[PATCH] Represent laptop_mode as jiffies internally
[linux-2.6/verdex.git] / drivers / net / tulip / de2104x.c
blobe3dd144d326ba1212a81d97afd6212a9a2b1631d
1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
26 Tx descriptor bit
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/config.h>
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ethtool.h>
43 #include <linux/compiler.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/crc32.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
50 #include <asm/unaligned.h>
52 /* These identify the driver base version and may not be removed. */
53 static char version[] =
54 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
56 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
57 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(DRV_VERSION);
61 static int debug = -1;
62 module_param (debug, int, 0);
63 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
65 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
66 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
67 || defined(__sparc_) || defined(__ia64__) \
68 || defined(__sh__) || defined(__mips__)
69 static int rx_copybreak = 1518;
70 #else
71 static int rx_copybreak = 100;
72 #endif
73 module_param (rx_copybreak, int, 0);
74 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
76 #define PFX DRV_NAME ": "
78 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
79 NETIF_MSG_PROBE | \
80 NETIF_MSG_LINK | \
81 NETIF_MSG_IFDOWN | \
82 NETIF_MSG_IFUP | \
83 NETIF_MSG_RX_ERR | \
84 NETIF_MSG_TX_ERR)
86 #define DE_RX_RING_SIZE 64
87 #define DE_TX_RING_SIZE 64
88 #define DE_RING_BYTES \
89 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
90 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
91 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
92 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
93 #define TX_BUFFS_AVAIL(CP) \
94 (((CP)->tx_tail <= (CP)->tx_head) ? \
95 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
96 (CP)->tx_tail - (CP)->tx_head - 1)
98 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
99 #define RX_OFFSET 2
101 #define DE_SETUP_SKB ((struct sk_buff *) 1)
102 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
103 #define DE_SETUP_FRAME_WORDS 96
104 #define DE_EEPROM_WORDS 256
105 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
106 #define DE_MAX_MEDIA 5
108 #define DE_MEDIA_TP_AUTO 0
109 #define DE_MEDIA_BNC 1
110 #define DE_MEDIA_AUI 2
111 #define DE_MEDIA_TP 3
112 #define DE_MEDIA_TP_FD 4
113 #define DE_MEDIA_INVALID DE_MAX_MEDIA
114 #define DE_MEDIA_FIRST 0
115 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
116 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
118 #define DE_TIMER_LINK (60 * HZ)
119 #define DE_TIMER_NO_LINK (5 * HZ)
121 #define DE_NUM_REGS 16
122 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
123 #define DE_REGS_VER 1
125 /* Time in jiffies before concluding the transmitter is hung. */
126 #define TX_TIMEOUT (6*HZ)
128 #define DE_UNALIGNED_16(a) (u16)(get_unaligned((u16 *)(a)))
130 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
131 to support a pre-NWay full-duplex signaling mechanism using short frames.
132 No one knows what it should be, but if left at its default value some
133 10base2(!) packets trigger a full-duplex-request interrupt. */
134 #define FULL_DUPLEX_MAGIC 0x6969
136 enum {
137 /* NIC registers */
138 BusMode = 0x00,
139 TxPoll = 0x08,
140 RxPoll = 0x10,
141 RxRingAddr = 0x18,
142 TxRingAddr = 0x20,
143 MacStatus = 0x28,
144 MacMode = 0x30,
145 IntrMask = 0x38,
146 RxMissed = 0x40,
147 ROMCmd = 0x48,
148 CSR11 = 0x58,
149 SIAStatus = 0x60,
150 CSR13 = 0x68,
151 CSR14 = 0x70,
152 CSR15 = 0x78,
153 PCIPM = 0x40,
155 /* BusMode bits */
156 CmdReset = (1 << 0),
157 CacheAlign16 = 0x00008000,
158 BurstLen4 = 0x00000400,
160 /* Rx/TxPoll bits */
161 NormalTxPoll = (1 << 0),
162 NormalRxPoll = (1 << 0),
164 /* Tx/Rx descriptor status bits */
165 DescOwn = (1 << 31),
166 RxError = (1 << 15),
167 RxErrLong = (1 << 7),
168 RxErrCRC = (1 << 1),
169 RxErrFIFO = (1 << 0),
170 RxErrRunt = (1 << 11),
171 RxErrFrame = (1 << 14),
172 RingEnd = (1 << 25),
173 FirstFrag = (1 << 29),
174 LastFrag = (1 << 30),
175 TxError = (1 << 15),
176 TxFIFOUnder = (1 << 1),
177 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
178 TxMaxCol = (1 << 8),
179 TxOWC = (1 << 9),
180 TxJabber = (1 << 14),
181 SetupFrame = (1 << 27),
182 TxSwInt = (1 << 31),
184 /* MacStatus bits */
185 IntrOK = (1 << 16),
186 IntrErr = (1 << 15),
187 RxIntr = (1 << 6),
188 RxEmpty = (1 << 7),
189 TxIntr = (1 << 0),
190 TxEmpty = (1 << 2),
191 PciErr = (1 << 13),
192 TxState = (1 << 22) | (1 << 21) | (1 << 20),
193 RxState = (1 << 19) | (1 << 18) | (1 << 17),
194 LinkFail = (1 << 12),
195 LinkPass = (1 << 4),
196 RxStopped = (1 << 8),
197 TxStopped = (1 << 1),
199 /* MacMode bits */
200 TxEnable = (1 << 13),
201 RxEnable = (1 << 1),
202 RxTx = TxEnable | RxEnable,
203 FullDuplex = (1 << 9),
204 AcceptAllMulticast = (1 << 7),
205 AcceptAllPhys = (1 << 6),
206 BOCnt = (1 << 5),
207 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
208 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
210 /* ROMCmd bits */
211 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
212 EE_CS = 0x01, /* EEPROM chip select. */
213 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
214 EE_WRITE_0 = 0x01,
215 EE_WRITE_1 = 0x05,
216 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
217 EE_ENB = (0x4800 | EE_CS),
219 /* The EEPROM commands include the alway-set leading bit. */
220 EE_READ_CMD = 6,
222 /* RxMissed bits */
223 RxMissedOver = (1 << 16),
224 RxMissedMask = 0xffff,
226 /* SROM-related bits */
227 SROMC0InfoLeaf = 27,
228 MediaBlockMask = 0x3f,
229 MediaCustomCSRs = (1 << 6),
231 /* PCIPM bits */
232 PM_Sleep = (1 << 31),
233 PM_Snooze = (1 << 30),
234 PM_Mask = PM_Sleep | PM_Snooze,
236 /* SIAStatus bits */
237 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
238 NWayRestart = (1 << 12),
239 NonselPortActive = (1 << 9),
240 LinkFailStatus = (1 << 2),
241 NetCxnErr = (1 << 1),
244 static const u32 de_intr_mask =
245 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
246 LinkPass | LinkFail | PciErr;
249 * Set the programmable burst length to 4 longwords for all:
250 * DMA errors result without these values. Cache align 16 long.
252 static const u32 de_bus_mode = CacheAlign16 | BurstLen4;
254 struct de_srom_media_block {
255 u8 opts;
256 u16 csr13;
257 u16 csr14;
258 u16 csr15;
259 } __attribute__((packed));
261 struct de_srom_info_leaf {
262 u16 default_media;
263 u8 n_blocks;
264 u8 unused;
265 } __attribute__((packed));
267 struct de_desc {
268 u32 opts1;
269 u32 opts2;
270 u32 addr1;
271 u32 addr2;
274 struct media_info {
275 u16 type; /* DE_MEDIA_xxx */
276 u16 csr13;
277 u16 csr14;
278 u16 csr15;
281 struct ring_info {
282 struct sk_buff *skb;
283 dma_addr_t mapping;
286 struct de_private {
287 unsigned tx_head;
288 unsigned tx_tail;
289 unsigned rx_tail;
291 void __iomem *regs;
292 struct net_device *dev;
293 spinlock_t lock;
295 struct de_desc *rx_ring;
296 struct de_desc *tx_ring;
297 struct ring_info tx_skb[DE_TX_RING_SIZE];
298 struct ring_info rx_skb[DE_RX_RING_SIZE];
299 unsigned rx_buf_sz;
300 dma_addr_t ring_dma;
302 u32 msg_enable;
304 struct net_device_stats net_stats;
306 struct pci_dev *pdev;
308 u16 setup_frame[DE_SETUP_FRAME_WORDS];
310 u32 media_type;
311 u32 media_supported;
312 u32 media_advertise;
313 struct media_info media[DE_MAX_MEDIA];
314 struct timer_list media_timer;
316 u8 *ee_data;
317 unsigned board_idx;
318 unsigned de21040 : 1;
319 unsigned media_lock : 1;
323 static void de_set_rx_mode (struct net_device *dev);
324 static void de_tx (struct de_private *de);
325 static void de_clean_rings (struct de_private *de);
326 static void de_media_interrupt (struct de_private *de, u32 status);
327 static void de21040_media_timer (unsigned long data);
328 static void de21041_media_timer (unsigned long data);
329 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
332 static struct pci_device_id de_pci_tbl[] = {
333 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
334 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
335 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
336 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
337 { },
339 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
341 static const char * const media_name[DE_MAX_MEDIA] = {
342 "10baseT auto",
343 "BNC",
344 "AUI",
345 "10baseT-HD",
346 "10baseT-FD"
349 /* 21040 transceiver register settings:
350 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
351 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
352 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
353 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
355 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
356 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
357 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
358 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
361 #define dr32(reg) readl(de->regs + (reg))
362 #define dw32(reg,val) writel((val), de->regs + (reg))
365 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
366 u32 status, u32 len)
368 if (netif_msg_rx_err (de))
369 printk (KERN_DEBUG
370 "%s: rx err, slot %d status 0x%x len %d\n",
371 de->dev->name, rx_tail, status, len);
373 if ((status & 0x38000300) != 0x0300) {
374 /* Ingore earlier buffers. */
375 if ((status & 0xffff) != 0x7fff) {
376 if (netif_msg_rx_err(de))
377 printk(KERN_WARNING "%s: Oversized Ethernet frame "
378 "spanned multiple buffers, status %8.8x!\n",
379 de->dev->name, status);
380 de->net_stats.rx_length_errors++;
382 } else if (status & RxError) {
383 /* There was a fatal error. */
384 de->net_stats.rx_errors++; /* end of a packet.*/
385 if (status & 0x0890) de->net_stats.rx_length_errors++;
386 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
387 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
391 static void de_rx (struct de_private *de)
393 unsigned rx_tail = de->rx_tail;
394 unsigned rx_work = DE_RX_RING_SIZE;
395 unsigned drop = 0;
396 int rc;
398 while (rx_work--) {
399 u32 status, len;
400 dma_addr_t mapping;
401 struct sk_buff *skb, *copy_skb;
402 unsigned copying_skb, buflen;
404 skb = de->rx_skb[rx_tail].skb;
405 BUG_ON(!skb);
406 rmb();
407 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
408 if (status & DescOwn)
409 break;
411 len = ((status >> 16) & 0x7ff) - 4;
412 mapping = de->rx_skb[rx_tail].mapping;
414 if (unlikely(drop)) {
415 de->net_stats.rx_dropped++;
416 goto rx_next;
419 if (unlikely((status & 0x38008300) != 0x0300)) {
420 de_rx_err_acct(de, rx_tail, status, len);
421 goto rx_next;
424 copying_skb = (len <= rx_copybreak);
426 if (unlikely(netif_msg_rx_status(de)))
427 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
428 de->dev->name, rx_tail, status, len,
429 copying_skb);
431 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
432 copy_skb = dev_alloc_skb (buflen);
433 if (unlikely(!copy_skb)) {
434 de->net_stats.rx_dropped++;
435 drop = 1;
436 rx_work = 100;
437 goto rx_next;
439 copy_skb->dev = de->dev;
441 if (!copying_skb) {
442 pci_unmap_single(de->pdev, mapping,
443 buflen, PCI_DMA_FROMDEVICE);
444 skb_put(skb, len);
446 mapping =
447 de->rx_skb[rx_tail].mapping =
448 pci_map_single(de->pdev, copy_skb->data,
449 buflen, PCI_DMA_FROMDEVICE);
450 de->rx_skb[rx_tail].skb = copy_skb;
451 } else {
452 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
453 skb_reserve(copy_skb, RX_OFFSET);
454 memcpy(skb_put(copy_skb, len), skb->data, len);
456 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
458 /* We'll reuse the original ring buffer. */
459 skb = copy_skb;
462 skb->protocol = eth_type_trans (skb, de->dev);
464 de->net_stats.rx_packets++;
465 de->net_stats.rx_bytes += skb->len;
466 de->dev->last_rx = jiffies;
467 rc = netif_rx (skb);
468 if (rc == NET_RX_DROP)
469 drop = 1;
471 rx_next:
472 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
473 if (rx_tail == (DE_RX_RING_SIZE - 1))
474 de->rx_ring[rx_tail].opts2 =
475 cpu_to_le32(RingEnd | de->rx_buf_sz);
476 else
477 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
478 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
479 rx_tail = NEXT_RX(rx_tail);
482 if (!rx_work)
483 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
485 de->rx_tail = rx_tail;
488 static irqreturn_t de_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
490 struct net_device *dev = dev_instance;
491 struct de_private *de = dev->priv;
492 u32 status;
494 status = dr32(MacStatus);
495 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
496 return IRQ_NONE;
498 if (netif_msg_intr(de))
499 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
500 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
502 dw32(MacStatus, status);
504 if (status & (RxIntr | RxEmpty)) {
505 de_rx(de);
506 if (status & RxEmpty)
507 dw32(RxPoll, NormalRxPoll);
510 spin_lock(&de->lock);
512 if (status & (TxIntr | TxEmpty))
513 de_tx(de);
515 if (status & (LinkPass | LinkFail))
516 de_media_interrupt(de, status);
518 spin_unlock(&de->lock);
520 if (status & PciErr) {
521 u16 pci_status;
523 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
524 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
525 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
526 dev->name, status, pci_status);
529 return IRQ_HANDLED;
532 static void de_tx (struct de_private *de)
534 unsigned tx_head = de->tx_head;
535 unsigned tx_tail = de->tx_tail;
537 while (tx_tail != tx_head) {
538 struct sk_buff *skb;
539 u32 status;
541 rmb();
542 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
543 if (status & DescOwn)
544 break;
546 skb = de->tx_skb[tx_tail].skb;
547 BUG_ON(!skb);
548 if (unlikely(skb == DE_DUMMY_SKB))
549 goto next;
551 if (unlikely(skb == DE_SETUP_SKB)) {
552 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
553 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
554 goto next;
557 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
558 skb->len, PCI_DMA_TODEVICE);
560 if (status & LastFrag) {
561 if (status & TxError) {
562 if (netif_msg_tx_err(de))
563 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
564 de->dev->name, status);
565 de->net_stats.tx_errors++;
566 if (status & TxOWC)
567 de->net_stats.tx_window_errors++;
568 if (status & TxMaxCol)
569 de->net_stats.tx_aborted_errors++;
570 if (status & TxLinkFail)
571 de->net_stats.tx_carrier_errors++;
572 if (status & TxFIFOUnder)
573 de->net_stats.tx_fifo_errors++;
574 } else {
575 de->net_stats.tx_packets++;
576 de->net_stats.tx_bytes += skb->len;
577 if (netif_msg_tx_done(de))
578 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
580 dev_kfree_skb_irq(skb);
583 next:
584 de->tx_skb[tx_tail].skb = NULL;
586 tx_tail = NEXT_TX(tx_tail);
589 de->tx_tail = tx_tail;
591 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
592 netif_wake_queue(de->dev);
595 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
597 struct de_private *de = dev->priv;
598 unsigned int entry, tx_free;
599 u32 mapping, len, flags = FirstFrag | LastFrag;
600 struct de_desc *txd;
602 spin_lock_irq(&de->lock);
604 tx_free = TX_BUFFS_AVAIL(de);
605 if (tx_free == 0) {
606 netif_stop_queue(dev);
607 spin_unlock_irq(&de->lock);
608 return 1;
610 tx_free--;
612 entry = de->tx_head;
614 txd = &de->tx_ring[entry];
616 len = skb->len;
617 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
618 if (entry == (DE_TX_RING_SIZE - 1))
619 flags |= RingEnd;
620 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
621 flags |= TxSwInt;
622 flags |= len;
623 txd->opts2 = cpu_to_le32(flags);
624 txd->addr1 = cpu_to_le32(mapping);
626 de->tx_skb[entry].skb = skb;
627 de->tx_skb[entry].mapping = mapping;
628 wmb();
630 txd->opts1 = cpu_to_le32(DescOwn);
631 wmb();
633 de->tx_head = NEXT_TX(entry);
634 if (netif_msg_tx_queued(de))
635 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
636 dev->name, entry, skb->len);
638 if (tx_free == 0)
639 netif_stop_queue(dev);
641 spin_unlock_irq(&de->lock);
643 /* Trigger an immediate transmit demand. */
644 dw32(TxPoll, NormalTxPoll);
645 dev->trans_start = jiffies;
647 return 0;
650 /* Set or clear the multicast filter for this adaptor.
651 Note that we only use exclusion around actually queueing the
652 new frame, not around filling de->setup_frame. This is non-deterministic
653 when re-entered but still correct. */
655 #undef set_bit_le
656 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
658 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
660 struct de_private *de = dev->priv;
661 u16 hash_table[32];
662 struct dev_mc_list *mclist;
663 int i;
664 u16 *eaddrs;
666 memset(hash_table, 0, sizeof(hash_table));
667 set_bit_le(255, hash_table); /* Broadcast entry */
668 /* This should work on big-endian machines as well. */
669 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
670 i++, mclist = mclist->next) {
671 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
673 set_bit_le(index, hash_table);
675 for (i = 0; i < 32; i++) {
676 *setup_frm++ = hash_table[i];
677 *setup_frm++ = hash_table[i];
679 setup_frm = &de->setup_frame[13*6];
682 /* Fill the final entry with our physical address. */
683 eaddrs = (u16 *)dev->dev_addr;
684 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
685 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
686 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
689 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
691 struct de_private *de = dev->priv;
692 struct dev_mc_list *mclist;
693 int i;
694 u16 *eaddrs;
696 /* We have <= 14 addresses so we can use the wonderful
697 16 address perfect filtering of the Tulip. */
698 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
699 i++, mclist = mclist->next) {
700 eaddrs = (u16 *)mclist->dmi_addr;
701 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
702 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
703 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
705 /* Fill the unused entries with the broadcast address. */
706 memset(setup_frm, 0xff, (15-i)*12);
707 setup_frm = &de->setup_frame[15*6];
709 /* Fill the final entry with our physical address. */
710 eaddrs = (u16 *)dev->dev_addr;
711 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
712 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
713 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
717 static void __de_set_rx_mode (struct net_device *dev)
719 struct de_private *de = dev->priv;
720 u32 macmode;
721 unsigned int entry;
722 u32 mapping;
723 struct de_desc *txd;
724 struct de_desc *dummy_txd = NULL;
726 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
728 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
729 macmode |= AcceptAllMulticast | AcceptAllPhys;
730 goto out;
733 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
734 /* Too many to filter well -- accept all multicasts. */
735 macmode |= AcceptAllMulticast;
736 goto out;
739 /* Note that only the low-address shortword of setup_frame is valid!
740 The values are doubled for big-endian architectures. */
741 if (dev->mc_count > 14) /* Must use a multicast hash table. */
742 build_setup_frame_hash (de->setup_frame, dev);
743 else
744 build_setup_frame_perfect (de->setup_frame, dev);
747 * Now add this frame to the Tx list.
750 entry = de->tx_head;
752 /* Avoid a chip errata by prefixing a dummy entry. */
753 if (entry != 0) {
754 de->tx_skb[entry].skb = DE_DUMMY_SKB;
756 dummy_txd = &de->tx_ring[entry];
757 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
758 cpu_to_le32(RingEnd) : 0;
759 dummy_txd->addr1 = 0;
761 /* Must set DescOwned later to avoid race with chip */
763 entry = NEXT_TX(entry);
766 de->tx_skb[entry].skb = DE_SETUP_SKB;
767 de->tx_skb[entry].mapping = mapping =
768 pci_map_single (de->pdev, de->setup_frame,
769 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
771 /* Put the setup frame on the Tx list. */
772 txd = &de->tx_ring[entry];
773 if (entry == (DE_TX_RING_SIZE - 1))
774 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
775 else
776 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
777 txd->addr1 = cpu_to_le32(mapping);
778 wmb();
780 txd->opts1 = cpu_to_le32(DescOwn);
781 wmb();
783 if (dummy_txd) {
784 dummy_txd->opts1 = cpu_to_le32(DescOwn);
785 wmb();
788 de->tx_head = NEXT_TX(entry);
790 BUG_ON(TX_BUFFS_AVAIL(de) < 0);
791 if (TX_BUFFS_AVAIL(de) == 0)
792 netif_stop_queue(dev);
794 /* Trigger an immediate transmit demand. */
795 dw32(TxPoll, NormalTxPoll);
797 out:
798 if (macmode != dr32(MacMode))
799 dw32(MacMode, macmode);
802 static void de_set_rx_mode (struct net_device *dev)
804 unsigned long flags;
805 struct de_private *de = dev->priv;
807 spin_lock_irqsave (&de->lock, flags);
808 __de_set_rx_mode(dev);
809 spin_unlock_irqrestore (&de->lock, flags);
812 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
814 if (unlikely(rx_missed & RxMissedOver))
815 de->net_stats.rx_missed_errors += RxMissedMask;
816 else
817 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
820 static void __de_get_stats(struct de_private *de)
822 u32 tmp = dr32(RxMissed); /* self-clearing */
824 de_rx_missed(de, tmp);
827 static struct net_device_stats *de_get_stats(struct net_device *dev)
829 struct de_private *de = dev->priv;
831 /* The chip only need report frame silently dropped. */
832 spin_lock_irq(&de->lock);
833 if (netif_running(dev) && netif_device_present(dev))
834 __de_get_stats(de);
835 spin_unlock_irq(&de->lock);
837 return &de->net_stats;
840 static inline int de_is_running (struct de_private *de)
842 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
845 static void de_stop_rxtx (struct de_private *de)
847 u32 macmode;
848 unsigned int work = 1000;
850 macmode = dr32(MacMode);
851 if (macmode & RxTx) {
852 dw32(MacMode, macmode & ~RxTx);
853 dr32(MacMode);
856 while (--work > 0) {
857 if (!de_is_running(de))
858 return;
859 cpu_relax();
862 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
865 static inline void de_start_rxtx (struct de_private *de)
867 u32 macmode;
869 macmode = dr32(MacMode);
870 if ((macmode & RxTx) != RxTx) {
871 dw32(MacMode, macmode | RxTx);
872 dr32(MacMode);
876 static void de_stop_hw (struct de_private *de)
879 udelay(5);
880 dw32(IntrMask, 0);
882 de_stop_rxtx(de);
884 dw32(MacStatus, dr32(MacStatus));
886 udelay(10);
888 de->rx_tail = 0;
889 de->tx_head = de->tx_tail = 0;
892 static void de_link_up(struct de_private *de)
894 if (!netif_carrier_ok(de->dev)) {
895 netif_carrier_on(de->dev);
896 if (netif_msg_link(de))
897 printk(KERN_INFO "%s: link up, media %s\n",
898 de->dev->name, media_name[de->media_type]);
902 static void de_link_down(struct de_private *de)
904 if (netif_carrier_ok(de->dev)) {
905 netif_carrier_off(de->dev);
906 if (netif_msg_link(de))
907 printk(KERN_INFO "%s: link down\n", de->dev->name);
911 static void de_set_media (struct de_private *de)
913 unsigned media = de->media_type;
914 u32 macmode = dr32(MacMode);
916 BUG_ON(de_is_running(de));
918 if (de->de21040)
919 dw32(CSR11, FULL_DUPLEX_MAGIC);
920 dw32(CSR13, 0); /* Reset phy */
921 dw32(CSR14, de->media[media].csr14);
922 dw32(CSR15, de->media[media].csr15);
923 dw32(CSR13, de->media[media].csr13);
925 /* must delay 10ms before writing to other registers,
926 * especially CSR6
928 mdelay(10);
930 if (media == DE_MEDIA_TP_FD)
931 macmode |= FullDuplex;
932 else
933 macmode &= ~FullDuplex;
935 if (netif_msg_link(de)) {
936 printk(KERN_INFO "%s: set link %s\n"
937 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
938 KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
939 de->dev->name, media_name[media],
940 de->dev->name, dr32(MacMode), dr32(SIAStatus),
941 dr32(CSR13), dr32(CSR14), dr32(CSR15),
942 de->dev->name, macmode, de->media[media].csr13,
943 de->media[media].csr14, de->media[media].csr15);
945 if (macmode != dr32(MacMode))
946 dw32(MacMode, macmode);
949 static void de_next_media (struct de_private *de, u32 *media,
950 unsigned int n_media)
952 unsigned int i;
954 for (i = 0; i < n_media; i++) {
955 if (de_ok_to_advertise(de, media[i])) {
956 de->media_type = media[i];
957 return;
962 static void de21040_media_timer (unsigned long data)
964 struct de_private *de = (struct de_private *) data;
965 struct net_device *dev = de->dev;
966 u32 status = dr32(SIAStatus);
967 unsigned int carrier;
968 unsigned long flags;
970 carrier = (status & NetCxnErr) ? 0 : 1;
972 if (carrier) {
973 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
974 goto no_link_yet;
976 de->media_timer.expires = jiffies + DE_TIMER_LINK;
977 add_timer(&de->media_timer);
978 if (!netif_carrier_ok(dev))
979 de_link_up(de);
980 else
981 if (netif_msg_timer(de))
982 printk(KERN_INFO "%s: %s link ok, status %x\n",
983 dev->name, media_name[de->media_type],
984 status);
985 return;
988 de_link_down(de);
990 if (de->media_lock)
991 return;
993 if (de->media_type == DE_MEDIA_AUI) {
994 u32 next_state = DE_MEDIA_TP;
995 de_next_media(de, &next_state, 1);
996 } else {
997 u32 next_state = DE_MEDIA_AUI;
998 de_next_media(de, &next_state, 1);
1001 spin_lock_irqsave(&de->lock, flags);
1002 de_stop_rxtx(de);
1003 spin_unlock_irqrestore(&de->lock, flags);
1004 de_set_media(de);
1005 de_start_rxtx(de);
1007 no_link_yet:
1008 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1009 add_timer(&de->media_timer);
1011 if (netif_msg_timer(de))
1012 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1013 dev->name, media_name[de->media_type], status);
1016 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1018 switch (new_media) {
1019 case DE_MEDIA_TP_AUTO:
1020 if (!(de->media_advertise & ADVERTISED_Autoneg))
1021 return 0;
1022 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1023 return 0;
1024 break;
1025 case DE_MEDIA_BNC:
1026 if (!(de->media_advertise & ADVERTISED_BNC))
1027 return 0;
1028 break;
1029 case DE_MEDIA_AUI:
1030 if (!(de->media_advertise & ADVERTISED_AUI))
1031 return 0;
1032 break;
1033 case DE_MEDIA_TP:
1034 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1035 return 0;
1036 break;
1037 case DE_MEDIA_TP_FD:
1038 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1039 return 0;
1040 break;
1043 return 1;
1046 static void de21041_media_timer (unsigned long data)
1048 struct de_private *de = (struct de_private *) data;
1049 struct net_device *dev = de->dev;
1050 u32 status = dr32(SIAStatus);
1051 unsigned int carrier;
1052 unsigned long flags;
1054 carrier = (status & NetCxnErr) ? 0 : 1;
1056 if (carrier) {
1057 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1058 de->media_type == DE_MEDIA_TP ||
1059 de->media_type == DE_MEDIA_TP_FD) &&
1060 (status & LinkFailStatus))
1061 goto no_link_yet;
1063 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1064 add_timer(&de->media_timer);
1065 if (!netif_carrier_ok(dev))
1066 de_link_up(de);
1067 else
1068 if (netif_msg_timer(de))
1069 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1070 dev->name, media_name[de->media_type],
1071 dr32(MacMode), status);
1072 return;
1075 de_link_down(de);
1077 /* if media type locked, don't switch media */
1078 if (de->media_lock)
1079 goto set_media;
1081 /* if activity detected, use that as hint for new media type */
1082 if (status & NonselPortActive) {
1083 unsigned int have_media = 1;
1085 /* if AUI/BNC selected, then activity is on TP port */
1086 if (de->media_type == DE_MEDIA_AUI ||
1087 de->media_type == DE_MEDIA_BNC) {
1088 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1089 de->media_type = DE_MEDIA_TP_AUTO;
1090 else
1091 have_media = 0;
1094 /* TP selected. If there is only TP and BNC, then it's BNC */
1095 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1096 de_ok_to_advertise(de, DE_MEDIA_BNC))
1097 de->media_type = DE_MEDIA_BNC;
1099 /* TP selected. If there is only TP and AUI, then it's AUI */
1100 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1101 de_ok_to_advertise(de, DE_MEDIA_AUI))
1102 de->media_type = DE_MEDIA_AUI;
1104 /* otherwise, ignore the hint */
1105 else
1106 have_media = 0;
1108 if (have_media)
1109 goto set_media;
1113 * Absent or ambiguous activity hint, move to next advertised
1114 * media state. If de->media_type is left unchanged, this
1115 * simply resets the PHY and reloads the current media settings.
1117 if (de->media_type == DE_MEDIA_AUI) {
1118 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1119 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1120 } else if (de->media_type == DE_MEDIA_BNC) {
1121 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1122 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1123 } else {
1124 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1125 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1128 set_media:
1129 spin_lock_irqsave(&de->lock, flags);
1130 de_stop_rxtx(de);
1131 spin_unlock_irqrestore(&de->lock, flags);
1132 de_set_media(de);
1133 de_start_rxtx(de);
1135 no_link_yet:
1136 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1137 add_timer(&de->media_timer);
1139 if (netif_msg_timer(de))
1140 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1141 dev->name, media_name[de->media_type], status);
1144 static void de_media_interrupt (struct de_private *de, u32 status)
1146 if (status & LinkPass) {
1147 de_link_up(de);
1148 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1149 return;
1152 BUG_ON(!(status & LinkFail));
1154 if (netif_carrier_ok(de->dev)) {
1155 de_link_down(de);
1156 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1160 static int de_reset_mac (struct de_private *de)
1162 u32 status, tmp;
1165 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1166 * in this area.
1169 if (dr32(BusMode) == 0xffffffff)
1170 return -EBUSY;
1172 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1173 dw32 (BusMode, CmdReset);
1174 mdelay (1);
1176 dw32 (BusMode, de_bus_mode);
1177 mdelay (1);
1179 for (tmp = 0; tmp < 5; tmp++) {
1180 dr32 (BusMode);
1181 mdelay (1);
1184 mdelay (1);
1186 status = dr32(MacStatus);
1187 if (status & (RxState | TxState))
1188 return -EBUSY;
1189 if (status == 0xffffffff)
1190 return -ENODEV;
1191 return 0;
1194 static void de_adapter_wake (struct de_private *de)
1196 u32 pmctl;
1198 if (de->de21040)
1199 return;
1201 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1202 if (pmctl & PM_Mask) {
1203 pmctl &= ~PM_Mask;
1204 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1206 /* de4x5.c delays, so we do too */
1207 msleep(10);
1211 static void de_adapter_sleep (struct de_private *de)
1213 u32 pmctl;
1215 if (de->de21040)
1216 return;
1218 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1219 pmctl |= PM_Sleep;
1220 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1223 static int de_init_hw (struct de_private *de)
1225 struct net_device *dev = de->dev;
1226 u32 macmode;
1227 int rc;
1229 de_adapter_wake(de);
1231 macmode = dr32(MacMode) & ~MacModeClear;
1233 rc = de_reset_mac(de);
1234 if (rc)
1235 return rc;
1237 de_set_media(de); /* reset phy */
1239 dw32(RxRingAddr, de->ring_dma);
1240 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1242 dw32(MacMode, RxTx | macmode);
1244 dr32(RxMissed); /* self-clearing */
1246 dw32(IntrMask, de_intr_mask);
1248 de_set_rx_mode(dev);
1250 return 0;
1253 static int de_refill_rx (struct de_private *de)
1255 unsigned i;
1257 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1258 struct sk_buff *skb;
1260 skb = dev_alloc_skb(de->rx_buf_sz);
1261 if (!skb)
1262 goto err_out;
1264 skb->dev = de->dev;
1266 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1267 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1268 de->rx_skb[i].skb = skb;
1270 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1271 if (i == (DE_RX_RING_SIZE - 1))
1272 de->rx_ring[i].opts2 =
1273 cpu_to_le32(RingEnd | de->rx_buf_sz);
1274 else
1275 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1276 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1277 de->rx_ring[i].addr2 = 0;
1280 return 0;
1282 err_out:
1283 de_clean_rings(de);
1284 return -ENOMEM;
1287 static int de_init_rings (struct de_private *de)
1289 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1290 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1292 de->rx_tail = 0;
1293 de->tx_head = de->tx_tail = 0;
1295 return de_refill_rx (de);
1298 static int de_alloc_rings (struct de_private *de)
1300 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1301 if (!de->rx_ring)
1302 return -ENOMEM;
1303 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1304 return de_init_rings(de);
1307 static void de_clean_rings (struct de_private *de)
1309 unsigned i;
1311 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1312 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1313 wmb();
1314 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1315 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1316 wmb();
1318 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1319 if (de->rx_skb[i].skb) {
1320 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1321 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1322 dev_kfree_skb(de->rx_skb[i].skb);
1326 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1327 struct sk_buff *skb = de->tx_skb[i].skb;
1328 if ((skb) && (skb != DE_DUMMY_SKB)) {
1329 if (skb != DE_SETUP_SKB) {
1330 de->net_stats.tx_dropped++;
1331 pci_unmap_single(de->pdev,
1332 de->tx_skb[i].mapping,
1333 skb->len, PCI_DMA_TODEVICE);
1334 dev_kfree_skb(skb);
1335 } else {
1336 pci_unmap_single(de->pdev,
1337 de->tx_skb[i].mapping,
1338 sizeof(de->setup_frame),
1339 PCI_DMA_TODEVICE);
1344 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1345 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1348 static void de_free_rings (struct de_private *de)
1350 de_clean_rings(de);
1351 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1352 de->rx_ring = NULL;
1353 de->tx_ring = NULL;
1356 static int de_open (struct net_device *dev)
1358 struct de_private *de = dev->priv;
1359 int rc;
1361 if (netif_msg_ifup(de))
1362 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1364 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1366 rc = de_alloc_rings(de);
1367 if (rc) {
1368 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1369 dev->name, rc);
1370 return rc;
1373 dw32(IntrMask, 0);
1375 rc = request_irq(dev->irq, de_interrupt, SA_SHIRQ, dev->name, dev);
1376 if (rc) {
1377 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1378 dev->name, dev->irq, rc);
1379 goto err_out_free;
1382 rc = de_init_hw(de);
1383 if (rc) {
1384 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1385 dev->name, rc);
1386 goto err_out_free_irq;
1389 netif_start_queue(dev);
1390 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1392 return 0;
1394 err_out_free_irq:
1395 free_irq(dev->irq, dev);
1396 err_out_free:
1397 de_free_rings(de);
1398 return rc;
1401 static int de_close (struct net_device *dev)
1403 struct de_private *de = dev->priv;
1404 unsigned long flags;
1406 if (netif_msg_ifdown(de))
1407 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1409 del_timer_sync(&de->media_timer);
1411 spin_lock_irqsave(&de->lock, flags);
1412 de_stop_hw(de);
1413 netif_stop_queue(dev);
1414 netif_carrier_off(dev);
1415 spin_unlock_irqrestore(&de->lock, flags);
1417 free_irq(dev->irq, dev);
1419 de_free_rings(de);
1420 de_adapter_sleep(de);
1421 pci_disable_device(de->pdev);
1422 return 0;
1425 static void de_tx_timeout (struct net_device *dev)
1427 struct de_private *de = dev->priv;
1429 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1430 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1431 de->rx_tail, de->tx_head, de->tx_tail);
1433 del_timer_sync(&de->media_timer);
1435 disable_irq(dev->irq);
1436 spin_lock_irq(&de->lock);
1438 de_stop_hw(de);
1439 netif_stop_queue(dev);
1440 netif_carrier_off(dev);
1442 spin_unlock_irq(&de->lock);
1443 enable_irq(dev->irq);
1445 /* Update the error counts. */
1446 __de_get_stats(de);
1448 synchronize_irq(dev->irq);
1449 de_clean_rings(de);
1451 de_init_rings(de);
1453 de_init_hw(de);
1455 netif_wake_queue(dev);
1458 static void __de_get_regs(struct de_private *de, u8 *buf)
1460 int i;
1461 u32 *rbuf = (u32 *)buf;
1463 /* read all CSRs */
1464 for (i = 0; i < DE_NUM_REGS; i++)
1465 rbuf[i] = dr32(i * 8);
1467 /* handle self-clearing RxMissed counter, CSR8 */
1468 de_rx_missed(de, rbuf[8]);
1471 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1473 ecmd->supported = de->media_supported;
1474 ecmd->transceiver = XCVR_INTERNAL;
1475 ecmd->phy_address = 0;
1476 ecmd->advertising = de->media_advertise;
1478 switch (de->media_type) {
1479 case DE_MEDIA_AUI:
1480 ecmd->port = PORT_AUI;
1481 ecmd->speed = 5;
1482 break;
1483 case DE_MEDIA_BNC:
1484 ecmd->port = PORT_BNC;
1485 ecmd->speed = 2;
1486 break;
1487 default:
1488 ecmd->port = PORT_TP;
1489 ecmd->speed = SPEED_10;
1490 break;
1493 if (dr32(MacMode) & FullDuplex)
1494 ecmd->duplex = DUPLEX_FULL;
1495 else
1496 ecmd->duplex = DUPLEX_HALF;
1498 if (de->media_lock)
1499 ecmd->autoneg = AUTONEG_DISABLE;
1500 else
1501 ecmd->autoneg = AUTONEG_ENABLE;
1503 /* ignore maxtxpkt, maxrxpkt for now */
1505 return 0;
1508 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1510 u32 new_media;
1511 unsigned int media_lock;
1513 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1514 return -EINVAL;
1515 if (de->de21040 && ecmd->speed == 2)
1516 return -EINVAL;
1517 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1518 return -EINVAL;
1519 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1520 return -EINVAL;
1521 if (de->de21040 && ecmd->port == PORT_BNC)
1522 return -EINVAL;
1523 if (ecmd->transceiver != XCVR_INTERNAL)
1524 return -EINVAL;
1525 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1526 return -EINVAL;
1527 if (ecmd->advertising & ~de->media_supported)
1528 return -EINVAL;
1529 if (ecmd->autoneg == AUTONEG_ENABLE &&
1530 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1531 return -EINVAL;
1533 switch (ecmd->port) {
1534 case PORT_AUI:
1535 new_media = DE_MEDIA_AUI;
1536 if (!(ecmd->advertising & ADVERTISED_AUI))
1537 return -EINVAL;
1538 break;
1539 case PORT_BNC:
1540 new_media = DE_MEDIA_BNC;
1541 if (!(ecmd->advertising & ADVERTISED_BNC))
1542 return -EINVAL;
1543 break;
1544 default:
1545 if (ecmd->autoneg == AUTONEG_ENABLE)
1546 new_media = DE_MEDIA_TP_AUTO;
1547 else if (ecmd->duplex == DUPLEX_FULL)
1548 new_media = DE_MEDIA_TP_FD;
1549 else
1550 new_media = DE_MEDIA_TP;
1551 if (!(ecmd->advertising & ADVERTISED_TP))
1552 return -EINVAL;
1553 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1554 return -EINVAL;
1555 break;
1558 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1560 if ((new_media == de->media_type) &&
1561 (media_lock == de->media_lock) &&
1562 (ecmd->advertising == de->media_advertise))
1563 return 0; /* nothing to change */
1565 de_link_down(de);
1566 de_stop_rxtx(de);
1568 de->media_type = new_media;
1569 de->media_lock = media_lock;
1570 de->media_advertise = ecmd->advertising;
1571 de_set_media(de);
1573 return 0;
1576 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1578 struct de_private *de = dev->priv;
1580 strcpy (info->driver, DRV_NAME);
1581 strcpy (info->version, DRV_VERSION);
1582 strcpy (info->bus_info, pci_name(de->pdev));
1583 info->eedump_len = DE_EEPROM_SIZE;
1586 static int de_get_regs_len(struct net_device *dev)
1588 return DE_REGS_SIZE;
1591 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1593 struct de_private *de = dev->priv;
1594 int rc;
1596 spin_lock_irq(&de->lock);
1597 rc = __de_get_settings(de, ecmd);
1598 spin_unlock_irq(&de->lock);
1600 return rc;
1603 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1605 struct de_private *de = dev->priv;
1606 int rc;
1608 spin_lock_irq(&de->lock);
1609 rc = __de_set_settings(de, ecmd);
1610 spin_unlock_irq(&de->lock);
1612 return rc;
1615 static u32 de_get_msglevel(struct net_device *dev)
1617 struct de_private *de = dev->priv;
1619 return de->msg_enable;
1622 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1624 struct de_private *de = dev->priv;
1626 de->msg_enable = msglvl;
1629 static int de_get_eeprom(struct net_device *dev,
1630 struct ethtool_eeprom *eeprom, u8 *data)
1632 struct de_private *de = dev->priv;
1634 if (!de->ee_data)
1635 return -EOPNOTSUPP;
1636 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1637 (eeprom->len != DE_EEPROM_SIZE))
1638 return -EINVAL;
1639 memcpy(data, de->ee_data, eeprom->len);
1641 return 0;
1644 static int de_nway_reset(struct net_device *dev)
1646 struct de_private *de = dev->priv;
1647 u32 status;
1649 if (de->media_type != DE_MEDIA_TP_AUTO)
1650 return -EINVAL;
1651 if (netif_carrier_ok(de->dev))
1652 de_link_down(de);
1654 status = dr32(SIAStatus);
1655 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1656 if (netif_msg_link(de))
1657 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1658 de->dev->name, status, dr32(SIAStatus));
1659 return 0;
1662 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1663 void *data)
1665 struct de_private *de = dev->priv;
1667 regs->version = (DE_REGS_VER << 2) | de->de21040;
1669 spin_lock_irq(&de->lock);
1670 __de_get_regs(de, data);
1671 spin_unlock_irq(&de->lock);
1674 static struct ethtool_ops de_ethtool_ops = {
1675 .get_link = ethtool_op_get_link,
1676 .get_tx_csum = ethtool_op_get_tx_csum,
1677 .get_sg = ethtool_op_get_sg,
1678 .get_drvinfo = de_get_drvinfo,
1679 .get_regs_len = de_get_regs_len,
1680 .get_settings = de_get_settings,
1681 .set_settings = de_set_settings,
1682 .get_msglevel = de_get_msglevel,
1683 .set_msglevel = de_set_msglevel,
1684 .get_eeprom = de_get_eeprom,
1685 .nway_reset = de_nway_reset,
1686 .get_regs = de_get_regs,
1689 static void __init de21040_get_mac_address (struct de_private *de)
1691 unsigned i;
1693 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1695 for (i = 0; i < 6; i++) {
1696 int value, boguscnt = 100000;
1698 value = dr32(ROMCmd);
1699 while (value < 0 && --boguscnt > 0);
1700 de->dev->dev_addr[i] = value;
1701 udelay(1);
1702 if (boguscnt <= 0)
1703 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1707 static void __init de21040_get_media_info(struct de_private *de)
1709 unsigned int i;
1711 de->media_type = DE_MEDIA_TP;
1712 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1713 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1714 de->media_advertise = de->media_supported;
1716 for (i = 0; i < DE_MAX_MEDIA; i++) {
1717 switch (i) {
1718 case DE_MEDIA_AUI:
1719 case DE_MEDIA_TP:
1720 case DE_MEDIA_TP_FD:
1721 de->media[i].type = i;
1722 de->media[i].csr13 = t21040_csr13[i];
1723 de->media[i].csr14 = t21040_csr14[i];
1724 de->media[i].csr15 = t21040_csr15[i];
1725 break;
1726 default:
1727 de->media[i].type = DE_MEDIA_INVALID;
1728 break;
1733 /* Note: this routine returns extra data bits for size detection. */
1734 static unsigned __init tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1736 int i;
1737 unsigned retval = 0;
1738 void __iomem *ee_addr = regs + ROMCmd;
1739 int read_cmd = location | (EE_READ_CMD << addr_len);
1741 writel(EE_ENB & ~EE_CS, ee_addr);
1742 writel(EE_ENB, ee_addr);
1744 /* Shift the read command bits out. */
1745 for (i = 4 + addr_len; i >= 0; i--) {
1746 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1747 writel(EE_ENB | dataval, ee_addr);
1748 readl(ee_addr);
1749 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1750 readl(ee_addr);
1751 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1753 writel(EE_ENB, ee_addr);
1754 readl(ee_addr);
1756 for (i = 16; i > 0; i--) {
1757 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1758 readl(ee_addr);
1759 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1760 writel(EE_ENB, ee_addr);
1761 readl(ee_addr);
1764 /* Terminate the EEPROM access. */
1765 writel(EE_ENB & ~EE_CS, ee_addr);
1766 return retval;
1769 static void __init de21041_get_srom_info (struct de_private *de)
1771 unsigned i, sa_offset = 0, ofs;
1772 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1773 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1774 struct de_srom_info_leaf *il;
1775 void *bufp;
1777 /* download entire eeprom */
1778 for (i = 0; i < DE_EEPROM_WORDS; i++)
1779 ((u16 *)ee_data)[i] =
1780 le16_to_cpu(tulip_read_eeprom(de->regs, i, ee_addr_size));
1782 /* DEC now has a specification but early board makers
1783 just put the address in the first EEPROM locations. */
1784 /* This does memcmp(eedata, eedata+16, 8) */
1786 #ifndef CONFIG_MIPS_COBALT
1788 for (i = 0; i < 8; i ++)
1789 if (ee_data[i] != ee_data[16+i])
1790 sa_offset = 20;
1792 #endif
1794 /* store MAC address */
1795 for (i = 0; i < 6; i ++)
1796 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1798 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1799 ofs = ee_data[SROMC0InfoLeaf];
1800 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1801 goto bad_srom;
1803 /* get pointer to info leaf */
1804 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1806 /* paranoia checks */
1807 if (il->n_blocks == 0)
1808 goto bad_srom;
1809 if ((sizeof(ee_data) - ofs) <
1810 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1811 goto bad_srom;
1813 /* get default media type */
1814 switch (DE_UNALIGNED_16(&il->default_media)) {
1815 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1816 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1817 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1818 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1821 if (netif_msg_probe(de))
1822 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1823 de->board_idx, ofs,
1824 media_name[de->media_type]);
1826 /* init SIA register values to defaults */
1827 for (i = 0; i < DE_MAX_MEDIA; i++) {
1828 de->media[i].type = DE_MEDIA_INVALID;
1829 de->media[i].csr13 = 0xffff;
1830 de->media[i].csr14 = 0xffff;
1831 de->media[i].csr15 = 0xffff;
1834 /* parse media blocks to see what medias are supported,
1835 * and if any custom CSR values are provided
1837 bufp = ((void *)il) + sizeof(*il);
1838 for (i = 0; i < il->n_blocks; i++) {
1839 struct de_srom_media_block *ib = bufp;
1840 unsigned idx;
1842 /* index based on media type in media block */
1843 switch(ib->opts & MediaBlockMask) {
1844 case 0: /* 10baseT */
1845 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1846 | SUPPORTED_Autoneg;
1847 idx = DE_MEDIA_TP;
1848 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1849 break;
1850 case 1: /* BNC */
1851 de->media_supported |= SUPPORTED_BNC;
1852 idx = DE_MEDIA_BNC;
1853 break;
1854 case 2: /* AUI */
1855 de->media_supported |= SUPPORTED_AUI;
1856 idx = DE_MEDIA_AUI;
1857 break;
1858 case 4: /* 10baseT-FD */
1859 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1860 | SUPPORTED_Autoneg;
1861 idx = DE_MEDIA_TP_FD;
1862 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1863 break;
1864 default:
1865 goto bad_srom;
1868 de->media[idx].type = idx;
1870 if (netif_msg_probe(de))
1871 printk(KERN_INFO "de%d: media block #%u: %s",
1872 de->board_idx, i,
1873 media_name[de->media[idx].type]);
1875 bufp += sizeof (ib->opts);
1877 if (ib->opts & MediaCustomCSRs) {
1878 de->media[idx].csr13 = DE_UNALIGNED_16(&ib->csr13);
1879 de->media[idx].csr14 = DE_UNALIGNED_16(&ib->csr14);
1880 de->media[idx].csr15 = DE_UNALIGNED_16(&ib->csr15);
1881 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1882 sizeof(ib->csr15);
1884 if (netif_msg_probe(de))
1885 printk(" (%x,%x,%x)\n",
1886 de->media[idx].csr13,
1887 de->media[idx].csr14,
1888 de->media[idx].csr15);
1890 } else if (netif_msg_probe(de))
1891 printk("\n");
1893 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1894 break;
1897 de->media_advertise = de->media_supported;
1899 fill_defaults:
1900 /* fill in defaults, for cases where custom CSRs not used */
1901 for (i = 0; i < DE_MAX_MEDIA; i++) {
1902 if (de->media[i].csr13 == 0xffff)
1903 de->media[i].csr13 = t21041_csr13[i];
1904 if (de->media[i].csr14 == 0xffff)
1905 de->media[i].csr14 = t21041_csr14[i];
1906 if (de->media[i].csr15 == 0xffff)
1907 de->media[i].csr15 = t21041_csr15[i];
1910 de->ee_data = kmalloc(DE_EEPROM_SIZE, GFP_KERNEL);
1911 if (de->ee_data)
1912 memcpy(de->ee_data, &ee_data[0], DE_EEPROM_SIZE);
1914 return;
1916 bad_srom:
1917 /* for error cases, it's ok to assume we support all these */
1918 for (i = 0; i < DE_MAX_MEDIA; i++)
1919 de->media[i].type = i;
1920 de->media_supported =
1921 SUPPORTED_10baseT_Half |
1922 SUPPORTED_10baseT_Full |
1923 SUPPORTED_Autoneg |
1924 SUPPORTED_TP |
1925 SUPPORTED_AUI |
1926 SUPPORTED_BNC;
1927 goto fill_defaults;
1930 static int __init de_init_one (struct pci_dev *pdev,
1931 const struct pci_device_id *ent)
1933 struct net_device *dev;
1934 struct de_private *de;
1935 int rc;
1936 void __iomem *regs;
1937 unsigned long pciaddr;
1938 static int board_idx = -1;
1940 board_idx++;
1942 #ifndef MODULE
1943 if (board_idx == 0)
1944 printk("%s", version);
1945 #endif
1947 /* allocate a new ethernet device structure, and fill in defaults */
1948 dev = alloc_etherdev(sizeof(struct de_private));
1949 if (!dev)
1950 return -ENOMEM;
1952 SET_MODULE_OWNER(dev);
1953 SET_NETDEV_DEV(dev, &pdev->dev);
1954 dev->open = de_open;
1955 dev->stop = de_close;
1956 dev->set_multicast_list = de_set_rx_mode;
1957 dev->hard_start_xmit = de_start_xmit;
1958 dev->get_stats = de_get_stats;
1959 dev->ethtool_ops = &de_ethtool_ops;
1960 dev->tx_timeout = de_tx_timeout;
1961 dev->watchdog_timeo = TX_TIMEOUT;
1963 de = dev->priv;
1964 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1965 de->pdev = pdev;
1966 de->dev = dev;
1967 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1968 de->board_idx = board_idx;
1969 spin_lock_init (&de->lock);
1970 init_timer(&de->media_timer);
1971 if (de->de21040)
1972 de->media_timer.function = de21040_media_timer;
1973 else
1974 de->media_timer.function = de21041_media_timer;
1975 de->media_timer.data = (unsigned long) de;
1977 netif_carrier_off(dev);
1978 netif_stop_queue(dev);
1980 /* wake up device, assign resources */
1981 rc = pci_enable_device(pdev);
1982 if (rc)
1983 goto err_out_free;
1985 /* reserve PCI resources to ensure driver atomicity */
1986 rc = pci_request_regions(pdev, DRV_NAME);
1987 if (rc)
1988 goto err_out_disable;
1990 /* check for invalid IRQ value */
1991 if (pdev->irq < 2) {
1992 rc = -EIO;
1993 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
1994 pdev->irq, pci_name(pdev));
1995 goto err_out_res;
1998 dev->irq = pdev->irq;
2000 /* obtain and check validity of PCI I/O address */
2001 pciaddr = pci_resource_start(pdev, 1);
2002 if (!pciaddr) {
2003 rc = -EIO;
2004 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
2005 pci_name(pdev));
2006 goto err_out_res;
2008 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2009 rc = -EIO;
2010 printk(KERN_ERR PFX "MMIO resource (%lx) too small on pci dev %s\n",
2011 pci_resource_len(pdev, 1), pci_name(pdev));
2012 goto err_out_res;
2015 /* remap CSR registers */
2016 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2017 if (!regs) {
2018 rc = -EIO;
2019 printk(KERN_ERR PFX "Cannot map PCI MMIO (%lx@%lx) on pci dev %s\n",
2020 pci_resource_len(pdev, 1), pciaddr, pci_name(pdev));
2021 goto err_out_res;
2023 dev->base_addr = (unsigned long) regs;
2024 de->regs = regs;
2026 de_adapter_wake(de);
2028 /* make sure hardware is not running */
2029 rc = de_reset_mac(de);
2030 if (rc) {
2031 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2032 pci_name(pdev));
2033 goto err_out_iomap;
2036 /* get MAC address, initialize default media type and
2037 * get list of supported media
2039 if (de->de21040) {
2040 de21040_get_mac_address(de);
2041 de21040_get_media_info(de);
2042 } else {
2043 de21041_get_srom_info(de);
2046 /* register new network interface with kernel */
2047 rc = register_netdev(dev);
2048 if (rc)
2049 goto err_out_iomap;
2051 /* print info about board and interface just registered */
2052 printk (KERN_INFO "%s: %s at 0x%lx, "
2053 "%02x:%02x:%02x:%02x:%02x:%02x, "
2054 "IRQ %d\n",
2055 dev->name,
2056 de->de21040 ? "21040" : "21041",
2057 dev->base_addr,
2058 dev->dev_addr[0], dev->dev_addr[1],
2059 dev->dev_addr[2], dev->dev_addr[3],
2060 dev->dev_addr[4], dev->dev_addr[5],
2061 dev->irq);
2063 pci_set_drvdata(pdev, dev);
2065 /* enable busmastering */
2066 pci_set_master(pdev);
2068 /* put adapter to sleep */
2069 de_adapter_sleep(de);
2071 return 0;
2073 err_out_iomap:
2074 kfree(de->ee_data);
2075 iounmap(regs);
2076 err_out_res:
2077 pci_release_regions(pdev);
2078 err_out_disable:
2079 pci_disable_device(pdev);
2080 err_out_free:
2081 free_netdev(dev);
2082 return rc;
2085 static void __exit de_remove_one (struct pci_dev *pdev)
2087 struct net_device *dev = pci_get_drvdata(pdev);
2088 struct de_private *de = dev->priv;
2090 BUG_ON(!dev);
2091 unregister_netdev(dev);
2092 kfree(de->ee_data);
2093 iounmap(de->regs);
2094 pci_release_regions(pdev);
2095 pci_disable_device(pdev);
2096 pci_set_drvdata(pdev, NULL);
2097 free_netdev(dev);
2100 #ifdef CONFIG_PM
2102 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2104 struct net_device *dev = pci_get_drvdata (pdev);
2105 struct de_private *de = dev->priv;
2107 rtnl_lock();
2108 if (netif_running (dev)) {
2109 del_timer_sync(&de->media_timer);
2111 disable_irq(dev->irq);
2112 spin_lock_irq(&de->lock);
2114 de_stop_hw(de);
2115 netif_stop_queue(dev);
2116 netif_device_detach(dev);
2117 netif_carrier_off(dev);
2119 spin_unlock_irq(&de->lock);
2120 enable_irq(dev->irq);
2122 /* Update the error counts. */
2123 __de_get_stats(de);
2125 synchronize_irq(dev->irq);
2126 de_clean_rings(de);
2128 de_adapter_sleep(de);
2129 pci_disable_device(pdev);
2130 } else {
2131 netif_device_detach(dev);
2133 rtnl_unlock();
2134 return 0;
2137 static int de_resume (struct pci_dev *pdev)
2139 struct net_device *dev = pci_get_drvdata (pdev);
2140 struct de_private *de = dev->priv;
2142 rtnl_lock();
2143 if (netif_device_present(dev))
2144 goto out;
2145 if (netif_running(dev)) {
2146 pci_enable_device(pdev);
2147 de_init_hw(de);
2148 netif_device_attach(dev);
2149 } else {
2150 netif_device_attach(dev);
2152 out:
2153 rtnl_unlock();
2154 return 0;
2157 #endif /* CONFIG_PM */
2159 static struct pci_driver de_driver = {
2160 .name = DRV_NAME,
2161 .id_table = de_pci_tbl,
2162 .probe = de_init_one,
2163 .remove = __exit_p(de_remove_one),
2164 #ifdef CONFIG_PM
2165 .suspend = de_suspend,
2166 .resume = de_resume,
2167 #endif
2170 static int __init de_init (void)
2172 #ifdef MODULE
2173 printk("%s", version);
2174 #endif
2175 return pci_module_init (&de_driver);
2178 static void __exit de_exit (void)
2180 pci_unregister_driver (&de_driver);
2183 module_init(de_init);
2184 module_exit(de_exit);