + offset. constrain to page size. */
1332 size = cp->dev->mtu + 64;
1333 if (size > cp->page_size)
1334 size = cp->page_size;
1336 if (size <= 0x400)
1337 i = 0x0;
1338 else if (size <= 0x800)
1339 i = 0x1;
1340 else if (size <= 0x1000)
1341 i = 0x2;
1342 else
1343 i = 0x3;
1345 cp->mtu_stride = 1 << (i + 10);
1346 val = CAS_BASE(RX_PAGE_SIZE, val);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE == cas_prog_null)
1354 return;
1356 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 writel(val, cp->regs + REG_HP_CFG);
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 memset(rxc, 0, sizeof(*rxc));
1365 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 cas_page_t *page = cp->rx_pages[1][index];
1375 cas_page_t *new;
1377 if (cas_buffer_count(page) == 1)
1378 return page;
1380 new = cas_page_dequeue(cp);
1381 if (new) {
1382 spin_lock(&cp->rx_inuse_lock);
1383 list_add(&page->list, &cp->rx_inuse_list);
1384 spin_unlock(&cp->rx_inuse_lock);
1386 return new;
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1391 const int index)
1393 cas_page_t **page0 = cp->rx_pages[0];
1394 cas_page_t **page1 = cp->rx_pages[1];
1396 /* swap if buffer is in use */
1397 if (cas_buffer_count(page0[index]) > 1) {
1398 cas_page_t *new = cas_page_spare(cp, index);
1399 if (new) {
1400 page1[index] = page0[index];
1401 page0[index] = new;
1404 RX_USED_SET(page0[index], 0);
1405 return page0[index];
1408 static void cas_clean_rxds(struct cas *cp)
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc *rxd = cp->init_rxds[0];
1412 int i, size;
1414 /* release all rx flows */
1415 for (i = 0; i < N_RX_FLOWS; i++) {
1416 struct sk_buff *skb;
1417 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 cas_skb_release(skb);
1422 /* initialize descriptors */
1423 size = RX_DESC_RINGN_SIZE(0);
1424 for (i = 0; i < size; i++) {
1425 cas_page_t *page = cas_page_swap(cp, 0, i);
1426 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 CAS_BASE(RX_INDEX_RING, 0));
1431 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1432 cp->rx_last[0] = 0;
1433 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1436 static void cas_clean_rxcs(struct cas *cp)
1438 int i, j;
1440 /* take ownership of rx comp descriptors */
1441 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 cas_rxc_init(rxc + j);
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1458 static int cas_rxmac_reset(struct cas *cp)
1460 struct net_device *dev = cp->dev;
1461 int limit;
1462 u32 val;
1464 /* First, reset MAC RX. */
1465 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 for (limit = 0; limit < STOP_TRIES; limit++) {
1467 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468 break;
1469 udelay(10);
1471 if (limit == STOP_TRIES) {
1472 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1473 "chip.\n", dev->name);
1474 return 1;
1477 /* Second, disable RX DMA. */
1478 writel(0, cp->regs + REG_RX_CFG);
1479 for (limit = 0; limit < STOP_TRIES; limit++) {
1480 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481 break;
1482 udelay(10);
1484 if (limit == STOP_TRIES) {
1485 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1486 "chip.\n", dev->name);
1487 return 1;
1490 mdelay(5);
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494 for (limit = 0; limit < STOP_TRIES; limit++) {
1495 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496 break;
1497 udelay(10);
1499 if (limit == STOP_TRIES) {
1500 printk(KERN_ERR "%s: RX reset command will not execute, "
1501 "resetting whole chip.\n", dev->name);
1502 return 1;
1505 /* reset driver rx state */
1506 cas_clean_rxds(cp);
1507 cas_clean_rxcs(cp);
1509 /* Now, reprogram the rest of RX unit. */
1510 cas_init_rx_dma(cp);
1512 /* re-enable */
1513 val = readl(cp->regs + REG_RX_CFG);
1514 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1515 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1516 val = readl(cp->regs + REG_MAC_RX_CFG);
1517 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1518 return 0;
1520 #endif
1522 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1523 u32 status)
1525 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1527 if (!stat)
1528 return 0;
1530 if (netif_msg_intr(cp))
1531 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1532 cp->dev->name, stat);
1534 /* these are all rollovers */
1535 spin_lock(&cp->stat_lock[0]);
1536 if (stat & MAC_RX_ALIGN_ERR)
1537 cp->net_stats[0].rx_frame_errors += 0x10000;
1539 if (stat & MAC_RX_CRC_ERR)
1540 cp->net_stats[0].rx_crc_errors += 0x10000;
1542 if (stat & MAC_RX_LEN_ERR)
1543 cp->net_stats[0].rx_length_errors += 0x10000;
1545 if (stat & MAC_RX_OVERFLOW) {
1546 cp->net_stats[0].rx_over_errors++;
1547 cp->net_stats[0].rx_fifo_errors++;
1550 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1551 * events.
1553 spin_unlock(&cp->stat_lock[0]);
1554 return 0;
1557 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1558 u32 status)
1560 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1562 if (!stat)
1563 return 0;
1565 if (netif_msg_intr(cp))
1566 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1567 cp->dev->name, stat);
1569 /* This interrupt is just for pause frame and pause
1570 * tracking. It is useful for diagnostics and debug
1571 * but probably by default we will mask these events.
1573 if (stat & MAC_CTRL_PAUSE_STATE)
1574 cp->pause_entered++;
1576 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577 cp->pause_last_time_recvd = (stat >> 16);
1579 return 0;
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas *cp)
1586 u16 val;
1588 switch (cp->lstate) {
1589 case link_force_ret:
1590 if (netif_msg_link(cp))
1591 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1592 " forced mode\n", cp->dev->name);
1593 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1594 cp->timer_ticks = 5;
1595 cp->lstate = link_force_ok;
1596 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1597 break;
1599 case link_aneg:
1600 val = cas_phy_read(cp, MII_BMCR);
1602 /* Try forced modes. we try things in the following order:
1603 * 1000 full -> 100 full/half -> 10 half
1605 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1606 val |= BMCR_FULLDPLX;
1607 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1608 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1609 cas_phy_write(cp, MII_BMCR, val);
1610 cp->timer_ticks = 5;
1611 cp->lstate = link_force_try;
1612 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613 break;
1615 case link_force_try:
1616 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1617 val = cas_phy_read(cp, MII_BMCR);
1618 cp->timer_ticks = 5;
1619 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1620 val &= ~CAS_BMCR_SPEED1000;
1621 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1622 cas_phy_write(cp, MII_BMCR, val);
1623 break;
1626 if (val & BMCR_SPEED100) {
1627 if (val & BMCR_FULLDPLX) /* fd failed */
1628 val &= ~BMCR_FULLDPLX;
1629 else { /* 100Mbps failed */
1630 val &= ~BMCR_SPEED100;
1632 cas_phy_write(cp, MII_BMCR, val);
1633 break;
1635 default:
1636 break;
1638 return 0;
1642 /* must be invoked with cp->lock held */
1643 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1645 int restart;
1647 if (bmsr & BMSR_LSTATUS) {
1648 /* Ok, here we got a link. If we had it due to a forced
1649 * fallback, and we were configured for autoneg, we
1650 * retry a short autoneg pass. If you know your hub is
1651 * broken, use ethtool ;)
1653 if ((cp->lstate == link_force_try) &&
1654 (cp->link_cntl & BMCR_ANENABLE)) {
1655 cp->lstate = link_force_ret;
1656 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1657 cas_mif_poll(cp, 0);
1658 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1659 cp->timer_ticks = 5;
1660 if (cp->opened && netif_msg_link(cp))
1661 printk(KERN_INFO "%s: Got link after fallback, retrying"
1662 " autoneg once...\n", cp->dev->name);
1663 cas_phy_write(cp, MII_BMCR,
1664 cp->link_fcntl | BMCR_ANENABLE |
1665 BMCR_ANRESTART);
1666 cas_mif_poll(cp, 1);
1668 } else if (cp->lstate != link_up) {
1669 cp->lstate = link_up;
1670 cp->link_transition = LINK_TRANSITION_LINK_UP;
1672 if (cp->opened) {
1673 cas_set_link_modes(cp);
1674 netif_carrier_on(cp->dev);
1677 return 0;
1680 /* link not up. if the link was previously up, we restart the
1681 * whole process
1683 restart = 0;
1684 if (cp->lstate == link_up) {
1685 cp->lstate = link_down;
1686 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1688 netif_carrier_off(cp->dev);
1689 if (cp->opened && netif_msg_link(cp))
1690 printk(KERN_INFO "%s: Link down\n",
1691 cp->dev->name);
1692 restart = 1;
1694 } else if (++cp->timer_ticks > 10)
1695 cas_mdio_link_not_up(cp);
1697 return restart;
1700 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1701 u32 status)
1703 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1704 u16 bmsr;
1706 /* check for a link change */
1707 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1708 return 0;
1710 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1711 return cas_mii_link_check(cp, bmsr);
1714 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1715 u32 status)
1717 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1719 if (!stat)
1720 return 0;
1722 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1723 readl(cp->regs + REG_BIM_DIAG));
1725 /* cassini+ has this reserved */
1726 if ((stat & PCI_ERR_BADACK) &&
1727 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1728 printk("<No ACK64# during ABS64 cycle> ");
1730 if (stat & PCI_ERR_DTRTO)
1731 printk("<Delayed transaction timeout> ");
1732 if (stat & PCI_ERR_OTHER)
1733 printk("<other> ");
1734 if (stat & PCI_ERR_BIM_DMA_WRITE)
1735 printk("<BIM DMA 0 write req> ");
1736 if (stat & PCI_ERR_BIM_DMA_READ)
1737 printk("<BIM DMA 0 read req> ");
1738 printk("\n");
1740 if (stat & PCI_ERR_OTHER) {
1741 u16 cfg;
1743 /* Interrogate PCI config space for the
1744 * true cause.
1746 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1747 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1748 dev->name, cfg);
1749 if (cfg & PCI_STATUS_PARITY)
1750 printk(KERN_ERR "%s: PCI parity error detected.\n",
1751 dev->name);
1752 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1753 printk(KERN_ERR "%s: PCI target abort.\n",
1754 dev->name);
1755 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1756 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1757 dev->name);
1758 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1759 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1760 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1761 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1762 dev->name);
1763 if (cfg & PCI_STATUS_DETECTED_PARITY)
1764 printk(KERN_ERR "%s: PCI parity error.\n",
1765 dev->name);
1767 /* Write the error bits back to clear them. */
1768 cfg &= (PCI_STATUS_PARITY |
1769 PCI_STATUS_SIG_TARGET_ABORT |
1770 PCI_STATUS_REC_TARGET_ABORT |
1771 PCI_STATUS_REC_MASTER_ABORT |
1772 PCI_STATUS_SIG_SYSTEM_ERROR |
1773 PCI_STATUS_DETECTED_PARITY);
1774 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1777 /* For all PCI errors, we should reset the chip. */
1778 return 1;
1781 /* All non-normal interrupt conditions get serviced here.
1782 * Returns non-zero if we should just exit the interrupt
1783 * handler right now (ie. if we reset the card which invalidates
1784 * all of the other original irq status bits).
1786 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1787 u32 status)
1789 if (status & INTR_RX_TAG_ERROR) {
1790 /* corrupt RX tag framing */
1791 if (netif_msg_rx_err(cp))
1792 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1793 cp->dev->name);
1794 spin_lock(&cp->stat_lock[0]);
1795 cp->net_stats[0].rx_errors++;
1796 spin_unlock(&cp->stat_lock[0]);
1797 goto do_reset;
1800 if (status & INTR_RX_LEN_MISMATCH) {
1801 /* length mismatch. */
1802 if (netif_msg_rx_err(cp))
1803 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1804 cp->dev->name);
1805 spin_lock(&cp->stat_lock[0]);
1806 cp->net_stats[0].rx_errors++;
1807 spin_unlock(&cp->stat_lock[0]);
1808 goto do_reset;
1811 if (status & INTR_PCS_STATUS) {
1812 if (cas_pcs_interrupt(dev, cp, status))
1813 goto do_reset;
1816 if (status & INTR_TX_MAC_STATUS) {
1817 if (cas_txmac_interrupt(dev, cp, status))
1818 goto do_reset;
1821 if (status & INTR_RX_MAC_STATUS) {
1822 if (cas_rxmac_interrupt(dev, cp, status))
1823 goto do_reset;
1826 if (status & INTR_MAC_CTRL_STATUS) {
1827 if (cas_mac_interrupt(dev, cp, status))
1828 goto do_reset;
1831 if (status & INTR_MIF_STATUS) {
1832 if (cas_mif_interrupt(dev, cp, status))
1833 goto do_reset;
1836 if (status & INTR_PCI_ERROR_STATUS) {
1837 if (cas_pci_interrupt(dev, cp, status))
1838 goto do_reset;
1840 return 0;
1842 do_reset:
1843 #if 1
1844 atomic_inc(&cp->reset_task_pending);
1845 atomic_inc(&cp->reset_task_pending_all);
1846 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1847 dev->name, status);
1848 schedule_work(&cp->reset_task);
1849 #else
1850 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1851 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1852 schedule_work(&cp->reset_task);
1853 #endif
1854 return 1;
1857 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1858 * determining whether to do a netif_stop/wakeup
1860 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1861 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1862 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1863 const int len)
1865 unsigned long off = addr + len;
1867 if (CAS_TABORT(cp) == 1)
1868 return 0;
1869 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1870 return 0;
1871 return TX_TARGET_ABORT_LEN;
1874 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1876 struct cas_tx_desc *txds;
1877 struct sk_buff **skbs;
1878 struct net_device *dev = cp->dev;
1879 int entry, count;
1881 spin_lock(&cp->tx_lock[ring]);
1882 txds = cp->init_txds[ring];
1883 skbs = cp->tx_skbs[ring];
1884 entry = cp->tx_old[ring];
1886 count = TX_BUFF_COUNT(ring, entry, limit);
1887 while (entry != limit) {
1888 struct sk_buff *skb = skbs[entry];
1889 dma_addr_t daddr;
1890 u32 dlen;
1891 int frag;
1893 if (!skb) {
1894 /* this should never occur */
1895 entry = TX_DESC_NEXT(ring, entry);
1896 continue;
1899 /* however, we might get only a partial skb release. */
1900 count -= skb_shinfo(skb)->nr_frags +
1901 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1902 if (count < 0)
1903 break;
1905 if (netif_msg_tx_done(cp))
1906 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1907 cp->dev->name, ring, entry);
1909 skbs[entry] = NULL;
1910 cp->tx_tiny_use[ring][entry].nbufs = 0;
1912 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1913 struct cas_tx_desc *txd = txds + entry;
1915 daddr = le64_to_cpu(txd->buffer);
1916 dlen = CAS_VAL(TX_DESC_BUFLEN,
1917 le64_to_cpu(txd->control));
1918 pci_unmap_page(cp->pdev, daddr, dlen,
1919 PCI_DMA_TODEVICE);
1920 entry = TX_DESC_NEXT(ring, entry);
1922 /* tiny buffer may follow */
1923 if (cp->tx_tiny_use[ring][entry].used) {
1924 cp->tx_tiny_use[ring][entry].used = 0;
1925 entry = TX_DESC_NEXT(ring, entry);
1929 spin_lock(&cp->stat_lock[ring]);
1930 cp->net_stats[ring].tx_packets++;
1931 cp->net_stats[ring].tx_bytes += skb->len;
1932 spin_unlock(&cp->stat_lock[ring]);
1933 dev_kfree_skb_irq(skb);
1935 cp->tx_old[ring] = entry;
1937 /* this is wrong for multiple tx rings. the net device needs
1938 * multiple queues for this to do the right thing. we wait
1939 * for 2*packets to be available when using tiny buffers
1941 if (netif_queue_stopped(dev) &&
1942 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1943 netif_wake_queue(dev);
1944 spin_unlock(&cp->tx_lock[ring]);
1947 static void cas_tx(struct net_device *dev, struct cas *cp,
1948 u32 status)
1950 int limit, ring;
1951 #ifdef USE_TX_COMPWB
1952 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1953 #endif
1954 if (netif_msg_intr(cp))
1955 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1956 cp->dev->name, status, (unsigned long long)compwb);
1957 /* process all the rings */
1958 for (ring = 0; ring < N_TX_RINGS; ring++) {
1959 #ifdef USE_TX_COMPWB
1960 /* use the completion writeback registers */
1961 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1962 CAS_VAL(TX_COMPWB_LSB, compwb);
1963 compwb = TX_COMPWB_NEXT(compwb);
1964 #else
1965 limit = readl(cp->regs + REG_TX_COMPN(ring));
1966 #endif
1967 if (cp->tx_old[ring] != limit)
1968 cas_tx_ringN(cp, ring, limit);
1973 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1974 int entry, const u64 *words,
1975 struct sk_buff **skbref)
1977 int dlen, hlen, len, i, alloclen;
1978 int off, swivel = RX_SWIVEL_OFF_VAL;
1979 struct cas_page *page;
1980 struct sk_buff *skb;
1981 void *addr, *crcaddr;
1982 char *p;
1984 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1985 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1986 len = hlen + dlen;
1988 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1989 alloclen = len;
1990 else
1991 alloclen = max(hlen, RX_COPY_MIN);
1993 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1994 if (skb == NULL)
1995 return -1;
1997 *skbref = skb;
1998 skb->dev = cp->dev;
1999 skb_reserve(skb, swivel);
2001 p = skb->data;
2002 addr = crcaddr = NULL;
2003 if (hlen) { /* always copy header pages */
2004 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2005 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2006 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2007 swivel;
2009 i = hlen;
2010 if (!dlen) /* attach FCS */
2011 i += cp->crc_size;
2012 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2013 PCI_DMA_FROMDEVICE);
2014 addr = cas_page_map(page->buffer);
2015 memcpy(p, addr + off, i);
2016 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2017 PCI_DMA_FROMDEVICE);
2018 cas_page_unmap(addr);
2019 RX_USED_ADD(page, 0x100);
2020 p += hlen;
2021 swivel = 0;
2025 if (alloclen < (hlen + dlen)) {
2026 skb_frag_t *frag = skb_shinfo(skb)->frags;
2028 /* normal or jumbo packets. we use frags */
2029 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2030 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2031 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2033 hlen = min(cp->page_size - off, dlen);
2034 if (hlen < 0) {
2035 if (netif_msg_rx_err(cp)) {
2036 printk(KERN_DEBUG "%s: rx page overflow: "
2037 "%d\n", cp->dev->name, hlen);
2039 dev_kfree_skb_irq(skb);
2040 return -1;
2042 i = hlen;
2043 if (i == dlen) /* attach FCS */
2044 i += cp->crc_size;
2045 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2046 PCI_DMA_FROMDEVICE);
2048 /* make sure we always copy a header */
2049 swivel = 0;
2050 if (p == (char *) skb->data) { /* not split */
2051 addr = cas_page_map(page->buffer);
2052 memcpy(p, addr + off, RX_COPY_MIN);
2053 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2054 PCI_DMA_FROMDEVICE);
2055 cas_page_unmap(addr);
2056 off += RX_COPY_MIN;
2057 swivel = RX_COPY_MIN;
2058 RX_USED_ADD(page, cp->mtu_stride);
2059 } else {
2060 RX_USED_ADD(page, hlen);
2062 skb_put(skb, alloclen);
2064 skb_shinfo(skb)->nr_frags++;
2065 skb->data_len += hlen - swivel;
2066 skb->len += hlen - swivel;
2068 get_page(page->buffer);
2069 cas_buffer_inc(page);
2070 frag->page = page->buffer;
2071 frag->page_offset = off;
2072 frag->size = hlen - swivel;
2074 /* any more data? */
2075 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2076 hlen = dlen;
2077 off = 0;
2079 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2080 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2081 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2082 hlen + cp->crc_size,
2083 PCI_DMA_FROMDEVICE);
2084 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2085 hlen + cp->crc_size,
2086 PCI_DMA_FROMDEVICE);
2088 skb_shinfo(skb)->nr_frags++;
2089 skb->data_len += hlen;
2090 skb->len += hlen;
2091 frag++;
2093 get_page(page->buffer);
2094 cas_buffer_inc(page);
2095 frag->page = page->buffer;
2096 frag->page_offset = 0;
2097 frag->size = hlen;
2098 RX_USED_ADD(page, hlen + cp->crc_size);
2101 if (cp->crc_size) {
2102 addr = cas_page_map(page->buffer);
2103 crcaddr = addr + off + hlen;
2106 } else {
2107 /* copying packet */
2108 if (!dlen)
2109 goto end_copy_pkt;
2111 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2112 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2113 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2114 hlen = min(cp->page_size - off, dlen);
2115 if (hlen < 0) {
2116 if (netif_msg_rx_err(cp)) {
2117 printk(KERN_DEBUG "%s: rx page overflow: "
2118 "%d\n", cp->dev->name, hlen);
2120 dev_kfree_skb_irq(skb);
2121 return -1;
2123 i = hlen;
2124 if (i == dlen) /* attach FCS */
2125 i += cp->crc_size;
2126 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2127 PCI_DMA_FROMDEVICE);
2128 addr = cas_page_map(page->buffer);
2129 memcpy(p, addr + off, i);
2130 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2131 PCI_DMA_FROMDEVICE);
2132 cas_page_unmap(addr);
2133 if (p == (char *) skb->data) /* not split */
2134 RX_USED_ADD(page, cp->mtu_stride);
2135 else
2136 RX_USED_ADD(page, i);
2138 /* any more data? */
2139 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2140 p += hlen;
2141 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2142 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2143 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2144 dlen + cp->crc_size,
2145 PCI_DMA_FROMDEVICE);
2146 addr = cas_page_map(page->buffer);
2147 memcpy(p, addr, dlen + cp->crc_size);
2148 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2149 dlen + cp->crc_size,
2150 PCI_DMA_FROMDEVICE);
2151 cas_page_unmap(addr);
2152 RX_USED_ADD(page, dlen + cp->crc_size);
2154 end_copy_pkt:
2155 if (cp->crc_size) {
2156 addr = NULL;
2157 crcaddr = skb->data + alloclen;
2159 skb_put(skb, alloclen);
2162 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2163 if (cp->crc_size) {
2164 /* checksum includes FCS. strip it out. */
2165 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2166 if (addr)
2167 cas_page_unmap(addr);
2169 skb->csum = ntohs(i ^ 0xffff);
2170 skb->ip_summed = CHECKSUM_HW;
2171 skb->protocol = eth_type_trans(skb, cp->dev);
2172 return len;
2176 /* we can handle up to 64 rx flows at a time. we do the same thing
2177 * as nonreassm except that we batch up the buffers.
2178 * NOTE: we currently just treat each flow as a bunch of packets that
2179 * we pass up. a better way would be to coalesce the packets
2180 * into a jumbo packet. to do that, we need to do the following:
2181 * 1) the first packet will have a clean split between header and
2182 * data. save both.
2183 * 2) each time the next flow packet comes in, extend the
2184 * data length and merge the checksums.
2185 * 3) on flow release, fix up the header.
2186 * 4) make sure the higher layer doesn't care.
2187 * because packets get coalesced, we shouldn't run into fragment count
2188 * issues.
2190 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2191 struct sk_buff *skb)
2193 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2194 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2196 /* this is protected at a higher layer, so no need to
2197 * do any additional locking here. stick the buffer
2198 * at the end.
2200 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2201 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2202 while ((skb = __skb_dequeue(flow))) {
2203 cas_skb_release(skb);
2208 /* put rx descriptor back on ring. if a buffer is in use by a higher
2209 * layer, this will need to put in a replacement.
2211 static void cas_post_page(struct cas *cp, const int ring, const int index)
2213 cas_page_t *new;
2214 int entry;
2216 entry = cp->rx_old[ring];
2218 new = cas_page_swap(cp, ring, index);
2219 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2220 cp->init_rxds[ring][entry].index =
2221 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2222 CAS_BASE(RX_INDEX_RING, ring));
2224 entry = RX_DESC_ENTRY(ring, entry + 1);
2225 cp->rx_old[ring] = entry;
2227 if (entry % 4)
2228 return;
2230 if (ring == 0)
2231 writel(entry, cp->regs + REG_RX_KICK);
2232 else if ((N_RX_DESC_RINGS > 1) &&
2233 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2234 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2238 /* only when things are bad */
2239 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2241 unsigned int entry, last, count, released;
2242 int cluster;
2243 cas_page_t **page = cp->rx_pages[ring];
2245 entry = cp->rx_old[ring];
2247 if (netif_msg_intr(cp))
2248 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2249 cp->dev->name, ring, entry);
2251 cluster = -1;
2252 count = entry & 0x3;
2253 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2254 released = 0;
2255 while (entry != last) {
2256 /* make a new buffer if it's still in use */
2257 if (cas_buffer_count(page[entry]) > 1) {
2258 cas_page_t *new = cas_page_dequeue(cp);
2259 if (!new) {
2260 /* let the timer know that we need to
2261 * do this again
2263 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2264 if (!timer_pending(&cp->link_timer))
2265 mod_timer(&cp->link_timer, jiffies +
2266 CAS_LINK_FAST_TIMEOUT);
2267 cp->rx_old[ring] = entry;
2268 cp->rx_last[ring] = num ? num - released : 0;
2269 return -ENOMEM;
2271 spin_lock(&cp->rx_inuse_lock);
2272 list_add(&page[entry]->list, &cp->rx_inuse_list);
2273 spin_unlock(&cp->rx_inuse_lock);
2274 cp->init_rxds[ring][entry].buffer =
2275 cpu_to_le64(new->dma_addr);
2276 page[entry] = new;
2280 if (++count == 4) {
2281 cluster = entry;
2282 count = 0;
2284 released++;
2285 entry = RX_DESC_ENTRY(ring, entry + 1);
2287 cp->rx_old[ring] = entry;
2289 if (cluster < 0)
2290 return 0;
2292 if (ring == 0)
2293 writel(cluster, cp->regs + REG_RX_KICK);
2294 else if ((N_RX_DESC_RINGS > 1) &&
2295 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2296 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2297 return 0;
2301 /* process a completion ring. packets are set up in three basic ways:
2302 * small packets: should be copied header + data in single buffer.
2303 * large packets: header and data in a single buffer.
2304 * split packets: header in a separate buffer from data.
2305 * data may be in multiple pages. data may be > 256
2306 * bytes but in a single page.
2308 * NOTE: RX page posting is done in this routine as well. while there's
2309 * the capability of using multiple RX completion rings, it isn't
2310 * really worthwhile due to the fact that the page posting will
2311 * force serialization on the single descriptor ring.
2313 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2315 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2316 int entry, drops;
2317 int npackets = 0;
2319 if (netif_msg_intr(cp))
2320 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2321 cp->dev->name, ring,
2322 readl(cp->regs + REG_RX_COMP_HEAD),
2323 cp->rx_new[ring]);
2325 entry = cp->rx_new[ring];
2326 drops = 0;
2327 while (1) {
2328 struct cas_rx_comp *rxc = rxcs + entry;
2329 struct sk_buff *skb;
2330 int type, len;
2331 u64 words[4];
2332 int i, dring;
2334 words[0] = le64_to_cpu(rxc->word1);
2335 words[1] = le64_to_cpu(rxc->word2);
2336 words[2] = le64_to_cpu(rxc->word3);
2337 words[3] = le64_to_cpu(rxc->word4);
2339 /* don't touch if still owned by hw */
2340 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2341 if (type == 0)
2342 break;
2344 /* hw hasn't cleared the zero bit yet */
2345 if (words[3] & RX_COMP4_ZERO) {
2346 break;
2349 /* get info on the packet */
2350 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2351 spin_lock(&cp->stat_lock[ring]);
2352 cp->net_stats[ring].rx_errors++;
2353 if (words[3] & RX_COMP4_LEN_MISMATCH)
2354 cp->net_stats[ring].rx_length_errors++;
2355 if (words[3] & RX_COMP4_BAD)
2356 cp->net_stats[ring].rx_crc_errors++;
2357 spin_unlock(&cp->stat_lock[ring]);
2359 /* We'll just return it to Cassini. */
2360 drop_it:
2361 spin_lock(&cp->stat_lock[ring]);
2362 ++cp->net_stats[ring].rx_dropped;
2363 spin_unlock(&cp->stat_lock[ring]);
2364 goto next;
2367 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2368 if (len < 0) {
2369 ++drops;
2370 goto drop_it;
2373 /* see if it's a flow re-assembly or not. the driver
2374 * itself handles release back up.
2376 if (RX_DONT_BATCH || (type == 0x2)) {
2377 /* non-reassm: these always get released */
2378 cas_skb_release(skb);
2379 } else {
2380 cas_rx_flow_pkt(cp, words, skb);
2383 spin_lock(&cp->stat_lock[ring]);
2384 cp->net_stats[ring].rx_packets++;
2385 cp->net_stats[ring].rx_bytes += len;
2386 spin_unlock(&cp->stat_lock[ring]);
2387 cp->dev->last_rx = jiffies;
2389 next:
2390 npackets++;
2392 /* should it be released? */
2393 if (words[0] & RX_COMP1_RELEASE_HDR) {
2394 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2395 dring = CAS_VAL(RX_INDEX_RING, i);
2396 i = CAS_VAL(RX_INDEX_NUM, i);
2397 cas_post_page(cp, dring, i);
2400 if (words[0] & RX_COMP1_RELEASE_DATA) {
2401 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2402 dring = CAS_VAL(RX_INDEX_RING, i);
2403 i = CAS_VAL(RX_INDEX_NUM, i);
2404 cas_post_page(cp, dring, i);
2407 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2408 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2409 dring = CAS_VAL(RX_INDEX_RING, i);
2410 i = CAS_VAL(RX_INDEX_NUM, i);
2411 cas_post_page(cp, dring, i);
2414 /* skip to the next entry */
2415 entry = RX_COMP_ENTRY(ring, entry + 1 +
2416 CAS_VAL(RX_COMP1_SKIP, words[0]));
2417 #ifdef USE_NAPI
2418 if (budget && (npackets >= budget))
2419 break;
2420 #endif
2422 cp->rx_new[ring] = entry;
2424 if (drops)
2425 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2426 cp->dev->name);
2427 return npackets;
2431 /* put completion entries back on the ring */
2432 static void cas_post_rxcs_ringN(struct net_device *dev,
2433 struct cas *cp, int ring)
2435 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2436 int last, entry;
2438 last = cp->rx_cur[ring];
2439 entry = cp->rx_new[ring];
2440 if (netif_msg_intr(cp))
2441 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2442 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2443 entry);
2445 /* zero and re-mark descriptors */
2446 while (last != entry) {
2447 cas_rxc_init(rxc + last);
2448 last = RX_COMP_ENTRY(ring, last + 1);
2450 cp->rx_cur[ring] = last;
2452 if (ring == 0)
2453 writel(last, cp->regs + REG_RX_COMP_TAIL);
2454 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2455 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2460 /* cassini can use all four PCI interrupts for the completion ring.
2461 * rings 3 and 4 are identical
2463 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2464 static inline void cas_handle_irqN(struct net_device *dev,
2465 struct cas *cp, const u32 status,
2466 const int ring)
2468 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2469 cas_post_rxcs_ringN(dev, cp, ring);
2472 static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs)
2474 struct net_device *dev = dev_id;
2475 struct cas *cp = netdev_priv(dev);
2476 unsigned long flags;
2477 int ring;
2478 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2480 /* check for shared irq */
2481 if (status == 0)
2482 return IRQ_NONE;
2484 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2485 spin_lock_irqsave(&cp->lock, flags);
2486 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2487 #ifdef USE_NAPI
2488 cas_mask_intr(cp);
2489 netif_rx_schedule(dev);
2490 #else
2491 cas_rx_ringN(cp, ring, 0);
2492 #endif
2493 status &= ~INTR_RX_DONE_ALT;
2496 if (status)
2497 cas_handle_irqN(dev, cp, status, ring);
2498 spin_unlock_irqrestore(&cp->lock, flags);
2499 return IRQ_HANDLED;
2501 #endif
2503 #ifdef USE_PCI_INTB
2504 /* everything but rx packets */
2505 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2507 if (status & INTR_RX_BUF_UNAVAIL_1) {
2508 /* Frame arrived, no free RX buffers available.
2509 * NOTE: we can get this on a link transition. */
2510 cas_post_rxds_ringN(cp, 1, 0);
2511 spin_lock(&cp->stat_lock[1]);
2512 cp->net_stats[1].rx_dropped++;
2513 spin_unlock(&cp->stat_lock[1]);
2516 if (status & INTR_RX_BUF_AE_1)
2517 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2518 RX_AE_FREEN_VAL(1));
2520 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2521 cas_post_rxcs_ringN(cp, 1);
2524 /* ring 2 handles a few more events than 3 and 4 */
2525 static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs)
2527 struct net_device *dev = dev_id;
2528 struct cas *cp = netdev_priv(dev);
2529 unsigned long flags;
2530 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2532 /* check for shared interrupt */
2533 if (status == 0)
2534 return IRQ_NONE;
2536 spin_lock_irqsave(&cp->lock, flags);
2537 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2538 #ifdef USE_NAPI
2539 cas_mask_intr(cp);
2540 netif_rx_schedule(dev);
2541 #else
2542 cas_rx_ringN(cp, 1, 0);
2543 #endif
2544 status &= ~INTR_RX_DONE_ALT;
2546 if (status)
2547 cas_handle_irq1(cp, status);
2548 spin_unlock_irqrestore(&cp->lock, flags);
2549 return IRQ_HANDLED;
2551 #endif
2553 static inline void cas_handle_irq(struct net_device *dev,
2554 struct cas *cp, const u32 status)
2556 /* housekeeping interrupts */
2557 if (status & INTR_ERROR_MASK)
2558 cas_abnormal_irq(dev, cp, status);
2560 if (status & INTR_RX_BUF_UNAVAIL) {
2561 /* Frame arrived, no free RX buffers available.
2562 * NOTE: we can get this on a link transition.
2564 cas_post_rxds_ringN(cp, 0, 0);
2565 spin_lock(&cp->stat_lock[0]);
2566 cp->net_stats[0].rx_dropped++;
2567 spin_unlock(&cp->stat_lock[0]);
2568 } else if (status & INTR_RX_BUF_AE) {
2569 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2570 RX_AE_FREEN_VAL(0));
2573 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2574 cas_post_rxcs_ringN(dev, cp, 0);
2577 static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2579 struct net_device *dev = dev_id;
2580 struct cas *cp = netdev_priv(dev);
2581 unsigned long flags;
2582 u32 status = readl(cp->regs + REG_INTR_STATUS);
2584 if (status == 0)
2585 return IRQ_NONE;
2587 spin_lock_irqsave(&cp->lock, flags);
2588 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2589 cas_tx(dev, cp, status);
2590 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2593 if (status & INTR_RX_DONE) {
2594 #ifdef USE_NAPI
2595 cas_mask_intr(cp);
2596 netif_rx_schedule(dev);
2597 #else
2598 cas_rx_ringN(cp, 0, 0);
2599 #endif
2600 status &= ~INTR_RX_DONE;
2603 if (status)
2604 cas_handle_irq(dev, cp, status);
2605 spin_unlock_irqrestore(&cp->lock, flags);
2606 return IRQ_HANDLED;
2610 #ifdef USE_NAPI
2611 static int cas_poll(struct net_device *dev, int *budget)
2613 struct cas *cp = netdev_priv(dev);
2614 int i, enable_intr, todo, credits;
2615 u32 status = readl(cp->regs + REG_INTR_STATUS);
2616 unsigned long flags;
2618 spin_lock_irqsave(&cp->lock, flags);
2619 cas_tx(dev, cp, status);
2620 spin_unlock_irqrestore(&cp->lock, flags);
2622 /* NAPI rx packets. we spread the credits across all of the
2623 * rxc rings
2625 todo = min(*budget, dev->quota);
2627 /* to make sure we're fair with the work we loop through each
2628 * ring N_RX_COMP_RING times with a request of
2629 * todo / N_RX_COMP_RINGS
2631 enable_intr = 1;
2632 credits = 0;
2633 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2634 int j;
2635 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2636 credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2637 if (credits >= todo) {
2638 enable_intr = 0;
2639 goto rx_comp;
2644 rx_comp:
2645 *budget -= credits;
2646 dev->quota -= credits;
2648 /* final rx completion */
2649 spin_lock_irqsave(&cp->lock, flags);
2650 if (status)
2651 cas_handle_irq(dev, cp, status);
2653 #ifdef USE_PCI_INTB
2654 if (N_RX_COMP_RINGS > 1) {
2655 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2656 if (status)
2657 cas_handle_irq1(dev, cp, status);
2659 #endif
2661 #ifdef USE_PCI_INTC
2662 if (N_RX_COMP_RINGS > 2) {
2663 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2664 if (status)
2665 cas_handle_irqN(dev, cp, status, 2);
2667 #endif
2669 #ifdef USE_PCI_INTD
2670 if (N_RX_COMP_RINGS > 3) {
2671 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2672 if (status)
2673 cas_handle_irqN(dev, cp, status, 3);
2675 #endif
2676 spin_unlock_irqrestore(&cp->lock, flags);
2677 if (enable_intr) {
2678 netif_rx_complete(dev);
2679 cas_unmask_intr(cp);
2680 return 0;
2682 return 1;
2684 #endif
2686 #ifdef CONFIG_NET_POLL_CONTROLLER
2687 static void cas_netpoll(struct net_device *dev)
2689 struct cas *cp = netdev_priv(dev);
2691 cas_disable_irq(cp, 0);
2692 cas_interrupt(cp->pdev->irq, dev, NULL);
2693 cas_enable_irq(cp, 0);
2695 #ifdef USE_PCI_INTB
2696 if (N_RX_COMP_RINGS > 1) {
2697 /* cas_interrupt1(); */
2699 #endif
2700 #ifdef USE_PCI_INTC
2701 if (N_RX_COMP_RINGS > 2) {
2702 /* cas_interruptN(); */
2704 #endif
2705 #ifdef USE_PCI_INTD
2706 if (N_RX_COMP_RINGS > 3) {
2707 /* cas_interruptN(); */
2709 #endif
2711 #endif
2713 static void cas_tx_timeout(struct net_device *dev)
2715 struct cas *cp = netdev_priv(dev);
2717 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2718 if (!cp->hw_running) {
2719 printk("%s: hrm.. hw not running!\n", dev->name);
2720 return;
2723 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2724 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2726 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2727 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2729 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2730 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2731 dev->name,
2732 readl(cp->regs + REG_TX_CFG),
2733 readl(cp->regs + REG_MAC_TX_STATUS),
2734 readl(cp->regs + REG_MAC_TX_CFG),
2735 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2736 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2737 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2738 readl(cp->regs + REG_TX_SM_1),
2739 readl(cp->regs + REG_TX_SM_2));
2741 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2742 dev->name,
2743 readl(cp->regs + REG_RX_CFG),
2744 readl(cp->regs + REG_MAC_RX_STATUS),
2745 readl(cp->regs + REG_MAC_RX_CFG));
2747 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2748 dev->name,
2749 readl(cp->regs + REG_HP_STATE_MACHINE),
2750 readl(cp->regs + REG_HP_STATUS0),
2751 readl(cp->regs + REG_HP_STATUS1),
2752 readl(cp->regs + REG_HP_STATUS2));
2754 #if 1
2755 atomic_inc(&cp->reset_task_pending);
2756 atomic_inc(&cp->reset_task_pending_all);
2757 schedule_work(&cp->reset_task);
2758 #else
2759 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2760 schedule_work(&cp->reset_task);
2761 #endif
2764 static inline int cas_intme(int ring, int entry)
2766 /* Algorithm: IRQ every 1/2 of descriptors. */
2767 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2768 return 1;
2769 return 0;
2773 static void cas_write_txd(struct cas *cp, int ring, int entry,
2774 dma_addr_t mapping, int len, u64 ctrl, int last)
2776 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2778 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2779 if (cas_intme(ring, entry))
2780 ctrl |= TX_DESC_INTME;
2781 if (last)
2782 ctrl |= TX_DESC_EOF;
2783 txd->control = cpu_to_le64(ctrl);
2784 txd->buffer = cpu_to_le64(mapping);
2787 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2788 const int entry)
2790 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2793 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2794 const int entry, const int tentry)
2796 cp->tx_tiny_use[ring][tentry].nbufs++;
2797 cp->tx_tiny_use[ring][entry].used = 1;
2798 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2801 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2802 struct sk_buff *skb)
2804 struct net_device *dev = cp->dev;
2805 int entry, nr_frags, frag, tabort, tentry;
2806 dma_addr_t mapping;
2807 unsigned long flags;
2808 u64 ctrl;
2809 u32 len;
2811 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2813 /* This is a hard error, log it. */
2814 if (TX_BUFFS_AVAIL(cp, ring) <=
2815 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2816 netif_stop_queue(dev);
2817 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2818 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2819 "queue awake!\n", dev->name);
2820 return 1;
2823 ctrl = 0;
2824 if (skb->ip_summed == CHECKSUM_HW) {
2825 u64 csum_start_off, csum_stuff_off;
2827 csum_start_off = (u64) (skb->h.raw - skb->data);
2828 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
2830 ctrl = TX_DESC_CSUM_EN |
2831 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2832 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2835 entry = cp->tx_new[ring];
2836 cp->tx_skbs[ring][entry] = skb;
2838 nr_frags = skb_shinfo(skb)->nr_frags;
2839 len = skb_headlen(skb);
2840 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2841 offset_in_page(skb->data), len,
2842 PCI_DMA_TODEVICE);
2844 tentry = entry;
2845 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2846 if (unlikely(tabort)) {
2847 /* NOTE: len is always > tabort */
2848 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2849 ctrl | TX_DESC_SOF, 0);
2850 entry = TX_DESC_NEXT(ring, entry);
2852 memcpy(tx_tiny_buf(cp, ring, entry), skb->data +
2853 len - tabort, tabort);
2854 mapping = tx_tiny_map(cp, ring, entry, tentry);
2855 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2856 (nr_frags == 0));
2857 } else {
2858 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2859 TX_DESC_SOF, (nr_frags == 0));
2861 entry = TX_DESC_NEXT(ring, entry);
2863 for (frag = 0; frag < nr_frags; frag++) {
2864 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2866 len = fragp->size;
2867 mapping = pci_map_page(cp->pdev, fragp->page,
2868 fragp->page_offset, len,
2869 PCI_DMA_TODEVICE);
2871 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2872 if (unlikely(tabort)) {
2873 void *addr;
2875 /* NOTE: len is always > tabort */
2876 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2877 ctrl, 0);
2878 entry = TX_DESC_NEXT(ring, entry);
2880 addr = cas_page_map(fragp->page);
2881 memcpy(tx_tiny_buf(cp, ring, entry),
2882 addr + fragp->page_offset + len - tabort,
2883 tabort);
2884 cas_page_unmap(addr);
2885 mapping = tx_tiny_map(cp, ring, entry, tentry);
2886 len = tabort;
2889 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2890 (frag + 1 == nr_frags));
2891 entry = TX_DESC_NEXT(ring, entry);
2894 cp->tx_new[ring] = entry;
2895 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2896 netif_stop_queue(dev);
2898 if (netif_msg_tx_queued(cp))
2899 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2900 "avail %d\n",
2901 dev->name, ring, entry, skb->len,
2902 TX_BUFFS_AVAIL(cp, ring));
2903 writel(entry, cp->regs + REG_TX_KICKN(ring));
2904 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2905 return 0;
2908 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2910 struct cas *cp = netdev_priv(dev);
2912 /* this is only used as a load-balancing hint, so it doesn't
2913 * need to be SMP safe
2915 static int ring;
2917 skb = skb_padto(skb, cp->min_frame_size);
2918 if (!skb)
2919 return 0;
2921 /* XXX: we need some higher-level QoS hooks to steer packets to
2922 * individual queues.
2924 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2925 return 1;
2926 dev->trans_start = jiffies;
2927 return 0;
2930 static void cas_init_tx_dma(struct cas *cp)
2932 u64 desc_dma = cp->block_dvma;
2933 unsigned long off;
2934 u32 val;
2935 int i;
2937 /* set up tx completion writeback registers. must be 8-byte aligned */
2938 #ifdef USE_TX_COMPWB
2939 off = offsetof(struct cas_init_block, tx_compwb);
2940 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2941 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2942 #endif
2944 /* enable completion writebacks, enable paced mode,
2945 * disable read pipe, and disable pre-interrupt compwbs
2947 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2948 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2949 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2950 TX_CFG_INTR_COMPWB_DIS;
2952 /* write out tx ring info and tx desc bases */
2953 for (i = 0; i < MAX_TX_RINGS; i++) {
2954 off = (unsigned long) cp->init_txds[i] -
2955 (unsigned long) cp->init_block;
2957 val |= CAS_TX_RINGN_BASE(i);
2958 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2959 writel((desc_dma + off) & 0xffffffff, cp->regs +
2960 REG_TX_DBN_LOW(i));
2961 /* don't zero out the kick register here as the system
2962 * will wedge
2965 writel(val, cp->regs + REG_TX_CFG);
2967 /* program max burst sizes. these numbers should be different
2968 * if doing QoS.
2970 #ifdef USE_QOS
2971 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2972 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2973 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2974 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2975 #else
2976 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2977 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2978 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2979 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2980 #endif
2983 /* Must be invoked under cp->lock. */
2984 static inline void cas_init_dma(struct cas *cp)
2986 cas_init_tx_dma(cp);
2987 cas_init_rx_dma(cp);
2990 /* Must be invoked under cp->lock. */
2991 static u32 cas_setup_multicast(struct cas *cp)
2993 u32 rxcfg = 0;
2994 int i;
2996 if (cp->dev->flags & IFF_PROMISC) {
2997 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2999 } else if (cp->dev->flags & IFF_ALLMULTI) {
3000 for (i=0; i < 16; i++)
3001 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3002 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3004 } else {
3005 u16 hash_table[16];
3006 u32 crc;
3007 struct dev_mc_list *dmi = cp->dev->mc_list;
3008 int i;
3010 /* use the alternate mac address registers for the
3011 * first 15 multicast addresses
3013 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3014 if (!dmi) {
3015 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3016 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3017 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3018 continue;
3020 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3021 cp->regs + REG_MAC_ADDRN(i*3 + 0));
3022 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3023 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3024 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3025 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3026 dmi = dmi->next;
3029 /* use hw hash table for the next series of
3030 * multicast addresses
3032 memset(hash_table, 0, sizeof(hash_table));
3033 while (dmi) {
3034 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3035 crc >>= 24;
3036 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3037 dmi = dmi->next;
3039 for (i=0; i < 16; i++)
3040 writel(hash_table[i], cp->regs +
3041 REG_MAC_HASH_TABLEN(i));
3042 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3045 return rxcfg;
3048 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3049 static void cas_clear_mac_err(struct cas *cp)
3051 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3052 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3053 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3054 writel(0, cp->regs + REG_MAC_COLL_LATE);
3055 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3056 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3057 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3058 writel(0, cp->regs + REG_MAC_LEN_ERR);
3059 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3060 writel(0, cp->regs + REG_MAC_FCS_ERR);
3061 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3065 static void cas_mac_reset(struct cas *cp)
3067 int i;
3069 /* do both TX and RX reset */
3070 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3071 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3073 /* wait for TX */
3074 i = STOP_TRIES;
3075 while (i-- > 0) {
3076 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3077 break;
3078 udelay(10);
3081 /* wait for RX */
3082 i = STOP_TRIES;
3083 while (i-- > 0) {
3084 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3085 break;
3086 udelay(10);
3089 if (readl(cp->regs + REG_MAC_TX_RESET) |
3090 readl(cp->regs + REG_MAC_RX_RESET))
3091 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3092 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3093 readl(cp->regs + REG_MAC_RX_RESET),
3094 readl(cp->regs + REG_MAC_STATE_MACHINE));
3098 /* Must be invoked under cp->lock. */
3099 static void cas_init_mac(struct cas *cp)
3101 unsigned char *e = &cp->dev->dev_addr[0];
3102 int i;
3103 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3104 u32 rxcfg;
3105 #endif
3106 cas_mac_reset(cp);
3108 /* setup core arbitration weight register */
3109 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3111 /* XXX Use pci_dma_burst_advice() */
3112 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3113 /* set the infinite burst register for chips that don't have
3114 * pci issues.
3116 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3117 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3118 #endif
3120 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3122 writel(0x00, cp->regs + REG_MAC_IPG0);
3123 writel(0x08, cp->regs + REG_MAC_IPG1);
3124 writel(0x04, cp->regs + REG_MAC_IPG2);
3126 /* change later for 802.3z */
3127 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3129 /* min frame + FCS */
3130 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3132 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3133 * specify the maximum frame size to prevent RX tag errors on
3134 * oversized frames.
3136 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3137 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3138 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3139 cp->regs + REG_MAC_FRAMESIZE_MAX);
3141 /* NOTE: crc_size is used as a surrogate for half-duplex.
3142 * workaround saturn half-duplex issue by increasing preamble
3143 * size to 65 bytes.
3145 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3146 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3147 else
3148 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3149 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3150 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3151 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3153 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3155 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3156 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3157 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3158 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3159 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3161 /* setup mac address in perfect filter array */
3162 for (i = 0; i < 45; i++)
3163 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3165 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3166 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3167 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3169 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3170 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3171 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3173 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3174 cp->mac_rx_cfg = cas_setup_multicast(cp);
3175 #else
3176 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3177 * a writel does not seem to be necessary because Cassini
3178 * seems to preserve the configuration when we do the reset.
3179 * If the chip is in trouble, though, it is not clear if we
3180 * can really count on this behavior. cas_set_multicast uses
3181 * spin_lock_irqsave, but we are called only in cas_init_hw and
3182 * cas_init_hw is protected by cas_lock_all, which calls
3183 * spin_lock_irq (so it doesn't need to save the flags, and
3184 * we should be OK for the writel, as that is the only
3185 * difference).
3187 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3188 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3189 #endif
3190 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3191 cas_clear_mac_err(cp);
3192 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3194 /* Setup MAC interrupts. We want to get all of the interesting
3195 * counter expiration events, but we do not want to hear about
3196 * normal rx/tx as the DMA engine tells us that.
3198 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3199 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3201 /* Don't enable even the PAUSE interrupts for now, we
3202 * make no use of those events other than to record them.
3204 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3207 /* Must be invoked under cp->lock. */
3208 static void cas_init_pause_thresholds(struct cas *cp)
3210 /* Calculate pause thresholds. Setting the OFF threshold to the
3211 * full RX fifo size effectively disables PAUSE generation
3213 if (cp->rx_fifo_size <= (2 * 1024)) {
3214 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3215 } else {
3216 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3217 if (max_frame * 3 > cp->rx_fifo_size) {
3218 cp->rx_pause_off = 7104;
3219 cp->rx_pause_on = 960;
3220 } else {
3221 int off = (cp->rx_fifo_size - (max_frame * 2));
3222 int on = off - max_frame;
3223 cp->rx_pause_off = off;
3224 cp->rx_pause_on = on;
3229 static int cas_vpd_match(const void __iomem *p, const char *str)
3231 int len = strlen(str) + 1;
3232 int i;
3234 for (i = 0; i < len; i++) {
3235 if (readb(p + i) != str[i])
3236 return 0;
3238 return 1;
3242 /* get the mac address by reading the vpd information in the rom.
3243 * also get the phy type and determine if there's an entropy generator.
3244 * NOTE: this is a bit convoluted for the following reasons:
3245 * 1) vpd info has order-dependent mac addresses for multinic cards
3246 * 2) the only way to determine the nic order is to use the slot
3247 * number.
3248 * 3) fiber cards don't have bridges, so their slot numbers don't
3249 * mean anything.
3250 * 4) we don't actually know we have a fiber card until after
3251 * the mac addresses are parsed.
3253 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3254 const int offset)
3256 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3257 void __iomem *base, *kstart;
3258 int i, len;
3259 int found = 0;
3260 #define VPD_FOUND_MAC 0x01
3261 #define VPD_FOUND_PHY 0x02
3263 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3264 int mac_off = 0;
3266 /* give us access to the PROM */
3267 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3268 cp->regs + REG_BIM_LOCAL_DEV_EN);
3270 /* check for an expansion rom */
3271 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3272 goto use_random_mac_addr;
3274 /* search for beginning of vpd */
3275 base = NULL;
3276 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3277 /* check for PCIR */
3278 if ((readb(p + i + 0) == 0x50) &&
3279 (readb(p + i + 1) == 0x43) &&
3280 (readb(p + i + 2) == 0x49) &&
3281 (readb(p + i + 3) == 0x52)) {
3282 base = p + (readb(p + i + 8) |
3283 (readb(p + i + 9) << 8));
3284 break;
3288 if (!base || (readb(base) != 0x82))
3289 goto use_random_mac_addr;
3291 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3292 while (i < EXPANSION_ROM_SIZE) {
3293 if (readb(base + i) != 0x90) /* no vpd found */
3294 goto use_random_mac_addr;
3296 /* found a vpd field */
3297 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3299 /* extract keywords */
3300 kstart = base + i + 3;
3301 p = kstart;
3302 while ((p - kstart) < len) {
3303 int klen = readb(p + 2);
3304 int j;
3305 char type;
3307 p += 3;
3309 /* look for the following things:
3310 * -- correct length == 29
3311 * 3 (type) + 2 (size) +
3312 * 18 (strlen("local-mac-address") + 1) +
3313 * 6 (mac addr)
3314 * -- VPD Instance 'I'
3315 * -- VPD Type Bytes 'B'
3316 * -- VPD data length == 6
3317 * -- property string == local-mac-address
3319 * -- correct length == 24
3320 * 3 (type) + 2 (size) +
3321 * 12 (strlen("entropy-dev") + 1) +
3322 * 7 (strlen("vms110") + 1)
3323 * -- VPD Instance 'I'
3324 * -- VPD Type String 'B'
3325 * -- VPD data length == 7
3326 * -- property string == entropy-dev
3328 * -- correct length == 18
3329 * 3 (type) + 2 (size) +
3330 * 9 (strlen("phy-type") + 1) +
3331 * 4 (strlen("pcs") + 1)
3332 * -- VPD Instance 'I'
3333 * -- VPD Type String 'S'
3334 * -- VPD data length == 4
3335 * -- property string == phy-type
3337 * -- correct length == 23
3338 * 3 (type) + 2 (size) +
3339 * 14 (strlen("phy-interface") + 1) +
3340 * 4 (strlen("pcs") + 1)
3341 * -- VPD Instance 'I'
3342 * -- VPD Type String 'S'
3343 * -- VPD data length == 4
3344 * -- property string == phy-interface
3346 if (readb(p) != 'I')
3347 goto next;
3349 /* finally, check string and length */
3350 type = readb(p + 3);
3351 if (type == 'B') {
3352 if ((klen == 29) && readb(p + 4) == 6 &&
3353 cas_vpd_match(p + 5,
3354 "local-mac-address")) {
3355 if (mac_off++ > offset)
3356 goto next;
3358 /* set mac address */
3359 for (j = 0; j < 6; j++)
3360 dev_addr[j] =
3361 readb(p + 23 + j);
3362 goto found_mac;
3366 if (type != 'S')
3367 goto next;
3369 #ifdef USE_ENTROPY_DEV
3370 if ((klen == 24) &&
3371 cas_vpd_match(p + 5, "entropy-dev") &&
3372 cas_vpd_match(p + 17, "vms110")) {
3373 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3374 goto next;
3376 #endif
3378 if (found & VPD_FOUND_PHY)
3379 goto next;
3381 if ((klen == 18) && readb(p + 4) == 4 &&
3382 cas_vpd_match(p + 5, "phy-type")) {
3383 if (cas_vpd_match(p + 14, "pcs")) {
3384 phy_type = CAS_PHY_SERDES;
3385 goto found_phy;
3389 if ((klen == 23) && readb(p + 4) == 4 &&
3390 cas_vpd_match(p + 5, "phy-interface")) {
3391 if (cas_vpd_match(p + 19, "pcs")) {
3392 phy_type = CAS_PHY_SERDES;
3393 goto found_phy;
3396 found_mac:
3397 found |= VPD_FOUND_MAC;
3398 goto next;
3400 found_phy:
3401 found |= VPD_FOUND_PHY;
3403 next:
3404 p += klen;
3406 i += len + 3;
3409 use_random_mac_addr:
3410 if (found & VPD_FOUND_MAC)
3411 goto done;
3413 /* Sun MAC prefix then 3 random bytes. */
3414 printk(PFX "MAC address not found in ROM VPD\n");
3415 dev_addr[0] = 0x08;
3416 dev_addr[1] = 0x00;
3417 dev_addr[2] = 0x20;
3418 get_random_bytes(dev_addr + 3, 3);
3420 done:
3421 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3422 return phy_type;
3425 /* check pci invariants */
3426 static void cas_check_pci_invariants(struct cas *cp)
3428 struct pci_dev *pdev = cp->pdev;
3429 u8 rev;
3431 cp->cas_flags = 0;
3432 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3433 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3434 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3435 if (rev >= CAS_ID_REVPLUS)
3436 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3437 if (rev < CAS_ID_REVPLUS02u)
3438 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3440 /* Original Cassini supports HW CSUM, but it's not
3441 * enabled by default as it can trigger TX hangs.
3443 if (rev < CAS_ID_REV2)
3444 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3445 } else {
3446 /* Only sun has original cassini chips. */
3447 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3449 /* We use a flag because the same phy might be externally
3450 * connected.
3452 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3453 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3454 cp->cas_flags |= CAS_FLAG_SATURN;
3459 static int cas_check_invariants(struct cas *cp)
3461 struct pci_dev *pdev = cp->pdev;
3462 u32 cfg;
3463 int i;
3465 /* get page size for rx buffers. */
3466 cp->page_order = 0;
3467 #ifdef USE_PAGE_ORDER
3468 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3469 /* see if we can allocate larger pages */
3470 struct page *page = alloc_pages(GFP_ATOMIC,
3471 CAS_JUMBO_PAGE_SHIFT -
3472 PAGE_SHIFT);
3473 if (page) {
3474 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3475 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3476 } else {
3477 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3480 #endif
3481 cp->page_size = (PAGE_SIZE << cp->page_order);
3483 /* Fetch the FIFO configurations. */
3484 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3485 cp->rx_fifo_size = RX_FIFO_SIZE;
3487 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3488 * they're both connected.
3490 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3491 PCI_SLOT(pdev->devfn));
3492 if (cp->phy_type & CAS_PHY_SERDES) {
3493 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3494 return 0; /* no more checking needed */
3497 /* MII */
3498 cfg = readl(cp->regs + REG_MIF_CFG);
3499 if (cfg & MIF_CFG_MDIO_1) {
3500 cp->phy_type = CAS_PHY_MII_MDIO1;
3501 } else if (cfg & MIF_CFG_MDIO_0) {
3502 cp->phy_type = CAS_PHY_MII_MDIO0;
3505 cas_mif_poll(cp, 0);
3506 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3508 for (i = 0; i < 32; i++) {
3509 u32 phy_id;
3510 int j;
3512 for (j = 0; j < 3; j++) {
3513 cp->phy_addr = i;
3514 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3515 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3516 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3517 cp->phy_id = phy_id;
3518 goto done;
3522 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3523 readl(cp->regs + REG_MIF_STATE_MACHINE));
3524 return -1;
3526 done:
3527 /* see if we can do gigabit */
3528 cfg = cas_phy_read(cp, MII_BMSR);
3529 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3530 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3531 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3532 return 0;
3535 /* Must be invoked under cp->lock. */
3536 static inline void cas_start_dma(struct cas *cp)
3538 int i;
3539 u32 val;
3540 int txfailed = 0;
3542 /* enable dma */
3543 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3544 writel(val, cp->regs + REG_TX_CFG);
3545 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3546 writel(val, cp->regs + REG_RX_CFG);
3548 /* enable the mac */
3549 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3550 writel(val, cp->regs + REG_MAC_TX_CFG);
3551 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3552 writel(val, cp->regs + REG_MAC_RX_CFG);
3554 i = STOP_TRIES;
3555 while (i-- > 0) {
3556 val = readl(cp->regs + REG_MAC_TX_CFG);
3557 if ((val & MAC_TX_CFG_EN))
3558 break;
3559 udelay(10);
3561 if (i < 0) txfailed = 1;
3562 i = STOP_TRIES;
3563 while (i-- > 0) {
3564 val = readl(cp->regs + REG_MAC_RX_CFG);
3565 if ((val & MAC_RX_CFG_EN)) {
3566 if (txfailed) {
3567 printk(KERN_ERR
3568 "%s: enabling mac failed [tx:%08x:%08x].\n",
3569 cp->dev->name,
3570 readl(cp->regs + REG_MIF_STATE_MACHINE),
3571 readl(cp->regs + REG_MAC_STATE_MACHINE));
3573 goto enable_rx_done;
3575 udelay(10);
3577 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3578 cp->dev->name,
3579 (txfailed? "tx,rx":"rx"),
3580 readl(cp->regs + REG_MIF_STATE_MACHINE),
3581 readl(cp->regs + REG_MAC_STATE_MACHINE));
3583 enable_rx_done:
3584 cas_unmask_intr(cp); /* enable interrupts */
3585 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3586 writel(0, cp->regs + REG_RX_COMP_TAIL);
3588 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3589 if (N_RX_DESC_RINGS > 1)
3590 writel(RX_DESC_RINGN_SIZE(1) - 4,
3591 cp->regs + REG_PLUS_RX_KICK1);
3593 for (i = 1; i < N_RX_COMP_RINGS; i++)
3594 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3598 /* Must be invoked under cp->lock. */
3599 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3600 int *pause)
3602 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3603 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3604 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3605 if (val & PCS_MII_LPA_ASYM_PAUSE)
3606 *pause |= 0x10;
3607 *spd = 1000;
3610 /* Must be invoked under cp->lock. */
3611 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3612 int *pause)
3614 u32 val;
3616 *fd = 0;
3617 *spd = 10;
3618 *pause = 0;
3620 /* use GMII registers */
3621 val = cas_phy_read(cp, MII_LPA);
3622 if (val & CAS_LPA_PAUSE)
3623 *pause = 0x01;
3625 if (val & CAS_LPA_ASYM_PAUSE)
3626 *pause |= 0x10;
3628 if (val & LPA_DUPLEX)
3629 *fd = 1;
3630 if (val & LPA_100)
3631 *spd = 100;
3633 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3634 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3635 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3636 *spd = 1000;
3637 if (val & CAS_LPA_1000FULL)
3638 *fd = 1;
3642 /* A link-up condition has occurred, initialize and enable the
3643 * rest of the chip.
3645 * Must be invoked under cp->lock.
3647 static void cas_set_link_modes(struct cas *cp)
3649 u32 val;
3650 int full_duplex, speed, pause;
3652 full_duplex = 0;
3653 speed = 10;
3654 pause = 0;
3656 if (CAS_PHY_MII(cp->phy_type)) {
3657 cas_mif_poll(cp, 0);
3658 val = cas_phy_read(cp, MII_BMCR);
3659 if (val & BMCR_ANENABLE) {
3660 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3661 &pause);
3662 } else {
3663 if (val & BMCR_FULLDPLX)
3664 full_duplex = 1;
3666 if (val & BMCR_SPEED100)
3667 speed = 100;
3668 else if (val & CAS_BMCR_SPEED1000)
3669 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3670 1000 : 100;
3672 cas_mif_poll(cp, 1);
3674 } else {
3675 val = readl(cp->regs + REG_PCS_MII_CTRL);
3676 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3677 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3678 if (val & PCS_MII_CTRL_DUPLEX)
3679 full_duplex = 1;
3683 if (netif_msg_link(cp))
3684 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3685 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3687 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3688 if (CAS_PHY_MII(cp->phy_type)) {
3689 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3690 if (!full_duplex)
3691 val |= MAC_XIF_DISABLE_ECHO;
3693 if (full_duplex)
3694 val |= MAC_XIF_FDPLX_LED;
3695 if (speed == 1000)
3696 val |= MAC_XIF_GMII_MODE;
3697 writel(val, cp->regs + REG_MAC_XIF_CFG);
3699 /* deal with carrier and collision detect. */
3700 val = MAC_TX_CFG_IPG_EN;
3701 if (full_duplex) {
3702 val |= MAC_TX_CFG_IGNORE_CARRIER;
3703 val |= MAC_TX_CFG_IGNORE_COLL;
3704 } else {
3705 #ifndef USE_CSMA_CD_PROTO
3706 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3707 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3708 #endif
3710 /* val now set up for REG_MAC_TX_CFG */
3712 /* If gigabit and half-duplex, enable carrier extension
3713 * mode. increase slot time to 512 bytes as well.
3714 * else, disable it and make sure slot time is 64 bytes.
3715 * also activate checksum bug workaround
3717 if ((speed == 1000) && !full_duplex) {
3718 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3719 cp->regs + REG_MAC_TX_CFG);
3721 val = readl(cp->regs + REG_MAC_RX_CFG);
3722 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3723 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3724 cp->regs + REG_MAC_RX_CFG);
3726 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3728 cp->crc_size = 4;
3729 /* minimum size gigabit frame at half duplex */
3730 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3732 } else {
3733 writel(val, cp->regs + REG_MAC_TX_CFG);
3735 /* checksum bug workaround. don't strip FCS when in
3736 * half-duplex mode
3738 val = readl(cp->regs + REG_MAC_RX_CFG);
3739 if (full_duplex) {
3740 val |= MAC_RX_CFG_STRIP_FCS;
3741 cp->crc_size = 0;
3742 cp->min_frame_size = CAS_MIN_MTU;
3743 } else {
3744 val &= ~MAC_RX_CFG_STRIP_FCS;
3745 cp->crc_size = 4;
3746 cp->min_frame_size = CAS_MIN_FRAME;
3748 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3749 cp->regs + REG_MAC_RX_CFG);
3750 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3753 if (netif_msg_link(cp)) {
3754 if (pause & 0x01) {
3755 printk(KERN_INFO "%s: Pause is enabled "
3756 "(rxfifo: %d off: %d on: %d)\n",
3757 cp->dev->name,
3758 cp->rx_fifo_size,
3759 cp->rx_pause_off,
3760 cp->rx_pause_on);
3761 } else if (pause & 0x10) {
3762 printk(KERN_INFO "%s: TX pause enabled\n",
3763 cp->dev->name);
3764 } else {
3765 printk(KERN_INFO "%s: Pause is disabled\n",
3766 cp->dev->name);
3770 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3771 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3772 if (pause) { /* symmetric or asymmetric pause */
3773 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3774 if (pause & 0x01) { /* symmetric pause */
3775 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3778 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3779 cas_start_dma(cp);
3782 /* Must be invoked under cp->lock. */
3783 static void cas_init_hw(struct cas *cp, int restart_link)
3785 if (restart_link)
3786 cas_phy_init(cp);
3788 cas_init_pause_thresholds(cp);
3789 cas_init_mac(cp);
3790 cas_init_dma(cp);
3792 if (restart_link) {
3793 /* Default aneg parameters */
3794 cp->timer_ticks = 0;
3795 cas_begin_auto_negotiation(cp, NULL);
3796 } else if (cp->lstate == link_up) {
3797 cas_set_link_modes(cp);
3798 netif_carrier_on(cp->dev);
3802 /* Must be invoked under cp->lock. on earlier cassini boards,
3803 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3804 * let it settle out, and then restore pci state.
3806 static void cas_hard_reset(struct cas *cp)
3808 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3809 udelay(20);
3810 pci_restore_state(cp->pdev);
3814 static void cas_global_reset(struct cas *cp, int blkflag)
3816 int limit;
3818 /* issue a global reset. don't use RSTOUT. */
3819 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3820 /* For PCS, when the blkflag is set, we should set the
3821 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3822 * the last autonegotiation from being cleared. We'll
3823 * need some special handling if the chip is set into a
3824 * loopback mode.
3826 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3827 cp->regs + REG_SW_RESET);
3828 } else {
3829 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3832 /* need to wait at least 3ms before polling register */
3833 mdelay(3);
3835 limit = STOP_TRIES;
3836 while (limit-- > 0) {
3837 u32 val = readl(cp->regs + REG_SW_RESET);
3838 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3839 goto done;
3840 udelay(10);
3842 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3844 done:
3845 /* enable various BIM interrupts */
3846 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3847 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3849 /* clear out pci error status mask for handled errors.
3850 * we don't deal with DMA counter overflows as they happen
3851 * all the time.
3853 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3854 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3855 PCI_ERR_BIM_DMA_READ), cp->regs +
3856 REG_PCI_ERR_STATUS_MASK);
3858 /* set up for MII by default to address mac rx reset timeout
3859 * issue
3861 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3864 static void cas_reset(struct cas *cp, int blkflag)
3866 u32 val;
3868 cas_mask_intr(cp);
3869 cas_global_reset(cp, blkflag);
3870 cas_mac_reset(cp);
3871 cas_entropy_reset(cp);
3873 /* disable dma engines. */
3874 val = readl(cp->regs + REG_TX_CFG);
3875 val &= ~TX_CFG_DMA_EN;
3876 writel(val, cp->regs + REG_TX_CFG);
3878 val = readl(cp->regs + REG_RX_CFG);
3879 val &= ~RX_CFG_DMA_EN;
3880 writel(val, cp->regs + REG_RX_CFG);
3882 /* program header parser */
3883 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3884 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3885 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3886 } else {
3887 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3890 /* clear out error registers */
3891 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3892 cas_clear_mac_err(cp);
3893 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3896 /* Shut down the chip, must be called with pm_mutex held. */
3897 static void cas_shutdown(struct cas *cp)
3899 unsigned long flags;
3901 /* Make us not-running to avoid timers respawning */
3902 cp->hw_running = 0;
3904 del_timer_sync(&cp->link_timer);
3906 /* Stop the reset task */
3907 #if 0
3908 while (atomic_read(&cp->reset_task_pending_mtu) ||
3909 atomic_read(&cp->reset_task_pending_spare) ||
3910 atomic_read(&cp->reset_task_pending_all))
3911 schedule();
3913 #else
3914 while (atomic_read(&cp->reset_task_pending))
3915 schedule();
3916 #endif
3917 /* Actually stop the chip */
3918 cas_lock_all_save(cp, flags);
3919 cas_reset(cp, 0);
3920 if (cp->cas_flags & CAS_FLAG_SATURN)
3921 cas_phy_powerdown(cp);
3922 cas_unlock_all_restore(cp, flags);
3925 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3927 struct cas *cp = netdev_priv(dev);
3929 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3930 return -EINVAL;
3932 dev->mtu = new_mtu;
3933 if (!netif_running(dev) || !netif_device_present(dev))
3934 return 0;
3936 /* let the reset task handle it */
3937 #if 1
3938 atomic_inc(&cp->reset_task_pending);
3939 if ((cp->phy_type & CAS_PHY_SERDES)) {
3940 atomic_inc(&cp->reset_task_pending_all);
3941 } else {
3942 atomic_inc(&cp->reset_task_pending_mtu);
3944 schedule_work(&cp->reset_task);
3945 #else
3946 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3947 CAS_RESET_ALL : CAS_RESET_MTU);
3948 printk(KERN_ERR "reset called in cas_change_mtu\n");
3949 schedule_work(&cp->reset_task);
3950 #endif
3952 flush_scheduled_work();
3953 return 0;
3956 static void cas_clean_txd(struct cas *cp, int ring)
3958 struct cas_tx_desc *txd = cp->init_txds[ring];
3959 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3960 u64 daddr, dlen;
3961 int i, size;
3963 size = TX_DESC_RINGN_SIZE(ring);
3964 for (i = 0; i < size; i++) {
3965 int frag;
3967 if (skbs[i] == NULL)
3968 continue;
3970 skb = skbs[i];
3971 skbs[i] = NULL;
3973 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3974 int ent = i & (size - 1);
3976 /* first buffer is never a tiny buffer and so
3977 * needs to be unmapped.
3979 daddr = le64_to_cpu(txd[ent].buffer);
3980 dlen = CAS_VAL(TX_DESC_BUFLEN,
3981 le64_to_cpu(txd[ent].control));
3982 pci_unmap_page(cp->pdev, daddr, dlen,
3983 PCI_DMA_TODEVICE);
3985 if (frag != skb_shinfo(skb)->nr_frags) {
3986 i++;
3988 /* next buffer might by a tiny buffer.
3989 * skip past it.
3991 ent = i & (size - 1);
3992 if (cp->tx_tiny_use[ring][ent].used)
3993 i++;
3996 dev_kfree_skb_any(skb);
3999 /* zero out tiny buf usage */
4000 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4003 /* freed on close */
4004 static inline void cas_free_rx_desc(struct cas *cp, int ring)
4006 cas_page_t **page = cp->rx_pages[ring];
4007 int i, size;
4009 size = RX_DESC_RINGN_SIZE(ring);
4010 for (i = 0; i < size; i++) {
4011 if (page[i]) {
4012 cas_page_free(cp, page[i]);
4013 page[i] = NULL;
4018 static void cas_free_rxds(struct cas *cp)
4020 int i;
4022 for (i = 0; i < N_RX_DESC_RINGS; i++)
4023 cas_free_rx_desc(cp, i);
4026 /* Must be invoked under cp->lock. */
4027 static void cas_clean_rings(struct cas *cp)
4029 int i;
4031 /* need to clean all tx rings */
4032 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4033 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4034 for (i = 0; i < N_TX_RINGS; i++)
4035 cas_clean_txd(cp, i);
4037 /* zero out init block */
4038 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4039 cas_clean_rxds(cp);
4040 cas_clean_rxcs(cp);
4043 /* allocated on open */
4044 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4046 cas_page_t **page = cp->rx_pages[ring];
4047 int size, i = 0;
4049 size = RX_DESC_RINGN_SIZE(ring);
4050 for (i = 0; i < size; i++) {
4051 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4052 return -1;
4054 return 0;
4057 static int cas_alloc_rxds(struct cas *cp)
4059 int i;
4061 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4062 if (cas_alloc_rx_desc(cp, i) < 0) {
4063 cas_free_rxds(cp);
4064 return -1;
4067 return 0;
4070 static void cas_reset_task(void *data)
4072 struct cas *cp = (struct cas *) data;
4073 #if 0
4074 int pending = atomic_read(&cp->reset_task_pending);
4075 #else
4076 int pending_all = atomic_read(&cp->reset_task_pending_all);
4077 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4078 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4080 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4081 /* We can have more tasks scheduled than actually
4082 * needed.
4084 atomic_dec(&cp->reset_task_pending);
4085 return;
4087 #endif
4088 /* The link went down, we reset the ring, but keep
4089 * DMA stopped. Use this function for reset
4090 * on error as well.
4092 if (cp->hw_running) {
4093 unsigned long flags;
4095 /* Make sure we don't get interrupts or tx packets */
4096 netif_device_detach(cp->dev);
4097 cas_lock_all_save(cp, flags);
4099 if (cp->opened) {
4100 /* We call cas_spare_recover when we call cas_open.
4101 * but we do not initialize the lists cas_spare_recover
4102 * uses until cas_open is called.
4104 cas_spare_recover(cp, GFP_ATOMIC);
4106 #if 1
4107 /* test => only pending_spare set */
4108 if (!pending_all && !pending_mtu)
4109 goto done;
4110 #else
4111 if (pending == CAS_RESET_SPARE)
4112 goto done;
4113 #endif
4114 /* when pending == CAS_RESET_ALL, the following
4115 * call to cas_init_hw will restart auto negotiation.
4116 * Setting the second argument of cas_reset to
4117 * !(pending == CAS_RESET_ALL) will set this argument
4118 * to 1 (avoiding reinitializing the PHY for the normal
4119 * PCS case) when auto negotiation is not restarted.
4121 #if 1
4122 cas_reset(cp, !(pending_all > 0));
4123 if (cp->opened)
4124 cas_clean_rings(cp);
4125 cas_init_hw(cp, (pending_all > 0));
4126 #else
4127 cas_reset(cp, !(pending == CAS_RESET_ALL));
4128 if (cp->opened)
4129 cas_clean_rings(cp);
4130 cas_init_hw(cp, pending == CAS_RESET_ALL);
4131 #endif
4133 done:
4134 cas_unlock_all_restore(cp, flags);
4135 netif_device_attach(cp->dev);
4137 #if 1
4138 atomic_sub(pending_all, &cp->reset_task_pending_all);
4139 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4140 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4141 atomic_dec(&cp->reset_task_pending);
4142 #else
4143 atomic_set(&cp->reset_task_pending, 0);
4144 #endif
4147 static void cas_link_timer(unsigned long data)
4149 struct cas *cp = (struct cas *) data;
4150 int mask, pending = 0, reset = 0;
4151 unsigned long flags;
4153 if (link_transition_timeout != 0 &&
4154 cp->link_transition_jiffies_valid &&
4155 ((jiffies - cp->link_transition_jiffies) >
4156 (link_transition_timeout))) {
4157 /* One-second counter so link-down workaround doesn't
4158 * cause resets to occur so fast as to fool the switch
4159 * into thinking the link is down.
4161 cp->link_transition_jiffies_valid = 0;
4164 if (!cp->hw_running)
4165 return;
4167 spin_lock_irqsave(&cp->lock, flags);
4168 cas_lock_tx(cp);
4169 cas_entropy_gather(cp);
4171 /* If the link task is still pending, we just
4172 * reschedule the link timer
4174 #if 1
4175 if (atomic_read(&cp->reset_task_pending_all) ||
4176 atomic_read(&cp->reset_task_pending_spare) ||
4177 atomic_read(&cp->reset_task_pending_mtu))
4178 goto done;
4179 #else
4180 if (atomic_read(&cp->reset_task_pending))
4181 goto done;
4182 #endif
4184 /* check for rx cleaning */
4185 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4186 int i, rmask;
4188 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4189 rmask = CAS_FLAG_RXD_POST(i);
4190 if ((mask & rmask) == 0)
4191 continue;
4193 /* post_rxds will do a mod_timer */
4194 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4195 pending = 1;
4196 continue;
4198 cp->cas_flags &= ~rmask;
4202 if (CAS_PHY_MII(cp->phy_type)) {
4203 u16 bmsr;
4204 cas_mif_poll(cp, 0);
4205 bmsr = cas_phy_read(cp, MII_BMSR);
4206 /* WTZ: Solaris driver reads this twice, but that
4207 * may be due to the PCS case and the use of a
4208 * common implementation. Read it twice here to be
4209 * safe.
4211 bmsr = cas_phy_read(cp, MII_BMSR);
4212 cas_mif_poll(cp, 1);
4213 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4214 reset = cas_mii_link_check(cp, bmsr);
4215 } else {
4216 reset = cas_pcs_link_check(cp);
4219 if (reset)
4220 goto done;
4222 /* check for tx state machine confusion */
4223 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4224 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4225 u32 wptr, rptr;
4226 int tlm = CAS_VAL(MAC_SM_TLM, val);
4228 if (((tlm == 0x5) || (tlm == 0x3)) &&
4229 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4230 if (netif_msg_tx_err(cp))
4231 printk(KERN_DEBUG "%s: tx err: "
4232 "MAC_STATE[%08x]\n",
4233 cp->dev->name, val);
4234 reset = 1;
4235 goto done;
4238 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4239 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4240 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4241 if ((val == 0) && (wptr != rptr)) {
4242 if (netif_msg_tx_err(cp))
4243 printk(KERN_DEBUG "%s: tx err: "
4244 "TX_FIFO[%08x:%08x:%08x]\n",
4245 cp->dev->name, val, wptr, rptr);
4246 reset = 1;
4249 if (reset)
4250 cas_hard_reset(cp);
4253 done:
4254 if (reset) {
4255 #if 1
4256 atomic_inc(&cp->reset_task_pending);
4257 atomic_inc(&cp->reset_task_pending_all);
4258 schedule_work(&cp->reset_task);
4259 #else
4260 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4261 printk(KERN_ERR "reset called in cas_link_timer\n");
4262 schedule_work(&cp->reset_task);
4263 #endif
4266 if (!pending)
4267 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4268 cas_unlock_tx(cp);
4269 spin_unlock_irqrestore(&cp->lock, flags);
4272 /* tiny buffers are used to avoid target abort issues with
4273 * older cassini's
4275 static void cas_tx_tiny_free(struct cas *cp)
4277 struct pci_dev *pdev = cp->pdev;
4278 int i;
4280 for (i = 0; i < N_TX_RINGS; i++) {
4281 if (!cp->tx_tiny_bufs[i])
4282 continue;
4284 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4285 cp->tx_tiny_bufs[i],
4286 cp->tx_tiny_dvma[i]);
4287 cp->tx_tiny_bufs[i] = NULL;
4291 static int cas_tx_tiny_alloc(struct cas *cp)
4293 struct pci_dev *pdev = cp->pdev;
4294 int i;
4296 for (i = 0; i < N_TX_RINGS; i++) {
4297 cp->tx_tiny_bufs[i] =
4298 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4299 &cp->tx_tiny_dvma[i]);
4300 if (!cp->tx_tiny_bufs[i]) {
4301 cas_tx_tiny_free(cp);
4302 return -1;
4305 return 0;
4309 static int cas_open(struct net_device *dev)
4311 struct cas *cp = netdev_priv(dev);
4312 int hw_was_up, err;
4313 unsigned long flags;
4315 mutex_lock(&cp->pm_mutex);
4317 hw_was_up = cp->hw_running;
4319 /* The power-management mutex protects the hw_running
4320 * etc. state so it is safe to do this bit without cp->lock
4322 if (!cp->hw_running) {
4323 /* Reset the chip */
4324 cas_lock_all_save(cp, flags);
4325 /* We set the second arg to cas_reset to zero
4326 * because cas_init_hw below will have its second
4327 * argument set to non-zero, which will force
4328 * autonegotiation to start.
4330 cas_reset(cp, 0);
4331 cp->hw_running = 1;
4332 cas_unlock_all_restore(cp, flags);
4335 if (cas_tx_tiny_alloc(cp) < 0)
4336 return -ENOMEM;
4338 /* alloc rx descriptors */
4339 err = -ENOMEM;
4340 if (cas_alloc_rxds(cp) < 0)
4341 goto err_tx_tiny;
4343 /* allocate spares */
4344 cas_spare_init(cp);
4345 cas_spare_recover(cp, GFP_KERNEL);
4347 /* We can now request the interrupt as we know it's masked
4348 * on the controller. cassini+ has up to 4 interrupts
4349 * that can be used, but you need to do explicit pci interrupt
4350 * mapping to expose them
4352 if (request_irq(cp->pdev->irq, cas_interrupt,
4353 SA_SHIRQ, dev->name, (void *) dev)) {
4354 printk(KERN_ERR "%s: failed to request irq !\n",
4355 cp->dev->name);
4356 err = -EAGAIN;
4357 goto err_spare;
4360 /* init hw */
4361 cas_lock_all_save(cp, flags);
4362 cas_clean_rings(cp);
4363 cas_init_hw(cp, !hw_was_up);
4364 cp->opened = 1;
4365 cas_unlock_all_restore(cp, flags);
4367 netif_start_queue(dev);
4368 mutex_unlock(&cp->pm_mutex);
4369 return 0;
4371 err_spare:
4372 cas_spare_free(cp);
4373 cas_free_rxds(cp);
4374 err_tx_tiny:
4375 cas_tx_tiny_free(cp);
4376 mutex_unlock(&cp->pm_mutex);
4377 return err;
4380 static int cas_close(struct net_device *dev)
4382 unsigned long flags;
4383 struct cas *cp = netdev_priv(dev);
4385 /* Make sure we don't get distracted by suspend/resume */
4386 mutex_lock(&cp->pm_mutex);
4388 netif_stop_queue(dev);
4390 /* Stop traffic, mark us closed */
4391 cas_lock_all_save(cp, flags);
4392 cp->opened = 0;
4393 cas_reset(cp, 0);
4394 cas_phy_init(cp);
4395 cas_begin_auto_negotiation(cp, NULL);
4396 cas_clean_rings(cp);
4397 cas_unlock_all_restore(cp, flags);
4399 free_irq(cp->pdev->irq, (void *) dev);
4400 cas_spare_free(cp);
4401 cas_free_rxds(cp);
4402 cas_tx_tiny_free(cp);
4403 mutex_unlock(&cp->pm_mutex);
4404 return 0;
4407 static struct {
4408 const char name[ETH_GSTRING_LEN];
4409 } ethtool_cassini_statnames[] = {
4410 {"collisions"},
4411 {"rx_bytes"},
4412 {"rx_crc_errors"},
4413 {"rx_dropped"},
4414 {"rx_errors"},
4415 {"rx_fifo_errors"},
4416 {"rx_frame_errors"},
4417 {"rx_length_errors"},
4418 {"rx_over_errors"},
4419 {"rx_packets"},
4420 {"tx_aborted_errors"},
4421 {"tx_bytes"},
4422 {"tx_dropped"},
4423 {"tx_errors"},
4424 {"tx_fifo_errors"},
4425 {"tx_packets"}
4427 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4429 static struct {
4430 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4431 } ethtool_register_table[] = {
4432 {-MII_BMSR},
4433 {-MII_BMCR},
4434 {REG_CAWR},
4435 {REG_INF_BURST},
4436 {REG_BIM_CFG},
4437 {REG_RX_CFG},
4438 {REG_HP_CFG},
4439 {REG_MAC_TX_CFG},
4440 {REG_MAC_RX_CFG},
4441 {REG_MAC_CTRL_CFG},
4442 {REG_MAC_XIF_CFG},
4443 {REG_MIF_CFG},
4444 {REG_PCS_CFG},
4445 {REG_SATURN_PCFG},
4446 {REG_PCS_MII_STATUS},
4447 {REG_PCS_STATE_MACHINE},
4448 {REG_MAC_COLL_EXCESS},
4449 {REG_MAC_COLL_LATE}
4451 #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4452 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4454 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4456 u8 *p;
4457 int i;
4458 unsigned long flags;
4460 spin_lock_irqsave(&cp->lock, flags);
4461 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4462 u16 hval;
4463 u32 val;
4464 if (ethtool_register_table[i].offsets < 0) {
4465 hval = cas_phy_read(cp,
4466 -ethtool_register_table[i].offsets);
4467 val = hval;
4468 } else {
4469 val= readl(cp->regs+ethtool_register_table[i].offsets);
4471 memcpy(p, (u8 *)&val, sizeof(u32));
4473 spin_unlock_irqrestore(&cp->lock, flags);
4476 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4478 struct cas *cp = netdev_priv(dev);
4479 struct net_device_stats *stats = cp->net_stats;
4480 unsigned long flags;
4481 int i;
4482 unsigned long tmp;
4484 /* we collate all of the stats into net_stats[N_TX_RING] */
4485 if (!cp->hw_running)
4486 return stats + N_TX_RINGS;
4488 /* collect outstanding stats */
4489 /* WTZ: the Cassini spec gives these as 16 bit counters but
4490 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4491 * in case the chip somehow puts any garbage in the other bits.
4492 * Also, counter usage didn't seem to mach what Adrian did
4493 * in the parts of the code that set these quantities. Made
4494 * that consistent.
4496 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4497 stats[N_TX_RINGS].rx_crc_errors +=
4498 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4499 stats[N_TX_RINGS].rx_frame_errors +=
4500 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4501 stats[N_TX_RINGS].rx_length_errors +=
4502 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4503 #if 1
4504 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4505 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4506 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4507 stats[N_TX_RINGS].collisions +=
4508 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4509 #else
4510 stats[N_TX_RINGS].tx_aborted_errors +=
4511 readl(cp->regs + REG_MAC_COLL_EXCESS);
4512 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4513 readl(cp->regs + REG_MAC_COLL_LATE);
4514 #endif
4515 cas_clear_mac_err(cp);
4517 /* saved bits that are unique to ring 0 */
4518 spin_lock(&cp->stat_lock[0]);
4519 stats[N_TX_RINGS].collisions += stats[0].collisions;
4520 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4521 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4522 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4523 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4524 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4525 spin_unlock(&cp->stat_lock[0]);
4527 for (i = 0; i < N_TX_RINGS; i++) {
4528 spin_lock(&cp->stat_lock[i]);
4529 stats[N_TX_RINGS].rx_length_errors +=
4530 stats[i].rx_length_errors;
4531 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4532 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4533 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4534 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4535 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4536 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4537 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4538 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4539 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4540 memset(stats + i, 0, sizeof(struct net_device_stats));
4541 spin_unlock(&cp->stat_lock[i]);
4543 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4544 return stats + N_TX_RINGS;
4548 static void cas_set_multicast(struct net_device *dev)
4550 struct cas *cp = netdev_priv(dev);
4551 u32 rxcfg, rxcfg_new;
4552 unsigned long flags;
4553 int limit = STOP_TRIES;
4555 if (!cp->hw_running)
4556 return;
4558 spin_lock_irqsave(&cp->lock, flags);
4559 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4561 /* disable RX MAC and wait for completion */
4562 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4563 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4564 if (!limit--)
4565 break;
4566 udelay(10);
4569 /* disable hash filter and wait for completion */
4570 limit = STOP_TRIES;
4571 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4572 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4573 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4574 if (!limit--)
4575 break;
4576 udelay(10);
4579 /* program hash filters */
4580 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4581 rxcfg |= rxcfg_new;
4582 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4583 spin_unlock_irqrestore(&cp->lock, flags);
4586 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4588 struct cas *cp = netdev_priv(dev);
4589 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4590 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4591 info->fw_version[0] = '\0';
4592 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4593 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4594 cp->casreg_len : CAS_MAX_REGS;
4595 info->n_stats = CAS_NUM_STAT_KEYS;
4598 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4600 struct cas *cp = netdev_priv(dev);
4601 u16 bmcr;
4602 int full_duplex, speed, pause;
4603 unsigned long flags;
4604 enum link_state linkstate = link_up;
4606 cmd->advertising = 0;
4607 cmd->supported = SUPPORTED_Autoneg;
4608 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4609 cmd->supported |= SUPPORTED_1000baseT_Full;
4610 cmd->advertising |= ADVERTISED_1000baseT_Full;
4613 /* Record PHY settings if HW is on. */
4614 spin_lock_irqsave(&cp->lock, flags);
4615 bmcr = 0;
4616 linkstate = cp->lstate;
4617 if (CAS_PHY_MII(cp->phy_type)) {
4618 cmd->port = PORT_MII;
4619 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4620 XCVR_INTERNAL : XCVR_EXTERNAL;
4621 cmd->phy_address = cp->phy_addr;
4622 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4623 ADVERTISED_10baseT_Half |
4624 ADVERTISED_10baseT_Full |
4625 ADVERTISED_100baseT_Half |
4626 ADVERTISED_100baseT_Full;
4628 cmd->supported |=
4629 (SUPPORTED_10baseT_Half |
4630 SUPPORTED_10baseT_Full |
4631 SUPPORTED_100baseT_Half |
4632 SUPPORTED_100baseT_Full |
4633 SUPPORTED_TP | SUPPORTED_MII);
4635 if (cp->hw_running) {
4636 cas_mif_poll(cp, 0);
4637 bmcr = cas_phy_read(cp, MII_BMCR);
4638 cas_read_mii_link_mode(cp, &full_duplex,
4639 &speed, &pause);
4640 cas_mif_poll(cp, 1);
4643 } else {
4644 cmd->port = PORT_FIBRE;
4645 cmd->transceiver = XCVR_INTERNAL;
4646 cmd->phy_address = 0;
4647 cmd->supported |= SUPPORTED_FIBRE;
4648 cmd->advertising |= ADVERTISED_FIBRE;
4650 if (cp->hw_running) {
4651 /* pcs uses the same bits as mii */
4652 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4653 cas_read_pcs_link_mode(cp, &full_duplex,
4654 &speed, &pause);
4657 spin_unlock_irqrestore(&cp->lock, flags);
4659 if (bmcr & BMCR_ANENABLE) {
4660 cmd->advertising |= ADVERTISED_Autoneg;
4661 cmd->autoneg = AUTONEG_ENABLE;
4662 cmd->speed = ((speed == 10) ?
4663 SPEED_10 :
4664 ((speed == 1000) ?
4665 SPEED_1000 : SPEED_100));
4666 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4667 } else {
4668 cmd->autoneg = AUTONEG_DISABLE;
4669 cmd->speed =
4670 (bmcr & CAS_BMCR_SPEED1000) ?
4671 SPEED_1000 :
4672 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4673 SPEED_10);
4674 cmd->duplex =
4675 (bmcr & BMCR_FULLDPLX) ?
4676 DUPLEX_FULL : DUPLEX_HALF;
4678 if (linkstate != link_up) {
4679 /* Force these to "unknown" if the link is not up and
4680 * autonogotiation in enabled. We can set the link
4681 * speed to 0, but not cmd->duplex,
4682 * because its legal values are 0 and 1. Ethtool will
4683 * print the value reported in parentheses after the
4684 * word "Unknown" for unrecognized values.
4686 * If in forced mode, we report the speed and duplex
4687 * settings that we configured.
4689 if (cp->link_cntl & BMCR_ANENABLE) {
4690 cmd->speed = 0;
4691 cmd->duplex = 0xff;
4692 } else {
4693 cmd->speed = SPEED_10;
4694 if (cp->link_cntl & BMCR_SPEED100) {
4695 cmd->speed = SPEED_100;
4696 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4697 cmd->speed = SPEED_1000;
4699 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4700 DUPLEX_FULL : DUPLEX_HALF;
4703 return 0;
4706 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4708 struct cas *cp = netdev_priv(dev);
4709 unsigned long flags;
4711 /* Verify the settings we care about. */
4712 if (cmd->autoneg != AUTONEG_ENABLE &&
4713 cmd->autoneg != AUTONEG_DISABLE)
4714 return -EINVAL;
4716 if (cmd->autoneg == AUTONEG_DISABLE &&
4717 ((cmd->speed != SPEED_1000 &&
4718 cmd->speed != SPEED_100 &&
4719 cmd->speed != SPEED_10) ||
4720 (cmd->duplex != DUPLEX_HALF &&
4721 cmd->duplex != DUPLEX_FULL)))
4722 return -EINVAL;
4724 /* Apply settings and restart link process. */
4725 spin_lock_irqsave(&cp->lock, flags);
4726 cas_begin_auto_negotiation(cp, cmd);
4727 spin_unlock_irqrestore(&cp->lock, flags);
4728 return 0;
4731 static int cas_nway_reset(struct net_device *dev)
4733 struct cas *cp = netdev_priv(dev);
4734 unsigned long flags;
4736 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4737 return -EINVAL;
4739 /* Restart link process. */
4740 spin_lock_irqsave(&cp->lock, flags);
4741 cas_begin_auto_negotiation(cp, NULL);
4742 spin_unlock_irqrestore(&cp->lock, flags);
4744 return 0;
4747 static u32 cas_get_link(struct net_device *dev)
4749 struct cas *cp = netdev_priv(dev);
4750 return cp->lstate == link_up;
4753 static u32 cas_get_msglevel(struct net_device *dev)
4755 struct cas *cp = netdev_priv(dev);
4756 return cp->msg_enable;
4759 static void cas_set_msglevel(struct net_device *dev, u32 value)
4761 struct cas *cp = netdev_priv(dev);
4762 cp->msg_enable = value;
4765 static int cas_get_regs_len(struct net_device *dev)
4767 struct cas *cp = netdev_priv(dev);
4768 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4771 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4772 void *p)
4774 struct cas *cp = netdev_priv(dev);
4775 regs->version = 0;
4776 /* cas_read_regs handles locks (cp->lock). */
4777 cas_read_regs(cp, p, regs->len / sizeof(u32));
4780 static int cas_get_stats_count(struct net_device *dev)
4782 return CAS_NUM_STAT_KEYS;
4785 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4787 memcpy(data, &ethtool_cassini_statnames,
4788 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4791 static void cas_get_ethtool_stats(struct net_device *dev,
4792 struct ethtool_stats *estats, u64 *data)
4794 struct cas *cp = netdev_priv(dev);
4795 struct net_device_stats *stats = cas_get_stats(cp->dev);
4796 int i = 0;
4797 data[i++] = stats->collisions;
4798 data[i++] = stats->rx_bytes;
4799 data[i++] = stats->rx_crc_errors;
4800 data[i++] = stats->rx_dropped;
4801 data[i++] = stats->rx_errors;
4802 data[i++] = stats->rx_fifo_errors;
4803 data[i++] = stats->rx_frame_errors;
4804 data[i++] = stats->rx_length_errors;
4805 data[i++] = stats->rx_over_errors;
4806 data[i++] = stats->rx_packets;
4807 data[i++] = stats->tx_aborted_errors;
4808 data[i++] = stats->tx_bytes;
4809 data[i++] = stats->tx_dropped;
4810 data[i++] = stats->tx_errors;
4811 data[i++] = stats->tx_fifo_errors;
4812 data[i++] = stats->tx_packets;
4813 BUG_ON(i != CAS_NUM_STAT_KEYS);
4816 static struct ethtool_ops cas_ethtool_ops = {
4817 .get_drvinfo = cas_get_drvinfo,
4818 .get_settings = cas_get_settings,
4819 .set_settings = cas_set_settings,
4820 .nway_reset = cas_nway_reset,
4821 .get_link = cas_get_link,
4822 .get_msglevel = cas_get_msglevel,
4823 .set_msglevel = cas_set_msglevel,
4824 .get_regs_len = cas_get_regs_len,
4825 .get_regs = cas_get_regs,
4826 .get_stats_count = cas_get_stats_count,
4827 .get_strings = cas_get_strings,
4828 .get_ethtool_stats = cas_get_ethtool_stats,
4831 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4833 struct cas *cp = netdev_priv(dev);
4834 struct mii_ioctl_data *data = if_mii(ifr);
4835 unsigned long flags;
4836 int rc = -EOPNOTSUPP;
4838 /* Hold the PM mutex while doing ioctl's or we may collide
4839 * with open/close and power management and oops.
4841 mutex_lock(&cp->pm_mutex);
4842 switch (cmd) {
4843 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4844 data->phy_id = cp->phy_addr;
4845 /* Fallthrough... */
4847 case SIOCGMIIREG: /* Read MII PHY register. */
4848 spin_lock_irqsave(&cp->lock, flags);
4849 cas_mif_poll(cp, 0);
4850 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4851 cas_mif_poll(cp, 1);
4852 spin_unlock_irqrestore(&cp->lock, flags);
4853 rc = 0;
4854 break;
4856 case SIOCSMIIREG: /* Write MII PHY register. */
4857 if (!capable(CAP_NET_ADMIN)) {
4858 rc = -EPERM;
4859 break;
4861 spin_lock_irqsave(&cp->lock, flags);
4862 cas_mif_poll(cp, 0);
4863 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4864 cas_mif_poll(cp, 1);
4865 spin_unlock_irqrestore(&cp->lock, flags);
4866 break;
4867 default:
4868 break;
4871 mutex_unlock(&cp->pm_mutex);
4872 return rc;
4875 static int __devinit cas_init_one(struct pci_dev *pdev,
4876 const struct pci_device_id *ent)
4878 static int cas_version_printed = 0;
4879 unsigned long casreg_base, casreg_len;
4880 struct net_device *dev;
4881 struct cas *cp;
4882 int i, err, pci_using_dac;
4883 u16 pci_cmd;
4884 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4886 if (cas_version_printed++ == 0)
4887 printk(KERN_INFO "%s", version);
4889 err = pci_enable_device(pdev);
4890 if (err) {
4891 printk(KERN_ERR PFX "Cannot enable PCI device, "
4892 "aborting.\n");
4893 return err;
4896 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4897 printk(KERN_ERR PFX "Cannot find proper PCI device "
4898 "base address, aborting.\n");
4899 err = -ENODEV;
4900 goto err_out_disable_pdev;
4903 dev = alloc_etherdev(sizeof(*cp));
4904 if (!dev) {
4905 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
4906 err = -ENOMEM;
4907 goto err_out_disable_pdev;
4909 SET_MODULE_OWNER(dev);
4910 SET_NETDEV_DEV(dev, &pdev->dev);
4912 err = pci_request_regions(pdev, dev->name);
4913 if (err) {
4914 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
4915 "aborting.\n");
4916 goto err_out_free_netdev;
4918 pci_set_master(pdev);
4920 /* we must always turn on parity response or else parity
4921 * doesn't get generated properly. disable SERR/PERR as well.
4922 * in addition, we want to turn MWI on.
4924 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4925 pci_cmd &= ~PCI_COMMAND_SERR;
4926 pci_cmd |= PCI_COMMAND_PARITY;
4927 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4928 pci_set_mwi(pdev);
4930 * On some architectures, the default cache line size set
4931 * by pci_set_mwi reduces perforamnce. We have to increase
4932 * it for this case. To start, we'll print some configuration
4933 * data.
4935 #if 1
4936 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4937 &orig_cacheline_size);
4938 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4939 cas_cacheline_size =
4940 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4941 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4942 if (pci_write_config_byte(pdev,
4943 PCI_CACHE_LINE_SIZE,
4944 cas_cacheline_size)) {
4945 printk(KERN_ERR PFX "Could not set PCI cache "
4946 "line size\n");
4947 goto err_write_cacheline;
4950 #endif
4953 /* Configure DMA attributes. */
4954 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4955 pci_using_dac = 1;
4956 err = pci_set_consistent_dma_mask(pdev,
4957 DMA_64BIT_MASK);
4958 if (err < 0) {
4959 printk(KERN_ERR PFX "Unable to obtain 64-bit DMA "
4960 "for consistent allocations\n");
4961 goto err_out_free_res;
4964 } else {
4965 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4966 if (err) {
4967 printk(KERN_ERR PFX "No usable DMA configuration, "
4968 "aborting.\n");
4969 goto err_out_free_res;
4971 pci_using_dac = 0;
4974 casreg_base = pci_resource_start(pdev, 0);
4975 casreg_len = pci_resource_len(pdev, 0);
4977 cp = netdev_priv(dev);
4978 cp->pdev = pdev;
4979 #if 1
4980 /* A value of 0 indicates we never explicitly set it */
4981 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4982 #endif
4983 cp->dev = dev;
4984 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4985 cassini_debug;
4987 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4988 cp->link_transition_jiffies_valid = 0;
4990 spin_lock_init(&cp->lock);
4991 spin_lock_init(&cp->rx_inuse_lock);
4992 spin_lock_init(&cp->rx_spare_lock);
4993 for (i = 0; i < N_TX_RINGS; i++) {
4994 spin_lock_init(&cp->stat_lock[i]);
4995 spin_lock_init(&cp->tx_lock[i]);
4997 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4998 mutex_init(&cp->pm_mutex);
5000 init_timer(&cp->link_timer);
5001 cp->link_timer.function = cas_link_timer;
5002 cp->link_timer.data = (unsigned long) cp;
5004 #if 1
5005 /* Just in case the implementation of atomic operations
5006 * change so that an explicit initialization is necessary.
5008 atomic_set(&cp->reset_task_pending, 0);
5009 atomic_set(&cp->reset_task_pending_all, 0);
5010 atomic_set(&cp->reset_task_pending_spare, 0);
5011 atomic_set(&cp->reset_task_pending_mtu, 0);
5012 #endif
5013 INIT_WORK(&cp->reset_task, cas_reset_task, cp);
5015 /* Default link parameters */
5016 if (link_mode >= 0 && link_mode <= 6)
5017 cp->link_cntl = link_modes[link_mode];
5018 else
5019 cp->link_cntl = BMCR_ANENABLE;
5020 cp->lstate = link_down;
5021 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5022 netif_carrier_off(cp->dev);
5023 cp->timer_ticks = 0;
5025 /* give us access to cassini registers */
5026 cp->regs = ioremap(casreg_base, casreg_len);
5027 if (cp->regs == 0UL) {
5028 printk(KERN_ERR PFX "Cannot map device registers, "
5029 "aborting.\n");
5030 goto err_out_free_res;
5032 cp->casreg_len = casreg_len;
5034 pci_save_state(pdev);
5035 cas_check_pci_invariants(cp);
5036 cas_hard_reset(cp);
5037 cas_reset(cp, 0);
5038 if (cas_check_invariants(cp))
5039 goto err_out_iounmap;
5041 cp->init_block = (struct cas_init_block *)
5042 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5043 &cp->block_dvma);
5044 if (!cp->init_block) {
5045 printk(KERN_ERR PFX "Cannot allocate init block, "
5046 "aborting.\n");
5047 goto err_out_iounmap;
5050 for (i = 0; i < N_TX_RINGS; i++)
5051 cp->init_txds[i] = cp->init_block->txds[i];
5053 for (i = 0; i < N_RX_DESC_RINGS; i++)
5054 cp->init_rxds[i] = cp->init_block->rxds[i];
5056 for (i = 0; i < N_RX_COMP_RINGS; i++)
5057 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5059 for (i = 0; i < N_RX_FLOWS; i++)
5060 skb_queue_head_init(&cp->rx_flows[i]);
5062 dev->open = cas_open;
5063 dev->stop = cas_close;
5064 dev->hard_start_xmit = cas_start_xmit;
5065 dev->get_stats = cas_get_stats;
5066 dev->set_multicast_list = cas_set_multicast;
5067 dev->do_ioctl = cas_ioctl;
5068 dev->ethtool_ops = &cas_ethtool_ops;
5069 dev->tx_timeout = cas_tx_timeout;
5070 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5071 dev->change_mtu = cas_change_mtu;
5072 #ifdef USE_NAPI
5073 dev->poll = cas_poll;
5074 dev->weight = 64;
5075 #endif
5076 #ifdef CONFIG_NET_POLL_CONTROLLER
5077 dev->poll_controller = cas_netpoll;
5078 #endif
5079 dev->irq = pdev->irq;
5080 dev->dma = 0;
5082 /* Cassini features. */
5083 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5084 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5086 if (pci_using_dac)
5087 dev->features |= NETIF_F_HIGHDMA;
5089 if (register_netdev(dev)) {
5090 printk(KERN_ERR PFX "Cannot register net device, "
5091 "aborting.\n");
5092 goto err_out_free_consistent;
5095 i = readl(cp->regs + REG_BIM_CFG);
5096 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5097 "Ethernet[%d] ", dev->name,
5098 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5099 (i & BIM_CFG_32BIT) ? "32" : "64",
5100 (i & BIM_CFG_66MHZ) ? "66" : "33",
5101 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq);
5103 for (i = 0; i < 6; i++)
5104 printk("%2.2x%c", dev->dev_addr[i],
5105 i == 5 ? ' ' : ':');
5106 printk("\n");
5108 pci_set_drvdata(pdev, dev);
5109 cp->hw_running = 1;
5110 cas_entropy_reset(cp);
5111 cas_phy_init(cp);
5112 cas_begin_auto_negotiation(cp, NULL);
5113 return 0;
5115 err_out_free_consistent:
5116 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5117 cp->init_block, cp->block_dvma);
5119 err_out_iounmap:
5120 mutex_lock(&cp->pm_mutex);
5121 if (cp->hw_running)
5122 cas_shutdown(cp);
5123 mutex_unlock(&cp->pm_mutex);
5125 iounmap(cp->regs);
5128 err_out_free_res:
5129 pci_release_regions(pdev);
5131 err_write_cacheline:
5132 /* Try to restore it in case the error occured after we
5133 * set it.
5135 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5137 err_out_free_netdev:
5138 free_netdev(dev);
5140 err_out_disable_pdev:
5141 pci_disable_device(pdev);
5142 pci_set_drvdata(pdev, NULL);
5143 return -ENODEV;
5146 static void __devexit cas_remove_one(struct pci_dev *pdev)
5148 struct net_device *dev = pci_get_drvdata(pdev);
5149 struct cas *cp;
5150 if (!dev)
5151 return;
5153 cp = netdev_priv(dev);
5154 unregister_netdev(dev);
5156 mutex_lock(&cp->pm_mutex);
5157 flush_scheduled_work();
5158 if (cp->hw_running)
5159 cas_shutdown(cp);
5160 mutex_unlock(&cp->pm_mutex);
5162 #if 1
5163 if (cp->orig_cacheline_size) {
5164 /* Restore the cache line size if we had modified
5165 * it.
5167 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5168 cp->orig_cacheline_size);
5170 #endif
5171 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5172 cp->init_block, cp->block_dvma);
5173 iounmap(cp->regs);
5174 free_netdev(dev);
5175 pci_release_regions(pdev);
5176 pci_disable_device(pdev);
5177 pci_set_drvdata(pdev, NULL);
5180 #ifdef CONFIG_PM
5181 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5183 struct net_device *dev = pci_get_drvdata(pdev);
5184 struct cas *cp = netdev_priv(dev);
5185 unsigned long flags;
5187 mutex_lock(&cp->pm_mutex);
5189 /* If the driver is opened, we stop the DMA */
5190 if (cp->opened) {
5191 netif_device_detach(dev);
5193 cas_lock_all_save(cp, flags);
5195 /* We can set the second arg of cas_reset to 0
5196 * because on resume, we'll call cas_init_hw with
5197 * its second arg set so that autonegotiation is
5198 * restarted.
5200 cas_reset(cp, 0);
5201 cas_clean_rings(cp);
5202 cas_unlock_all_restore(cp, flags);
5205 if (cp->hw_running)
5206 cas_shutdown(cp);
5207 mutex_unlock(&cp->pm_mutex);
5209 return 0;
5212 static int cas_resume(struct pci_dev *pdev)
5214 struct net_device *dev = pci_get_drvdata(pdev);
5215 struct cas *cp = netdev_priv(dev);
5217 printk(KERN_INFO "%s: resuming\n", dev->name);
5219 mutex_lock(&cp->pm_mutex);
5220 cas_hard_reset(cp);
5221 if (cp->opened) {
5222 unsigned long flags;
5223 cas_lock_all_save(cp, flags);
5224 cas_reset(cp, 0);
5225 cp->hw_running = 1;
5226 cas_clean_rings(cp);
5227 cas_init_hw(cp, 1);
5228 cas_unlock_all_restore(cp, flags);
5230 netif_device_attach(dev);
5232 mutex_unlock(&cp->pm_mutex);
5233 return 0;
5235 #endif /* CONFIG_PM */
5237 static struct pci_driver cas_driver = {
5238 .name = DRV_MODULE_NAME,
5239 .id_table = cas_pci_tbl,
5240 .probe = cas_init_one,
5241 .remove = __devexit_p(cas_remove_one),
5242 #ifdef CONFIG_PM
5243 .suspend = cas_suspend,
5244 .resume = cas_resume
5245 #endif
5248 static int __init cas_init(void)
5250 if (linkdown_timeout > 0)
5251 link_transition_timeout = linkdown_timeout * HZ;
5252 else
5253 link_transition_timeout = 0;
5255 return pci_module_init(&cas_driver);
5258 static void __exit cas_cleanup(void)
5260 pci_unregister_driver(&cas_driver);
5263 module_init(cas_init);
5264 module_exit(cas_cleanup);