2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/hrtimer.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
41 #include <asm/unaligned.h>
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
73 * Local protocol constants, internal to data block protocols.
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
82 /* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
89 #define MMC_SPI_BLOCKSIZE 512
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
98 #define readblock_timeout ktime_set(0, 100 * 1000 * 1000)
99 #define writeblock_timeout ktime_set(0, 250 * 1000 * 1000)
100 #define r1b_timeout ktime_set(3, 0)
103 /****************************************************************************/
106 * Local Data Structures
109 /* "scratch" is per-{command,block} data exchanged with the card */
116 struct mmc_spi_host
{
117 struct mmc_host
*mmc
;
118 struct spi_device
*spi
;
120 unsigned char power_mode
;
123 struct mmc_spi_platform_data
*pdata
;
125 /* for bulk data transfers */
126 struct spi_transfer token
, t
, crc
, early_status
;
127 struct spi_message m
;
129 /* for status readback */
130 struct spi_transfer status
;
131 struct spi_message readback
;
133 /* underlying DMA-aware controller, or null */
134 struct device
*dma_dev
;
136 /* buffer used for commands and for message "overhead" */
137 struct scratch
*data
;
140 /* Specs say to write ones most of the time, even when the card
141 * has no need to read its input data; and many cards won't care.
142 * This is our source of those ones.
149 /****************************************************************************/
152 * MMC-over-SPI protocol glue, used by the MMC stack interface
155 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
157 /* chipselect will always be inactive after setup() */
158 return spi_setup(host
->spi
);
162 mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned len
)
166 if (len
> sizeof(*host
->data
)) {
171 host
->status
.len
= len
;
174 dma_sync_single_for_device(host
->dma_dev
,
175 host
->data_dma
, sizeof(*host
->data
),
178 status
= spi_sync(host
->spi
, &host
->readback
);
181 dma_sync_single_for_cpu(host
->dma_dev
,
182 host
->data_dma
, sizeof(*host
->data
),
189 mmc_spi_skip(struct mmc_spi_host
*host
, ktime_t timeout
, unsigned n
, u8 byte
)
191 u8
*cp
= host
->data
->status
;
193 timeout
= ktime_add(timeout
, ktime_get());
199 status
= mmc_spi_readbytes(host
, n
);
203 for (i
= 0; i
< n
; i
++) {
208 /* REVISIT investigate msleep() to avoid busy-wait I/O
209 * in at least some cases.
211 if (ktime_to_ns(ktime_sub(ktime_get(), timeout
)) > 0)
218 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, ktime_t timeout
)
220 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
223 static int mmc_spi_readtoken(struct mmc_spi_host
*host
)
225 return mmc_spi_skip(host
, readblock_timeout
, 1, 0xff);
230 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
231 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
232 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
234 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
235 * newer cards R7 (IF_COND).
238 static char *maptype(struct mmc_command
*cmd
)
240 switch (mmc_spi_resp_type(cmd
)) {
241 case MMC_RSP_SPI_R1
: return "R1";
242 case MMC_RSP_SPI_R1B
: return "R1B";
243 case MMC_RSP_SPI_R2
: return "R2/R5";
244 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
249 /* return zero, else negative errno after setting cmd->error */
250 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
251 struct mmc_command
*cmd
, int cs_on
)
253 u8
*cp
= host
->data
->status
;
254 u8
*end
= cp
+ host
->t
.len
;
258 snprintf(tag
, sizeof(tag
), " ... CMD%d response SPI_%s",
259 cmd
->opcode
, maptype(cmd
));
261 /* Except for data block reads, the whole response will already
262 * be stored in the scratch buffer. It's somewhere after the
263 * command and the first byte we read after it. We ignore that
264 * first byte. After STOP_TRANSMISSION command it may include
265 * two data bits, but otherwise it's all ones.
268 while (cp
< end
&& *cp
== 0xff)
271 /* Data block reads (R1 response types) may need more data... */
275 cp
= host
->data
->status
;
277 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
278 * status byte ... and we already scanned 2 bytes.
280 * REVISIT block read paths use nasty byte-at-a-time I/O
281 * so it can always DMA directly into the target buffer.
282 * It'd probably be better to memcpy() the first chunk and
283 * avoid extra i/o calls...
285 for (i
= 2; i
< 9; i
++) {
286 value
= mmc_spi_readbytes(host
, 1);
298 dev_dbg(&host
->spi
->dev
, "%s: INVALID RESPONSE, %02x\n",
304 cmd
->resp
[0] = *cp
++;
307 /* Status byte: the entire seven-bit R1 response. */
308 if (cmd
->resp
[0] != 0) {
309 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
310 | R1_SPI_ILLEGAL_COMMAND
)
313 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
315 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
318 /* else R1_SPI_IDLE, "it's resetting" */
321 switch (mmc_spi_resp_type(cmd
)) {
323 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
324 * and less-common stuff like various erase operations.
326 case MMC_RSP_SPI_R1B
:
327 /* maybe we read all the busy tokens already */
328 while (cp
< end
&& *cp
== 0)
331 mmc_spi_wait_unbusy(host
, r1b_timeout
);
334 /* SPI R2 == R1 + second status byte; SEND_STATUS
335 * SPI R5 == R1 + data byte; IO_RW_DIRECT
338 cmd
->resp
[0] |= *cp
<< 8;
341 /* SPI R3, R4, or R7 == R1 + 4 bytes */
343 cmd
->resp
[1] = be32_to_cpu(get_unaligned((u32
*)cp
));
346 /* SPI R1 == just one status byte */
351 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
352 mmc_spi_resp_type(cmd
));
359 dev_dbg(&host
->spi
->dev
, "%s: resp %04x %08x\n",
360 tag
, cmd
->resp
[0], cmd
->resp
[1]);
362 /* disable chipselect on errors and some success cases */
363 if (value
>= 0 && cs_on
)
372 /* Issue command and read its response.
373 * Returns zero on success, negative for error.
375 * On error, caller must cope with mmc core retry mechanism. That
376 * means immediate low-level resubmit, which affects the bus lock...
379 mmc_spi_command_send(struct mmc_spi_host
*host
,
380 struct mmc_request
*mrq
,
381 struct mmc_command
*cmd
, int cs_on
)
383 struct scratch
*data
= host
->data
;
384 u8
*cp
= data
->status
;
387 struct spi_transfer
*t
;
389 /* We can handle most commands (except block reads) in one full
390 * duplex I/O operation before either starting the next transfer
391 * (data block or command) or else deselecting the card.
393 * First, write 7 bytes:
394 * - an all-ones byte to ensure the card is ready
395 * - opcode byte (plus start and transmission bits)
396 * - four bytes of big-endian argument
397 * - crc7 (plus end bit) ... always computed, it's cheap
399 * We init the whole buffer to all-ones, which is what we need
400 * to write while we're reading (later) response data.
402 memset(cp
++, 0xff, sizeof(data
->status
));
404 *cp
++ = 0x40 | cmd
->opcode
;
405 *cp
++ = (u8
)(arg
>> 24);
406 *cp
++ = (u8
)(arg
>> 16);
407 *cp
++ = (u8
)(arg
>> 8);
409 *cp
++ = (crc7(0, &data
->status
[1], 5) << 1) | 0x01;
411 /* Then, read up to 13 bytes (while writing all-ones):
412 * - N(CR) (== 1..8) bytes of all-ones
413 * - status byte (for all response types)
414 * - the rest of the response, either:
415 * + nothing, for R1 or R1B responses
416 * + second status byte, for R2 responses
417 * + four data bytes, for R3 and R7 responses
419 * Finally, read some more bytes ... in the nice cases we know in
420 * advance how many, and reading 1 more is always OK:
421 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
422 * - N(RC) (== 1..N) bytes of all-ones, before next command
423 * - N(WR) (== 1..N) bytes of all-ones, before data write
425 * So in those cases one full duplex I/O of at most 21 bytes will
426 * handle the whole command, leaving the card ready to receive a
427 * data block or new command. We do that whenever we can, shaving
428 * CPU and IRQ costs (especially when using DMA or FIFOs).
430 * There are two other cases, where it's not generally practical
431 * to rely on a single I/O:
433 * - R1B responses need at least N(EC) bytes of all-zeroes.
435 * In this case we can *try* to fit it into one I/O, then
436 * maybe read more data later.
438 * - Data block reads are more troublesome, since a variable
439 * number of padding bytes precede the token and data.
440 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
441 * + N(AC) (== 1..many) bytes of all-ones
443 * In this case we currently only have minimal speedups here:
444 * when N(CR) == 1 we can avoid I/O in response_get().
446 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
447 cp
+= 2; /* min(N(CR)) + status */
450 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
451 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
453 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
455 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
456 cp
= data
->status
+ sizeof(data
->status
);
457 /* else: R1 (most commands) */
460 dev_dbg(&host
->spi
->dev
, " mmc_spi: CMD%d, resp %s\n",
461 cmd
->opcode
, maptype(cmd
));
463 /* send command, leaving chipselect active */
464 spi_message_init(&host
->m
);
467 memset(t
, 0, sizeof(*t
));
468 t
->tx_buf
= t
->rx_buf
= data
->status
;
469 t
->tx_dma
= t
->rx_dma
= host
->data_dma
;
470 t
->len
= cp
- data
->status
;
472 spi_message_add_tail(t
, &host
->m
);
475 host
->m
.is_dma_mapped
= 1;
476 dma_sync_single_for_device(host
->dma_dev
,
477 host
->data_dma
, sizeof(*host
->data
),
480 status
= spi_sync(host
->spi
, &host
->m
);
483 dma_sync_single_for_cpu(host
->dma_dev
,
484 host
->data_dma
, sizeof(*host
->data
),
487 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
492 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
493 return mmc_spi_response_get(host
, cmd
, cs_on
);
496 /* Build data message with up to four separate transfers. For TX, we
497 * start by writing the data token. And in most cases, we finish with
500 * We always provide TX data for data and CRC. The MMC/SD protocol
501 * requires us to write ones; but Linux defaults to writing zeroes;
502 * so we explicitly initialize it to all ones on RX paths.
504 * We also handle DMA mapping, so the underlying SPI controller does
505 * not need to (re)do it for each message.
508 mmc_spi_setup_data_message(
509 struct mmc_spi_host
*host
,
511 enum dma_data_direction direction
)
513 struct spi_transfer
*t
;
514 struct scratch
*scratch
= host
->data
;
515 dma_addr_t dma
= host
->data_dma
;
517 spi_message_init(&host
->m
);
519 host
->m
.is_dma_mapped
= 1;
521 /* for reads, readblock() skips 0xff bytes before finding
522 * the token; for writes, this transfer issues that token.
524 if (direction
== DMA_TO_DEVICE
) {
526 memset(t
, 0, sizeof(*t
));
529 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
531 scratch
->data_token
= SPI_TOKEN_SINGLE
;
532 t
->tx_buf
= &scratch
->data_token
;
534 t
->tx_dma
= dma
+ offsetof(struct scratch
, data_token
);
535 spi_message_add_tail(t
, &host
->m
);
538 /* Body of transfer is buffer, then CRC ...
539 * either TX-only, or RX with TX-ones.
542 memset(t
, 0, sizeof(*t
));
543 t
->tx_buf
= host
->ones
;
544 t
->tx_dma
= host
->ones_dma
;
545 /* length and actual buffer info are written later */
546 spi_message_add_tail(t
, &host
->m
);
549 memset(t
, 0, sizeof(*t
));
551 if (direction
== DMA_TO_DEVICE
) {
552 /* the actual CRC may get written later */
553 t
->tx_buf
= &scratch
->crc_val
;
555 t
->tx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
557 t
->tx_buf
= host
->ones
;
558 t
->tx_dma
= host
->ones_dma
;
559 t
->rx_buf
= &scratch
->crc_val
;
561 t
->rx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
563 spi_message_add_tail(t
, &host
->m
);
566 * A single block read is followed by N(EC) [0+] all-ones bytes
567 * before deselect ... don't bother.
569 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
570 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
571 * collect that single byte, so readblock() doesn't need to.
573 * For a write, the one-byte data response follows immediately, then
574 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
575 * Then single block reads may deselect, and multiblock ones issue
576 * the next token (next data block, or STOP_TRAN). We can try to
577 * minimize I/O ops by using a single read to collect end-of-busy.
579 if (multiple
|| direction
== DMA_TO_DEVICE
) {
580 t
= &host
->early_status
;
581 memset(t
, 0, sizeof(*t
));
582 t
->len
= (direction
== DMA_TO_DEVICE
)
583 ? sizeof(scratch
->status
)
585 t
->tx_buf
= host
->ones
;
586 t
->tx_dma
= host
->ones_dma
;
587 t
->rx_buf
= scratch
->status
;
589 t
->rx_dma
= dma
+ offsetof(struct scratch
, status
);
591 spi_message_add_tail(t
, &host
->m
);
597 * - caller handled preceding N(WR) [1+] all-ones bytes
602 * - an all-ones byte ... card writes a data-response byte
603 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
605 * Return negative errno, else success.
608 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
)
610 struct spi_device
*spi
= host
->spi
;
612 struct scratch
*scratch
= host
->data
;
614 if (host
->mmc
->use_spi_crc
)
615 scratch
->crc_val
= cpu_to_be16(
616 crc_itu_t(0, t
->tx_buf
, t
->len
));
618 dma_sync_single_for_device(host
->dma_dev
,
619 host
->data_dma
, sizeof(*scratch
),
622 status
= spi_sync(spi
, &host
->m
);
625 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
630 dma_sync_single_for_cpu(host
->dma_dev
,
631 host
->data_dma
, sizeof(*scratch
),
635 * Get the transmission data-response reply. It must follow
636 * immediately after the data block we transferred. This reply
637 * doesn't necessarily tell whether the write operation succeeded;
638 * it just says if the transmission was ok and whether *earlier*
639 * writes succeeded; see the standard.
641 switch (SPI_MMC_RESPONSE_CODE(scratch
->status
[0])) {
642 case SPI_RESPONSE_ACCEPTED
:
645 case SPI_RESPONSE_CRC_ERR
:
646 /* host shall then issue MMC_STOP_TRANSMISSION */
649 case SPI_RESPONSE_WRITE_ERR
:
650 /* host shall then issue MMC_STOP_TRANSMISSION,
651 * and should MMC_SEND_STATUS to sort it out
660 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
661 scratch
->status
[0], status
);
669 /* Return when not busy. If we didn't collect that status yet,
670 * we'll need some more I/O.
672 for (i
= 1; i
< sizeof(scratch
->status
); i
++) {
673 if (scratch
->status
[i
] != 0)
676 return mmc_spi_wait_unbusy(host
, writeblock_timeout
);
681 * - skip leading all-ones bytes ... either
682 * + N(AC) [1..f(clock,CSD)] usually, else
683 * + N(CX) [0..8] when reading CSD or CID
685 * + token ... if error token, no data or crc
689 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
690 * before dropping chipselect.
692 * For multiblock reads, caller either reads the next block or issues a
693 * STOP_TRANSMISSION command.
696 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
)
698 struct spi_device
*spi
= host
->spi
;
700 struct scratch
*scratch
= host
->data
;
702 /* At least one SD card sends an all-zeroes byte when N(CX)
703 * applies, before the all-ones bytes ... just cope with that.
705 status
= mmc_spi_readbytes(host
, 1);
708 status
= scratch
->status
[0];
709 if (status
== 0xff || status
== 0)
710 status
= mmc_spi_readtoken(host
);
712 if (status
== SPI_TOKEN_SINGLE
) {
714 dma_sync_single_for_device(host
->dma_dev
,
715 host
->data_dma
, sizeof(*scratch
),
717 dma_sync_single_for_device(host
->dma_dev
,
722 status
= spi_sync(spi
, &host
->m
);
725 dma_sync_single_for_cpu(host
->dma_dev
,
726 host
->data_dma
, sizeof(*scratch
),
728 dma_sync_single_for_cpu(host
->dma_dev
,
734 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
736 /* we've read extra garbage, timed out, etc */
740 /* low four bits are an R2 subset, fifth seems to be
741 * vendor specific ... map them all to generic error..
746 if (host
->mmc
->use_spi_crc
) {
747 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
749 be16_to_cpus(&scratch
->crc_val
);
750 if (scratch
->crc_val
!= crc
) {
751 dev_dbg(&spi
->dev
, "read - crc error: crc_val=0x%04x, "
752 "computed=0x%04x len=%d\n",
753 scratch
->crc_val
, crc
, t
->len
);
766 * An MMC/SD data stage includes one or more blocks, optional CRCs,
767 * and inline handshaking. That handhaking makes it unlike most
768 * other SPI protocol stacks.
771 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
772 struct mmc_data
*data
, u32 blk_size
)
774 struct spi_device
*spi
= host
->spi
;
775 struct device
*dma_dev
= host
->dma_dev
;
776 struct spi_transfer
*t
;
777 enum dma_data_direction direction
;
778 struct scatterlist
*sg
;
780 int multiple
= (data
->blocks
> 1);
782 if (data
->flags
& MMC_DATA_READ
)
783 direction
= DMA_FROM_DEVICE
;
785 direction
= DMA_TO_DEVICE
;
786 mmc_spi_setup_data_message(host
, multiple
, direction
);
789 /* Handle scatterlist segments one at a time, with synch for
790 * each 512-byte block
792 for (sg
= data
->sg
, n_sg
= data
->sg_len
; n_sg
; n_sg
--, sg
++) {
794 dma_addr_t dma_addr
= 0;
796 unsigned length
= sg
->length
;
797 enum dma_data_direction dir
= direction
;
799 /* set up dma mapping for controller drivers that might
800 * use DMA ... though they may fall back to PIO
803 /* never invalidate whole *shared* pages ... */
804 if ((sg
->offset
!= 0 || length
!= PAGE_SIZE
)
805 && dir
== DMA_FROM_DEVICE
)
806 dir
= DMA_BIDIRECTIONAL
;
808 dma_addr
= dma_map_page(dma_dev
, sg_page(sg
), 0,
810 if (direction
== DMA_TO_DEVICE
)
811 t
->tx_dma
= dma_addr
+ sg
->offset
;
813 t
->rx_dma
= dma_addr
+ sg
->offset
;
816 /* allow pio too; we don't allow highmem */
817 kmap_addr
= kmap(sg_page(sg
));
818 if (direction
== DMA_TO_DEVICE
)
819 t
->tx_buf
= kmap_addr
+ sg
->offset
;
821 t
->rx_buf
= kmap_addr
+ sg
->offset
;
823 /* transfer each block, and update request status */
825 t
->len
= min(length
, blk_size
);
827 dev_dbg(&host
->spi
->dev
,
828 " mmc_spi: %s block, %d bytes\n",
829 (direction
== DMA_TO_DEVICE
)
834 if (direction
== DMA_TO_DEVICE
)
835 status
= mmc_spi_writeblock(host
, t
);
837 status
= mmc_spi_readblock(host
, t
);
841 data
->bytes_xfered
+= t
->len
;
848 /* discard mappings */
849 if (direction
== DMA_FROM_DEVICE
)
850 flush_kernel_dcache_page(sg_page(sg
));
853 dma_unmap_page(dma_dev
, dma_addr
, PAGE_SIZE
, dir
);
856 data
->error
= status
;
857 dev_dbg(&spi
->dev
, "%s status %d\n",
858 (direction
== DMA_TO_DEVICE
)
865 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
866 * can be issued before multiblock writes. Unlike its more widely
867 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
868 * that can affect the STOP_TRAN logic. Complete (and current)
869 * MMC specs should sort that out before Linux starts using CMD23.
871 if (direction
== DMA_TO_DEVICE
&& multiple
) {
872 struct scratch
*scratch
= host
->data
;
874 const unsigned statlen
= sizeof(scratch
->status
);
876 dev_dbg(&spi
->dev
, " mmc_spi: STOP_TRAN\n");
878 /* Tweak the per-block message we set up earlier by morphing
879 * it to hold single buffer with the token followed by some
880 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
881 * "not busy any longer" status, and leave chip selected.
883 INIT_LIST_HEAD(&host
->m
.transfers
);
884 list_add(&host
->early_status
.transfer_list
,
887 memset(scratch
->status
, 0xff, statlen
);
888 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
890 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
891 host
->early_status
.tx_dma
= host
->early_status
.rx_dma
;
892 host
->early_status
.len
= statlen
;
895 dma_sync_single_for_device(host
->dma_dev
,
896 host
->data_dma
, sizeof(*scratch
),
899 tmp
= spi_sync(spi
, &host
->m
);
902 dma_sync_single_for_cpu(host
->dma_dev
,
903 host
->data_dma
, sizeof(*scratch
),
912 /* Ideally we collected "not busy" status with one I/O,
913 * avoiding wasteful byte-at-a-time scanning... but more
914 * I/O is often needed.
916 for (tmp
= 2; tmp
< statlen
; tmp
++) {
917 if (scratch
->status
[tmp
] != 0)
920 tmp
= mmc_spi_wait_unbusy(host
, writeblock_timeout
);
921 if (tmp
< 0 && !data
->error
)
926 /****************************************************************************/
929 * MMC driver implementation -- the interface to the MMC stack
932 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
934 struct mmc_spi_host
*host
= mmc_priv(mmc
);
935 int status
= -EINVAL
;
938 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
940 struct mmc_command
*cmd
;
944 if (!mmc_spi_resp_type(cmd
)) {
945 dev_dbg(&host
->spi
->dev
, "bogus command\n");
946 cmd
->error
= -EINVAL
;
951 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
952 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
953 cmd
->error
= -EINVAL
;
959 mmc_request_done(host
->mmc
, mrq
);
965 /* issue command; then optionally data and stop */
966 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
967 if (status
== 0 && mrq
->data
) {
968 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
970 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
975 mmc_request_done(host
->mmc
, mrq
);
978 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
980 * NOTE that here we can't know that the card has just been powered up;
981 * not all MMC/SD sockets support power switching.
983 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
984 * this doesn't seem to do the right thing at all...
986 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
988 /* Try to be very sure any previous command has completed;
989 * wait till not-busy, skip debris from any old commands.
991 mmc_spi_wait_unbusy(host
, r1b_timeout
);
992 mmc_spi_readbytes(host
, 10);
995 * Do a burst with chipselect active-high. We need to do this to
996 * meet the requirement of 74 clock cycles with both chipselect
997 * and CMD (MOSI) high before CMD0 ... after the card has been
998 * powered up to Vdd(min), and so is ready to take commands.
1000 * Some cards are particularly needy of this (e.g. Viking "SD256")
1001 * while most others don't seem to care.
1003 * Note that this is one of the places MMC/SD plays games with the
1004 * SPI protocol. Another is that when chipselect is released while
1005 * the card returns BUSY status, the clock must issue several cycles
1006 * with chipselect high before the card will stop driving its output.
1008 host
->spi
->mode
|= SPI_CS_HIGH
;
1009 if (spi_setup(host
->spi
) != 0) {
1010 /* Just warn; most cards work without it. */
1011 dev_warn(&host
->spi
->dev
,
1012 "can't change chip-select polarity\n");
1013 host
->spi
->mode
&= ~SPI_CS_HIGH
;
1015 mmc_spi_readbytes(host
, 18);
1017 host
->spi
->mode
&= ~SPI_CS_HIGH
;
1018 if (spi_setup(host
->spi
) != 0) {
1019 /* Wot, we can't get the same setup we had before? */
1020 dev_err(&host
->spi
->dev
,
1021 "can't restore chip-select polarity\n");
1026 static char *mmc_powerstring(u8 power_mode
)
1028 switch (power_mode
) {
1029 case MMC_POWER_OFF
: return "off";
1030 case MMC_POWER_UP
: return "up";
1031 case MMC_POWER_ON
: return "on";
1036 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1038 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1040 if (host
->power_mode
!= ios
->power_mode
) {
1043 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1045 dev_dbg(&host
->spi
->dev
, "mmc_spi: power %s (%d)%s\n",
1046 mmc_powerstring(ios
->power_mode
),
1048 canpower
? ", can switch" : "");
1050 /* switch power on/off if possible, accounting for
1051 * max 250msec powerup time if needed.
1054 switch (ios
->power_mode
) {
1057 host
->pdata
->setpower(&host
->spi
->dev
,
1059 if (ios
->power_mode
== MMC_POWER_UP
)
1060 msleep(host
->powerup_msecs
);
1064 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1065 if (ios
->power_mode
== MMC_POWER_ON
)
1066 mmc_spi_initsequence(host
);
1068 /* If powering down, ground all card inputs to avoid power
1069 * delivery from data lines! On a shared SPI bus, this
1070 * will probably be temporary; 6.4.2 of the simplified SD
1071 * spec says this must last at least 1msec.
1073 * - Clock low means CPOL 0, e.g. mode 0
1074 * - MOSI low comes from writing zero
1075 * - Chipselect is usually active low...
1077 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1080 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1081 mres
= spi_setup(host
->spi
);
1083 dev_dbg(&host
->spi
->dev
,
1084 "switch to SPI mode 0 failed\n");
1086 if (spi_w8r8(host
->spi
, 0x00) < 0)
1087 dev_dbg(&host
->spi
->dev
,
1088 "put spi signals to low failed\n");
1091 * Now clock should be low due to spi mode 0;
1092 * MOSI should be low because of written 0x00;
1093 * chipselect should be low (it is active low)
1094 * power supply is off, so now MMC is off too!
1096 * FIXME no, chipselect can be high since the
1097 * device is inactive and SPI_CS_HIGH is clear...
1101 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1102 mres
= spi_setup(host
->spi
);
1104 dev_dbg(&host
->spi
->dev
,
1105 "switch back to SPI mode 3"
1110 host
->power_mode
= ios
->power_mode
;
1113 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1116 host
->spi
->max_speed_hz
= ios
->clock
;
1117 status
= spi_setup(host
->spi
);
1118 dev_dbg(&host
->spi
->dev
,
1119 "mmc_spi: clock to %d Hz, %d\n",
1120 host
->spi
->max_speed_hz
, status
);
1124 static int mmc_spi_get_ro(struct mmc_host
*mmc
)
1126 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1128 if (host
->pdata
&& host
->pdata
->get_ro
)
1129 return host
->pdata
->get_ro(mmc
->parent
);
1130 /* board doesn't support read only detection; assume writeable */
1135 static const struct mmc_host_ops mmc_spi_ops
= {
1136 .request
= mmc_spi_request
,
1137 .set_ios
= mmc_spi_set_ios
,
1138 .get_ro
= mmc_spi_get_ro
,
1142 /****************************************************************************/
1145 * SPI driver implementation
1149 mmc_spi_detect_irq(int irq
, void *mmc
)
1151 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1152 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1154 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1158 struct count_children
{
1160 struct bus_type
*bus
;
1163 static int maybe_count_child(struct device
*dev
, void *c
)
1165 struct count_children
*ccp
= c
;
1167 if (dev
->bus
== ccp
->bus
) {
1175 static int mmc_spi_probe(struct spi_device
*spi
)
1178 struct mmc_host
*mmc
;
1179 struct mmc_spi_host
*host
;
1182 /* MMC and SD specs only seem to care that sampling is on the
1183 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1184 * should be legit. We'll use mode 0 since it seems to be a
1185 * bit less troublesome on some hardware ... unclear why.
1187 spi
->mode
= SPI_MODE_0
;
1188 spi
->bits_per_word
= 8;
1190 status
= spi_setup(spi
);
1192 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1193 spi
->mode
, spi
->max_speed_hz
/ 1000,
1198 /* We can use the bus safely iff nobody else will interfere with us.
1199 * Most commands consist of one SPI message to issue a command, then
1200 * several more to collect its response, then possibly more for data
1201 * transfer. Clocking access to other devices during that period will
1202 * corrupt the command execution.
1204 * Until we have software primitives which guarantee non-interference,
1205 * we'll aim for a hardware-level guarantee.
1207 * REVISIT we can't guarantee another device won't be added later...
1209 if (spi
->master
->num_chipselect
> 1) {
1210 struct count_children cc
;
1213 cc
.bus
= spi
->dev
.bus
;
1214 status
= device_for_each_child(spi
->dev
.parent
, &cc
,
1217 dev_err(&spi
->dev
, "can't share SPI bus\n");
1221 dev_warn(&spi
->dev
, "ASSUMING SPI bus stays unshared!\n");
1224 /* We need a supply of ones to transmit. This is the only time
1225 * the CPU touches these, so cache coherency isn't a concern.
1227 * NOTE if many systems use more than one MMC-over-SPI connector
1228 * it'd save some memory to share this. That's evidently rare.
1231 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1234 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1236 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1240 mmc
->ops
= &mmc_spi_ops
;
1241 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1243 /* As long as we keep track of the number of successfully
1244 * transmitted blocks, we're good for multiwrite.
1246 mmc
->caps
= MMC_CAP_SPI
| MMC_CAP_MULTIWRITE
;
1248 /* SPI doesn't need the lowspeed device identification thing for
1249 * MMC or SD cards, since it never comes up in open drain mode.
1250 * That's good; some SPI masters can't handle very low speeds!
1252 * However, low speed SDIO cards need not handle over 400 KHz;
1253 * that's the only reason not to use a few MHz for f_min (until
1254 * the upper layer reads the target frequency from the CSD).
1256 mmc
->f_min
= 400000;
1257 mmc
->f_max
= spi
->max_speed_hz
;
1259 host
= mmc_priv(mmc
);
1265 /* Platform data is used to hook up things like card sensing
1266 * and power switching gpios.
1268 host
->pdata
= spi
->dev
.platform_data
;
1270 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1271 if (!mmc
->ocr_avail
) {
1272 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1273 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1275 if (host
->pdata
&& host
->pdata
->setpower
) {
1276 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1277 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1278 host
->powerup_msecs
= 250;
1281 dev_set_drvdata(&spi
->dev
, mmc
);
1283 /* preallocate dma buffers */
1284 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1288 if (spi
->master
->dev
.parent
->dma_mask
) {
1289 struct device
*dev
= spi
->master
->dev
.parent
;
1291 host
->dma_dev
= dev
;
1292 host
->ones_dma
= dma_map_single(dev
, ones
,
1293 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1294 host
->data_dma
= dma_map_single(dev
, host
->data
,
1295 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1297 /* REVISIT in theory those map operations can fail... */
1299 dma_sync_single_for_cpu(host
->dma_dev
,
1300 host
->data_dma
, sizeof(*host
->data
),
1304 /* setup message for status/busy readback */
1305 spi_message_init(&host
->readback
);
1306 host
->readback
.is_dma_mapped
= (host
->dma_dev
!= NULL
);
1308 spi_message_add_tail(&host
->status
, &host
->readback
);
1309 host
->status
.tx_buf
= host
->ones
;
1310 host
->status
.tx_dma
= host
->ones_dma
;
1311 host
->status
.rx_buf
= &host
->data
->status
;
1312 host
->status
.rx_dma
= host
->data_dma
+ offsetof(struct scratch
, status
);
1313 host
->status
.cs_change
= 1;
1315 /* register card detect irq */
1316 if (host
->pdata
&& host
->pdata
->init
) {
1317 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1319 goto fail_glue_init
;
1322 status
= mmc_add_host(mmc
);
1326 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s\n",
1327 mmc
->class_dev
.bus_id
,
1328 host
->dma_dev
? "" : ", no DMA",
1329 (host
->pdata
&& host
->pdata
->get_ro
)
1331 (host
->pdata
&& host
->pdata
->setpower
)
1332 ? "" : ", no poweroff");
1336 mmc_remove_host (mmc
);
1339 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1340 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1345 dev_set_drvdata(&spi
->dev
, NULL
);
1353 static int __devexit
mmc_spi_remove(struct spi_device
*spi
)
1355 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1356 struct mmc_spi_host
*host
;
1359 host
= mmc_priv(mmc
);
1361 /* prevent new mmc_detect_change() calls */
1362 if (host
->pdata
&& host
->pdata
->exit
)
1363 host
->pdata
->exit(&spi
->dev
, mmc
);
1365 mmc_remove_host(mmc
);
1367 if (host
->dma_dev
) {
1368 dma_unmap_single(host
->dma_dev
, host
->ones_dma
,
1369 MMC_SPI_BLOCKSIZE
, DMA_TO_DEVICE
);
1370 dma_unmap_single(host
->dma_dev
, host
->data_dma
,
1371 sizeof(*host
->data
), DMA_BIDIRECTIONAL
);
1377 spi
->max_speed_hz
= mmc
->f_max
;
1379 dev_set_drvdata(&spi
->dev
, NULL
);
1385 static struct spi_driver mmc_spi_driver
= {
1388 .bus
= &spi_bus_type
,
1389 .owner
= THIS_MODULE
,
1391 .probe
= mmc_spi_probe
,
1392 .remove
= __devexit_p(mmc_spi_remove
),
1396 static int __init
mmc_spi_init(void)
1398 return spi_register_driver(&mmc_spi_driver
);
1400 module_init(mmc_spi_init
);
1403 static void __exit
mmc_spi_exit(void)
1405 spi_unregister_driver(&mmc_spi_driver
);
1407 module_exit(mmc_spi_exit
);
1410 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1411 "Hans-Peter Nilsson, Jan Nikitenko");
1412 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1413 MODULE_LICENSE("GPL");