1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
33 * o Added another fix for the pass false carrier bit
35 * o Need to rebuild with noew version number for the pass false carrier
38 * o fixup for tso workaround to disable it for pci-x
39 * o fix mem leak on 82542
40 * o fixes for 10 Mb/s connections and incorrect stats
42 * o hardware workaround to only set "speed mode" bit for 1G link.
44 * o wake on lan support modified for device ID 10B5
45 * o fix dhcp + vlan issue not making it to the iAMT firmware
47 * o New hardware support for the Gigabit NIC embedded in the south bridge
48 * o Fixes to the recycling logic (skb->tail) from IBM LTC
50 * o incorporate fix for recycled skbs from IBM LTC
52 * o Honor eeprom setting for enabling/disabling Wake On Lan
54 * o Fix memory leak in rx ring handling for PCI Express adapters
56 * o Patch from Jesper Juhl to remove redundant NULL checks for kfree
58 * o Render logic that sets/resets DRV_LOAD as inline functions to
59 * avoid code replication. If f/w is AMT then set DRV_LOAD only when
60 * network interface is open.
61 * o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
62 * o Adjust PBA partioning for Jumbo frames using MTU size and not
65 * o Use adapter->tx_timeout_factor in Tx Hung Detect logic
66 * (e1000_clean_tx_irq)
67 * o Support for 8086:10B5 device (Quad Port)
70 char e1000_driver_name
[] = "e1000";
71 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
72 #ifndef CONFIG_E1000_NAPI
75 #define DRIVERNAPI "-NAPI"
77 #define DRV_VERSION "7.0.33-k2"DRIVERNAPI
78 char e1000_driver_version
[] = DRV_VERSION
;
79 static char e1000_copyright
[] = "Copyright (c) 1999-2005 Intel Corporation.";
81 /* e1000_pci_tbl - PCI Device ID Table
83 * Last entry must be all 0s
86 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
88 static struct pci_device_id e1000_pci_tbl
[] = {
89 INTEL_E1000_ETHERNET_DEVICE(0x1000),
90 INTEL_E1000_ETHERNET_DEVICE(0x1001),
91 INTEL_E1000_ETHERNET_DEVICE(0x1004),
92 INTEL_E1000_ETHERNET_DEVICE(0x1008),
93 INTEL_E1000_ETHERNET_DEVICE(0x1009),
94 INTEL_E1000_ETHERNET_DEVICE(0x100C),
95 INTEL_E1000_ETHERNET_DEVICE(0x100D),
96 INTEL_E1000_ETHERNET_DEVICE(0x100E),
97 INTEL_E1000_ETHERNET_DEVICE(0x100F),
98 INTEL_E1000_ETHERNET_DEVICE(0x1010),
99 INTEL_E1000_ETHERNET_DEVICE(0x1011),
100 INTEL_E1000_ETHERNET_DEVICE(0x1012),
101 INTEL_E1000_ETHERNET_DEVICE(0x1013),
102 INTEL_E1000_ETHERNET_DEVICE(0x1014),
103 INTEL_E1000_ETHERNET_DEVICE(0x1015),
104 INTEL_E1000_ETHERNET_DEVICE(0x1016),
105 INTEL_E1000_ETHERNET_DEVICE(0x1017),
106 INTEL_E1000_ETHERNET_DEVICE(0x1018),
107 INTEL_E1000_ETHERNET_DEVICE(0x1019),
108 INTEL_E1000_ETHERNET_DEVICE(0x101A),
109 INTEL_E1000_ETHERNET_DEVICE(0x101D),
110 INTEL_E1000_ETHERNET_DEVICE(0x101E),
111 INTEL_E1000_ETHERNET_DEVICE(0x1026),
112 INTEL_E1000_ETHERNET_DEVICE(0x1027),
113 INTEL_E1000_ETHERNET_DEVICE(0x1028),
114 INTEL_E1000_ETHERNET_DEVICE(0x105E),
115 INTEL_E1000_ETHERNET_DEVICE(0x105F),
116 INTEL_E1000_ETHERNET_DEVICE(0x1060),
117 INTEL_E1000_ETHERNET_DEVICE(0x1075),
118 INTEL_E1000_ETHERNET_DEVICE(0x1076),
119 INTEL_E1000_ETHERNET_DEVICE(0x1077),
120 INTEL_E1000_ETHERNET_DEVICE(0x1078),
121 INTEL_E1000_ETHERNET_DEVICE(0x1079),
122 INTEL_E1000_ETHERNET_DEVICE(0x107A),
123 INTEL_E1000_ETHERNET_DEVICE(0x107B),
124 INTEL_E1000_ETHERNET_DEVICE(0x107C),
125 INTEL_E1000_ETHERNET_DEVICE(0x107D),
126 INTEL_E1000_ETHERNET_DEVICE(0x107E),
127 INTEL_E1000_ETHERNET_DEVICE(0x107F),
128 INTEL_E1000_ETHERNET_DEVICE(0x108A),
129 INTEL_E1000_ETHERNET_DEVICE(0x108B),
130 INTEL_E1000_ETHERNET_DEVICE(0x108C),
131 INTEL_E1000_ETHERNET_DEVICE(0x1096),
132 INTEL_E1000_ETHERNET_DEVICE(0x1098),
133 INTEL_E1000_ETHERNET_DEVICE(0x1099),
134 INTEL_E1000_ETHERNET_DEVICE(0x109A),
135 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
136 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
137 /* required last entry */
141 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
143 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
144 struct e1000_tx_ring
*txdr
);
145 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
146 struct e1000_rx_ring
*rxdr
);
147 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
148 struct e1000_tx_ring
*tx_ring
);
149 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
150 struct e1000_rx_ring
*rx_ring
);
152 /* Local Function Prototypes */
154 static int e1000_init_module(void);
155 static void e1000_exit_module(void);
156 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
157 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
158 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
159 static int e1000_sw_init(struct e1000_adapter
*adapter
);
160 static int e1000_open(struct net_device
*netdev
);
161 static int e1000_close(struct net_device
*netdev
);
162 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
163 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
164 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
165 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
166 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
167 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
168 struct e1000_tx_ring
*tx_ring
);
169 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
170 struct e1000_rx_ring
*rx_ring
);
171 static void e1000_set_multi(struct net_device
*netdev
);
172 static void e1000_update_phy_info(unsigned long data
);
173 static void e1000_watchdog(unsigned long data
);
174 static void e1000_watchdog_task(struct e1000_adapter
*adapter
);
175 static void e1000_82547_tx_fifo_stall(unsigned long data
);
176 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
177 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
178 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
179 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
180 static irqreturn_t
e1000_intr(int irq
, void *data
, struct pt_regs
*regs
);
181 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
182 struct e1000_tx_ring
*tx_ring
);
183 #ifdef CONFIG_E1000_NAPI
184 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
185 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
186 struct e1000_rx_ring
*rx_ring
,
187 int *work_done
, int work_to_do
);
188 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
189 struct e1000_rx_ring
*rx_ring
,
190 int *work_done
, int work_to_do
);
192 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
193 struct e1000_rx_ring
*rx_ring
);
194 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
195 struct e1000_rx_ring
*rx_ring
);
197 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
198 struct e1000_rx_ring
*rx_ring
,
200 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
201 struct e1000_rx_ring
*rx_ring
,
203 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
204 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
206 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
207 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
208 static void e1000_tx_timeout(struct net_device
*dev
);
209 static void e1000_reset_task(struct net_device
*dev
);
210 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
211 static inline int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
212 struct sk_buff
*skb
);
214 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
215 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
216 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
217 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
220 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
221 static int e1000_resume(struct pci_dev
*pdev
);
224 #ifdef CONFIG_NET_POLL_CONTROLLER
225 /* for netdump / net console */
226 static void e1000_netpoll (struct net_device
*netdev
);
230 static struct pci_driver e1000_driver
= {
231 .name
= e1000_driver_name
,
232 .id_table
= e1000_pci_tbl
,
233 .probe
= e1000_probe
,
234 .remove
= __devexit_p(e1000_remove
),
235 /* Power Managment Hooks */
237 .suspend
= e1000_suspend
,
238 .resume
= e1000_resume
242 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
243 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
244 MODULE_LICENSE("GPL");
245 MODULE_VERSION(DRV_VERSION
);
247 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
248 module_param(debug
, int, 0);
249 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
252 * e1000_init_module - Driver Registration Routine
254 * e1000_init_module is the first routine called when the driver is
255 * loaded. All it does is register with the PCI subsystem.
259 e1000_init_module(void)
262 printk(KERN_INFO
"%s - version %s\n",
263 e1000_driver_string
, e1000_driver_version
);
265 printk(KERN_INFO
"%s\n", e1000_copyright
);
267 ret
= pci_module_init(&e1000_driver
);
272 module_init(e1000_init_module
);
275 * e1000_exit_module - Driver Exit Cleanup Routine
277 * e1000_exit_module is called just before the driver is removed
282 e1000_exit_module(void)
284 pci_unregister_driver(&e1000_driver
);
287 module_exit(e1000_exit_module
);
290 * e1000_irq_disable - Mask off interrupt generation on the NIC
291 * @adapter: board private structure
295 e1000_irq_disable(struct e1000_adapter
*adapter
)
297 atomic_inc(&adapter
->irq_sem
);
298 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
299 E1000_WRITE_FLUSH(&adapter
->hw
);
300 synchronize_irq(adapter
->pdev
->irq
);
304 * e1000_irq_enable - Enable default interrupt generation settings
305 * @adapter: board private structure
309 e1000_irq_enable(struct e1000_adapter
*adapter
)
311 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
312 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
313 E1000_WRITE_FLUSH(&adapter
->hw
);
318 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
320 struct net_device
*netdev
= adapter
->netdev
;
321 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
322 uint16_t old_vid
= adapter
->mng_vlan_id
;
323 if (adapter
->vlgrp
) {
324 if (!adapter
->vlgrp
->vlan_devices
[vid
]) {
325 if (adapter
->hw
.mng_cookie
.status
&
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
327 e1000_vlan_rx_add_vid(netdev
, vid
);
328 adapter
->mng_vlan_id
= vid
;
330 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
332 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
334 !adapter
->vlgrp
->vlan_devices
[old_vid
])
335 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
337 adapter
->mng_vlan_id
= vid
;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the netowrk i/f is closed.
353 e1000_release_hw_control(struct e1000_adapter
*adapter
)
358 /* Let firmware taken over control of h/w */
359 switch (adapter
->hw
.mac_type
) {
362 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
363 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
364 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
367 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
368 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
369 swsm
& ~E1000_SWSM_DRV_LOAD
);
376 * e1000_get_hw_control - get control of the h/w from f/w
377 * @adapter: address of board private structure
379 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
380 * For ASF and Pass Through versions of f/w this means that
381 * the driver is loaded. For AMT version (only with 82573)
382 * of the f/w this means that the netowrk i/f is open.
387 e1000_get_hw_control(struct e1000_adapter
*adapter
)
391 /* Let firmware know the driver has taken over */
392 switch (adapter
->hw
.mac_type
) {
395 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
396 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
397 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
400 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
401 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
402 swsm
| E1000_SWSM_DRV_LOAD
);
410 e1000_up(struct e1000_adapter
*adapter
)
412 struct net_device
*netdev
= adapter
->netdev
;
415 /* hardware has been reset, we need to reload some things */
417 /* Reset the PHY if it was previously powered down */
418 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
420 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
421 if (mii_reg
& MII_CR_POWER_DOWN
)
422 e1000_phy_reset(&adapter
->hw
);
425 e1000_set_multi(netdev
);
427 e1000_restore_vlan(adapter
);
429 e1000_configure_tx(adapter
);
430 e1000_setup_rctl(adapter
);
431 e1000_configure_rx(adapter
);
432 /* call E1000_DESC_UNUSED which always leaves
433 * at least 1 descriptor unused to make sure
434 * next_to_use != next_to_clean */
435 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
436 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
437 adapter
->alloc_rx_buf(adapter
, ring
,
438 E1000_DESC_UNUSED(ring
));
441 #ifdef CONFIG_PCI_MSI
442 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
443 adapter
->have_msi
= TRUE
;
444 if ((err
= pci_enable_msi(adapter
->pdev
))) {
446 "Unable to allocate MSI interrupt Error: %d\n", err
);
447 adapter
->have_msi
= FALSE
;
451 if ((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
,
452 SA_SHIRQ
| SA_SAMPLE_RANDOM
,
453 netdev
->name
, netdev
))) {
455 "Unable to allocate interrupt Error: %d\n", err
);
459 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
461 mod_timer(&adapter
->watchdog_timer
, jiffies
);
463 #ifdef CONFIG_E1000_NAPI
464 netif_poll_enable(netdev
);
466 e1000_irq_enable(adapter
);
472 e1000_down(struct e1000_adapter
*adapter
)
474 struct net_device
*netdev
= adapter
->netdev
;
475 boolean_t mng_mode_enabled
= (adapter
->hw
.mac_type
>= e1000_82571
) &&
476 e1000_check_mng_mode(&adapter
->hw
);
478 e1000_irq_disable(adapter
);
480 free_irq(adapter
->pdev
->irq
, netdev
);
481 #ifdef CONFIG_PCI_MSI
482 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
&&
483 adapter
->have_msi
== TRUE
)
484 pci_disable_msi(adapter
->pdev
);
486 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
487 del_timer_sync(&adapter
->watchdog_timer
);
488 del_timer_sync(&adapter
->phy_info_timer
);
490 #ifdef CONFIG_E1000_NAPI
491 netif_poll_disable(netdev
);
493 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
494 adapter
->link_speed
= 0;
495 adapter
->link_duplex
= 0;
496 netif_carrier_off(netdev
);
497 netif_stop_queue(netdev
);
499 e1000_reset(adapter
);
500 e1000_clean_all_tx_rings(adapter
);
501 e1000_clean_all_rx_rings(adapter
);
503 /* Power down the PHY so no link is implied when interface is down *
504 * The PHY cannot be powered down if any of the following is TRUE *
507 * (c) SoL/IDER session is active */
508 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
509 adapter
->hw
.media_type
== e1000_media_type_copper
&&
510 !(E1000_READ_REG(&adapter
->hw
, MANC
) & E1000_MANC_SMBUS_EN
) &&
512 !e1000_check_phy_reset_block(&adapter
->hw
)) {
514 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
515 mii_reg
|= MII_CR_POWER_DOWN
;
516 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
522 e1000_reset(struct e1000_adapter
*adapter
)
525 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
527 /* Repartition Pba for greater than 9k mtu
528 * To take effect CTRL.RST is required.
531 switch (adapter
->hw
.mac_type
) {
533 case e1000_82547_rev_2
:
538 case e1000_80003es2lan
:
549 if ((adapter
->hw
.mac_type
!= e1000_82573
) &&
550 (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
))
551 pba
-= 8; /* allocate more FIFO for Tx */
554 if (adapter
->hw
.mac_type
== e1000_82547
) {
555 adapter
->tx_fifo_head
= 0;
556 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
557 adapter
->tx_fifo_size
=
558 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
559 atomic_set(&adapter
->tx_fifo_stall
, 0);
562 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
564 /* flow control settings */
565 /* Set the FC high water mark to 90% of the FIFO size.
566 * Required to clear last 3 LSB */
567 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
569 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
570 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
571 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
572 adapter
->hw
.fc_pause_time
= 0xFFFF;
574 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
575 adapter
->hw
.fc_send_xon
= 1;
576 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
578 /* Allow time for pending master requests to run */
579 e1000_reset_hw(&adapter
->hw
);
580 if (adapter
->hw
.mac_type
>= e1000_82544
)
581 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
582 if (e1000_init_hw(&adapter
->hw
))
583 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
584 e1000_update_mng_vlan(adapter
);
585 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
586 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
588 e1000_reset_adaptive(&adapter
->hw
);
589 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
590 if (adapter
->en_mng_pt
) {
591 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
592 manc
|= (E1000_MANC_ARP_EN
| E1000_MANC_EN_MNG2HOST
);
593 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
598 * e1000_probe - Device Initialization Routine
599 * @pdev: PCI device information struct
600 * @ent: entry in e1000_pci_tbl
602 * Returns 0 on success, negative on failure
604 * e1000_probe initializes an adapter identified by a pci_dev structure.
605 * The OS initialization, configuring of the adapter private structure,
606 * and a hardware reset occur.
610 e1000_probe(struct pci_dev
*pdev
,
611 const struct pci_device_id
*ent
)
613 struct net_device
*netdev
;
614 struct e1000_adapter
*adapter
;
615 unsigned long mmio_start
, mmio_len
;
617 static int cards_found
= 0;
618 static int e1000_ksp3_port_a
= 0; /* global ksp3 port a indication */
619 int i
, err
, pci_using_dac
;
620 uint16_t eeprom_data
;
621 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
622 if ((err
= pci_enable_device(pdev
)))
625 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
))) {
628 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
629 E1000_ERR("No usable DMA configuration, aborting\n");
635 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
638 pci_set_master(pdev
);
640 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
643 goto err_alloc_etherdev
;
646 SET_MODULE_OWNER(netdev
);
647 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
649 pci_set_drvdata(pdev
, netdev
);
650 adapter
= netdev_priv(netdev
);
651 adapter
->netdev
= netdev
;
652 adapter
->pdev
= pdev
;
653 adapter
->hw
.back
= adapter
;
654 adapter
->msg_enable
= (1 << debug
) - 1;
656 mmio_start
= pci_resource_start(pdev
, BAR_0
);
657 mmio_len
= pci_resource_len(pdev
, BAR_0
);
659 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
660 if (!adapter
->hw
.hw_addr
) {
665 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
666 if (pci_resource_len(pdev
, i
) == 0)
668 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
669 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
674 netdev
->open
= &e1000_open
;
675 netdev
->stop
= &e1000_close
;
676 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
677 netdev
->get_stats
= &e1000_get_stats
;
678 netdev
->set_multicast_list
= &e1000_set_multi
;
679 netdev
->set_mac_address
= &e1000_set_mac
;
680 netdev
->change_mtu
= &e1000_change_mtu
;
681 netdev
->do_ioctl
= &e1000_ioctl
;
682 e1000_set_ethtool_ops(netdev
);
683 netdev
->tx_timeout
= &e1000_tx_timeout
;
684 netdev
->watchdog_timeo
= 5 * HZ
;
685 #ifdef CONFIG_E1000_NAPI
686 netdev
->poll
= &e1000_clean
;
689 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
690 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
691 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
692 #ifdef CONFIG_NET_POLL_CONTROLLER
693 netdev
->poll_controller
= e1000_netpoll
;
695 strcpy(netdev
->name
, pci_name(pdev
));
697 netdev
->mem_start
= mmio_start
;
698 netdev
->mem_end
= mmio_start
+ mmio_len
;
699 netdev
->base_addr
= adapter
->hw
.io_base
;
701 adapter
->bd_number
= cards_found
;
703 /* setup the private structure */
705 if ((err
= e1000_sw_init(adapter
)))
708 if ((err
= e1000_check_phy_reset_block(&adapter
->hw
)))
709 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
711 /* if ksp3, indicate if it's port a being setup */
712 if (pdev
->device
== E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
&&
713 e1000_ksp3_port_a
== 0)
714 adapter
->ksp3_port_a
= 1;
716 /* Reset for multiple KP3 adapters */
717 if (e1000_ksp3_port_a
== 4)
718 e1000_ksp3_port_a
= 0;
720 if (adapter
->hw
.mac_type
>= e1000_82543
) {
721 netdev
->features
= NETIF_F_SG
|
725 NETIF_F_HW_VLAN_FILTER
;
729 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
730 (adapter
->hw
.mac_type
!= e1000_82547
))
731 netdev
->features
|= NETIF_F_TSO
;
733 #ifdef NETIF_F_TSO_IPV6
734 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
735 netdev
->features
|= NETIF_F_TSO_IPV6
;
739 netdev
->features
|= NETIF_F_HIGHDMA
;
741 /* hard_start_xmit is safe against parallel locking */
742 netdev
->features
|= NETIF_F_LLTX
;
744 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
746 /* before reading the EEPROM, reset the controller to
747 * put the device in a known good starting state */
749 e1000_reset_hw(&adapter
->hw
);
751 /* make sure the EEPROM is good */
753 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
754 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
759 /* copy the MAC address out of the EEPROM */
761 if (e1000_read_mac_addr(&adapter
->hw
))
762 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
763 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
764 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
766 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
767 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
772 e1000_read_part_num(&adapter
->hw
, &(adapter
->part_num
));
774 e1000_get_bus_info(&adapter
->hw
);
776 init_timer(&adapter
->tx_fifo_stall_timer
);
777 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
778 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
780 init_timer(&adapter
->watchdog_timer
);
781 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
782 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
784 INIT_WORK(&adapter
->watchdog_task
,
785 (void (*)(void *))e1000_watchdog_task
, adapter
);
787 init_timer(&adapter
->phy_info_timer
);
788 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
789 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
791 INIT_WORK(&adapter
->reset_task
,
792 (void (*)(void *))e1000_reset_task
, netdev
);
794 /* we're going to reset, so assume we have no link for now */
796 netif_carrier_off(netdev
);
797 netif_stop_queue(netdev
);
799 e1000_check_options(adapter
);
801 /* Initial Wake on LAN setting
802 * If APM wake is enabled in the EEPROM,
803 * enable the ACPI Magic Packet filter
806 switch (adapter
->hw
.mac_type
) {
807 case e1000_82542_rev2_0
:
808 case e1000_82542_rev2_1
:
812 e1000_read_eeprom(&adapter
->hw
,
813 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
814 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
817 case e1000_82546_rev_3
:
819 case e1000_80003es2lan
:
820 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
821 e1000_read_eeprom(&adapter
->hw
,
822 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
827 e1000_read_eeprom(&adapter
->hw
,
828 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
831 if (eeprom_data
& eeprom_apme_mask
)
832 adapter
->wol
|= E1000_WUFC_MAG
;
834 /* print bus type/speed/width info */
836 struct e1000_hw
*hw
= &adapter
->hw
;
837 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
838 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
839 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
840 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
841 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
842 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
843 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
844 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
845 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
846 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
847 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
851 for (i
= 0; i
< 6; i
++)
852 printk("%2.2x%c", netdev
->dev_addr
[i
], i
== 5 ? '\n' : ':');
854 /* reset the hardware with the new settings */
855 e1000_reset(adapter
);
857 /* If the controller is 82573 and f/w is AMT, do not set
858 * DRV_LOAD until the interface is up. For all other cases,
859 * let the f/w know that the h/w is now under the control
861 if (adapter
->hw
.mac_type
!= e1000_82573
||
862 !e1000_check_mng_mode(&adapter
->hw
))
863 e1000_get_hw_control(adapter
);
865 strcpy(netdev
->name
, "eth%d");
866 if ((err
= register_netdev(netdev
)))
869 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
877 iounmap(adapter
->hw
.hw_addr
);
881 pci_release_regions(pdev
);
886 * e1000_remove - Device Removal Routine
887 * @pdev: PCI device information struct
889 * e1000_remove is called by the PCI subsystem to alert the driver
890 * that it should release a PCI device. The could be caused by a
891 * Hot-Plug event, or because the driver is going to be removed from
895 static void __devexit
896 e1000_remove(struct pci_dev
*pdev
)
898 struct net_device
*netdev
= pci_get_drvdata(pdev
);
899 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
901 #ifdef CONFIG_E1000_NAPI
905 flush_scheduled_work();
907 if (adapter
->hw
.mac_type
>= e1000_82540
&&
908 adapter
->hw
.media_type
== e1000_media_type_copper
) {
909 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
910 if (manc
& E1000_MANC_SMBUS_EN
) {
911 manc
|= E1000_MANC_ARP_EN
;
912 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
916 /* Release control of h/w to f/w. If f/w is AMT enabled, this
917 * would have already happened in close and is redundant. */
918 e1000_release_hw_control(adapter
);
920 unregister_netdev(netdev
);
921 #ifdef CONFIG_E1000_NAPI
922 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
923 dev_put(&adapter
->polling_netdev
[i
]);
926 if (!e1000_check_phy_reset_block(&adapter
->hw
))
927 e1000_phy_hw_reset(&adapter
->hw
);
929 kfree(adapter
->tx_ring
);
930 kfree(adapter
->rx_ring
);
931 #ifdef CONFIG_E1000_NAPI
932 kfree(adapter
->polling_netdev
);
935 iounmap(adapter
->hw
.hw_addr
);
936 pci_release_regions(pdev
);
940 pci_disable_device(pdev
);
944 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
945 * @adapter: board private structure to initialize
947 * e1000_sw_init initializes the Adapter private data structure.
948 * Fields are initialized based on PCI device information and
949 * OS network device settings (MTU size).
953 e1000_sw_init(struct e1000_adapter
*adapter
)
955 struct e1000_hw
*hw
= &adapter
->hw
;
956 struct net_device
*netdev
= adapter
->netdev
;
957 struct pci_dev
*pdev
= adapter
->pdev
;
958 #ifdef CONFIG_E1000_NAPI
962 /* PCI config space info */
964 hw
->vendor_id
= pdev
->vendor
;
965 hw
->device_id
= pdev
->device
;
966 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
967 hw
->subsystem_id
= pdev
->subsystem_device
;
969 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
971 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
973 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
974 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_256
;
975 hw
->max_frame_size
= netdev
->mtu
+
976 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
977 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
979 /* identify the MAC */
981 if (e1000_set_mac_type(hw
)) {
982 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
986 /* initialize eeprom parameters */
988 if (e1000_init_eeprom_params(hw
)) {
989 E1000_ERR("EEPROM initialization failed\n");
993 switch (hw
->mac_type
) {
998 case e1000_82541_rev_2
:
999 case e1000_82547_rev_2
:
1000 hw
->phy_init_script
= 1;
1004 e1000_set_media_type(hw
);
1006 hw
->wait_autoneg_complete
= FALSE
;
1007 hw
->tbi_compatibility_en
= TRUE
;
1008 hw
->adaptive_ifs
= TRUE
;
1010 /* Copper options */
1012 if (hw
->media_type
== e1000_media_type_copper
) {
1013 hw
->mdix
= AUTO_ALL_MODES
;
1014 hw
->disable_polarity_correction
= FALSE
;
1015 hw
->master_slave
= E1000_MASTER_SLAVE
;
1018 adapter
->num_tx_queues
= 1;
1019 adapter
->num_rx_queues
= 1;
1021 if (e1000_alloc_queues(adapter
)) {
1022 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1026 #ifdef CONFIG_E1000_NAPI
1027 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1028 adapter
->polling_netdev
[i
].priv
= adapter
;
1029 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
1030 adapter
->polling_netdev
[i
].weight
= 64;
1031 dev_hold(&adapter
->polling_netdev
[i
]);
1032 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1034 spin_lock_init(&adapter
->tx_queue_lock
);
1037 atomic_set(&adapter
->irq_sem
, 1);
1038 spin_lock_init(&adapter
->stats_lock
);
1044 * e1000_alloc_queues - Allocate memory for all rings
1045 * @adapter: board private structure to initialize
1047 * We allocate one ring per queue at run-time since we don't know the
1048 * number of queues at compile-time. The polling_netdev array is
1049 * intended for Multiqueue, but should work fine with a single queue.
1052 static int __devinit
1053 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1057 size
= sizeof(struct e1000_tx_ring
) * adapter
->num_tx_queues
;
1058 adapter
->tx_ring
= kmalloc(size
, GFP_KERNEL
);
1059 if (!adapter
->tx_ring
)
1061 memset(adapter
->tx_ring
, 0, size
);
1063 size
= sizeof(struct e1000_rx_ring
) * adapter
->num_rx_queues
;
1064 adapter
->rx_ring
= kmalloc(size
, GFP_KERNEL
);
1065 if (!adapter
->rx_ring
) {
1066 kfree(adapter
->tx_ring
);
1069 memset(adapter
->rx_ring
, 0, size
);
1071 #ifdef CONFIG_E1000_NAPI
1072 size
= sizeof(struct net_device
) * adapter
->num_rx_queues
;
1073 adapter
->polling_netdev
= kmalloc(size
, GFP_KERNEL
);
1074 if (!adapter
->polling_netdev
) {
1075 kfree(adapter
->tx_ring
);
1076 kfree(adapter
->rx_ring
);
1079 memset(adapter
->polling_netdev
, 0, size
);
1082 return E1000_SUCCESS
;
1086 * e1000_open - Called when a network interface is made active
1087 * @netdev: network interface device structure
1089 * Returns 0 on success, negative value on failure
1091 * The open entry point is called when a network interface is made
1092 * active by the system (IFF_UP). At this point all resources needed
1093 * for transmit and receive operations are allocated, the interrupt
1094 * handler is registered with the OS, the watchdog timer is started,
1095 * and the stack is notified that the interface is ready.
1099 e1000_open(struct net_device
*netdev
)
1101 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1104 /* allocate transmit descriptors */
1106 if ((err
= e1000_setup_all_tx_resources(adapter
)))
1109 /* allocate receive descriptors */
1111 if ((err
= e1000_setup_all_rx_resources(adapter
)))
1114 if ((err
= e1000_up(adapter
)))
1116 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1117 if ((adapter
->hw
.mng_cookie
.status
&
1118 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1119 e1000_update_mng_vlan(adapter
);
1122 /* If AMT is enabled, let the firmware know that the network
1123 * interface is now open */
1124 if (adapter
->hw
.mac_type
== e1000_82573
&&
1125 e1000_check_mng_mode(&adapter
->hw
))
1126 e1000_get_hw_control(adapter
);
1128 return E1000_SUCCESS
;
1131 e1000_free_all_rx_resources(adapter
);
1133 e1000_free_all_tx_resources(adapter
);
1135 e1000_reset(adapter
);
1141 * e1000_close - Disables a network interface
1142 * @netdev: network interface device structure
1144 * Returns 0, this is not allowed to fail
1146 * The close entry point is called when an interface is de-activated
1147 * by the OS. The hardware is still under the drivers control, but
1148 * needs to be disabled. A global MAC reset is issued to stop the
1149 * hardware, and all transmit and receive resources are freed.
1153 e1000_close(struct net_device
*netdev
)
1155 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1157 e1000_down(adapter
);
1159 e1000_free_all_tx_resources(adapter
);
1160 e1000_free_all_rx_resources(adapter
);
1162 if ((adapter
->hw
.mng_cookie
.status
&
1163 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1164 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1167 /* If AMT is enabled, let the firmware know that the network
1168 * interface is now closed */
1169 if (adapter
->hw
.mac_type
== e1000_82573
&&
1170 e1000_check_mng_mode(&adapter
->hw
))
1171 e1000_release_hw_control(adapter
);
1177 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1178 * @adapter: address of board private structure
1179 * @start: address of beginning of memory
1180 * @len: length of memory
1182 static inline boolean_t
1183 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1184 void *start
, unsigned long len
)
1186 unsigned long begin
= (unsigned long) start
;
1187 unsigned long end
= begin
+ len
;
1189 /* First rev 82545 and 82546 need to not allow any memory
1190 * write location to cross 64k boundary due to errata 23 */
1191 if (adapter
->hw
.mac_type
== e1000_82545
||
1192 adapter
->hw
.mac_type
== e1000_82546
) {
1193 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1200 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1201 * @adapter: board private structure
1202 * @txdr: tx descriptor ring (for a specific queue) to setup
1204 * Return 0 on success, negative on failure
1208 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1209 struct e1000_tx_ring
*txdr
)
1211 struct pci_dev
*pdev
= adapter
->pdev
;
1214 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1216 txdr
->buffer_info
= vmalloc_node(size
, pcibus_to_node(pdev
->bus
));
1217 if (!txdr
->buffer_info
) {
1219 "Unable to allocate memory for the transmit descriptor ring\n");
1222 memset(txdr
->buffer_info
, 0, size
);
1224 /* round up to nearest 4K */
1226 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1227 E1000_ROUNDUP(txdr
->size
, 4096);
1229 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1232 vfree(txdr
->buffer_info
);
1234 "Unable to allocate memory for the transmit descriptor ring\n");
1238 /* Fix for errata 23, can't cross 64kB boundary */
1239 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1240 void *olddesc
= txdr
->desc
;
1241 dma_addr_t olddma
= txdr
->dma
;
1242 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1243 "at %p\n", txdr
->size
, txdr
->desc
);
1244 /* Try again, without freeing the previous */
1245 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1246 /* Failed allocation, critical failure */
1248 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1249 goto setup_tx_desc_die
;
1252 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1254 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1256 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1258 "Unable to allocate aligned memory "
1259 "for the transmit descriptor ring\n");
1260 vfree(txdr
->buffer_info
);
1263 /* Free old allocation, new allocation was successful */
1264 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1267 memset(txdr
->desc
, 0, txdr
->size
);
1269 txdr
->next_to_use
= 0;
1270 txdr
->next_to_clean
= 0;
1271 spin_lock_init(&txdr
->tx_lock
);
1277 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1278 * (Descriptors) for all queues
1279 * @adapter: board private structure
1281 * If this function returns with an error, then it's possible one or
1282 * more of the rings is populated (while the rest are not). It is the
1283 * callers duty to clean those orphaned rings.
1285 * Return 0 on success, negative on failure
1289 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1293 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1294 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1297 "Allocation for Tx Queue %u failed\n", i
);
1306 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1307 * @adapter: board private structure
1309 * Configure the Tx unit of the MAC after a reset.
1313 e1000_configure_tx(struct e1000_adapter
*adapter
)
1316 struct e1000_hw
*hw
= &adapter
->hw
;
1317 uint32_t tdlen
, tctl
, tipg
, tarc
;
1318 uint32_t ipgr1
, ipgr2
;
1320 /* Setup the HW Tx Head and Tail descriptor pointers */
1322 switch (adapter
->num_tx_queues
) {
1325 tdba
= adapter
->tx_ring
[0].dma
;
1326 tdlen
= adapter
->tx_ring
[0].count
*
1327 sizeof(struct e1000_tx_desc
);
1328 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1329 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1330 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1331 E1000_WRITE_REG(hw
, TDH
, 0);
1332 E1000_WRITE_REG(hw
, TDT
, 0);
1333 adapter
->tx_ring
[0].tdh
= E1000_TDH
;
1334 adapter
->tx_ring
[0].tdt
= E1000_TDT
;
1338 /* Set the default values for the Tx Inter Packet Gap timer */
1340 if (hw
->media_type
== e1000_media_type_fiber
||
1341 hw
->media_type
== e1000_media_type_internal_serdes
)
1342 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1344 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1346 switch (hw
->mac_type
) {
1347 case e1000_82542_rev2_0
:
1348 case e1000_82542_rev2_1
:
1349 tipg
= DEFAULT_82542_TIPG_IPGT
;
1350 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1351 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1353 case e1000_80003es2lan
:
1354 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1355 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1358 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1359 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1362 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1363 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1364 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1366 /* Set the Tx Interrupt Delay register */
1368 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1369 if (hw
->mac_type
>= e1000_82540
)
1370 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1372 /* Program the Transmit Control Register */
1374 tctl
= E1000_READ_REG(hw
, TCTL
);
1376 tctl
&= ~E1000_TCTL_CT
;
1377 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1378 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1381 /* disable Multiple Reads for debugging */
1382 tctl
&= ~E1000_TCTL_MULR
;
1385 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1386 tarc
= E1000_READ_REG(hw
, TARC0
);
1387 tarc
|= ((1 << 25) | (1 << 21));
1388 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1389 tarc
= E1000_READ_REG(hw
, TARC1
);
1391 if (tctl
& E1000_TCTL_MULR
)
1395 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1396 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1397 tarc
= E1000_READ_REG(hw
, TARC0
);
1399 if (hw
->media_type
== e1000_media_type_internal_serdes
)
1401 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1402 tarc
= E1000_READ_REG(hw
, TARC1
);
1404 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1407 e1000_config_collision_dist(hw
);
1409 /* Setup Transmit Descriptor Settings for eop descriptor */
1410 adapter
->txd_cmd
= E1000_TXD_CMD_IDE
| E1000_TXD_CMD_EOP
|
1413 if (hw
->mac_type
< e1000_82543
)
1414 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1416 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1418 /* Cache if we're 82544 running in PCI-X because we'll
1419 * need this to apply a workaround later in the send path. */
1420 if (hw
->mac_type
== e1000_82544
&&
1421 hw
->bus_type
== e1000_bus_type_pcix
)
1422 adapter
->pcix_82544
= 1;
1424 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1429 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1430 * @adapter: board private structure
1431 * @rxdr: rx descriptor ring (for a specific queue) to setup
1433 * Returns 0 on success, negative on failure
1437 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1438 struct e1000_rx_ring
*rxdr
)
1440 struct pci_dev
*pdev
= adapter
->pdev
;
1443 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1444 rxdr
->buffer_info
= vmalloc_node(size
, pcibus_to_node(pdev
->bus
));
1445 if (!rxdr
->buffer_info
) {
1447 "Unable to allocate memory for the receive descriptor ring\n");
1450 memset(rxdr
->buffer_info
, 0, size
);
1452 size
= sizeof(struct e1000_ps_page
) * rxdr
->count
;
1453 rxdr
->ps_page
= kmalloc(size
, GFP_KERNEL
);
1454 if (!rxdr
->ps_page
) {
1455 vfree(rxdr
->buffer_info
);
1457 "Unable to allocate memory for the receive descriptor ring\n");
1460 memset(rxdr
->ps_page
, 0, size
);
1462 size
= sizeof(struct e1000_ps_page_dma
) * rxdr
->count
;
1463 rxdr
->ps_page_dma
= kmalloc(size
, GFP_KERNEL
);
1464 if (!rxdr
->ps_page_dma
) {
1465 vfree(rxdr
->buffer_info
);
1466 kfree(rxdr
->ps_page
);
1468 "Unable to allocate memory for the receive descriptor ring\n");
1471 memset(rxdr
->ps_page_dma
, 0, size
);
1473 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1474 desc_len
= sizeof(struct e1000_rx_desc
);
1476 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1478 /* Round up to nearest 4K */
1480 rxdr
->size
= rxdr
->count
* desc_len
;
1481 E1000_ROUNDUP(rxdr
->size
, 4096);
1483 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1487 "Unable to allocate memory for the receive descriptor ring\n");
1489 vfree(rxdr
->buffer_info
);
1490 kfree(rxdr
->ps_page
);
1491 kfree(rxdr
->ps_page_dma
);
1495 /* Fix for errata 23, can't cross 64kB boundary */
1496 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1497 void *olddesc
= rxdr
->desc
;
1498 dma_addr_t olddma
= rxdr
->dma
;
1499 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1500 "at %p\n", rxdr
->size
, rxdr
->desc
);
1501 /* Try again, without freeing the previous */
1502 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1503 /* Failed allocation, critical failure */
1505 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1507 "Unable to allocate memory "
1508 "for the receive descriptor ring\n");
1509 goto setup_rx_desc_die
;
1512 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1514 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1516 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1518 "Unable to allocate aligned memory "
1519 "for the receive descriptor ring\n");
1520 goto setup_rx_desc_die
;
1522 /* Free old allocation, new allocation was successful */
1523 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1526 memset(rxdr
->desc
, 0, rxdr
->size
);
1528 rxdr
->next_to_clean
= 0;
1529 rxdr
->next_to_use
= 0;
1535 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1536 * (Descriptors) for all queues
1537 * @adapter: board private structure
1539 * If this function returns with an error, then it's possible one or
1540 * more of the rings is populated (while the rest are not). It is the
1541 * callers duty to clean those orphaned rings.
1543 * Return 0 on success, negative on failure
1547 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1551 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1552 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1555 "Allocation for Rx Queue %u failed\n", i
);
1564 * e1000_setup_rctl - configure the receive control registers
1565 * @adapter: Board private structure
1567 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1568 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1570 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1572 uint32_t rctl
, rfctl
;
1573 uint32_t psrctl
= 0;
1574 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1578 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1580 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1582 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1583 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1584 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1586 if (adapter
->hw
.mac_type
> e1000_82543
)
1587 rctl
|= E1000_RCTL_SECRC
;
1589 if (adapter
->hw
.tbi_compatibility_on
== 1)
1590 rctl
|= E1000_RCTL_SBP
;
1592 rctl
&= ~E1000_RCTL_SBP
;
1594 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1595 rctl
&= ~E1000_RCTL_LPE
;
1597 rctl
|= E1000_RCTL_LPE
;
1599 /* Setup buffer sizes */
1600 if (adapter
->hw
.mac_type
>= e1000_82571
) {
1601 /* We can now specify buffers in 1K increments.
1602 * BSIZE and BSEX are ignored in this case. */
1603 rctl
|= adapter
->rx_buffer_len
<< 0x11;
1605 rctl
&= ~E1000_RCTL_SZ_4096
;
1606 rctl
|= E1000_RCTL_BSEX
;
1607 switch (adapter
->rx_buffer_len
) {
1608 case E1000_RXBUFFER_2048
:
1610 rctl
|= E1000_RCTL_SZ_2048
;
1611 rctl
&= ~E1000_RCTL_BSEX
;
1613 case E1000_RXBUFFER_4096
:
1614 rctl
|= E1000_RCTL_SZ_4096
;
1616 case E1000_RXBUFFER_8192
:
1617 rctl
|= E1000_RCTL_SZ_8192
;
1619 case E1000_RXBUFFER_16384
:
1620 rctl
|= E1000_RCTL_SZ_16384
;
1625 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1626 /* 82571 and greater support packet-split where the protocol
1627 * header is placed in skb->data and the packet data is
1628 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1629 * In the case of a non-split, skb->data is linearly filled,
1630 * followed by the page buffers. Therefore, skb->data is
1631 * sized to hold the largest protocol header.
1633 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1634 if ((adapter
->hw
.mac_type
> e1000_82547_rev_2
) && (pages
<= 3) &&
1636 adapter
->rx_ps_pages
= pages
;
1638 adapter
->rx_ps_pages
= 0;
1640 if (adapter
->rx_ps_pages
) {
1641 /* Configure extra packet-split registers */
1642 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1643 rfctl
|= E1000_RFCTL_EXTEN
;
1644 /* disable IPv6 packet split support */
1645 rfctl
|= E1000_RFCTL_IPV6_DIS
;
1646 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1648 rctl
|= E1000_RCTL_DTYP_PS
| E1000_RCTL_SECRC
;
1650 psrctl
|= adapter
->rx_ps_bsize0
>>
1651 E1000_PSRCTL_BSIZE0_SHIFT
;
1653 switch (adapter
->rx_ps_pages
) {
1655 psrctl
|= PAGE_SIZE
<<
1656 E1000_PSRCTL_BSIZE3_SHIFT
;
1658 psrctl
|= PAGE_SIZE
<<
1659 E1000_PSRCTL_BSIZE2_SHIFT
;
1661 psrctl
|= PAGE_SIZE
>>
1662 E1000_PSRCTL_BSIZE1_SHIFT
;
1666 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1669 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1673 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1674 * @adapter: board private structure
1676 * Configure the Rx unit of the MAC after a reset.
1680 e1000_configure_rx(struct e1000_adapter
*adapter
)
1683 struct e1000_hw
*hw
= &adapter
->hw
;
1684 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
1686 if (adapter
->rx_ps_pages
) {
1687 /* this is a 32 byte descriptor */
1688 rdlen
= adapter
->rx_ring
[0].count
*
1689 sizeof(union e1000_rx_desc_packet_split
);
1690 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
1691 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
1693 rdlen
= adapter
->rx_ring
[0].count
*
1694 sizeof(struct e1000_rx_desc
);
1695 adapter
->clean_rx
= e1000_clean_rx_irq
;
1696 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1699 /* disable receives while setting up the descriptors */
1700 rctl
= E1000_READ_REG(hw
, RCTL
);
1701 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1703 /* set the Receive Delay Timer Register */
1704 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
1706 if (hw
->mac_type
>= e1000_82540
) {
1707 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
1708 if (adapter
->itr
> 1)
1709 E1000_WRITE_REG(hw
, ITR
,
1710 1000000000 / (adapter
->itr
* 256));
1713 if (hw
->mac_type
>= e1000_82571
) {
1714 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
1715 /* Reset delay timers after every interrupt */
1716 ctrl_ext
|= E1000_CTRL_EXT_CANC
;
1717 #ifdef CONFIG_E1000_NAPI
1718 /* Auto-Mask interrupts upon ICR read. */
1719 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1721 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
1722 E1000_WRITE_REG(hw
, IAM
, ~0);
1723 E1000_WRITE_FLUSH(hw
);
1726 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1727 * the Base and Length of the Rx Descriptor Ring */
1728 switch (adapter
->num_rx_queues
) {
1731 rdba
= adapter
->rx_ring
[0].dma
;
1732 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1733 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
1734 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
1735 E1000_WRITE_REG(hw
, RDH
, 0);
1736 E1000_WRITE_REG(hw
, RDT
, 0);
1737 adapter
->rx_ring
[0].rdh
= E1000_RDH
;
1738 adapter
->rx_ring
[0].rdt
= E1000_RDT
;
1742 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1743 if (hw
->mac_type
>= e1000_82543
) {
1744 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
1745 if (adapter
->rx_csum
== TRUE
) {
1746 rxcsum
|= E1000_RXCSUM_TUOFL
;
1748 /* Enable 82571 IPv4 payload checksum for UDP fragments
1749 * Must be used in conjunction with packet-split. */
1750 if ((hw
->mac_type
>= e1000_82571
) &&
1751 (adapter
->rx_ps_pages
)) {
1752 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1755 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1756 /* don't need to clear IPPCSE as it defaults to 0 */
1758 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
1761 if (hw
->mac_type
== e1000_82573
)
1762 E1000_WRITE_REG(hw
, ERT
, 0x0100);
1764 /* Enable Receives */
1765 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1769 * e1000_free_tx_resources - Free Tx Resources per Queue
1770 * @adapter: board private structure
1771 * @tx_ring: Tx descriptor ring for a specific queue
1773 * Free all transmit software resources
1777 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1778 struct e1000_tx_ring
*tx_ring
)
1780 struct pci_dev
*pdev
= adapter
->pdev
;
1782 e1000_clean_tx_ring(adapter
, tx_ring
);
1784 vfree(tx_ring
->buffer_info
);
1785 tx_ring
->buffer_info
= NULL
;
1787 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1789 tx_ring
->desc
= NULL
;
1793 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1794 * @adapter: board private structure
1796 * Free all transmit software resources
1800 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1804 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1805 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1809 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1810 struct e1000_buffer
*buffer_info
)
1812 if (buffer_info
->dma
) {
1813 pci_unmap_page(adapter
->pdev
,
1815 buffer_info
->length
,
1818 if (buffer_info
->skb
)
1819 dev_kfree_skb_any(buffer_info
->skb
);
1820 memset(buffer_info
, 0, sizeof(struct e1000_buffer
));
1824 * e1000_clean_tx_ring - Free Tx Buffers
1825 * @adapter: board private structure
1826 * @tx_ring: ring to be cleaned
1830 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1831 struct e1000_tx_ring
*tx_ring
)
1833 struct e1000_buffer
*buffer_info
;
1837 /* Free all the Tx ring sk_buffs */
1839 for (i
= 0; i
< tx_ring
->count
; i
++) {
1840 buffer_info
= &tx_ring
->buffer_info
[i
];
1841 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1844 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1845 memset(tx_ring
->buffer_info
, 0, size
);
1847 /* Zero out the descriptor ring */
1849 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1851 tx_ring
->next_to_use
= 0;
1852 tx_ring
->next_to_clean
= 0;
1853 tx_ring
->last_tx_tso
= 0;
1855 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
1856 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
1860 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1861 * @adapter: board private structure
1865 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1869 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1870 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1874 * e1000_free_rx_resources - Free Rx Resources
1875 * @adapter: board private structure
1876 * @rx_ring: ring to clean the resources from
1878 * Free all receive software resources
1882 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1883 struct e1000_rx_ring
*rx_ring
)
1885 struct pci_dev
*pdev
= adapter
->pdev
;
1887 e1000_clean_rx_ring(adapter
, rx_ring
);
1889 vfree(rx_ring
->buffer_info
);
1890 rx_ring
->buffer_info
= NULL
;
1891 kfree(rx_ring
->ps_page
);
1892 rx_ring
->ps_page
= NULL
;
1893 kfree(rx_ring
->ps_page_dma
);
1894 rx_ring
->ps_page_dma
= NULL
;
1896 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1898 rx_ring
->desc
= NULL
;
1902 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1903 * @adapter: board private structure
1905 * Free all receive software resources
1909 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1913 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1914 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1918 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1919 * @adapter: board private structure
1920 * @rx_ring: ring to free buffers from
1924 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1925 struct e1000_rx_ring
*rx_ring
)
1927 struct e1000_buffer
*buffer_info
;
1928 struct e1000_ps_page
*ps_page
;
1929 struct e1000_ps_page_dma
*ps_page_dma
;
1930 struct pci_dev
*pdev
= adapter
->pdev
;
1934 /* Free all the Rx ring sk_buffs */
1935 for (i
= 0; i
< rx_ring
->count
; i
++) {
1936 buffer_info
= &rx_ring
->buffer_info
[i
];
1937 if (buffer_info
->skb
) {
1938 pci_unmap_single(pdev
,
1940 buffer_info
->length
,
1941 PCI_DMA_FROMDEVICE
);
1943 dev_kfree_skb(buffer_info
->skb
);
1944 buffer_info
->skb
= NULL
;
1946 ps_page
= &rx_ring
->ps_page
[i
];
1947 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
1948 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
1949 if (!ps_page
->ps_page
[j
]) break;
1950 pci_unmap_page(pdev
,
1951 ps_page_dma
->ps_page_dma
[j
],
1952 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1953 ps_page_dma
->ps_page_dma
[j
] = 0;
1954 put_page(ps_page
->ps_page
[j
]);
1955 ps_page
->ps_page
[j
] = NULL
;
1959 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1960 memset(rx_ring
->buffer_info
, 0, size
);
1961 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
1962 memset(rx_ring
->ps_page
, 0, size
);
1963 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
1964 memset(rx_ring
->ps_page_dma
, 0, size
);
1966 /* Zero out the descriptor ring */
1968 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1970 rx_ring
->next_to_clean
= 0;
1971 rx_ring
->next_to_use
= 0;
1973 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
1974 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
1978 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1979 * @adapter: board private structure
1983 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
1987 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1988 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
1991 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1992 * and memory write and invalidate disabled for certain operations
1995 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
1997 struct net_device
*netdev
= adapter
->netdev
;
2000 e1000_pci_clear_mwi(&adapter
->hw
);
2002 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2003 rctl
|= E1000_RCTL_RST
;
2004 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2005 E1000_WRITE_FLUSH(&adapter
->hw
);
2008 if (netif_running(netdev
))
2009 e1000_clean_all_rx_rings(adapter
);
2013 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2015 struct net_device
*netdev
= adapter
->netdev
;
2018 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2019 rctl
&= ~E1000_RCTL_RST
;
2020 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2021 E1000_WRITE_FLUSH(&adapter
->hw
);
2024 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2025 e1000_pci_set_mwi(&adapter
->hw
);
2027 if (netif_running(netdev
)) {
2028 /* No need to loop, because 82542 supports only 1 queue */
2029 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2030 e1000_configure_rx(adapter
);
2031 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2036 * e1000_set_mac - Change the Ethernet Address of the NIC
2037 * @netdev: network interface device structure
2038 * @p: pointer to an address structure
2040 * Returns 0 on success, negative on failure
2044 e1000_set_mac(struct net_device
*netdev
, void *p
)
2046 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2047 struct sockaddr
*addr
= p
;
2049 if (!is_valid_ether_addr(addr
->sa_data
))
2050 return -EADDRNOTAVAIL
;
2052 /* 82542 2.0 needs to be in reset to write receive address registers */
2054 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2055 e1000_enter_82542_rst(adapter
);
2057 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2058 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2060 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2062 /* With 82571 controllers, LAA may be overwritten (with the default)
2063 * due to controller reset from the other port. */
2064 if (adapter
->hw
.mac_type
== e1000_82571
) {
2065 /* activate the work around */
2066 adapter
->hw
.laa_is_present
= 1;
2068 /* Hold a copy of the LAA in RAR[14] This is done so that
2069 * between the time RAR[0] gets clobbered and the time it
2070 * gets fixed (in e1000_watchdog), the actual LAA is in one
2071 * of the RARs and no incoming packets directed to this port
2072 * are dropped. Eventaully the LAA will be in RAR[0] and
2074 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2075 E1000_RAR_ENTRIES
- 1);
2078 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2079 e1000_leave_82542_rst(adapter
);
2085 * e1000_set_multi - Multicast and Promiscuous mode set
2086 * @netdev: network interface device structure
2088 * The set_multi entry point is called whenever the multicast address
2089 * list or the network interface flags are updated. This routine is
2090 * responsible for configuring the hardware for proper multicast,
2091 * promiscuous mode, and all-multi behavior.
2095 e1000_set_multi(struct net_device
*netdev
)
2097 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2098 struct e1000_hw
*hw
= &adapter
->hw
;
2099 struct dev_mc_list
*mc_ptr
;
2101 uint32_t hash_value
;
2102 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2104 /* reserve RAR[14] for LAA over-write work-around */
2105 if (adapter
->hw
.mac_type
== e1000_82571
)
2108 /* Check for Promiscuous and All Multicast modes */
2110 rctl
= E1000_READ_REG(hw
, RCTL
);
2112 if (netdev
->flags
& IFF_PROMISC
) {
2113 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2114 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2115 rctl
|= E1000_RCTL_MPE
;
2116 rctl
&= ~E1000_RCTL_UPE
;
2118 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2121 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2123 /* 82542 2.0 needs to be in reset to write receive address registers */
2125 if (hw
->mac_type
== e1000_82542_rev2_0
)
2126 e1000_enter_82542_rst(adapter
);
2128 /* load the first 14 multicast address into the exact filters 1-14
2129 * RAR 0 is used for the station MAC adddress
2130 * if there are not 14 addresses, go ahead and clear the filters
2131 * -- with 82571 controllers only 0-13 entries are filled here
2133 mc_ptr
= netdev
->mc_list
;
2135 for (i
= 1; i
< rar_entries
; i
++) {
2137 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2138 mc_ptr
= mc_ptr
->next
;
2140 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2141 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2145 /* clear the old settings from the multicast hash table */
2147 for (i
= 0; i
< E1000_NUM_MTA_REGISTERS
; i
++)
2148 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2150 /* load any remaining addresses into the hash table */
2152 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2153 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2154 e1000_mta_set(hw
, hash_value
);
2157 if (hw
->mac_type
== e1000_82542_rev2_0
)
2158 e1000_leave_82542_rst(adapter
);
2161 /* Need to wait a few seconds after link up to get diagnostic information from
2165 e1000_update_phy_info(unsigned long data
)
2167 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2168 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2172 * e1000_82547_tx_fifo_stall - Timer Call-back
2173 * @data: pointer to adapter cast into an unsigned long
2177 e1000_82547_tx_fifo_stall(unsigned long data
)
2179 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2180 struct net_device
*netdev
= adapter
->netdev
;
2183 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2184 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2185 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2186 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2187 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2188 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2189 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2190 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2191 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2192 tctl
& ~E1000_TCTL_EN
);
2193 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2194 adapter
->tx_head_addr
);
2195 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2196 adapter
->tx_head_addr
);
2197 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2198 adapter
->tx_head_addr
);
2199 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2200 adapter
->tx_head_addr
);
2201 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2202 E1000_WRITE_FLUSH(&adapter
->hw
);
2204 adapter
->tx_fifo_head
= 0;
2205 atomic_set(&adapter
->tx_fifo_stall
, 0);
2206 netif_wake_queue(netdev
);
2208 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2214 * e1000_watchdog - Timer Call-back
2215 * @data: pointer to adapter cast into an unsigned long
2218 e1000_watchdog(unsigned long data
)
2220 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2222 /* Do the rest outside of interrupt context */
2223 schedule_work(&adapter
->watchdog_task
);
2227 e1000_watchdog_task(struct e1000_adapter
*adapter
)
2229 struct net_device
*netdev
= adapter
->netdev
;
2230 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2231 uint32_t link
, tctl
;
2233 e1000_check_for_link(&adapter
->hw
);
2234 if (adapter
->hw
.mac_type
== e1000_82573
) {
2235 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2236 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2237 e1000_update_mng_vlan(adapter
);
2240 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2241 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2242 link
= !adapter
->hw
.serdes_link_down
;
2244 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2247 if (!netif_carrier_ok(netdev
)) {
2248 e1000_get_speed_and_duplex(&adapter
->hw
,
2249 &adapter
->link_speed
,
2250 &adapter
->link_duplex
);
2252 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s\n",
2253 adapter
->link_speed
,
2254 adapter
->link_duplex
== FULL_DUPLEX
?
2255 "Full Duplex" : "Half Duplex");
2257 /* tweak tx_queue_len according to speed/duplex
2258 * and adjust the timeout factor */
2259 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2260 adapter
->tx_timeout_factor
= 1;
2262 switch (adapter
->link_speed
) {
2265 netdev
->tx_queue_len
= 10;
2266 adapter
->tx_timeout_factor
= 8;
2270 netdev
->tx_queue_len
= 100;
2271 /* maybe add some timeout factor ? */
2275 if ((adapter
->hw
.mac_type
== e1000_82571
||
2276 adapter
->hw
.mac_type
== e1000_82572
) &&
2277 adapter
->txb2b
== 0) {
2278 #define SPEED_MODE_BIT (1 << 21)
2280 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2281 tarc0
&= ~SPEED_MODE_BIT
;
2282 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2286 /* disable TSO for pcie and 10/100 speeds, to avoid
2287 * some hardware issues */
2288 if (!adapter
->tso_force
&&
2289 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2290 switch (adapter
->link_speed
) {
2294 "10/100 speed: disabling TSO\n");
2295 netdev
->features
&= ~NETIF_F_TSO
;
2298 netdev
->features
|= NETIF_F_TSO
;
2307 /* enable transmits in the hardware, need to do this
2308 * after setting TARC0 */
2309 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2310 tctl
|= E1000_TCTL_EN
;
2311 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2313 netif_carrier_on(netdev
);
2314 netif_wake_queue(netdev
);
2315 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2316 adapter
->smartspeed
= 0;
2319 if (netif_carrier_ok(netdev
)) {
2320 adapter
->link_speed
= 0;
2321 adapter
->link_duplex
= 0;
2322 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2323 netif_carrier_off(netdev
);
2324 netif_stop_queue(netdev
);
2325 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2327 /* 80003ES2LAN workaround--
2328 * For packet buffer work-around on link down event;
2329 * disable receives in the ISR and
2330 * reset device here in the watchdog
2332 if (adapter
->hw
.mac_type
== e1000_80003es2lan
) {
2334 schedule_work(&adapter
->reset_task
);
2338 e1000_smartspeed(adapter
);
2341 e1000_update_stats(adapter
);
2343 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2344 adapter
->tpt_old
= adapter
->stats
.tpt
;
2345 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2346 adapter
->colc_old
= adapter
->stats
.colc
;
2348 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2349 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2350 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2351 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2353 e1000_update_adaptive(&adapter
->hw
);
2355 if (!netif_carrier_ok(netdev
)) {
2356 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2357 /* We've lost link, so the controller stops DMA,
2358 * but we've got queued Tx work that's never going
2359 * to get done, so reset controller to flush Tx.
2360 * (Do the reset outside of interrupt context). */
2361 adapter
->tx_timeout_count
++;
2362 schedule_work(&adapter
->reset_task
);
2366 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2367 if (adapter
->hw
.mac_type
>= e1000_82540
&& adapter
->itr
== 1) {
2368 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2369 * asymmetrical Tx or Rx gets ITR=8000; everyone
2370 * else is between 2000-8000. */
2371 uint32_t goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2372 uint32_t dif
= (adapter
->gotcl
> adapter
->gorcl
?
2373 adapter
->gotcl
- adapter
->gorcl
:
2374 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2375 uint32_t itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2376 E1000_WRITE_REG(&adapter
->hw
, ITR
, 1000000000 / (itr
* 256));
2379 /* Cause software interrupt to ensure rx ring is cleaned */
2380 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2382 /* Force detection of hung controller every watchdog period */
2383 adapter
->detect_tx_hung
= TRUE
;
2385 /* With 82571 controllers, LAA may be overwritten due to controller
2386 * reset from the other port. Set the appropriate LAA in RAR[0] */
2387 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2388 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2390 /* Reset the timer */
2391 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 2 * HZ
);
2394 #define E1000_TX_FLAGS_CSUM 0x00000001
2395 #define E1000_TX_FLAGS_VLAN 0x00000002
2396 #define E1000_TX_FLAGS_TSO 0x00000004
2397 #define E1000_TX_FLAGS_IPV4 0x00000008
2398 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2399 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2402 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2403 struct sk_buff
*skb
)
2406 struct e1000_context_desc
*context_desc
;
2407 struct e1000_buffer
*buffer_info
;
2409 uint32_t cmd_length
= 0;
2410 uint16_t ipcse
= 0, tucse
, mss
;
2411 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2414 if (skb_shinfo(skb
)->tso_size
) {
2415 if (skb_header_cloned(skb
)) {
2416 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2421 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2422 mss
= skb_shinfo(skb
)->tso_size
;
2423 if (skb
->protocol
== ntohs(ETH_P_IP
)) {
2424 skb
->nh
.iph
->tot_len
= 0;
2425 skb
->nh
.iph
->check
= 0;
2427 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
2432 cmd_length
= E1000_TXD_CMD_IP
;
2433 ipcse
= skb
->h
.raw
- skb
->data
- 1;
2434 #ifdef NETIF_F_TSO_IPV6
2435 } else if (skb
->protocol
== ntohs(ETH_P_IPV6
)) {
2436 skb
->nh
.ipv6h
->payload_len
= 0;
2438 ~csum_ipv6_magic(&skb
->nh
.ipv6h
->saddr
,
2439 &skb
->nh
.ipv6h
->daddr
,
2446 ipcss
= skb
->nh
.raw
- skb
->data
;
2447 ipcso
= (void *)&(skb
->nh
.iph
->check
) - (void *)skb
->data
;
2448 tucss
= skb
->h
.raw
- skb
->data
;
2449 tucso
= (void *)&(skb
->h
.th
->check
) - (void *)skb
->data
;
2452 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2453 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2455 i
= tx_ring
->next_to_use
;
2456 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2457 buffer_info
= &tx_ring
->buffer_info
[i
];
2459 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2460 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2461 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2462 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2463 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2464 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2465 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2466 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2467 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2469 buffer_info
->time_stamp
= jiffies
;
2471 if (++i
== tx_ring
->count
) i
= 0;
2472 tx_ring
->next_to_use
= i
;
2481 static inline boolean_t
2482 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2483 struct sk_buff
*skb
)
2485 struct e1000_context_desc
*context_desc
;
2486 struct e1000_buffer
*buffer_info
;
2490 if (likely(skb
->ip_summed
== CHECKSUM_HW
)) {
2491 css
= skb
->h
.raw
- skb
->data
;
2493 i
= tx_ring
->next_to_use
;
2494 buffer_info
= &tx_ring
->buffer_info
[i
];
2495 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2497 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2498 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum
;
2499 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2500 context_desc
->tcp_seg_setup
.data
= 0;
2501 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2503 buffer_info
->time_stamp
= jiffies
;
2505 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2506 tx_ring
->next_to_use
= i
;
2514 #define E1000_MAX_TXD_PWR 12
2515 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2518 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2519 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2520 unsigned int nr_frags
, unsigned int mss
)
2522 struct e1000_buffer
*buffer_info
;
2523 unsigned int len
= skb
->len
;
2524 unsigned int offset
= 0, size
, count
= 0, i
;
2526 len
-= skb
->data_len
;
2528 i
= tx_ring
->next_to_use
;
2531 buffer_info
= &tx_ring
->buffer_info
[i
];
2532 size
= min(len
, max_per_txd
);
2534 /* Workaround for Controller erratum --
2535 * descriptor for non-tso packet in a linear SKB that follows a
2536 * tso gets written back prematurely before the data is fully
2537 * DMA'd to the controller */
2538 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2539 !skb_shinfo(skb
)->tso_size
) {
2540 tx_ring
->last_tx_tso
= 0;
2544 /* Workaround for premature desc write-backs
2545 * in TSO mode. Append 4-byte sentinel desc */
2546 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2549 /* work-around for errata 10 and it applies
2550 * to all controllers in PCI-X mode
2551 * The fix is to make sure that the first descriptor of a
2552 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2554 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2555 (size
> 2015) && count
== 0))
2558 /* Workaround for potential 82544 hang in PCI-X. Avoid
2559 * terminating buffers within evenly-aligned dwords. */
2560 if (unlikely(adapter
->pcix_82544
&&
2561 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2565 buffer_info
->length
= size
;
2567 pci_map_single(adapter
->pdev
,
2571 buffer_info
->time_stamp
= jiffies
;
2576 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2579 for (f
= 0; f
< nr_frags
; f
++) {
2580 struct skb_frag_struct
*frag
;
2582 frag
= &skb_shinfo(skb
)->frags
[f
];
2584 offset
= frag
->page_offset
;
2587 buffer_info
= &tx_ring
->buffer_info
[i
];
2588 size
= min(len
, max_per_txd
);
2590 /* Workaround for premature desc write-backs
2591 * in TSO mode. Append 4-byte sentinel desc */
2592 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2595 /* Workaround for potential 82544 hang in PCI-X.
2596 * Avoid terminating buffers within evenly-aligned
2598 if (unlikely(adapter
->pcix_82544
&&
2599 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
2603 buffer_info
->length
= size
;
2605 pci_map_page(adapter
->pdev
,
2610 buffer_info
->time_stamp
= jiffies
;
2615 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2619 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2620 tx_ring
->buffer_info
[i
].skb
= skb
;
2621 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2627 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2628 int tx_flags
, int count
)
2630 struct e1000_tx_desc
*tx_desc
= NULL
;
2631 struct e1000_buffer
*buffer_info
;
2632 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2635 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2636 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2638 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2640 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2641 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2644 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2645 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2646 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2649 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2650 txd_lower
|= E1000_TXD_CMD_VLE
;
2651 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2654 i
= tx_ring
->next_to_use
;
2657 buffer_info
= &tx_ring
->buffer_info
[i
];
2658 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2659 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2660 tx_desc
->lower
.data
=
2661 cpu_to_le32(txd_lower
| buffer_info
->length
);
2662 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2663 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2666 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2668 /* Force memory writes to complete before letting h/w
2669 * know there are new descriptors to fetch. (Only
2670 * applicable for weak-ordered memory model archs,
2671 * such as IA-64). */
2674 tx_ring
->next_to_use
= i
;
2675 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2679 * 82547 workaround to avoid controller hang in half-duplex environment.
2680 * The workaround is to avoid queuing a large packet that would span
2681 * the internal Tx FIFO ring boundary by notifying the stack to resend
2682 * the packet at a later time. This gives the Tx FIFO an opportunity to
2683 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2684 * to the beginning of the Tx FIFO.
2687 #define E1000_FIFO_HDR 0x10
2688 #define E1000_82547_PAD_LEN 0x3E0
2691 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2693 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2694 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2696 E1000_ROUNDUP(skb_fifo_len
, E1000_FIFO_HDR
);
2698 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2699 goto no_fifo_stall_required
;
2701 if (atomic_read(&adapter
->tx_fifo_stall
))
2704 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2705 atomic_set(&adapter
->tx_fifo_stall
, 1);
2709 no_fifo_stall_required
:
2710 adapter
->tx_fifo_head
+= skb_fifo_len
;
2711 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2712 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2716 #define MINIMUM_DHCP_PACKET_SIZE 282
2718 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2720 struct e1000_hw
*hw
= &adapter
->hw
;
2721 uint16_t length
, offset
;
2722 if (vlan_tx_tag_present(skb
)) {
2723 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
2724 ( adapter
->hw
.mng_cookie
.status
&
2725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
2728 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
2729 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
2730 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
2731 const struct iphdr
*ip
=
2732 (struct iphdr
*)((uint8_t *)skb
->data
+14);
2733 if (IPPROTO_UDP
== ip
->protocol
) {
2734 struct udphdr
*udp
=
2735 (struct udphdr
*)((uint8_t *)ip
+
2737 if (ntohs(udp
->dest
) == 67) {
2738 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
2739 length
= skb
->len
- offset
;
2741 return e1000_mng_write_dhcp_info(hw
,
2751 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2753 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2755 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2756 struct e1000_tx_ring
*tx_ring
;
2757 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2758 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2759 unsigned int tx_flags
= 0;
2760 unsigned int len
= skb
->len
;
2761 unsigned long flags
;
2762 unsigned int nr_frags
= 0;
2763 unsigned int mss
= 0;
2767 len
-= skb
->data_len
;
2769 tx_ring
= adapter
->tx_ring
;
2771 if (unlikely(skb
->len
<= 0)) {
2772 dev_kfree_skb_any(skb
);
2773 return NETDEV_TX_OK
;
2777 mss
= skb_shinfo(skb
)->tso_size
;
2778 /* The controller does a simple calculation to
2779 * make sure there is enough room in the FIFO before
2780 * initiating the DMA for each buffer. The calc is:
2781 * 4 = ceil(buffer len/mss). To make sure we don't
2782 * overrun the FIFO, adjust the max buffer len if mss
2786 max_per_txd
= min(mss
<< 2, max_per_txd
);
2787 max_txd_pwr
= fls(max_per_txd
) - 1;
2789 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2790 * points to just header, pull a few bytes of payload from
2791 * frags into skb->data */
2792 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2793 if (skb
->data_len
&& (hdr_len
== (skb
->len
- skb
->data_len
))) {
2794 switch (adapter
->hw
.mac_type
) {
2795 unsigned int pull_size
;
2799 pull_size
= min((unsigned int)4, skb
->data_len
);
2800 if (!__pskb_pull_tail(skb
, pull_size
)) {
2802 "__pskb_pull_tail failed.\n");
2803 dev_kfree_skb_any(skb
);
2804 return NETDEV_TX_OK
;
2806 len
= skb
->len
- skb
->data_len
;
2815 /* reserve a descriptor for the offload context */
2816 if ((mss
) || (skb
->ip_summed
== CHECKSUM_HW
))
2820 if (skb
->ip_summed
== CHECKSUM_HW
)
2825 /* Controller Erratum workaround */
2826 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2827 !skb_shinfo(skb
)->tso_size
)
2831 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
2833 if (adapter
->pcix_82544
)
2836 /* work-around for errata 10 and it applies to all controllers
2837 * in PCI-X mode, so add one more descriptor to the count
2839 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2843 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2844 for (f
= 0; f
< nr_frags
; f
++)
2845 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
2847 if (adapter
->pcix_82544
)
2851 if (adapter
->hw
.tx_pkt_filtering
&&
2852 (adapter
->hw
.mac_type
== e1000_82573
))
2853 e1000_transfer_dhcp_info(adapter
, skb
);
2855 local_irq_save(flags
);
2856 if (!spin_trylock(&tx_ring
->tx_lock
)) {
2857 /* Collision - tell upper layer to requeue */
2858 local_irq_restore(flags
);
2859 return NETDEV_TX_LOCKED
;
2862 /* need: count + 2 desc gap to keep tail from touching
2863 * head, otherwise try next time */
2864 if (unlikely(E1000_DESC_UNUSED(tx_ring
) < count
+ 2)) {
2865 netif_stop_queue(netdev
);
2866 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2867 return NETDEV_TX_BUSY
;
2870 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
2871 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
2872 netif_stop_queue(netdev
);
2873 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
);
2874 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2875 return NETDEV_TX_BUSY
;
2879 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
2880 tx_flags
|= E1000_TX_FLAGS_VLAN
;
2881 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
2884 first
= tx_ring
->next_to_use
;
2886 tso
= e1000_tso(adapter
, tx_ring
, skb
);
2888 dev_kfree_skb_any(skb
);
2889 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2890 return NETDEV_TX_OK
;
2894 tx_ring
->last_tx_tso
= 1;
2895 tx_flags
|= E1000_TX_FLAGS_TSO
;
2896 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
2897 tx_flags
|= E1000_TX_FLAGS_CSUM
;
2899 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2900 * 82571 hardware supports TSO capabilities for IPv6 as well...
2901 * no longer assume, we must. */
2902 if (likely(skb
->protocol
== ntohs(ETH_P_IP
)))
2903 tx_flags
|= E1000_TX_FLAGS_IPV4
;
2905 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
2906 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
2907 max_per_txd
, nr_frags
, mss
));
2909 netdev
->trans_start
= jiffies
;
2911 /* Make sure there is space in the ring for the next send. */
2912 if (unlikely(E1000_DESC_UNUSED(tx_ring
) < MAX_SKB_FRAGS
+ 2))
2913 netif_stop_queue(netdev
);
2915 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2916 return NETDEV_TX_OK
;
2920 * e1000_tx_timeout - Respond to a Tx Hang
2921 * @netdev: network interface device structure
2925 e1000_tx_timeout(struct net_device
*netdev
)
2927 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2929 /* Do the reset outside of interrupt context */
2930 adapter
->tx_timeout_count
++;
2931 schedule_work(&adapter
->reset_task
);
2935 e1000_reset_task(struct net_device
*netdev
)
2937 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2939 e1000_down(adapter
);
2944 * e1000_get_stats - Get System Network Statistics
2945 * @netdev: network interface device structure
2947 * Returns the address of the device statistics structure.
2948 * The statistics are actually updated from the timer callback.
2951 static struct net_device_stats
*
2952 e1000_get_stats(struct net_device
*netdev
)
2954 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2956 /* only return the current stats */
2957 return &adapter
->net_stats
;
2961 * e1000_change_mtu - Change the Maximum Transfer Unit
2962 * @netdev: network interface device structure
2963 * @new_mtu: new value for maximum frame size
2965 * Returns 0 on success, negative on failure
2969 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
2971 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2972 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
2973 uint16_t eeprom_data
= 0;
2975 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
2976 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2977 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
2981 /* Adapter-specific max frame size limits. */
2982 switch (adapter
->hw
.mac_type
) {
2983 case e1000_82542_rev2_0
:
2984 case e1000_82542_rev2_1
:
2985 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
2986 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
2991 /* only enable jumbo frames if ASPM is disabled completely
2992 * this means both bits must be zero in 0x1A bits 3:2 */
2993 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
2995 if (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
) {
2996 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
2998 "Jumbo Frames not supported.\n");
3003 /* fall through to get support */
3006 case e1000_80003es2lan
:
3007 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3008 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3009 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3014 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3019 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
3020 adapter
->rx_buffer_len
= max_frame
;
3021 E1000_ROUNDUP(adapter
->rx_buffer_len
, 1024);
3023 if(unlikely((adapter
->hw
.mac_type
< e1000_82543
) &&
3024 (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
))) {
3025 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported "
3029 if(max_frame
<= E1000_RXBUFFER_2048
)
3030 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3031 else if(max_frame
<= E1000_RXBUFFER_4096
)
3032 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3033 else if(max_frame
<= E1000_RXBUFFER_8192
)
3034 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3035 else if(max_frame
<= E1000_RXBUFFER_16384
)
3036 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3040 netdev
->mtu
= new_mtu
;
3042 if (netif_running(netdev
)) {
3043 e1000_down(adapter
);
3047 adapter
->hw
.max_frame_size
= max_frame
;
3053 * e1000_update_stats - Update the board statistics counters
3054 * @adapter: board private structure
3058 e1000_update_stats(struct e1000_adapter
*adapter
)
3060 struct e1000_hw
*hw
= &adapter
->hw
;
3061 unsigned long flags
;
3064 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3066 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3068 /* these counters are modified from e1000_adjust_tbi_stats,
3069 * called from the interrupt context, so they must only
3070 * be written while holding adapter->stats_lock
3073 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3074 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3075 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3076 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3077 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3078 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3079 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3080 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3081 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3082 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3083 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3084 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3085 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3087 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3088 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3089 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3090 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3091 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3092 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3093 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3094 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3095 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3096 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3097 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3098 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3099 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3100 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3101 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3102 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3103 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3104 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3105 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3106 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3107 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3108 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3109 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3110 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3111 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3112 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3113 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3114 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3115 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3116 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3117 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3118 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3119 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3120 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3122 /* used for adaptive IFS */
3124 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3125 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3126 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3127 adapter
->stats
.colc
+= hw
->collision_delta
;
3129 if (hw
->mac_type
>= e1000_82543
) {
3130 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3131 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3132 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3133 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3134 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3135 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3137 if (hw
->mac_type
> e1000_82547_rev_2
) {
3138 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3139 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3140 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3141 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3142 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3143 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3144 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3145 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3146 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3149 /* Fill out the OS statistics structure */
3151 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3152 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3153 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3154 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3155 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3156 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3160 /* RLEC on some newer hardware can be incorrect so build
3161 * our own version based on RUC and ROC */
3162 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3163 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3164 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3165 adapter
->stats
.cexterr
;
3166 adapter
->net_stats
.rx_dropped
= 0;
3167 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3169 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3170 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3171 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3175 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3176 adapter
->stats
.latecol
;
3177 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3178 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3179 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3181 /* Tx Dropped needs to be maintained elsewhere */
3185 if (hw
->media_type
== e1000_media_type_copper
) {
3186 if ((adapter
->link_speed
== SPEED_1000
) &&
3187 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3188 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3189 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3192 if ((hw
->mac_type
<= e1000_82546
) &&
3193 (hw
->phy_type
== e1000_phy_m88
) &&
3194 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3195 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3198 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3202 * e1000_intr - Interrupt Handler
3203 * @irq: interrupt number
3204 * @data: pointer to a network interface device structure
3205 * @pt_regs: CPU registers structure
3209 e1000_intr(int irq
, void *data
, struct pt_regs
*regs
)
3211 struct net_device
*netdev
= data
;
3212 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3213 struct e1000_hw
*hw
= &adapter
->hw
;
3214 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3215 #ifndef CONFIG_E1000_NAPI
3218 /* Interrupt Auto-Mask...upon reading ICR,
3219 * interrupts are masked. No need for the
3220 * IMC write, but it does mean we should
3221 * account for it ASAP. */
3222 if (likely(hw
->mac_type
>= e1000_82571
))
3223 atomic_inc(&adapter
->irq_sem
);
3226 if (unlikely(!icr
)) {
3227 #ifdef CONFIG_E1000_NAPI
3228 if (hw
->mac_type
>= e1000_82571
)
3229 e1000_irq_enable(adapter
);
3231 return IRQ_NONE
; /* Not our interrupt */
3234 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3235 hw
->get_link_status
= 1;
3236 /* 80003ES2LAN workaround--
3237 * For packet buffer work-around on link down event;
3238 * disable receives here in the ISR and
3239 * reset adapter in watchdog
3241 if (netif_carrier_ok(netdev
) &&
3242 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3243 /* disable receives */
3244 rctl
= E1000_READ_REG(hw
, RCTL
);
3245 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3247 mod_timer(&adapter
->watchdog_timer
, jiffies
);
3250 #ifdef CONFIG_E1000_NAPI
3251 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3252 atomic_inc(&adapter
->irq_sem
);
3253 E1000_WRITE_REG(hw
, IMC
, ~0);
3254 E1000_WRITE_FLUSH(hw
);
3256 if (likely(netif_rx_schedule_prep(&adapter
->polling_netdev
[0])))
3257 __netif_rx_schedule(&adapter
->polling_netdev
[0]);
3259 e1000_irq_enable(adapter
);
3261 /* Writing IMC and IMS is needed for 82547.
3262 * Due to Hub Link bus being occupied, an interrupt
3263 * de-assertion message is not able to be sent.
3264 * When an interrupt assertion message is generated later,
3265 * two messages are re-ordered and sent out.
3266 * That causes APIC to think 82547 is in de-assertion
3267 * state, while 82547 is in assertion state, resulting
3268 * in dead lock. Writing IMC forces 82547 into
3269 * de-assertion state.
3271 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3272 atomic_inc(&adapter
->irq_sem
);
3273 E1000_WRITE_REG(hw
, IMC
, ~0);
3276 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3277 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3278 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3281 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3282 e1000_irq_enable(adapter
);
3289 #ifdef CONFIG_E1000_NAPI
3291 * e1000_clean - NAPI Rx polling callback
3292 * @adapter: board private structure
3296 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3298 struct e1000_adapter
*adapter
;
3299 int work_to_do
= min(*budget
, poll_dev
->quota
);
3300 int tx_cleaned
= 0, i
= 0, work_done
= 0;
3302 /* Must NOT use netdev_priv macro here. */
3303 adapter
= poll_dev
->priv
;
3305 /* Keep link state information with original netdev */
3306 if (!netif_carrier_ok(adapter
->netdev
))
3309 while (poll_dev
!= &adapter
->polling_netdev
[i
]) {
3311 if (unlikely(i
== adapter
->num_rx_queues
))
3315 if (likely(adapter
->num_tx_queues
== 1)) {
3316 /* e1000_clean is called per-cpu. This lock protects
3317 * tx_ring[0] from being cleaned by multiple cpus
3318 * simultaneously. A failure obtaining the lock means
3319 * tx_ring[0] is currently being cleaned anyway. */
3320 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3321 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3322 &adapter
->tx_ring
[0]);
3323 spin_unlock(&adapter
->tx_queue_lock
);
3326 tx_cleaned
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
3328 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[i
],
3329 &work_done
, work_to_do
);
3331 *budget
-= work_done
;
3332 poll_dev
->quota
-= work_done
;
3334 /* If no Tx and not enough Rx work done, exit the polling mode */
3335 if ((!tx_cleaned
&& (work_done
== 0)) ||
3336 !netif_running(adapter
->netdev
)) {
3338 netif_rx_complete(poll_dev
);
3339 e1000_irq_enable(adapter
);
3348 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3349 * @adapter: board private structure
3353 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3354 struct e1000_tx_ring
*tx_ring
)
3356 struct net_device
*netdev
= adapter
->netdev
;
3357 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3358 struct e1000_buffer
*buffer_info
;
3359 unsigned int i
, eop
;
3360 #ifdef CONFIG_E1000_NAPI
3361 unsigned int count
= 0;
3363 boolean_t cleaned
= FALSE
;
3365 i
= tx_ring
->next_to_clean
;
3366 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3367 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3369 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3370 for (cleaned
= FALSE
; !cleaned
; ) {
3371 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3372 buffer_info
= &tx_ring
->buffer_info
[i
];
3373 cleaned
= (i
== eop
);
3375 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3376 memset(tx_desc
, 0, sizeof(struct e1000_tx_desc
));
3378 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3382 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3383 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3384 #ifdef CONFIG_E1000_NAPI
3385 #define E1000_TX_WEIGHT 64
3386 /* weight of a sort for tx, to avoid endless transmit cleanup */
3387 if (count
++ == E1000_TX_WEIGHT
) break;
3391 tx_ring
->next_to_clean
= i
;
3393 spin_lock(&tx_ring
->tx_lock
);
3395 if (unlikely(cleaned
&& netif_queue_stopped(netdev
) &&
3396 netif_carrier_ok(netdev
)))
3397 netif_wake_queue(netdev
);
3399 spin_unlock(&tx_ring
->tx_lock
);
3401 if (adapter
->detect_tx_hung
) {
3402 /* Detect a transmit hang in hardware, this serializes the
3403 * check with the clearing of time_stamp and movement of i */
3404 adapter
->detect_tx_hung
= FALSE
;
3405 if (tx_ring
->buffer_info
[eop
].dma
&&
3406 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3407 (adapter
->tx_timeout_factor
* HZ
))
3408 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
3409 E1000_STATUS_TXOFF
)) {
3411 /* detected Tx unit hang */
3412 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3416 " next_to_use <%x>\n"
3417 " next_to_clean <%x>\n"
3418 "buffer_info[next_to_clean]\n"
3419 " time_stamp <%lx>\n"
3420 " next_to_watch <%x>\n"
3422 " next_to_watch.status <%x>\n",
3423 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3424 sizeof(struct e1000_tx_ring
)),
3425 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
3426 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
3427 tx_ring
->next_to_use
,
3428 tx_ring
->next_to_clean
,
3429 tx_ring
->buffer_info
[eop
].time_stamp
,
3432 eop_desc
->upper
.fields
.status
);
3433 netif_stop_queue(netdev
);
3440 * e1000_rx_checksum - Receive Checksum Offload for 82543
3441 * @adapter: board private structure
3442 * @status_err: receive descriptor status and error fields
3443 * @csum: receive descriptor csum field
3444 * @sk_buff: socket buffer with received data
3448 e1000_rx_checksum(struct e1000_adapter
*adapter
,
3449 uint32_t status_err
, uint32_t csum
,
3450 struct sk_buff
*skb
)
3452 uint16_t status
= (uint16_t)status_err
;
3453 uint8_t errors
= (uint8_t)(status_err
>> 24);
3454 skb
->ip_summed
= CHECKSUM_NONE
;
3456 /* 82543 or newer only */
3457 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
3458 /* Ignore Checksum bit is set */
3459 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3460 /* TCP/UDP checksum error bit is set */
3461 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3462 /* let the stack verify checksum errors */
3463 adapter
->hw_csum_err
++;
3466 /* TCP/UDP Checksum has not been calculated */
3467 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
3468 if (!(status
& E1000_RXD_STAT_TCPCS
))
3471 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
3474 /* It must be a TCP or UDP packet with a valid checksum */
3475 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3476 /* TCP checksum is good */
3477 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3478 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
3479 /* IP fragment with UDP payload */
3480 /* Hardware complements the payload checksum, so we undo it
3481 * and then put the value in host order for further stack use.
3483 csum
= ntohl(csum
^ 0xFFFF);
3485 skb
->ip_summed
= CHECKSUM_HW
;
3487 adapter
->hw_csum_good
++;
3491 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3492 * @adapter: board private structure
3496 #ifdef CONFIG_E1000_NAPI
3497 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3498 struct e1000_rx_ring
*rx_ring
,
3499 int *work_done
, int work_to_do
)
3501 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3502 struct e1000_rx_ring
*rx_ring
)
3505 struct net_device
*netdev
= adapter
->netdev
;
3506 struct pci_dev
*pdev
= adapter
->pdev
;
3507 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3508 struct e1000_buffer
*buffer_info
, *next_buffer
;
3509 unsigned long flags
;
3513 int cleaned_count
= 0;
3514 boolean_t cleaned
= FALSE
;
3516 i
= rx_ring
->next_to_clean
;
3517 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3518 buffer_info
= &rx_ring
->buffer_info
[i
];
3520 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3521 struct sk_buff
*skb
, *next_skb
;
3523 #ifdef CONFIG_E1000_NAPI
3524 if (*work_done
>= work_to_do
)
3528 status
= rx_desc
->status
;
3529 skb
= buffer_info
->skb
;
3530 buffer_info
->skb
= NULL
;
3532 prefetch(skb
->data
- NET_IP_ALIGN
);
3534 if (++i
== rx_ring
->count
) i
= 0;
3535 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3538 next_buffer
= &rx_ring
->buffer_info
[i
];
3539 next_skb
= next_buffer
->skb
;
3540 prefetch(next_skb
->data
- NET_IP_ALIGN
);
3544 pci_unmap_single(pdev
,
3546 buffer_info
->length
,
3547 PCI_DMA_FROMDEVICE
);
3549 length
= le16_to_cpu(rx_desc
->length
);
3551 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
3552 /* All receives must fit into a single buffer */
3553 E1000_DBG("%s: Receive packet consumed multiple"
3554 " buffers\n", netdev
->name
);
3555 dev_kfree_skb_irq(skb
);
3559 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3560 last_byte
= *(skb
->data
+ length
- 1);
3561 if (TBI_ACCEPT(&adapter
->hw
, status
,
3562 rx_desc
->errors
, length
, last_byte
)) {
3563 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3564 e1000_tbi_adjust_stats(&adapter
->hw
,
3567 spin_unlock_irqrestore(&adapter
->stats_lock
,
3571 dev_kfree_skb_irq(skb
);
3576 /* code added for copybreak, this should improve
3577 * performance for small packets with large amounts
3578 * of reassembly being done in the stack */
3579 #define E1000_CB_LENGTH 256
3580 if (length
< E1000_CB_LENGTH
) {
3581 struct sk_buff
*new_skb
=
3582 dev_alloc_skb(length
+ NET_IP_ALIGN
);
3584 skb_reserve(new_skb
, NET_IP_ALIGN
);
3585 new_skb
->dev
= netdev
;
3586 memcpy(new_skb
->data
- NET_IP_ALIGN
,
3587 skb
->data
- NET_IP_ALIGN
,
3588 length
+ NET_IP_ALIGN
);
3589 /* save the skb in buffer_info as good */
3590 buffer_info
->skb
= skb
;
3592 skb_put(skb
, length
);
3595 skb_put(skb
, length
);
3597 /* end copybreak code */
3599 /* Receive Checksum Offload */
3600 e1000_rx_checksum(adapter
,
3601 (uint32_t)(status
) |
3602 ((uint32_t)(rx_desc
->errors
) << 24),
3603 le16_to_cpu(rx_desc
->csum
), skb
);
3605 skb
->protocol
= eth_type_trans(skb
, netdev
);
3606 #ifdef CONFIG_E1000_NAPI
3607 if (unlikely(adapter
->vlgrp
&&
3608 (status
& E1000_RXD_STAT_VP
))) {
3609 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3610 le16_to_cpu(rx_desc
->special
) &
3611 E1000_RXD_SPC_VLAN_MASK
);
3613 netif_receive_skb(skb
);
3615 #else /* CONFIG_E1000_NAPI */
3616 if (unlikely(adapter
->vlgrp
&&
3617 (status
& E1000_RXD_STAT_VP
))) {
3618 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3619 le16_to_cpu(rx_desc
->special
) &
3620 E1000_RXD_SPC_VLAN_MASK
);
3624 #endif /* CONFIG_E1000_NAPI */
3625 netdev
->last_rx
= jiffies
;
3628 rx_desc
->status
= 0;
3630 /* return some buffers to hardware, one at a time is too slow */
3631 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3632 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3636 /* use prefetched values */
3638 buffer_info
= next_buffer
;
3640 rx_ring
->next_to_clean
= i
;
3642 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3644 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3650 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3651 * @adapter: board private structure
3655 #ifdef CONFIG_E1000_NAPI
3656 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3657 struct e1000_rx_ring
*rx_ring
,
3658 int *work_done
, int work_to_do
)
3660 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3661 struct e1000_rx_ring
*rx_ring
)
3664 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
3665 struct net_device
*netdev
= adapter
->netdev
;
3666 struct pci_dev
*pdev
= adapter
->pdev
;
3667 struct e1000_buffer
*buffer_info
, *next_buffer
;
3668 struct e1000_ps_page
*ps_page
;
3669 struct e1000_ps_page_dma
*ps_page_dma
;
3670 struct sk_buff
*skb
, *next_skb
;
3672 uint32_t length
, staterr
;
3673 int cleaned_count
= 0;
3674 boolean_t cleaned
= FALSE
;
3676 i
= rx_ring
->next_to_clean
;
3677 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3678 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3680 while (staterr
& E1000_RXD_STAT_DD
) {
3681 buffer_info
= &rx_ring
->buffer_info
[i
];
3682 ps_page
= &rx_ring
->ps_page
[i
];
3683 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3684 #ifdef CONFIG_E1000_NAPI
3685 if (unlikely(*work_done
>= work_to_do
))
3689 skb
= buffer_info
->skb
;
3691 /* in the packet split case this is header only */
3692 prefetch(skb
->data
- NET_IP_ALIGN
);
3694 if (++i
== rx_ring
->count
) i
= 0;
3695 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
3698 next_buffer
= &rx_ring
->buffer_info
[i
];
3699 next_skb
= next_buffer
->skb
;
3700 prefetch(next_skb
->data
- NET_IP_ALIGN
);
3704 pci_unmap_single(pdev
, buffer_info
->dma
,
3705 buffer_info
->length
,
3706 PCI_DMA_FROMDEVICE
);
3708 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
3709 E1000_DBG("%s: Packet Split buffers didn't pick up"
3710 " the full packet\n", netdev
->name
);
3711 dev_kfree_skb_irq(skb
);
3715 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
3716 dev_kfree_skb_irq(skb
);
3720 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
3722 if (unlikely(!length
)) {
3723 E1000_DBG("%s: Last part of the packet spanning"
3724 " multiple descriptors\n", netdev
->name
);
3725 dev_kfree_skb_irq(skb
);
3730 skb_put(skb
, length
);
3733 /* this looks ugly, but it seems compiler issues make it
3734 more efficient than reusing j */
3735 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
3737 /* page alloc/put takes too long and effects small packet
3738 * throughput, so unsplit small packets and save the alloc/put*/
3739 if (l1
&& ((length
+ l1
) < E1000_CB_LENGTH
)) {
3741 /* there is no documentation about how to call
3742 * kmap_atomic, so we can't hold the mapping
3744 pci_dma_sync_single_for_cpu(pdev
,
3745 ps_page_dma
->ps_page_dma
[0],
3747 PCI_DMA_FROMDEVICE
);
3748 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
3749 KM_SKB_DATA_SOFTIRQ
);
3750 memcpy(skb
->tail
, vaddr
, l1
);
3751 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
3752 pci_dma_sync_single_for_device(pdev
,
3753 ps_page_dma
->ps_page_dma
[0],
3754 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3761 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
3762 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
3764 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
3765 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3766 ps_page_dma
->ps_page_dma
[j
] = 0;
3767 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
3769 ps_page
->ps_page
[j
] = NULL
;
3771 skb
->data_len
+= length
;
3775 e1000_rx_checksum(adapter
, staterr
,
3776 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
3777 skb
->protocol
= eth_type_trans(skb
, netdev
);
3779 if (likely(rx_desc
->wb
.upper
.header_status
&
3780 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
3781 adapter
->rx_hdr_split
++;
3782 #ifdef CONFIG_E1000_NAPI
3783 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3784 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3785 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3786 E1000_RXD_SPC_VLAN_MASK
);
3788 netif_receive_skb(skb
);
3790 #else /* CONFIG_E1000_NAPI */
3791 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3792 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3793 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3794 E1000_RXD_SPC_VLAN_MASK
);
3798 #endif /* CONFIG_E1000_NAPI */
3799 netdev
->last_rx
= jiffies
;
3802 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
3803 buffer_info
->skb
= NULL
;
3805 /* return some buffers to hardware, one at a time is too slow */
3806 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3807 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3811 /* use prefetched values */
3813 buffer_info
= next_buffer
;
3815 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3817 rx_ring
->next_to_clean
= i
;
3819 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3821 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3827 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3828 * @adapter: address of board private structure
3832 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
3833 struct e1000_rx_ring
*rx_ring
,
3836 struct net_device
*netdev
= adapter
->netdev
;
3837 struct pci_dev
*pdev
= adapter
->pdev
;
3838 struct e1000_rx_desc
*rx_desc
;
3839 struct e1000_buffer
*buffer_info
;
3840 struct sk_buff
*skb
;
3842 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
3844 i
= rx_ring
->next_to_use
;
3845 buffer_info
= &rx_ring
->buffer_info
[i
];
3847 while (cleaned_count
--) {
3848 if (!(skb
= buffer_info
->skb
))
3849 skb
= dev_alloc_skb(bufsz
);
3855 if (unlikely(!skb
)) {
3856 /* Better luck next round */
3857 adapter
->alloc_rx_buff_failed
++;
3861 /* Fix for errata 23, can't cross 64kB boundary */
3862 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3863 struct sk_buff
*oldskb
= skb
;
3864 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
3865 "at %p\n", bufsz
, skb
->data
);
3866 /* Try again, without freeing the previous */
3867 skb
= dev_alloc_skb(bufsz
);
3868 /* Failed allocation, critical failure */
3870 dev_kfree_skb(oldskb
);
3874 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3877 dev_kfree_skb(oldskb
);
3878 break; /* while !buffer_info->skb */
3880 /* Use new allocation */
3881 dev_kfree_skb(oldskb
);
3884 /* Make buffer alignment 2 beyond a 16 byte boundary
3885 * this will result in a 16 byte aligned IP header after
3886 * the 14 byte MAC header is removed
3888 skb_reserve(skb
, NET_IP_ALIGN
);
3892 buffer_info
->skb
= skb
;
3893 buffer_info
->length
= adapter
->rx_buffer_len
;
3895 buffer_info
->dma
= pci_map_single(pdev
,
3897 adapter
->rx_buffer_len
,
3898 PCI_DMA_FROMDEVICE
);
3900 /* Fix for errata 23, can't cross 64kB boundary */
3901 if (!e1000_check_64k_bound(adapter
,
3902 (void *)(unsigned long)buffer_info
->dma
,
3903 adapter
->rx_buffer_len
)) {
3904 DPRINTK(RX_ERR
, ERR
,
3905 "dma align check failed: %u bytes at %p\n",
3906 adapter
->rx_buffer_len
,
3907 (void *)(unsigned long)buffer_info
->dma
);
3909 buffer_info
->skb
= NULL
;
3911 pci_unmap_single(pdev
, buffer_info
->dma
,
3912 adapter
->rx_buffer_len
,
3913 PCI_DMA_FROMDEVICE
);
3915 break; /* while !buffer_info->skb */
3917 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3918 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3920 if (unlikely(++i
== rx_ring
->count
))
3922 buffer_info
= &rx_ring
->buffer_info
[i
];
3925 if (likely(rx_ring
->next_to_use
!= i
)) {
3926 rx_ring
->next_to_use
= i
;
3927 if (unlikely(i
-- == 0))
3928 i
= (rx_ring
->count
- 1);
3930 /* Force memory writes to complete before letting h/w
3931 * know there are new descriptors to fetch. (Only
3932 * applicable for weak-ordered memory model archs,
3933 * such as IA-64). */
3935 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
3940 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3941 * @adapter: address of board private structure
3945 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
3946 struct e1000_rx_ring
*rx_ring
,
3949 struct net_device
*netdev
= adapter
->netdev
;
3950 struct pci_dev
*pdev
= adapter
->pdev
;
3951 union e1000_rx_desc_packet_split
*rx_desc
;
3952 struct e1000_buffer
*buffer_info
;
3953 struct e1000_ps_page
*ps_page
;
3954 struct e1000_ps_page_dma
*ps_page_dma
;
3955 struct sk_buff
*skb
;
3958 i
= rx_ring
->next_to_use
;
3959 buffer_info
= &rx_ring
->buffer_info
[i
];
3960 ps_page
= &rx_ring
->ps_page
[i
];
3961 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3963 while (cleaned_count
--) {
3964 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3966 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
3967 if (j
< adapter
->rx_ps_pages
) {
3968 if (likely(!ps_page
->ps_page
[j
])) {
3969 ps_page
->ps_page
[j
] =
3970 alloc_page(GFP_ATOMIC
);
3971 if (unlikely(!ps_page
->ps_page
[j
])) {
3972 adapter
->alloc_rx_buff_failed
++;
3975 ps_page_dma
->ps_page_dma
[j
] =
3977 ps_page
->ps_page
[j
],
3979 PCI_DMA_FROMDEVICE
);
3981 /* Refresh the desc even if buffer_addrs didn't
3982 * change because each write-back erases
3985 rx_desc
->read
.buffer_addr
[j
+1] =
3986 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
3988 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
3991 skb
= dev_alloc_skb(adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
3993 if (unlikely(!skb
)) {
3994 adapter
->alloc_rx_buff_failed
++;
3998 /* Make buffer alignment 2 beyond a 16 byte boundary
3999 * this will result in a 16 byte aligned IP header after
4000 * the 14 byte MAC header is removed
4002 skb_reserve(skb
, NET_IP_ALIGN
);
4006 buffer_info
->skb
= skb
;
4007 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4008 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4009 adapter
->rx_ps_bsize0
,
4010 PCI_DMA_FROMDEVICE
);
4012 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4014 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4015 buffer_info
= &rx_ring
->buffer_info
[i
];
4016 ps_page
= &rx_ring
->ps_page
[i
];
4017 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4021 if (likely(rx_ring
->next_to_use
!= i
)) {
4022 rx_ring
->next_to_use
= i
;
4023 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4025 /* Force memory writes to complete before letting h/w
4026 * know there are new descriptors to fetch. (Only
4027 * applicable for weak-ordered memory model archs,
4028 * such as IA-64). */
4030 /* Hardware increments by 16 bytes, but packet split
4031 * descriptors are 32 bytes...so we increment tail
4034 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4039 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4044 e1000_smartspeed(struct e1000_adapter
*adapter
)
4046 uint16_t phy_status
;
4049 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4050 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4053 if (adapter
->smartspeed
== 0) {
4054 /* If Master/Slave config fault is asserted twice,
4055 * we assume back-to-back */
4056 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4057 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4058 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4059 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4060 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4061 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4062 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4063 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4065 adapter
->smartspeed
++;
4066 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4067 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4069 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4070 MII_CR_RESTART_AUTO_NEG
);
4071 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4076 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4077 /* If still no link, perhaps using 2/3 pair cable */
4078 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4079 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4080 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4081 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4082 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4083 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4084 MII_CR_RESTART_AUTO_NEG
);
4085 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4088 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4089 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4090 adapter
->smartspeed
= 0;
4101 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4107 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4121 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4123 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4124 struct mii_ioctl_data
*data
= if_mii(ifr
);
4128 unsigned long flags
;
4130 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4135 data
->phy_id
= adapter
->hw
.phy_addr
;
4138 if (!capable(CAP_NET_ADMIN
))
4140 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4141 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4143 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4146 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4149 if (!capable(CAP_NET_ADMIN
))
4151 if (data
->reg_num
& ~(0x1F))
4153 mii_reg
= data
->val_in
;
4154 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4155 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4157 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4160 if (adapter
->hw
.phy_type
== e1000_media_type_copper
) {
4161 switch (data
->reg_num
) {
4163 if (mii_reg
& MII_CR_POWER_DOWN
)
4165 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4166 adapter
->hw
.autoneg
= 1;
4167 adapter
->hw
.autoneg_advertised
= 0x2F;
4170 spddplx
= SPEED_1000
;
4171 else if (mii_reg
& 0x2000)
4172 spddplx
= SPEED_100
;
4175 spddplx
+= (mii_reg
& 0x100)
4178 retval
= e1000_set_spd_dplx(adapter
,
4181 spin_unlock_irqrestore(
4182 &adapter
->stats_lock
,
4187 if (netif_running(adapter
->netdev
)) {
4188 e1000_down(adapter
);
4191 e1000_reset(adapter
);
4193 case M88E1000_PHY_SPEC_CTRL
:
4194 case M88E1000_EXT_PHY_SPEC_CTRL
:
4195 if (e1000_phy_reset(&adapter
->hw
)) {
4196 spin_unlock_irqrestore(
4197 &adapter
->stats_lock
, flags
);
4203 switch (data
->reg_num
) {
4205 if (mii_reg
& MII_CR_POWER_DOWN
)
4207 if (netif_running(adapter
->netdev
)) {
4208 e1000_down(adapter
);
4211 e1000_reset(adapter
);
4215 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4220 return E1000_SUCCESS
;
4224 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4226 struct e1000_adapter
*adapter
= hw
->back
;
4227 int ret_val
= pci_set_mwi(adapter
->pdev
);
4230 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4234 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4236 struct e1000_adapter
*adapter
= hw
->back
;
4238 pci_clear_mwi(adapter
->pdev
);
4242 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4244 struct e1000_adapter
*adapter
= hw
->back
;
4246 pci_read_config_word(adapter
->pdev
, reg
, value
);
4250 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4252 struct e1000_adapter
*adapter
= hw
->back
;
4254 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4258 e1000_io_read(struct e1000_hw
*hw
, unsigned long port
)
4264 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4270 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4272 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4273 uint32_t ctrl
, rctl
;
4275 e1000_irq_disable(adapter
);
4276 adapter
->vlgrp
= grp
;
4279 /* enable VLAN tag insert/strip */
4280 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4281 ctrl
|= E1000_CTRL_VME
;
4282 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4284 /* enable VLAN receive filtering */
4285 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4286 rctl
|= E1000_RCTL_VFE
;
4287 rctl
&= ~E1000_RCTL_CFIEN
;
4288 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4289 e1000_update_mng_vlan(adapter
);
4291 /* disable VLAN tag insert/strip */
4292 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4293 ctrl
&= ~E1000_CTRL_VME
;
4294 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4296 /* disable VLAN filtering */
4297 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4298 rctl
&= ~E1000_RCTL_VFE
;
4299 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4300 if (adapter
->mng_vlan_id
!= (uint16_t)E1000_MNG_VLAN_NONE
) {
4301 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4302 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4306 e1000_irq_enable(adapter
);
4310 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4312 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4313 uint32_t vfta
, index
;
4315 if ((adapter
->hw
.mng_cookie
.status
&
4316 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4317 (vid
== adapter
->mng_vlan_id
))
4319 /* add VID to filter table */
4320 index
= (vid
>> 5) & 0x7F;
4321 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4322 vfta
|= (1 << (vid
& 0x1F));
4323 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4327 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4329 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4330 uint32_t vfta
, index
;
4332 e1000_irq_disable(adapter
);
4335 adapter
->vlgrp
->vlan_devices
[vid
] = NULL
;
4337 e1000_irq_enable(adapter
);
4339 if ((adapter
->hw
.mng_cookie
.status
&
4340 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4341 (vid
== adapter
->mng_vlan_id
)) {
4342 /* release control to f/w */
4343 e1000_release_hw_control(adapter
);
4347 /* remove VID from filter table */
4348 index
= (vid
>> 5) & 0x7F;
4349 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4350 vfta
&= ~(1 << (vid
& 0x1F));
4351 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4355 e1000_restore_vlan(struct e1000_adapter
*adapter
)
4357 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4359 if (adapter
->vlgrp
) {
4361 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4362 if (!adapter
->vlgrp
->vlan_devices
[vid
])
4364 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4370 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
4372 adapter
->hw
.autoneg
= 0;
4374 /* Fiber NICs only allow 1000 gbps Full duplex */
4375 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
4376 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4377 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4382 case SPEED_10
+ DUPLEX_HALF
:
4383 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
4385 case SPEED_10
+ DUPLEX_FULL
:
4386 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
4388 case SPEED_100
+ DUPLEX_HALF
:
4389 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
4391 case SPEED_100
+ DUPLEX_FULL
:
4392 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
4394 case SPEED_1000
+ DUPLEX_FULL
:
4395 adapter
->hw
.autoneg
= 1;
4396 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4398 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4400 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4407 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4408 * bus we're on (PCI(X) vs. PCI-E)
4410 #define PCIE_CONFIG_SPACE_LEN 256
4411 #define PCI_CONFIG_SPACE_LEN 64
4413 e1000_pci_save_state(struct e1000_adapter
*adapter
)
4415 struct pci_dev
*dev
= adapter
->pdev
;
4419 if (adapter
->hw
.mac_type
>= e1000_82571
)
4420 size
= PCIE_CONFIG_SPACE_LEN
;
4422 size
= PCI_CONFIG_SPACE_LEN
;
4424 WARN_ON(adapter
->config_space
!= NULL
);
4426 adapter
->config_space
= kmalloc(size
, GFP_KERNEL
);
4427 if (!adapter
->config_space
) {
4428 DPRINTK(PROBE
, ERR
, "unable to allocate %d bytes\n", size
);
4431 for (i
= 0; i
< (size
/ 4); i
++)
4432 pci_read_config_dword(dev
, i
* 4, &adapter
->config_space
[i
]);
4437 e1000_pci_restore_state(struct e1000_adapter
*adapter
)
4439 struct pci_dev
*dev
= adapter
->pdev
;
4443 if (adapter
->config_space
== NULL
)
4446 if (adapter
->hw
.mac_type
>= e1000_82571
)
4447 size
= PCIE_CONFIG_SPACE_LEN
;
4449 size
= PCI_CONFIG_SPACE_LEN
;
4450 for (i
= 0; i
< (size
/ 4); i
++)
4451 pci_write_config_dword(dev
, i
* 4, adapter
->config_space
[i
]);
4452 kfree(adapter
->config_space
);
4453 adapter
->config_space
= NULL
;
4456 #endif /* CONFIG_PM */
4459 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4461 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4462 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4463 uint32_t ctrl
, ctrl_ext
, rctl
, manc
, status
;
4464 uint32_t wufc
= adapter
->wol
;
4467 netif_device_detach(netdev
);
4469 if (netif_running(netdev
))
4470 e1000_down(adapter
);
4473 /* Implement our own version of pci_save_state(pdev) because pci-
4474 * express adapters have 256-byte config spaces. */
4475 retval
= e1000_pci_save_state(adapter
);
4480 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
4481 if (status
& E1000_STATUS_LU
)
4482 wufc
&= ~E1000_WUFC_LNKC
;
4485 e1000_setup_rctl(adapter
);
4486 e1000_set_multi(netdev
);
4488 /* turn on all-multi mode if wake on multicast is enabled */
4489 if (adapter
->wol
& E1000_WUFC_MC
) {
4490 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4491 rctl
|= E1000_RCTL_MPE
;
4492 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4495 if (adapter
->hw
.mac_type
>= e1000_82540
) {
4496 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4497 /* advertise wake from D3Cold */
4498 #define E1000_CTRL_ADVD3WUC 0x00100000
4499 /* phy power management enable */
4500 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4501 ctrl
|= E1000_CTRL_ADVD3WUC
|
4502 E1000_CTRL_EN_PHY_PWR_MGMT
;
4503 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4506 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
4507 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
4508 /* keep the laser running in D3 */
4509 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
4510 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4511 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
4514 /* Allow time for pending master requests to run */
4515 e1000_disable_pciex_master(&adapter
->hw
);
4517 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
4518 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
4519 retval
= pci_enable_wake(pdev
, PCI_D3hot
, 1);
4521 DPRINTK(PROBE
, ERR
, "Error enabling D3 wake\n");
4522 retval
= pci_enable_wake(pdev
, PCI_D3cold
, 1);
4524 DPRINTK(PROBE
, ERR
, "Error enabling D3 cold wake\n");
4526 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
4527 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
4528 retval
= pci_enable_wake(pdev
, PCI_D3hot
, 0);
4530 DPRINTK(PROBE
, ERR
, "Error enabling D3 wake\n");
4531 retval
= pci_enable_wake(pdev
, PCI_D3cold
, 0);
4533 DPRINTK(PROBE
, ERR
, "Error enabling D3 cold wake\n");
4536 if (adapter
->hw
.mac_type
>= e1000_82540
&&
4537 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4538 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4539 if (manc
& E1000_MANC_SMBUS_EN
) {
4540 manc
|= E1000_MANC_ARP_EN
;
4541 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4542 retval
= pci_enable_wake(pdev
, PCI_D3hot
, 1);
4544 DPRINTK(PROBE
, ERR
, "Error enabling D3 wake\n");
4545 retval
= pci_enable_wake(pdev
, PCI_D3cold
, 1);
4548 "Error enabling D3 cold wake\n");
4552 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4553 * would have already happened in close and is redundant. */
4554 e1000_release_hw_control(adapter
);
4556 pci_disable_device(pdev
);
4558 retval
= pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4560 DPRINTK(PROBE
, ERR
, "Error in setting power state\n");
4567 e1000_resume(struct pci_dev
*pdev
)
4569 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4570 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4572 uint32_t manc
, ret_val
;
4574 retval
= pci_set_power_state(pdev
, PCI_D0
);
4576 DPRINTK(PROBE
, ERR
, "Error in setting power state\n");
4577 e1000_pci_restore_state(adapter
);
4578 ret_val
= pci_enable_device(pdev
);
4579 pci_set_master(pdev
);
4581 retval
= pci_enable_wake(pdev
, PCI_D3hot
, 0);
4583 DPRINTK(PROBE
, ERR
, "Error enabling D3 wake\n");
4584 retval
= pci_enable_wake(pdev
, PCI_D3cold
, 0);
4586 DPRINTK(PROBE
, ERR
, "Error enabling D3 cold wake\n");
4588 e1000_reset(adapter
);
4589 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
4591 if (netif_running(netdev
))
4594 netif_device_attach(netdev
);
4596 if (adapter
->hw
.mac_type
>= e1000_82540
&&
4597 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4598 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4599 manc
&= ~(E1000_MANC_ARP_EN
);
4600 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4603 /* If the controller is 82573 and f/w is AMT, do not set
4604 * DRV_LOAD until the interface is up. For all other cases,
4605 * let the f/w know that the h/w is now under the control
4607 if (adapter
->hw
.mac_type
!= e1000_82573
||
4608 !e1000_check_mng_mode(&adapter
->hw
))
4609 e1000_get_hw_control(adapter
);
4614 #ifdef CONFIG_NET_POLL_CONTROLLER
4616 * Polling 'interrupt' - used by things like netconsole to send skbs
4617 * without having to re-enable interrupts. It's not called while
4618 * the interrupt routine is executing.
4621 e1000_netpoll(struct net_device
*netdev
)
4623 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4624 disable_irq(adapter
->pdev
->irq
);
4625 e1000_intr(adapter
->pdev
->irq
, netdev
, NULL
);
4626 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
4627 #ifndef CONFIG_E1000_NAPI
4628 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
4630 enable_irq(adapter
->pdev
->irq
);