1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
47 #define DRV_VERSION "1.0.8-k2"
48 char igb_driver_name
[] = "igb";
49 char igb_driver_version
[] = DRV_VERSION
;
50 static const char igb_driver_string
[] =
51 "Intel(R) Gigabit Ethernet Network Driver";
52 static const char igb_copyright
[] = "Copyright (c) 2007 Intel Corporation.";
55 static const struct e1000_info
*igb_info_tbl
[] = {
56 [board_82575
] = &e1000_82575_info
,
59 static struct pci_device_id igb_pci_tbl
[] = {
60 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
61 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
62 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
63 /* required last entry */
67 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
69 void igb_reset(struct igb_adapter
*);
70 static int igb_setup_all_tx_resources(struct igb_adapter
*);
71 static int igb_setup_all_rx_resources(struct igb_adapter
*);
72 static void igb_free_all_tx_resources(struct igb_adapter
*);
73 static void igb_free_all_rx_resources(struct igb_adapter
*);
74 static void igb_free_tx_resources(struct igb_adapter
*, struct igb_ring
*);
75 static void igb_free_rx_resources(struct igb_adapter
*, struct igb_ring
*);
76 void igb_update_stats(struct igb_adapter
*);
77 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
78 static void __devexit
igb_remove(struct pci_dev
*pdev
);
79 static int igb_sw_init(struct igb_adapter
*);
80 static int igb_open(struct net_device
*);
81 static int igb_close(struct net_device
*);
82 static void igb_configure_tx(struct igb_adapter
*);
83 static void igb_configure_rx(struct igb_adapter
*);
84 static void igb_setup_rctl(struct igb_adapter
*);
85 static void igb_clean_all_tx_rings(struct igb_adapter
*);
86 static void igb_clean_all_rx_rings(struct igb_adapter
*);
87 static void igb_clean_tx_ring(struct igb_adapter
*, struct igb_ring
*);
88 static void igb_clean_rx_ring(struct igb_adapter
*, struct igb_ring
*);
89 static void igb_set_multi(struct net_device
*);
90 static void igb_update_phy_info(unsigned long);
91 static void igb_watchdog(unsigned long);
92 static void igb_watchdog_task(struct work_struct
*);
93 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
95 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
96 static struct net_device_stats
*igb_get_stats(struct net_device
*);
97 static int igb_change_mtu(struct net_device
*, int);
98 static int igb_set_mac(struct net_device
*, void *);
99 static irqreturn_t
igb_intr(int irq
, void *);
100 static irqreturn_t
igb_intr_msi(int irq
, void *);
101 static irqreturn_t
igb_msix_other(int irq
, void *);
102 static irqreturn_t
igb_msix_rx(int irq
, void *);
103 static irqreturn_t
igb_msix_tx(int irq
, void *);
104 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
105 static bool igb_clean_tx_irq(struct igb_adapter
*, struct igb_ring
*);
106 static int igb_clean(struct napi_struct
*, int);
107 static bool igb_clean_rx_irq_adv(struct igb_adapter
*,
108 struct igb_ring
*, int *, int);
109 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*,
110 struct igb_ring
*, int);
111 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
112 static void igb_tx_timeout(struct net_device
*);
113 static void igb_reset_task(struct work_struct
*);
114 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
115 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
116 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
117 static void igb_restore_vlan(struct igb_adapter
*);
119 static int igb_suspend(struct pci_dev
*, pm_message_t
);
121 static int igb_resume(struct pci_dev
*);
123 static void igb_shutdown(struct pci_dev
*);
125 #ifdef CONFIG_NET_POLL_CONTROLLER
126 /* for netdump / net console */
127 static void igb_netpoll(struct net_device
*);
130 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
131 pci_channel_state_t
);
132 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
133 static void igb_io_resume(struct pci_dev
*);
135 static struct pci_error_handlers igb_err_handler
= {
136 .error_detected
= igb_io_error_detected
,
137 .slot_reset
= igb_io_slot_reset
,
138 .resume
= igb_io_resume
,
142 static struct pci_driver igb_driver
= {
143 .name
= igb_driver_name
,
144 .id_table
= igb_pci_tbl
,
146 .remove
= __devexit_p(igb_remove
),
148 /* Power Managment Hooks */
149 .suspend
= igb_suspend
,
150 .resume
= igb_resume
,
152 .shutdown
= igb_shutdown
,
153 .err_handler
= &igb_err_handler
156 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158 MODULE_LICENSE("GPL");
159 MODULE_VERSION(DRV_VERSION
);
163 * igb_get_hw_dev_name - return device name string
164 * used by hardware layer to print debugging information
166 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
168 struct igb_adapter
*adapter
= hw
->back
;
169 return adapter
->netdev
->name
;
174 * igb_init_module - Driver Registration Routine
176 * igb_init_module is the first routine called when the driver is
177 * loaded. All it does is register with the PCI subsystem.
179 static int __init
igb_init_module(void)
182 printk(KERN_INFO
"%s - version %s\n",
183 igb_driver_string
, igb_driver_version
);
185 printk(KERN_INFO
"%s\n", igb_copyright
);
187 ret
= pci_register_driver(&igb_driver
);
191 module_init(igb_init_module
);
194 * igb_exit_module - Driver Exit Cleanup Routine
196 * igb_exit_module is called just before the driver is removed
199 static void __exit
igb_exit_module(void)
201 pci_unregister_driver(&igb_driver
);
204 module_exit(igb_exit_module
);
207 * igb_alloc_queues - Allocate memory for all rings
208 * @adapter: board private structure to initialize
210 * We allocate one ring per queue at run-time since we don't know the
211 * number of queues at compile-time.
213 static int igb_alloc_queues(struct igb_adapter
*adapter
)
217 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
218 sizeof(struct igb_ring
), GFP_KERNEL
);
219 if (!adapter
->tx_ring
)
222 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
223 sizeof(struct igb_ring
), GFP_KERNEL
);
224 if (!adapter
->rx_ring
) {
225 kfree(adapter
->tx_ring
);
229 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
230 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
231 ring
->adapter
= adapter
;
232 ring
->itr_register
= E1000_ITR
;
234 if (!ring
->napi
.poll
)
235 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_clean
,
236 adapter
->napi
.weight
/
237 adapter
->num_rx_queues
);
242 #define IGB_N0_QUEUE -1
243 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
244 int tx_queue
, int msix_vector
)
247 struct e1000_hw
*hw
= &adapter
->hw
;
248 /* The 82575 assigns vectors using a bitmask, which matches the
249 bitmask for the EICR/EIMS/EIMC registers. To assign one
250 or more queues to a vector, we write the appropriate bits
251 into the MSIXBM register for that vector. */
252 if (rx_queue
> IGB_N0_QUEUE
) {
253 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
254 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
256 if (tx_queue
> IGB_N0_QUEUE
) {
257 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
258 adapter
->tx_ring
[tx_queue
].eims_value
=
259 E1000_EICR_TX_QUEUE0
<< tx_queue
;
261 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
265 * igb_configure_msix - Configure MSI-X hardware
267 * igb_configure_msix sets up the hardware to properly
268 * generate MSI-X interrupts.
270 static void igb_configure_msix(struct igb_adapter
*adapter
)
274 struct e1000_hw
*hw
= &adapter
->hw
;
276 adapter
->eims_enable_mask
= 0;
278 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
279 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
280 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
281 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
282 if (tx_ring
->itr_val
)
283 writel(1000000000 / (tx_ring
->itr_val
* 256),
284 hw
->hw_addr
+ tx_ring
->itr_register
);
286 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
289 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
290 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
291 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
292 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
293 if (rx_ring
->itr_val
)
294 writel(1000000000 / (rx_ring
->itr_val
* 256),
295 hw
->hw_addr
+ rx_ring
->itr_register
);
297 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
301 /* set vector for other causes, i.e. link changes */
302 array_wr32(E1000_MSIXBM(0), vector
++,
305 /* disable IAM for ICR interrupt bits */
308 tmp
= rd32(E1000_CTRL_EXT
);
309 /* enable MSI-X PBA support*/
310 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
312 /* Auto-Mask interrupts upon ICR read. */
313 tmp
|= E1000_CTRL_EXT_EIAME
;
314 tmp
|= E1000_CTRL_EXT_IRCA
;
316 wr32(E1000_CTRL_EXT
, tmp
);
317 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
323 * igb_request_msix - Initialize MSI-X interrupts
325 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
328 static int igb_request_msix(struct igb_adapter
*adapter
)
330 struct net_device
*netdev
= adapter
->netdev
;
331 int i
, err
= 0, vector
= 0;
335 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
336 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
337 sprintf(ring
->name
, "%s-tx%d", netdev
->name
, i
);
338 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
339 &igb_msix_tx
, 0, ring
->name
,
340 &(adapter
->tx_ring
[i
]));
343 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
344 ring
->itr_val
= adapter
->itr
;
347 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
348 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
349 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
350 sprintf(ring
->name
, "%s-rx%d", netdev
->name
, i
);
352 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
353 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
354 &igb_msix_rx
, 0, ring
->name
,
355 &(adapter
->rx_ring
[i
]));
358 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
359 ring
->itr_val
= adapter
->itr
;
363 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
364 &igb_msix_other
, 0, netdev
->name
, netdev
);
368 adapter
->napi
.poll
= igb_clean_rx_ring_msix
;
369 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
370 adapter
->rx_ring
[i
].napi
.poll
= adapter
->napi
.poll
;
371 igb_configure_msix(adapter
);
377 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
379 if (adapter
->msix_entries
) {
380 pci_disable_msix(adapter
->pdev
);
381 kfree(adapter
->msix_entries
);
382 adapter
->msix_entries
= NULL
;
383 } else if (adapter
->msi_enabled
)
384 pci_disable_msi(adapter
->pdev
);
390 * igb_set_interrupt_capability - set MSI or MSI-X if supported
392 * Attempt to configure interrupts using the best available
393 * capabilities of the hardware and kernel.
395 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
400 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
401 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
403 if (!adapter
->msix_entries
)
406 for (i
= 0; i
< numvecs
; i
++)
407 adapter
->msix_entries
[i
].entry
= i
;
409 err
= pci_enable_msix(adapter
->pdev
,
410 adapter
->msix_entries
,
415 igb_reset_interrupt_capability(adapter
);
417 /* If we can't do MSI-X, try MSI */
419 adapter
->num_rx_queues
= 1;
420 if (!pci_enable_msi(adapter
->pdev
))
421 adapter
->msi_enabled
= 1;
426 * igb_request_irq - initialize interrupts
428 * Attempts to configure interrupts using the best available
429 * capabilities of the hardware and kernel.
431 static int igb_request_irq(struct igb_adapter
*adapter
)
433 struct net_device
*netdev
= adapter
->netdev
;
434 struct e1000_hw
*hw
= &adapter
->hw
;
437 if (adapter
->msix_entries
) {
438 err
= igb_request_msix(adapter
);
440 /* enable IAM, auto-mask,
441 * DO NOT USE EIAM or IAM in legacy mode */
442 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
445 /* fall back to MSI */
446 igb_reset_interrupt_capability(adapter
);
447 if (!pci_enable_msi(adapter
->pdev
))
448 adapter
->msi_enabled
= 1;
449 igb_free_all_tx_resources(adapter
);
450 igb_free_all_rx_resources(adapter
);
451 adapter
->num_rx_queues
= 1;
452 igb_alloc_queues(adapter
);
454 if (adapter
->msi_enabled
) {
455 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
456 netdev
->name
, netdev
);
459 /* fall back to legacy interrupts */
460 igb_reset_interrupt_capability(adapter
);
461 adapter
->msi_enabled
= 0;
464 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
465 netdev
->name
, netdev
);
468 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
475 static void igb_free_irq(struct igb_adapter
*adapter
)
477 struct net_device
*netdev
= adapter
->netdev
;
479 if (adapter
->msix_entries
) {
482 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
483 free_irq(adapter
->msix_entries
[vector
++].vector
,
484 &(adapter
->tx_ring
[i
]));
485 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
486 free_irq(adapter
->msix_entries
[vector
++].vector
,
487 &(adapter
->rx_ring
[i
]));
489 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
493 free_irq(adapter
->pdev
->irq
, netdev
);
497 * igb_irq_disable - Mask off interrupt generation on the NIC
498 * @adapter: board private structure
500 static void igb_irq_disable(struct igb_adapter
*adapter
)
502 struct e1000_hw
*hw
= &adapter
->hw
;
504 if (adapter
->msix_entries
) {
505 wr32(E1000_EIMC
, ~0);
510 synchronize_irq(adapter
->pdev
->irq
);
514 * igb_irq_enable - Enable default interrupt generation settings
515 * @adapter: board private structure
517 static void igb_irq_enable(struct igb_adapter
*adapter
)
519 struct e1000_hw
*hw
= &adapter
->hw
;
521 if (adapter
->msix_entries
) {
523 adapter
->eims_enable_mask
);
525 adapter
->eims_enable_mask
);
526 wr32(E1000_IMS
, E1000_IMS_LSC
);
528 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
531 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
533 struct net_device
*netdev
= adapter
->netdev
;
534 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
535 u16 old_vid
= adapter
->mng_vlan_id
;
536 if (adapter
->vlgrp
) {
537 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
538 if (adapter
->hw
.mng_cookie
.status
&
539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
540 igb_vlan_rx_add_vid(netdev
, vid
);
541 adapter
->mng_vlan_id
= vid
;
543 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
545 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
547 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
548 igb_vlan_rx_kill_vid(netdev
, old_vid
);
550 adapter
->mng_vlan_id
= vid
;
555 * igb_release_hw_control - release control of the h/w to f/w
556 * @adapter: address of board private structure
558 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559 * For ASF and Pass Through versions of f/w this means that the
560 * driver is no longer loaded.
563 static void igb_release_hw_control(struct igb_adapter
*adapter
)
565 struct e1000_hw
*hw
= &adapter
->hw
;
568 /* Let firmware take over control of h/w */
569 ctrl_ext
= rd32(E1000_CTRL_EXT
);
571 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
576 * igb_get_hw_control - get control of the h/w from f/w
577 * @adapter: address of board private structure
579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580 * For ASF and Pass Through versions of f/w this means that
581 * the driver is loaded.
584 static void igb_get_hw_control(struct igb_adapter
*adapter
)
586 struct e1000_hw
*hw
= &adapter
->hw
;
589 /* Let firmware know the driver has taken over */
590 ctrl_ext
= rd32(E1000_CTRL_EXT
);
592 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
595 static void igb_init_manageability(struct igb_adapter
*adapter
)
597 struct e1000_hw
*hw
= &adapter
->hw
;
599 if (adapter
->en_mng_pt
) {
600 u32 manc2h
= rd32(E1000_MANC2H
);
601 u32 manc
= rd32(E1000_MANC
);
603 /* enable receiving management packets to the host */
604 /* this will probably generate destination unreachable messages
605 * from the host OS, but the packets will be handled on SMBUS */
606 manc
|= E1000_MANC_EN_MNG2HOST
;
607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
609 manc2h
|= E1000_MNG2HOST_PORT_623
;
610 manc2h
|= E1000_MNG2HOST_PORT_664
;
611 wr32(E1000_MANC2H
, manc2h
);
613 wr32(E1000_MANC
, manc
);
618 * igb_configure - configure the hardware for RX and TX
619 * @adapter: private board structure
621 static void igb_configure(struct igb_adapter
*adapter
)
623 struct net_device
*netdev
= adapter
->netdev
;
626 igb_get_hw_control(adapter
);
627 igb_set_multi(netdev
);
629 igb_restore_vlan(adapter
);
630 igb_init_manageability(adapter
);
632 igb_configure_tx(adapter
);
633 igb_setup_rctl(adapter
);
634 igb_configure_rx(adapter
);
635 /* call IGB_DESC_UNUSED which always leaves
636 * at least 1 descriptor unused to make sure
637 * next_to_use != next_to_clean */
638 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
639 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
640 igb_alloc_rx_buffers_adv(adapter
, ring
, IGB_DESC_UNUSED(ring
));
644 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
649 * igb_up - Open the interface and prepare it to handle traffic
650 * @adapter: board private structure
653 int igb_up(struct igb_adapter
*adapter
)
655 struct e1000_hw
*hw
= &adapter
->hw
;
658 /* hardware has been reset, we need to reload some things */
659 igb_configure(adapter
);
661 clear_bit(__IGB_DOWN
, &adapter
->state
);
663 napi_enable(&adapter
->napi
);
665 if (adapter
->msix_entries
) {
666 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
667 napi_enable(&adapter
->rx_ring
[i
].napi
);
668 igb_configure_msix(adapter
);
671 /* Clear any pending interrupts. */
673 igb_irq_enable(adapter
);
675 /* Fire a link change interrupt to start the watchdog. */
676 wr32(E1000_ICS
, E1000_ICS_LSC
);
680 void igb_down(struct igb_adapter
*adapter
)
682 struct e1000_hw
*hw
= &adapter
->hw
;
683 struct net_device
*netdev
= adapter
->netdev
;
687 /* signal that we're down so the interrupt handler does not
688 * reschedule our watchdog timer */
689 set_bit(__IGB_DOWN
, &adapter
->state
);
691 /* disable receives in the hardware */
692 rctl
= rd32(E1000_RCTL
);
693 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
694 /* flush and sleep below */
696 netif_stop_queue(netdev
);
698 /* disable transmits in the hardware */
699 tctl
= rd32(E1000_TCTL
);
700 tctl
&= ~E1000_TCTL_EN
;
701 wr32(E1000_TCTL
, tctl
);
702 /* flush both disables and wait for them to finish */
706 napi_disable(&adapter
->napi
);
708 if (adapter
->msix_entries
)
709 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
710 napi_disable(&adapter
->rx_ring
[i
].napi
);
711 igb_irq_disable(adapter
);
713 del_timer_sync(&adapter
->watchdog_timer
);
714 del_timer_sync(&adapter
->phy_info_timer
);
716 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
717 netif_carrier_off(netdev
);
718 adapter
->link_speed
= 0;
719 adapter
->link_duplex
= 0;
722 igb_clean_all_tx_rings(adapter
);
723 igb_clean_all_rx_rings(adapter
);
726 void igb_reinit_locked(struct igb_adapter
*adapter
)
728 WARN_ON(in_interrupt());
729 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
733 clear_bit(__IGB_RESETTING
, &adapter
->state
);
736 void igb_reset(struct igb_adapter
*adapter
)
738 struct e1000_hw
*hw
= &adapter
->hw
;
739 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
740 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
743 /* Repartition Pba for greater than 9k mtu
744 * To take effect CTRL.RST is required.
748 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
749 /* adjust PBA for jumbo frames */
750 wr32(E1000_PBA
, pba
);
752 /* To maintain wire speed transmits, the Tx FIFO should be
753 * large enough to accommodate two full transmit packets,
754 * rounded up to the next 1KB and expressed in KB. Likewise,
755 * the Rx FIFO should be large enough to accommodate at least
756 * one full receive packet and is similarly rounded up and
757 * expressed in KB. */
758 pba
= rd32(E1000_PBA
);
759 /* upper 16 bits has Tx packet buffer allocation size in KB */
760 tx_space
= pba
>> 16;
761 /* lower 16 bits has Rx packet buffer allocation size in KB */
763 /* the tx fifo also stores 16 bytes of information about the tx
764 * but don't include ethernet FCS because hardware appends it */
765 min_tx_space
= (adapter
->max_frame_size
+
766 sizeof(struct e1000_tx_desc
) -
768 min_tx_space
= ALIGN(min_tx_space
, 1024);
770 /* software strips receive CRC, so leave room for it */
771 min_rx_space
= adapter
->max_frame_size
;
772 min_rx_space
= ALIGN(min_rx_space
, 1024);
775 /* If current Tx allocation is less than the min Tx FIFO size,
776 * and the min Tx FIFO size is less than the current Rx FIFO
777 * allocation, take space away from current Rx allocation */
778 if (tx_space
< min_tx_space
&&
779 ((min_tx_space
- tx_space
) < pba
)) {
780 pba
= pba
- (min_tx_space
- tx_space
);
782 /* if short on rx space, rx wins and must trump tx
784 if (pba
< min_rx_space
)
788 wr32(E1000_PBA
, pba
);
790 /* flow control settings */
791 /* The high water mark must be low enough to fit one full frame
792 * (or the size used for early receive) above it in the Rx FIFO.
793 * Set it to the lower of:
794 * - 90% of the Rx FIFO size, or
795 * - the full Rx FIFO size minus one full frame */
796 hwm
= min(((pba
<< 10) * 9 / 10),
797 ((pba
<< 10) - adapter
->max_frame_size
));
799 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
800 fc
->low_water
= fc
->high_water
- 8;
801 fc
->pause_time
= 0xFFFF;
803 fc
->type
= fc
->original_type
;
805 /* Allow time for pending master requests to run */
806 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
809 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
810 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
812 igb_update_mng_vlan(adapter
);
814 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
815 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
817 igb_reset_adaptive(&adapter
->hw
);
818 if (adapter
->hw
.phy
.ops
.get_phy_info
)
819 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
823 * igb_probe - Device Initialization Routine
824 * @pdev: PCI device information struct
825 * @ent: entry in igb_pci_tbl
827 * Returns 0 on success, negative on failure
829 * igb_probe initializes an adapter identified by a pci_dev structure.
830 * The OS initialization, configuring of the adapter private structure,
831 * and a hardware reset occur.
833 static int __devinit
igb_probe(struct pci_dev
*pdev
,
834 const struct pci_device_id
*ent
)
836 struct net_device
*netdev
;
837 struct igb_adapter
*adapter
;
839 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
840 unsigned long mmio_start
, mmio_len
;
841 static int cards_found
;
842 int i
, err
, pci_using_dac
;
844 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
847 err
= pci_enable_device(pdev
);
852 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
854 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
858 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
860 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
862 dev_err(&pdev
->dev
, "No usable DMA "
863 "configuration, aborting\n");
869 err
= pci_request_regions(pdev
, igb_driver_name
);
873 pci_set_master(pdev
);
876 netdev
= alloc_etherdev(sizeof(struct igb_adapter
));
878 goto err_alloc_etherdev
;
880 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
882 pci_set_drvdata(pdev
, netdev
);
883 adapter
= netdev_priv(netdev
);
884 adapter
->netdev
= netdev
;
885 adapter
->pdev
= pdev
;
888 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
890 mmio_start
= pci_resource_start(pdev
, 0);
891 mmio_len
= pci_resource_len(pdev
, 0);
894 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
895 if (!adapter
->hw
.hw_addr
)
898 netdev
->open
= &igb_open
;
899 netdev
->stop
= &igb_close
;
900 netdev
->get_stats
= &igb_get_stats
;
901 netdev
->set_multicast_list
= &igb_set_multi
;
902 netdev
->set_mac_address
= &igb_set_mac
;
903 netdev
->change_mtu
= &igb_change_mtu
;
904 netdev
->do_ioctl
= &igb_ioctl
;
905 igb_set_ethtool_ops(netdev
);
906 netdev
->tx_timeout
= &igb_tx_timeout
;
907 netdev
->watchdog_timeo
= 5 * HZ
;
908 netif_napi_add(netdev
, &adapter
->napi
, igb_clean
, 64);
909 netdev
->vlan_rx_register
= igb_vlan_rx_register
;
910 netdev
->vlan_rx_add_vid
= igb_vlan_rx_add_vid
;
911 netdev
->vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
;
912 #ifdef CONFIG_NET_POLL_CONTROLLER
913 netdev
->poll_controller
= igb_netpoll
;
915 netdev
->hard_start_xmit
= &igb_xmit_frame_adv
;
917 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
919 netdev
->mem_start
= mmio_start
;
920 netdev
->mem_end
= mmio_start
+ mmio_len
;
922 adapter
->bd_number
= cards_found
;
924 /* PCI config space info */
925 hw
->vendor_id
= pdev
->vendor
;
926 hw
->device_id
= pdev
->device
;
927 hw
->revision_id
= pdev
->revision
;
928 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
929 hw
->subsystem_device_id
= pdev
->subsystem_device
;
931 /* setup the private structure */
933 /* Copy the default MAC, PHY and NVM function pointers */
934 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
935 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
936 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
937 /* Initialize skew-specific constants */
938 err
= ei
->get_invariants(hw
);
942 err
= igb_sw_init(adapter
);
946 igb_get_bus_info_pcie(hw
);
948 hw
->phy
.autoneg_wait_to_complete
= false;
949 hw
->mac
.adaptive_ifs
= true;
952 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
953 hw
->phy
.mdix
= AUTO_ALL_MODES
;
954 hw
->phy
.disable_polarity_correction
= false;
955 hw
->phy
.ms_type
= e1000_ms_hw_default
;
958 if (igb_check_reset_block(hw
))
960 "PHY reset is blocked due to SOL/IDER session.\n");
962 netdev
->features
= NETIF_F_SG
|
966 NETIF_F_HW_VLAN_FILTER
;
968 netdev
->features
|= NETIF_F_TSO
;
970 netdev
->features
|= NETIF_F_TSO6
;
972 netdev
->features
|= NETIF_F_HIGHDMA
;
974 netdev
->features
|= NETIF_F_LLTX
;
975 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
977 /* before reading the NVM, reset the controller to put the device in a
978 * known good starting state */
979 hw
->mac
.ops
.reset_hw(hw
);
981 /* make sure the NVM is good */
982 if (igb_validate_nvm_checksum(hw
) < 0) {
983 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
988 /* copy the MAC address out of the NVM */
989 if (hw
->mac
.ops
.read_mac_addr(hw
))
990 dev_err(&pdev
->dev
, "NVM Read Error\n");
992 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
993 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
995 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
996 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1001 init_timer(&adapter
->watchdog_timer
);
1002 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1003 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1005 init_timer(&adapter
->phy_info_timer
);
1006 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1007 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1009 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1010 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1012 /* Initialize link & ring properties that are user-changeable */
1013 adapter
->tx_ring
->count
= 256;
1014 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1015 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1016 adapter
->rx_ring
->count
= 256;
1017 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1018 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1020 adapter
->fc_autoneg
= true;
1021 hw
->mac
.autoneg
= true;
1022 hw
->phy
.autoneg_advertised
= 0x2f;
1024 hw
->fc
.original_type
= e1000_fc_default
;
1025 hw
->fc
.type
= e1000_fc_default
;
1027 adapter
->itr_setting
= 3;
1028 adapter
->itr
= IGB_START_ITR
;
1030 igb_validate_mdi_setting(hw
);
1032 adapter
->rx_csum
= 1;
1034 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1035 * enable the ACPI Magic Packet filter
1038 if (hw
->bus
.func
== 0 ||
1039 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1040 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1043 if (eeprom_data
& eeprom_apme_mask
)
1044 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1046 /* now that we have the eeprom settings, apply the special cases where
1047 * the eeprom may be wrong or the board simply won't support wake on
1048 * lan on a particular port */
1049 switch (pdev
->device
) {
1050 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1051 adapter
->eeprom_wol
= 0;
1053 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1054 /* Wake events only supported on port A for dual fiber
1055 * regardless of eeprom setting */
1056 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1057 adapter
->eeprom_wol
= 0;
1061 /* initialize the wol settings based on the eeprom settings */
1062 adapter
->wol
= adapter
->eeprom_wol
;
1064 /* reset the hardware with the new settings */
1067 /* let the f/w know that the h/w is now under the control of the
1069 igb_get_hw_control(adapter
);
1071 /* tell the stack to leave us alone until igb_open() is called */
1072 netif_carrier_off(netdev
);
1073 netif_stop_queue(netdev
);
1075 strcpy(netdev
->name
, "eth%d");
1076 err
= register_netdev(netdev
);
1080 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1081 /* print bus type/speed/width info */
1082 dev_info(&pdev
->dev
,
1083 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1085 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1086 ? "2.5Gb/s" : "unknown"),
1087 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1088 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1089 ? "Width x1" : "unknown"),
1090 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
1091 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
1093 igb_read_part_num(hw
, &part_num
);
1094 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1095 (part_num
>> 8), (part_num
& 0xff));
1097 dev_info(&pdev
->dev
,
1098 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1099 adapter
->msix_entries
? "MSI-X" :
1100 adapter
->msi_enabled
? "MSI" : "legacy",
1101 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1107 igb_release_hw_control(adapter
);
1109 if (!igb_check_reset_block(hw
))
1110 hw
->phy
.ops
.reset_phy(hw
);
1112 if (hw
->flash_address
)
1113 iounmap(hw
->flash_address
);
1115 igb_remove_device(hw
);
1116 kfree(adapter
->tx_ring
);
1117 kfree(adapter
->rx_ring
);
1120 iounmap(hw
->hw_addr
);
1122 free_netdev(netdev
);
1124 pci_release_regions(pdev
);
1127 pci_disable_device(pdev
);
1132 * igb_remove - Device Removal Routine
1133 * @pdev: PCI device information struct
1135 * igb_remove is called by the PCI subsystem to alert the driver
1136 * that it should release a PCI device. The could be caused by a
1137 * Hot-Plug event, or because the driver is going to be removed from
1140 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1142 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1143 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1145 /* flush_scheduled work may reschedule our watchdog task, so
1146 * explicitly disable watchdog tasks from being rescheduled */
1147 set_bit(__IGB_DOWN
, &adapter
->state
);
1148 del_timer_sync(&adapter
->watchdog_timer
);
1149 del_timer_sync(&adapter
->phy_info_timer
);
1151 flush_scheduled_work();
1153 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1154 * would have already happened in close and is redundant. */
1155 igb_release_hw_control(adapter
);
1157 unregister_netdev(netdev
);
1159 if (!igb_check_reset_block(&adapter
->hw
))
1160 adapter
->hw
.phy
.ops
.reset_phy(&adapter
->hw
);
1162 igb_remove_device(&adapter
->hw
);
1163 igb_reset_interrupt_capability(adapter
);
1165 kfree(adapter
->tx_ring
);
1166 kfree(adapter
->rx_ring
);
1168 iounmap(adapter
->hw
.hw_addr
);
1169 if (adapter
->hw
.flash_address
)
1170 iounmap(adapter
->hw
.flash_address
);
1171 pci_release_regions(pdev
);
1173 free_netdev(netdev
);
1175 pci_disable_device(pdev
);
1179 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1180 * @adapter: board private structure to initialize
1182 * igb_sw_init initializes the Adapter private data structure.
1183 * Fields are initialized based on PCI device information and
1184 * OS network device settings (MTU size).
1186 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1188 struct e1000_hw
*hw
= &adapter
->hw
;
1189 struct net_device
*netdev
= adapter
->netdev
;
1190 struct pci_dev
*pdev
= adapter
->pdev
;
1192 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1194 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1195 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1196 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1197 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1199 /* Number of supported queues. */
1200 /* Having more queues than CPUs doesn't make sense. */
1201 adapter
->num_tx_queues
= 1;
1202 adapter
->num_rx_queues
= min(IGB_MAX_RX_QUEUES
, num_online_cpus());
1204 igb_set_interrupt_capability(adapter
);
1206 if (igb_alloc_queues(adapter
)) {
1207 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1211 /* Explicitly disable IRQ since the NIC can be in any state. */
1212 igb_irq_disable(adapter
);
1214 set_bit(__IGB_DOWN
, &adapter
->state
);
1219 * igb_open - Called when a network interface is made active
1220 * @netdev: network interface device structure
1222 * Returns 0 on success, negative value on failure
1224 * The open entry point is called when a network interface is made
1225 * active by the system (IFF_UP). At this point all resources needed
1226 * for transmit and receive operations are allocated, the interrupt
1227 * handler is registered with the OS, the watchdog timer is started,
1228 * and the stack is notified that the interface is ready.
1230 static int igb_open(struct net_device
*netdev
)
1232 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1233 struct e1000_hw
*hw
= &adapter
->hw
;
1237 /* disallow open during test */
1238 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1241 /* allocate transmit descriptors */
1242 err
= igb_setup_all_tx_resources(adapter
);
1246 /* allocate receive descriptors */
1247 err
= igb_setup_all_rx_resources(adapter
);
1251 /* e1000_power_up_phy(adapter); */
1253 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1254 if ((adapter
->hw
.mng_cookie
.status
&
1255 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1256 igb_update_mng_vlan(adapter
);
1258 /* before we allocate an interrupt, we must be ready to handle it.
1259 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1260 * as soon as we call pci_request_irq, so we have to setup our
1261 * clean_rx handler before we do so. */
1262 igb_configure(adapter
);
1264 err
= igb_request_irq(adapter
);
1268 /* From here on the code is the same as igb_up() */
1269 clear_bit(__IGB_DOWN
, &adapter
->state
);
1271 napi_enable(&adapter
->napi
);
1272 if (adapter
->msix_entries
)
1273 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1274 napi_enable(&adapter
->rx_ring
[i
].napi
);
1276 igb_irq_enable(adapter
);
1278 /* Clear any pending interrupts. */
1280 /* Fire a link status change interrupt to start the watchdog. */
1281 wr32(E1000_ICS
, E1000_ICS_LSC
);
1286 igb_release_hw_control(adapter
);
1287 /* e1000_power_down_phy(adapter); */
1288 igb_free_all_rx_resources(adapter
);
1290 igb_free_all_tx_resources(adapter
);
1298 * igb_close - Disables a network interface
1299 * @netdev: network interface device structure
1301 * Returns 0, this is not allowed to fail
1303 * The close entry point is called when an interface is de-activated
1304 * by the OS. The hardware is still under the driver's control, but
1305 * needs to be disabled. A global MAC reset is issued to stop the
1306 * hardware, and all transmit and receive resources are freed.
1308 static int igb_close(struct net_device
*netdev
)
1310 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1312 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1315 igb_free_irq(adapter
);
1317 igb_free_all_tx_resources(adapter
);
1318 igb_free_all_rx_resources(adapter
);
1320 /* kill manageability vlan ID if supported, but not if a vlan with
1321 * the same ID is registered on the host OS (let 8021q kill it) */
1322 if ((adapter
->hw
.mng_cookie
.status
&
1323 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1325 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1326 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1332 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1333 * @adapter: board private structure
1334 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1336 * Return 0 on success, negative on failure
1339 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1340 struct igb_ring
*tx_ring
)
1342 struct pci_dev
*pdev
= adapter
->pdev
;
1345 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1346 tx_ring
->buffer_info
= vmalloc(size
);
1347 if (!tx_ring
->buffer_info
)
1349 memset(tx_ring
->buffer_info
, 0, size
);
1351 /* round up to nearest 4K */
1352 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1354 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1356 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1362 tx_ring
->adapter
= adapter
;
1363 tx_ring
->next_to_use
= 0;
1364 tx_ring
->next_to_clean
= 0;
1365 spin_lock_init(&tx_ring
->tx_clean_lock
);
1366 spin_lock_init(&tx_ring
->tx_lock
);
1370 vfree(tx_ring
->buffer_info
);
1371 dev_err(&adapter
->pdev
->dev
,
1372 "Unable to allocate memory for the transmit descriptor ring\n");
1377 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1378 * (Descriptors) for all queues
1379 * @adapter: board private structure
1381 * Return 0 on success, negative on failure
1383 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1387 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1388 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1390 dev_err(&adapter
->pdev
->dev
,
1391 "Allocation for Tx Queue %u failed\n", i
);
1392 for (i
--; i
>= 0; i
--)
1393 igb_free_tx_resources(adapter
,
1394 &adapter
->tx_ring
[i
]);
1403 * igb_configure_tx - Configure transmit Unit after Reset
1404 * @adapter: board private structure
1406 * Configure the Tx unit of the MAC after a reset.
1408 static void igb_configure_tx(struct igb_adapter
*adapter
)
1411 struct e1000_hw
*hw
= &adapter
->hw
;
1416 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1417 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1419 wr32(E1000_TDLEN(i
),
1420 ring
->count
* sizeof(struct e1000_tx_desc
));
1422 wr32(E1000_TDBAL(i
),
1423 tdba
& 0x00000000ffffffffULL
);
1424 wr32(E1000_TDBAH(i
), tdba
>> 32);
1426 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1427 tdwba
|= 1; /* enable head wb */
1428 wr32(E1000_TDWBAL(i
),
1429 tdwba
& 0x00000000ffffffffULL
);
1430 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1432 ring
->head
= E1000_TDH(i
);
1433 ring
->tail
= E1000_TDT(i
);
1434 writel(0, hw
->hw_addr
+ ring
->tail
);
1435 writel(0, hw
->hw_addr
+ ring
->head
);
1436 txdctl
= rd32(E1000_TXDCTL(i
));
1437 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1438 wr32(E1000_TXDCTL(i
), txdctl
);
1440 /* Turn off Relaxed Ordering on head write-backs. The
1441 * writebacks MUST be delivered in order or it will
1442 * completely screw up our bookeeping.
1444 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1445 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1446 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1451 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1453 /* Program the Transmit Control Register */
1455 tctl
= rd32(E1000_TCTL
);
1456 tctl
&= ~E1000_TCTL_CT
;
1457 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1458 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1460 igb_config_collision_dist(hw
);
1462 /* Setup Transmit Descriptor Settings for eop descriptor */
1463 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1465 /* Enable transmits */
1466 tctl
|= E1000_TCTL_EN
;
1468 wr32(E1000_TCTL
, tctl
);
1472 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1473 * @adapter: board private structure
1474 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1476 * Returns 0 on success, negative on failure
1479 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1480 struct igb_ring
*rx_ring
)
1482 struct pci_dev
*pdev
= adapter
->pdev
;
1485 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1486 rx_ring
->buffer_info
= vmalloc(size
);
1487 if (!rx_ring
->buffer_info
)
1489 memset(rx_ring
->buffer_info
, 0, size
);
1491 desc_len
= sizeof(union e1000_adv_rx_desc
);
1493 /* Round up to nearest 4K */
1494 rx_ring
->size
= rx_ring
->count
* desc_len
;
1495 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1497 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1503 rx_ring
->next_to_clean
= 0;
1504 rx_ring
->next_to_use
= 0;
1505 rx_ring
->pending_skb
= NULL
;
1507 rx_ring
->adapter
= adapter
;
1508 /* FIXME: do we want to setup ring->napi->poll here? */
1509 rx_ring
->napi
.poll
= adapter
->napi
.poll
;
1514 vfree(rx_ring
->buffer_info
);
1515 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1516 "the receive descriptor ring\n");
1521 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1522 * (Descriptors) for all queues
1523 * @adapter: board private structure
1525 * Return 0 on success, negative on failure
1527 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1531 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1532 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1534 dev_err(&adapter
->pdev
->dev
,
1535 "Allocation for Rx Queue %u failed\n", i
);
1536 for (i
--; i
>= 0; i
--)
1537 igb_free_rx_resources(adapter
,
1538 &adapter
->rx_ring
[i
]);
1547 * igb_setup_rctl - configure the receive control registers
1548 * @adapter: Board private structure
1550 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1552 struct e1000_hw
*hw
= &adapter
->hw
;
1557 rctl
= rd32(E1000_RCTL
);
1559 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1561 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1562 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1563 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1565 /* disable the stripping of CRC because it breaks
1566 * BMC firmware connected over SMBUS
1567 rctl |= E1000_RCTL_SECRC;
1570 rctl
&= ~E1000_RCTL_SBP
;
1572 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1573 rctl
&= ~E1000_RCTL_LPE
;
1575 rctl
|= E1000_RCTL_LPE
;
1576 if (adapter
->rx_buffer_len
<= IGB_RXBUFFER_2048
) {
1577 /* Setup buffer sizes */
1578 rctl
&= ~E1000_RCTL_SZ_4096
;
1579 rctl
|= E1000_RCTL_BSEX
;
1580 switch (adapter
->rx_buffer_len
) {
1581 case IGB_RXBUFFER_256
:
1582 rctl
|= E1000_RCTL_SZ_256
;
1583 rctl
&= ~E1000_RCTL_BSEX
;
1585 case IGB_RXBUFFER_512
:
1586 rctl
|= E1000_RCTL_SZ_512
;
1587 rctl
&= ~E1000_RCTL_BSEX
;
1589 case IGB_RXBUFFER_1024
:
1590 rctl
|= E1000_RCTL_SZ_1024
;
1591 rctl
&= ~E1000_RCTL_BSEX
;
1593 case IGB_RXBUFFER_2048
:
1595 rctl
|= E1000_RCTL_SZ_2048
;
1596 rctl
&= ~E1000_RCTL_BSEX
;
1598 case IGB_RXBUFFER_4096
:
1599 rctl
|= E1000_RCTL_SZ_4096
;
1601 case IGB_RXBUFFER_8192
:
1602 rctl
|= E1000_RCTL_SZ_8192
;
1604 case IGB_RXBUFFER_16384
:
1605 rctl
|= E1000_RCTL_SZ_16384
;
1609 rctl
&= ~E1000_RCTL_BSEX
;
1610 srrctl
= adapter
->rx_buffer_len
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1613 /* 82575 and greater support packet-split where the protocol
1614 * header is placed in skb->data and the packet data is
1615 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1616 * In the case of a non-split, skb->data is linearly filled,
1617 * followed by the page buffers. Therefore, skb->data is
1618 * sized to hold the largest protocol header.
1620 /* allocations using alloc_page take too long for regular MTU
1621 * so only enable packet split for jumbo frames */
1622 if (rctl
& E1000_RCTL_LPE
) {
1623 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1624 srrctl
= adapter
->rx_ps_hdr_size
<<
1625 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1626 /* buffer size is ALWAYS one page */
1627 srrctl
|= PAGE_SIZE
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1628 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1630 adapter
->rx_ps_hdr_size
= 0;
1631 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1634 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1635 wr32(E1000_SRRCTL(i
), srrctl
);
1637 wr32(E1000_RCTL
, rctl
);
1641 * igb_configure_rx - Configure receive Unit after Reset
1642 * @adapter: board private structure
1644 * Configure the Rx unit of the MAC after a reset.
1646 static void igb_configure_rx(struct igb_adapter
*adapter
)
1649 struct e1000_hw
*hw
= &adapter
->hw
;
1654 /* disable receives while setting up the descriptors */
1655 rctl
= rd32(E1000_RCTL
);
1656 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1660 if (adapter
->itr_setting
> 3)
1662 1000000000 / (adapter
->itr
* 256));
1664 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1665 * the Base and Length of the Rx Descriptor Ring */
1666 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1667 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1669 wr32(E1000_RDBAL(i
),
1670 rdba
& 0x00000000ffffffffULL
);
1671 wr32(E1000_RDBAH(i
), rdba
>> 32);
1672 wr32(E1000_RDLEN(i
),
1673 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1675 ring
->head
= E1000_RDH(i
);
1676 ring
->tail
= E1000_RDT(i
);
1677 writel(0, hw
->hw_addr
+ ring
->tail
);
1678 writel(0, hw
->hw_addr
+ ring
->head
);
1680 rxdctl
= rd32(E1000_RXDCTL(i
));
1681 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1682 rxdctl
&= 0xFFF00000;
1683 rxdctl
|= IGB_RX_PTHRESH
;
1684 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1685 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1686 wr32(E1000_RXDCTL(i
), rxdctl
);
1689 if (adapter
->num_rx_queues
> 1) {
1698 get_random_bytes(&random
[0], 40);
1701 for (j
= 0; j
< (32 * 4); j
++) {
1703 (j
% adapter
->num_rx_queues
) << shift
;
1706 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1708 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1710 /* Fill out hash function seeds */
1711 for (j
= 0; j
< 10; j
++)
1712 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1714 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1715 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1716 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1717 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1718 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1719 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1720 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1721 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1724 wr32(E1000_MRQC
, mrqc
);
1726 /* Multiqueue and raw packet checksumming are mutually
1727 * exclusive. Note that this not the same as TCP/IP
1728 * checksumming, which works fine. */
1729 rxcsum
= rd32(E1000_RXCSUM
);
1730 rxcsum
|= E1000_RXCSUM_PCSD
;
1731 wr32(E1000_RXCSUM
, rxcsum
);
1733 /* Enable Receive Checksum Offload for TCP and UDP */
1734 rxcsum
= rd32(E1000_RXCSUM
);
1735 if (adapter
->rx_csum
) {
1736 rxcsum
|= E1000_RXCSUM_TUOFL
;
1738 /* Enable IPv4 payload checksum for UDP fragments
1739 * Must be used in conjunction with packet-split. */
1740 if (adapter
->rx_ps_hdr_size
)
1741 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1743 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1744 /* don't need to clear IPPCSE as it defaults to 0 */
1746 wr32(E1000_RXCSUM
, rxcsum
);
1751 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1753 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1755 /* Enable Receives */
1756 wr32(E1000_RCTL
, rctl
);
1760 * igb_free_tx_resources - Free Tx Resources per Queue
1761 * @adapter: board private structure
1762 * @tx_ring: Tx descriptor ring for a specific queue
1764 * Free all transmit software resources
1766 static void igb_free_tx_resources(struct igb_adapter
*adapter
,
1767 struct igb_ring
*tx_ring
)
1769 struct pci_dev
*pdev
= adapter
->pdev
;
1771 igb_clean_tx_ring(adapter
, tx_ring
);
1773 vfree(tx_ring
->buffer_info
);
1774 tx_ring
->buffer_info
= NULL
;
1776 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1778 tx_ring
->desc
= NULL
;
1782 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1783 * @adapter: board private structure
1785 * Free all transmit software resources
1787 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
1791 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1792 igb_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1795 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
1796 struct igb_buffer
*buffer_info
)
1798 if (buffer_info
->dma
) {
1799 pci_unmap_page(adapter
->pdev
,
1801 buffer_info
->length
,
1803 buffer_info
->dma
= 0;
1805 if (buffer_info
->skb
) {
1806 dev_kfree_skb_any(buffer_info
->skb
);
1807 buffer_info
->skb
= NULL
;
1809 buffer_info
->time_stamp
= 0;
1810 /* buffer_info must be completely set up in the transmit path */
1814 * igb_clean_tx_ring - Free Tx Buffers
1815 * @adapter: board private structure
1816 * @tx_ring: ring to be cleaned
1818 static void igb_clean_tx_ring(struct igb_adapter
*adapter
,
1819 struct igb_ring
*tx_ring
)
1821 struct igb_buffer
*buffer_info
;
1825 if (!tx_ring
->buffer_info
)
1827 /* Free all the Tx ring sk_buffs */
1829 for (i
= 0; i
< tx_ring
->count
; i
++) {
1830 buffer_info
= &tx_ring
->buffer_info
[i
];
1831 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
1834 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1835 memset(tx_ring
->buffer_info
, 0, size
);
1837 /* Zero out the descriptor ring */
1839 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1841 tx_ring
->next_to_use
= 0;
1842 tx_ring
->next_to_clean
= 0;
1844 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1845 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1849 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1850 * @adapter: board private structure
1852 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
1856 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1857 igb_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1861 * igb_free_rx_resources - Free Rx Resources
1862 * @adapter: board private structure
1863 * @rx_ring: ring to clean the resources from
1865 * Free all receive software resources
1867 static void igb_free_rx_resources(struct igb_adapter
*adapter
,
1868 struct igb_ring
*rx_ring
)
1870 struct pci_dev
*pdev
= adapter
->pdev
;
1872 igb_clean_rx_ring(adapter
, rx_ring
);
1874 vfree(rx_ring
->buffer_info
);
1875 rx_ring
->buffer_info
= NULL
;
1877 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1879 rx_ring
->desc
= NULL
;
1883 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1884 * @adapter: board private structure
1886 * Free all receive software resources
1888 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
1892 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1893 igb_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1897 * igb_clean_rx_ring - Free Rx Buffers per Queue
1898 * @adapter: board private structure
1899 * @rx_ring: ring to free buffers from
1901 static void igb_clean_rx_ring(struct igb_adapter
*adapter
,
1902 struct igb_ring
*rx_ring
)
1904 struct igb_buffer
*buffer_info
;
1905 struct pci_dev
*pdev
= adapter
->pdev
;
1909 if (!rx_ring
->buffer_info
)
1911 /* Free all the Rx ring sk_buffs */
1912 for (i
= 0; i
< rx_ring
->count
; i
++) {
1913 buffer_info
= &rx_ring
->buffer_info
[i
];
1914 if (buffer_info
->dma
) {
1915 if (adapter
->rx_ps_hdr_size
)
1916 pci_unmap_single(pdev
, buffer_info
->dma
,
1917 adapter
->rx_ps_hdr_size
,
1918 PCI_DMA_FROMDEVICE
);
1920 pci_unmap_single(pdev
, buffer_info
->dma
,
1921 adapter
->rx_buffer_len
,
1922 PCI_DMA_FROMDEVICE
);
1923 buffer_info
->dma
= 0;
1926 if (buffer_info
->skb
) {
1927 dev_kfree_skb(buffer_info
->skb
);
1928 buffer_info
->skb
= NULL
;
1930 if (buffer_info
->page
) {
1931 pci_unmap_page(pdev
, buffer_info
->page_dma
,
1932 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1933 put_page(buffer_info
->page
);
1934 buffer_info
->page
= NULL
;
1935 buffer_info
->page_dma
= 0;
1939 /* there also may be some cached data from a chained receive */
1940 if (rx_ring
->pending_skb
) {
1941 dev_kfree_skb(rx_ring
->pending_skb
);
1942 rx_ring
->pending_skb
= NULL
;
1945 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1946 memset(rx_ring
->buffer_info
, 0, size
);
1948 /* Zero out the descriptor ring */
1949 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1951 rx_ring
->next_to_clean
= 0;
1952 rx_ring
->next_to_use
= 0;
1954 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1955 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1959 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1960 * @adapter: board private structure
1962 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
1966 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1967 igb_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
1971 * igb_set_mac - Change the Ethernet Address of the NIC
1972 * @netdev: network interface device structure
1973 * @p: pointer to an address structure
1975 * Returns 0 on success, negative on failure
1977 static int igb_set_mac(struct net_device
*netdev
, void *p
)
1979 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1980 struct sockaddr
*addr
= p
;
1982 if (!is_valid_ether_addr(addr
->sa_data
))
1983 return -EADDRNOTAVAIL
;
1985 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1986 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1988 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
1994 * igb_set_multi - Multicast and Promiscuous mode set
1995 * @netdev: network interface device structure
1997 * The set_multi entry point is called whenever the multicast address
1998 * list or the network interface flags are updated. This routine is
1999 * responsible for configuring the hardware for proper multicast,
2000 * promiscuous mode, and all-multi behavior.
2002 static void igb_set_multi(struct net_device
*netdev
)
2004 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2005 struct e1000_hw
*hw
= &adapter
->hw
;
2006 struct e1000_mac_info
*mac
= &hw
->mac
;
2007 struct dev_mc_list
*mc_ptr
;
2012 /* Check for Promiscuous and All Multicast modes */
2014 rctl
= rd32(E1000_RCTL
);
2016 if (netdev
->flags
& IFF_PROMISC
)
2017 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2018 else if (netdev
->flags
& IFF_ALLMULTI
) {
2019 rctl
|= E1000_RCTL_MPE
;
2020 rctl
&= ~E1000_RCTL_UPE
;
2022 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2024 wr32(E1000_RCTL
, rctl
);
2026 if (!netdev
->mc_count
) {
2027 /* nothing to program, so clear mc list */
2028 igb_update_mc_addr_list(hw
, NULL
, 0, 1,
2029 mac
->rar_entry_count
);
2033 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2037 /* The shared function expects a packed array of only addresses. */
2038 mc_ptr
= netdev
->mc_list
;
2040 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2043 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2044 mc_ptr
= mc_ptr
->next
;
2046 igb_update_mc_addr_list(hw
, mta_list
, i
, 1, mac
->rar_entry_count
);
2050 /* Need to wait a few seconds after link up to get diagnostic information from
2052 static void igb_update_phy_info(unsigned long data
)
2054 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2055 if (adapter
->hw
.phy
.ops
.get_phy_info
)
2056 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
2060 * igb_watchdog - Timer Call-back
2061 * @data: pointer to adapter cast into an unsigned long
2063 static void igb_watchdog(unsigned long data
)
2065 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2066 /* Do the rest outside of interrupt context */
2067 schedule_work(&adapter
->watchdog_task
);
2070 static void igb_watchdog_task(struct work_struct
*work
)
2072 struct igb_adapter
*adapter
= container_of(work
,
2073 struct igb_adapter
, watchdog_task
);
2074 struct e1000_hw
*hw
= &adapter
->hw
;
2076 struct net_device
*netdev
= adapter
->netdev
;
2077 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2078 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2082 if ((netif_carrier_ok(netdev
)) &&
2083 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2086 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2087 if ((ret_val
== E1000_ERR_PHY
) &&
2088 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2090 E1000_PHY_CTRL_GBE_DISABLE
))
2091 dev_info(&adapter
->pdev
->dev
,
2092 "Gigabit has been disabled, downgrading speed\n");
2094 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2095 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2096 link
= mac
->serdes_has_link
;
2098 link
= rd32(E1000_STATUS
) &
2102 if (!netif_carrier_ok(netdev
)) {
2104 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2105 &adapter
->link_speed
,
2106 &adapter
->link_duplex
);
2108 ctrl
= rd32(E1000_CTRL
);
2109 dev_info(&adapter
->pdev
->dev
,
2110 "NIC Link is Up %d Mbps %s, "
2111 "Flow Control: %s\n",
2112 adapter
->link_speed
,
2113 adapter
->link_duplex
== FULL_DUPLEX
?
2114 "Full Duplex" : "Half Duplex",
2115 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2116 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2117 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2118 E1000_CTRL_TFCE
) ? "TX" : "None")));
2120 /* tweak tx_queue_len according to speed/duplex and
2121 * adjust the timeout factor */
2122 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2123 adapter
->tx_timeout_factor
= 1;
2124 switch (adapter
->link_speed
) {
2126 netdev
->tx_queue_len
= 10;
2127 adapter
->tx_timeout_factor
= 14;
2130 netdev
->tx_queue_len
= 100;
2131 /* maybe add some timeout factor ? */
2135 netif_carrier_on(netdev
);
2136 netif_wake_queue(netdev
);
2138 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2139 mod_timer(&adapter
->phy_info_timer
,
2140 round_jiffies(jiffies
+ 2 * HZ
));
2143 if (netif_carrier_ok(netdev
)) {
2144 adapter
->link_speed
= 0;
2145 adapter
->link_duplex
= 0;
2146 dev_info(&adapter
->pdev
->dev
, "NIC Link is Down\n");
2147 netif_carrier_off(netdev
);
2148 netif_stop_queue(netdev
);
2149 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2150 mod_timer(&adapter
->phy_info_timer
,
2151 round_jiffies(jiffies
+ 2 * HZ
));
2156 igb_update_stats(adapter
);
2158 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2159 adapter
->tpt_old
= adapter
->stats
.tpt
;
2160 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2161 adapter
->colc_old
= adapter
->stats
.colc
;
2163 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2164 adapter
->gorc_old
= adapter
->stats
.gorc
;
2165 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2166 adapter
->gotc_old
= adapter
->stats
.gotc
;
2168 igb_update_adaptive(&adapter
->hw
);
2170 if (!netif_carrier_ok(netdev
)) {
2171 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2172 /* We've lost link, so the controller stops DMA,
2173 * but we've got queued Tx work that's never going
2174 * to get done, so reset controller to flush Tx.
2175 * (Do the reset outside of interrupt context). */
2176 adapter
->tx_timeout_count
++;
2177 schedule_work(&adapter
->reset_task
);
2181 /* Cause software interrupt to ensure rx ring is cleaned */
2182 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2184 /* Force detection of hung controller every watchdog period */
2185 tx_ring
->detect_tx_hung
= true;
2187 /* Reset the timer */
2188 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2189 mod_timer(&adapter
->watchdog_timer
,
2190 round_jiffies(jiffies
+ 2 * HZ
));
2193 enum latency_range
{
2197 latency_invalid
= 255
2201 static void igb_lower_rx_eitr(struct igb_adapter
*adapter
,
2202 struct igb_ring
*rx_ring
)
2204 struct e1000_hw
*hw
= &adapter
->hw
;
2207 new_val
= rx_ring
->itr_val
/ 2;
2208 if (new_val
< IGB_MIN_DYN_ITR
)
2209 new_val
= IGB_MIN_DYN_ITR
;
2211 if (new_val
!= rx_ring
->itr_val
) {
2212 rx_ring
->itr_val
= new_val
;
2213 wr32(rx_ring
->itr_register
,
2214 1000000000 / (new_val
* 256));
2218 static void igb_raise_rx_eitr(struct igb_adapter
*adapter
,
2219 struct igb_ring
*rx_ring
)
2221 struct e1000_hw
*hw
= &adapter
->hw
;
2224 new_val
= rx_ring
->itr_val
* 2;
2225 if (new_val
> IGB_MAX_DYN_ITR
)
2226 new_val
= IGB_MAX_DYN_ITR
;
2228 if (new_val
!= rx_ring
->itr_val
) {
2229 rx_ring
->itr_val
= new_val
;
2230 wr32(rx_ring
->itr_register
,
2231 1000000000 / (new_val
* 256));
2236 * igb_update_itr - update the dynamic ITR value based on statistics
2237 * Stores a new ITR value based on packets and byte
2238 * counts during the last interrupt. The advantage of per interrupt
2239 * computation is faster updates and more accurate ITR for the current
2240 * traffic pattern. Constants in this function were computed
2241 * based on theoretical maximum wire speed and thresholds were set based
2242 * on testing data as well as attempting to minimize response time
2243 * while increasing bulk throughput.
2244 * this functionality is controlled by the InterruptThrottleRate module
2245 * parameter (see igb_param.c)
2246 * NOTE: These calculations are only valid when operating in a single-
2247 * queue environment.
2248 * @adapter: pointer to adapter
2249 * @itr_setting: current adapter->itr
2250 * @packets: the number of packets during this measurement interval
2251 * @bytes: the number of bytes during this measurement interval
2253 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2254 int packets
, int bytes
)
2256 unsigned int retval
= itr_setting
;
2259 goto update_itr_done
;
2261 switch (itr_setting
) {
2262 case lowest_latency
:
2263 /* handle TSO and jumbo frames */
2264 if (bytes
/packets
> 8000)
2265 retval
= bulk_latency
;
2266 else if ((packets
< 5) && (bytes
> 512))
2267 retval
= low_latency
;
2269 case low_latency
: /* 50 usec aka 20000 ints/s */
2270 if (bytes
> 10000) {
2271 /* this if handles the TSO accounting */
2272 if (bytes
/packets
> 8000) {
2273 retval
= bulk_latency
;
2274 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2275 retval
= bulk_latency
;
2276 } else if ((packets
> 35)) {
2277 retval
= lowest_latency
;
2279 } else if (bytes
/packets
> 2000) {
2280 retval
= bulk_latency
;
2281 } else if (packets
<= 2 && bytes
< 512) {
2282 retval
= lowest_latency
;
2285 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2286 if (bytes
> 25000) {
2288 retval
= low_latency
;
2289 } else if (bytes
< 6000) {
2290 retval
= low_latency
;
2299 static void igb_set_itr(struct igb_adapter
*adapter
, u16 itr_register
,
2303 u32 new_itr
= adapter
->itr
;
2305 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2306 if (adapter
->link_speed
!= SPEED_1000
) {
2312 adapter
->rx_itr
= igb_update_itr(adapter
,
2314 adapter
->rx_ring
->total_packets
,
2315 adapter
->rx_ring
->total_bytes
);
2316 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2317 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2318 adapter
->rx_itr
= low_latency
;
2321 adapter
->tx_itr
= igb_update_itr(adapter
,
2323 adapter
->tx_ring
->total_packets
,
2324 adapter
->tx_ring
->total_bytes
);
2325 /* conservative mode (itr 3) eliminates the
2326 * lowest_latency setting */
2327 if (adapter
->itr_setting
== 3 &&
2328 adapter
->tx_itr
== lowest_latency
)
2329 adapter
->tx_itr
= low_latency
;
2331 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2333 current_itr
= adapter
->rx_itr
;
2336 switch (current_itr
) {
2337 /* counts and packets in update_itr are dependent on these numbers */
2338 case lowest_latency
:
2342 new_itr
= 20000; /* aka hwitr = ~200 */
2352 if (new_itr
!= adapter
->itr
) {
2353 /* this attempts to bias the interrupt rate towards Bulk
2354 * by adding intermediate steps when interrupt rate is
2356 new_itr
= new_itr
> adapter
->itr
?
2357 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2359 /* Don't write the value here; it resets the adapter's
2360 * internal timer, and causes us to delay far longer than
2361 * we should between interrupts. Instead, we write the ITR
2362 * value at the beginning of the next interrupt so the timing
2363 * ends up being correct.
2365 adapter
->itr
= new_itr
;
2366 adapter
->set_itr
= 1;
2373 #define IGB_TX_FLAGS_CSUM 0x00000001
2374 #define IGB_TX_FLAGS_VLAN 0x00000002
2375 #define IGB_TX_FLAGS_TSO 0x00000004
2376 #define IGB_TX_FLAGS_IPV4 0x00000008
2377 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2378 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2380 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2381 struct igb_ring
*tx_ring
,
2382 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2384 struct e1000_adv_tx_context_desc
*context_desc
;
2387 struct igb_buffer
*buffer_info
;
2388 u32 info
= 0, tu_cmd
= 0;
2389 u32 mss_l4len_idx
, l4len
;
2392 if (skb_header_cloned(skb
)) {
2393 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2398 l4len
= tcp_hdrlen(skb
);
2401 if (skb
->protocol
== htons(ETH_P_IP
)) {
2402 struct iphdr
*iph
= ip_hdr(skb
);
2405 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2409 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2410 ipv6_hdr(skb
)->payload_len
= 0;
2411 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2412 &ipv6_hdr(skb
)->daddr
,
2416 i
= tx_ring
->next_to_use
;
2418 buffer_info
= &tx_ring
->buffer_info
[i
];
2419 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2420 /* VLAN MACLEN IPLEN */
2421 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2422 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2423 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2424 *hdr_len
+= skb_network_offset(skb
);
2425 info
|= skb_network_header_len(skb
);
2426 *hdr_len
+= skb_network_header_len(skb
);
2427 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2429 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2430 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2432 if (skb
->protocol
== htons(ETH_P_IP
))
2433 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2434 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2436 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2439 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2440 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2442 /* Context index must be unique per ring. Luckily, so is the interrupt
2444 mss_l4len_idx
|= tx_ring
->eims_value
>> 4;
2446 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2447 context_desc
->seqnum_seed
= 0;
2449 buffer_info
->time_stamp
= jiffies
;
2450 buffer_info
->dma
= 0;
2452 if (i
== tx_ring
->count
)
2455 tx_ring
->next_to_use
= i
;
2460 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2461 struct igb_ring
*tx_ring
,
2462 struct sk_buff
*skb
, u32 tx_flags
)
2464 struct e1000_adv_tx_context_desc
*context_desc
;
2466 struct igb_buffer
*buffer_info
;
2467 u32 info
= 0, tu_cmd
= 0;
2469 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2470 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2471 i
= tx_ring
->next_to_use
;
2472 buffer_info
= &tx_ring
->buffer_info
[i
];
2473 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2475 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2476 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2477 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2478 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2479 info
|= skb_network_header_len(skb
);
2481 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2483 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2485 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2486 switch (skb
->protocol
) {
2487 case __constant_htons(ETH_P_IP
):
2488 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2489 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2490 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2492 case __constant_htons(ETH_P_IPV6
):
2493 /* XXX what about other V6 headers?? */
2494 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2495 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2498 if (unlikely(net_ratelimit()))
2499 dev_warn(&adapter
->pdev
->dev
,
2500 "partial checksum but proto=%x!\n",
2506 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2507 context_desc
->seqnum_seed
= 0;
2508 context_desc
->mss_l4len_idx
=
2509 cpu_to_le32(tx_ring
->eims_value
>> 4);
2511 buffer_info
->time_stamp
= jiffies
;
2512 buffer_info
->dma
= 0;
2515 if (i
== tx_ring
->count
)
2517 tx_ring
->next_to_use
= i
;
2526 #define IGB_MAX_TXD_PWR 16
2527 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2529 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2530 struct igb_ring
*tx_ring
,
2531 struct sk_buff
*skb
)
2533 struct igb_buffer
*buffer_info
;
2534 unsigned int len
= skb_headlen(skb
);
2535 unsigned int count
= 0, i
;
2538 i
= tx_ring
->next_to_use
;
2540 buffer_info
= &tx_ring
->buffer_info
[i
];
2541 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2542 buffer_info
->length
= len
;
2543 /* set time_stamp *before* dma to help avoid a possible race */
2544 buffer_info
->time_stamp
= jiffies
;
2545 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2549 if (i
== tx_ring
->count
)
2552 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2553 struct skb_frag_struct
*frag
;
2555 frag
= &skb_shinfo(skb
)->frags
[f
];
2558 buffer_info
= &tx_ring
->buffer_info
[i
];
2559 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2560 buffer_info
->length
= len
;
2561 buffer_info
->time_stamp
= jiffies
;
2562 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2570 if (i
== tx_ring
->count
)
2574 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2575 tx_ring
->buffer_info
[i
].skb
= skb
;
2580 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2581 struct igb_ring
*tx_ring
,
2582 int tx_flags
, int count
, u32 paylen
,
2585 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2586 struct igb_buffer
*buffer_info
;
2587 u32 olinfo_status
= 0, cmd_type_len
;
2590 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2591 E1000_ADVTXD_DCMD_DEXT
);
2593 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2594 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2596 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2597 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2599 /* insert tcp checksum */
2600 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2602 /* insert ip checksum */
2603 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2604 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2606 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2607 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2610 if (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2612 olinfo_status
|= tx_ring
->eims_value
>> 4;
2614 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2616 i
= tx_ring
->next_to_use
;
2618 buffer_info
= &tx_ring
->buffer_info
[i
];
2619 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2620 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2621 tx_desc
->read
.cmd_type_len
=
2622 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2623 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2625 if (i
== tx_ring
->count
)
2629 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2630 /* Force memory writes to complete before letting h/w
2631 * know there are new descriptors to fetch. (Only
2632 * applicable for weak-ordered memory model archs,
2633 * such as IA-64). */
2636 tx_ring
->next_to_use
= i
;
2637 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2638 /* we need this if more than one processor can write to our tail
2639 * at a time, it syncronizes IO on IA64/Altix systems */
2643 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2644 struct igb_ring
*tx_ring
, int size
)
2646 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2648 netif_stop_queue(netdev
);
2649 /* Herbert's original patch had:
2650 * smp_mb__after_netif_stop_queue();
2651 * but since that doesn't exist yet, just open code it. */
2654 /* We need to check again in a case another CPU has just
2655 * made room available. */
2656 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2660 netif_start_queue(netdev
);
2661 ++adapter
->restart_queue
;
2665 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2666 struct igb_ring
*tx_ring
, int size
)
2668 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2670 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2673 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2675 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2676 struct net_device
*netdev
,
2677 struct igb_ring
*tx_ring
)
2679 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2680 unsigned int tx_flags
= 0;
2682 unsigned long irq_flags
;
2686 len
= skb_headlen(skb
);
2688 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2689 dev_kfree_skb_any(skb
);
2690 return NETDEV_TX_OK
;
2693 if (skb
->len
<= 0) {
2694 dev_kfree_skb_any(skb
);
2695 return NETDEV_TX_OK
;
2698 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, irq_flags
))
2699 /* Collision - tell upper layer to requeue */
2700 return NETDEV_TX_LOCKED
;
2702 /* need: 1 descriptor per page,
2703 * + 2 desc gap to keep tail from touching head,
2704 * + 1 desc for skb->data,
2705 * + 1 desc for context descriptor,
2706 * otherwise try next time */
2707 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2708 /* this is a hard error */
2709 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2710 return NETDEV_TX_BUSY
;
2713 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2714 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2715 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2718 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2722 dev_kfree_skb_any(skb
);
2723 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2724 return NETDEV_TX_OK
;
2728 tx_flags
|= IGB_TX_FLAGS_TSO
;
2729 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2730 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2731 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2733 if (skb
->protocol
== htons(ETH_P_IP
))
2734 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2736 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2737 igb_tx_map_adv(adapter
, tx_ring
, skb
),
2740 netdev
->trans_start
= jiffies
;
2742 /* Make sure there is space in the ring for the next send. */
2743 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
2745 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2746 return NETDEV_TX_OK
;
2749 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
2751 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2752 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[0];
2754 /* This goes back to the question of how to logically map a tx queue
2755 * to a flow. Right now, performance is impacted slightly negatively
2756 * if using multiple tx queues. If the stack breaks away from a
2757 * single qdisc implementation, we can look at this again. */
2758 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
2762 * igb_tx_timeout - Respond to a Tx Hang
2763 * @netdev: network interface device structure
2765 static void igb_tx_timeout(struct net_device
*netdev
)
2767 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2768 struct e1000_hw
*hw
= &adapter
->hw
;
2770 /* Do the reset outside of interrupt context */
2771 adapter
->tx_timeout_count
++;
2772 schedule_work(&adapter
->reset_task
);
2773 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
2774 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
2777 static void igb_reset_task(struct work_struct
*work
)
2779 struct igb_adapter
*adapter
;
2780 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
2782 igb_reinit_locked(adapter
);
2786 * igb_get_stats - Get System Network Statistics
2787 * @netdev: network interface device structure
2789 * Returns the address of the device statistics structure.
2790 * The statistics are actually updated from the timer callback.
2792 static struct net_device_stats
*
2793 igb_get_stats(struct net_device
*netdev
)
2795 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2797 /* only return the current stats */
2798 return &adapter
->net_stats
;
2802 * igb_change_mtu - Change the Maximum Transfer Unit
2803 * @netdev: network interface device structure
2804 * @new_mtu: new value for maximum frame size
2806 * Returns 0 on success, negative on failure
2808 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
2810 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2811 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2813 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
2814 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2815 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2819 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2820 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2821 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2825 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
2827 /* igb_down has a dependency on max_frame_size */
2828 adapter
->max_frame_size
= max_frame
;
2829 if (netif_running(netdev
))
2832 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2833 * means we reserve 2 more, this pushes us to allocate from the next
2835 * i.e. RXBUFFER_2048 --> size-4096 slab
2838 if (max_frame
<= IGB_RXBUFFER_256
)
2839 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
2840 else if (max_frame
<= IGB_RXBUFFER_512
)
2841 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
2842 else if (max_frame
<= IGB_RXBUFFER_1024
)
2843 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
2844 else if (max_frame
<= IGB_RXBUFFER_2048
)
2845 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
2847 adapter
->rx_buffer_len
= IGB_RXBUFFER_4096
;
2848 /* adjust allocation if LPE protects us, and we aren't using SBP */
2849 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2850 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
2851 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
2853 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2854 netdev
->mtu
, new_mtu
);
2855 netdev
->mtu
= new_mtu
;
2857 if (netif_running(netdev
))
2862 clear_bit(__IGB_RESETTING
, &adapter
->state
);
2868 * igb_update_stats - Update the board statistics counters
2869 * @adapter: board private structure
2872 void igb_update_stats(struct igb_adapter
*adapter
)
2874 struct e1000_hw
*hw
= &adapter
->hw
;
2875 struct pci_dev
*pdev
= adapter
->pdev
;
2878 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2881 * Prevent stats update while adapter is being reset, or if the pci
2882 * connection is down.
2884 if (adapter
->link_speed
== 0)
2886 if (pci_channel_offline(pdev
))
2889 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
2890 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
2891 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
2892 rd32(E1000_GORCH
); /* clear GORCL */
2893 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
2894 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
2895 adapter
->stats
.roc
+= rd32(E1000_ROC
);
2897 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
2898 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
2899 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
2900 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
2901 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
2902 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
2903 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
2904 adapter
->stats
.sec
+= rd32(E1000_SEC
);
2906 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
2907 adapter
->stats
.scc
+= rd32(E1000_SCC
);
2908 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
2909 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
2910 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
2911 adapter
->stats
.dc
+= rd32(E1000_DC
);
2912 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
2913 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
2914 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
2915 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
2916 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
2917 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
2918 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
2919 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
2920 rd32(E1000_GOTCH
); /* clear GOTCL */
2921 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
2922 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
2923 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
2924 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
2925 adapter
->stats
.tor
+= rd32(E1000_TORH
);
2926 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
2927 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
2929 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
2930 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
2931 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
2932 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
2933 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
2934 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
2936 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
2937 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
2939 /* used for adaptive IFS */
2941 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
2942 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2943 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
2944 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2946 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
2947 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
2948 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
2949 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
2950 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
2952 adapter
->stats
.iac
+= rd32(E1000_IAC
);
2953 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
2954 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
2955 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
2956 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
2957 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
2958 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
2959 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
2960 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
2962 /* Fill out the OS statistics structure */
2963 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2964 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2968 /* RLEC on some newer hardware can be incorrect so build
2969 * our own version based on RUC and ROC */
2970 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2971 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2972 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2973 adapter
->stats
.cexterr
;
2974 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2976 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2977 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2978 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2981 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2982 adapter
->stats
.latecol
;
2983 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2984 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2985 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2987 /* Tx Dropped needs to be maintained elsewhere */
2990 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
2991 if ((adapter
->link_speed
== SPEED_1000
) &&
2992 (!hw
->phy
.ops
.read_phy_reg(hw
, PHY_1000T_STATUS
,
2994 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2995 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2999 /* Management Stats */
3000 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3001 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3002 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3006 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3008 struct net_device
*netdev
= data
;
3009 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3010 struct e1000_hw
*hw
= &adapter
->hw
;
3012 /* disable interrupts from the "other" bit, avoid re-entry */
3013 wr32(E1000_EIMC
, E1000_EIMS_OTHER
);
3015 eicr
= rd32(E1000_EICR
);
3017 if (eicr
& E1000_EIMS_OTHER
) {
3018 u32 icr
= rd32(E1000_ICR
);
3019 /* reading ICR causes bit 31 of EICR to be cleared */
3020 if (!(icr
& E1000_ICR_LSC
))
3021 goto no_link_interrupt
;
3022 hw
->mac
.get_link_status
= 1;
3023 /* guard against interrupt when we're going down */
3024 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3025 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3029 wr32(E1000_IMS
, E1000_IMS_LSC
);
3030 wr32(E1000_EIMS
, E1000_EIMS_OTHER
);
3035 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3037 struct igb_ring
*tx_ring
= data
;
3038 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3039 struct e1000_hw
*hw
= &adapter
->hw
;
3041 if (!tx_ring
->itr_val
)
3042 wr32(E1000_EIMC
, tx_ring
->eims_value
);
3044 tx_ring
->total_bytes
= 0;
3045 tx_ring
->total_packets
= 0;
3046 if (!igb_clean_tx_irq(adapter
, tx_ring
))
3047 /* Ring was not completely cleaned, so fire another interrupt */
3048 wr32(E1000_EICS
, tx_ring
->eims_value
);
3050 if (!tx_ring
->itr_val
)
3051 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3055 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3057 struct igb_ring
*rx_ring
= data
;
3058 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3059 struct e1000_hw
*hw
= &adapter
->hw
;
3061 if (!rx_ring
->itr_val
)
3062 wr32(E1000_EIMC
, rx_ring
->eims_value
);
3064 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
)) {
3065 rx_ring
->total_bytes
= 0;
3066 rx_ring
->total_packets
= 0;
3067 rx_ring
->no_itr_adjust
= 0;
3068 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3070 if (!rx_ring
->no_itr_adjust
) {
3071 igb_lower_rx_eitr(adapter
, rx_ring
);
3072 rx_ring
->no_itr_adjust
= 1;
3081 * igb_intr_msi - Interrupt Handler
3082 * @irq: interrupt number
3083 * @data: pointer to a network interface device structure
3085 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3087 struct net_device
*netdev
= data
;
3088 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3089 struct napi_struct
*napi
= &adapter
->napi
;
3090 struct e1000_hw
*hw
= &adapter
->hw
;
3091 /* read ICR disables interrupts using IAM */
3092 u32 icr
= rd32(E1000_ICR
);
3094 /* Write the ITR value calculated at the end of the
3095 * previous interrupt.
3097 if (adapter
->set_itr
) {
3099 1000000000 / (adapter
->itr
* 256));
3100 adapter
->set_itr
= 0;
3103 /* read ICR disables interrupts using IAM */
3104 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3105 hw
->mac
.get_link_status
= 1;
3106 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3107 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3110 if (netif_rx_schedule_prep(netdev
, napi
)) {
3111 adapter
->tx_ring
->total_bytes
= 0;
3112 adapter
->tx_ring
->total_packets
= 0;
3113 adapter
->rx_ring
->total_bytes
= 0;
3114 adapter
->rx_ring
->total_packets
= 0;
3115 __netif_rx_schedule(netdev
, napi
);
3122 * igb_intr - Interrupt Handler
3123 * @irq: interrupt number
3124 * @data: pointer to a network interface device structure
3126 static irqreturn_t
igb_intr(int irq
, void *data
)
3128 struct net_device
*netdev
= data
;
3129 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3130 struct napi_struct
*napi
= &adapter
->napi
;
3131 struct e1000_hw
*hw
= &adapter
->hw
;
3132 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3133 * need for the IMC write */
3134 u32 icr
= rd32(E1000_ICR
);
3137 return IRQ_NONE
; /* Not our interrupt */
3139 /* Write the ITR value calculated at the end of the
3140 * previous interrupt.
3142 if (adapter
->set_itr
) {
3144 1000000000 / (adapter
->itr
* 256));
3145 adapter
->set_itr
= 0;
3148 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3149 * not set, then the adapter didn't send an interrupt */
3150 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3153 eicr
= rd32(E1000_EICR
);
3155 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3156 hw
->mac
.get_link_status
= 1;
3157 /* guard against interrupt when we're going down */
3158 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3159 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3162 if (netif_rx_schedule_prep(netdev
, napi
)) {
3163 adapter
->tx_ring
->total_bytes
= 0;
3164 adapter
->rx_ring
->total_bytes
= 0;
3165 adapter
->tx_ring
->total_packets
= 0;
3166 adapter
->rx_ring
->total_packets
= 0;
3167 __netif_rx_schedule(netdev
, napi
);
3174 * igb_clean - NAPI Rx polling callback
3175 * @adapter: board private structure
3177 static int igb_clean(struct napi_struct
*napi
, int budget
)
3179 struct igb_adapter
*adapter
= container_of(napi
, struct igb_adapter
,
3181 struct net_device
*netdev
= adapter
->netdev
;
3182 int tx_clean_complete
= 1, work_done
= 0;
3185 /* Must NOT use netdev_priv macro here. */
3186 adapter
= netdev
->priv
;
3188 /* Keep link state information with original netdev */
3189 if (!netif_carrier_ok(netdev
))
3192 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3193 * being cleaned by multiple cpus simultaneously. A failure obtaining
3194 * the lock means tx_ring[i] is currently being cleaned anyway. */
3195 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3196 if (spin_trylock(&adapter
->tx_ring
[i
].tx_clean_lock
)) {
3197 tx_clean_complete
&= igb_clean_tx_irq(adapter
,
3198 &adapter
->tx_ring
[i
]);
3199 spin_unlock(&adapter
->tx_ring
[i
].tx_clean_lock
);
3203 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3204 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
], &work_done
,
3205 adapter
->rx_ring
[i
].napi
.weight
);
3207 /* If no Tx and not enough Rx work done, exit the polling mode */
3208 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3209 !netif_running(netdev
)) {
3211 if (adapter
->itr_setting
& 3)
3212 igb_set_itr(adapter
, E1000_ITR
, false);
3213 netif_rx_complete(netdev
, napi
);
3214 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3215 igb_irq_enable(adapter
);
3222 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3224 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3225 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3226 struct e1000_hw
*hw
= &adapter
->hw
;
3227 struct net_device
*netdev
= adapter
->netdev
;
3230 /* Keep link state information with original netdev */
3231 if (!netif_carrier_ok(netdev
))
3234 igb_clean_rx_irq_adv(adapter
, rx_ring
, &work_done
, budget
);
3237 /* If not enough Rx work done, exit the polling mode */
3238 if ((work_done
== 0) || !netif_running(netdev
)) {
3240 netif_rx_complete(netdev
, napi
);
3242 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3243 if ((adapter
->itr_setting
& 3) && !rx_ring
->no_itr_adjust
&&
3244 (rx_ring
->total_packets
> IGB_DYN_ITR_PACKET_THRESHOLD
)) {
3245 int mean_size
= rx_ring
->total_bytes
/
3246 rx_ring
->total_packets
;
3247 if (mean_size
< IGB_DYN_ITR_LENGTH_LOW
)
3248 igb_raise_rx_eitr(adapter
, rx_ring
);
3249 else if (mean_size
> IGB_DYN_ITR_LENGTH_HIGH
)
3250 igb_lower_rx_eitr(adapter
, rx_ring
);
3258 static inline u32
get_head(struct igb_ring
*tx_ring
)
3260 void *end
= (struct e1000_tx_desc
*)tx_ring
->desc
+ tx_ring
->count
;
3261 return le32_to_cpu(*(volatile __le32
*)end
);
3265 * igb_clean_tx_irq - Reclaim resources after transmit completes
3266 * @adapter: board private structure
3267 * returns true if ring is completely cleaned
3269 static bool igb_clean_tx_irq(struct igb_adapter
*adapter
,
3270 struct igb_ring
*tx_ring
)
3272 struct net_device
*netdev
= adapter
->netdev
;
3273 struct e1000_hw
*hw
= &adapter
->hw
;
3274 struct e1000_tx_desc
*tx_desc
;
3275 struct igb_buffer
*buffer_info
;
3276 struct sk_buff
*skb
;
3279 unsigned int count
= 0;
3280 bool cleaned
= false;
3282 unsigned int total_bytes
= 0, total_packets
= 0;
3285 head
= get_head(tx_ring
);
3286 i
= tx_ring
->next_to_clean
;
3290 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3291 buffer_info
= &tx_ring
->buffer_info
[i
];
3292 skb
= buffer_info
->skb
;
3295 unsigned int segs
, bytecount
;
3296 /* gso_segs is currently only valid for tcp */
3297 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3298 /* multiply data chunks by size of headers */
3299 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3301 total_packets
+= segs
;
3302 total_bytes
+= bytecount
;
3305 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3306 tx_desc
->upper
.data
= 0;
3309 if (i
== tx_ring
->count
)
3313 if (count
== IGB_MAX_TX_CLEAN
) {
3320 head
= get_head(tx_ring
);
3321 if (head
== oldhead
)
3326 tx_ring
->next_to_clean
= i
;
3328 if (unlikely(cleaned
&&
3329 netif_carrier_ok(netdev
) &&
3330 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3331 /* Make sure that anybody stopping the queue after this
3332 * sees the new next_to_clean.
3335 if (netif_queue_stopped(netdev
) &&
3336 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3337 netif_wake_queue(netdev
);
3338 ++adapter
->restart_queue
;
3342 if (tx_ring
->detect_tx_hung
) {
3343 /* Detect a transmit hang in hardware, this serializes the
3344 * check with the clearing of time_stamp and movement of i */
3345 tx_ring
->detect_tx_hung
= false;
3346 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3347 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3348 (adapter
->tx_timeout_factor
* HZ
))
3349 && !(rd32(E1000_STATUS
) &
3350 E1000_STATUS_TXOFF
)) {
3352 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3353 /* detected Tx unit hang */
3354 dev_err(&adapter
->pdev
->dev
,
3355 "Detected Tx Unit Hang\n"
3359 " next_to_use <%x>\n"
3360 " next_to_clean <%x>\n"
3362 "buffer_info[next_to_clean]\n"
3363 " time_stamp <%lx>\n"
3365 " desc.status <%x>\n",
3366 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3367 sizeof(struct igb_ring
)),
3368 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3369 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3370 tx_ring
->next_to_use
,
3371 tx_ring
->next_to_clean
,
3373 tx_ring
->buffer_info
[i
].time_stamp
,
3375 tx_desc
->upper
.fields
.status
);
3376 netif_stop_queue(netdev
);
3379 tx_ring
->total_bytes
+= total_bytes
;
3380 tx_ring
->total_packets
+= total_packets
;
3381 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3382 adapter
->net_stats
.tx_packets
+= total_packets
;
3388 * igb_receive_skb - helper function to handle rx indications
3389 * @adapter: board private structure
3390 * @status: descriptor status field as written by hardware
3391 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3392 * @skb: pointer to sk_buff to be indicated to stack
3394 static void igb_receive_skb(struct igb_adapter
*adapter
, u8 status
, __le16 vlan
,
3395 struct sk_buff
*skb
)
3397 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
3398 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3400 E1000_RXD_SPC_VLAN_MASK
);
3402 netif_receive_skb(skb
);
3406 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3407 u32 status_err
, struct sk_buff
*skb
)
3409 skb
->ip_summed
= CHECKSUM_NONE
;
3411 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3412 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3414 /* TCP/UDP checksum error bit is set */
3416 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3417 /* let the stack verify checksum errors */
3418 adapter
->hw_csum_err
++;
3421 /* It must be a TCP or UDP packet with a valid checksum */
3422 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3423 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3425 adapter
->hw_csum_good
++;
3428 static bool igb_clean_rx_irq_adv(struct igb_adapter
*adapter
,
3429 struct igb_ring
*rx_ring
,
3430 int *work_done
, int budget
)
3432 struct net_device
*netdev
= adapter
->netdev
;
3433 struct pci_dev
*pdev
= adapter
->pdev
;
3434 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3435 struct igb_buffer
*buffer_info
, *next_buffer
;
3436 struct sk_buff
*skb
;
3438 u32 length
, hlen
, staterr
;
3439 bool cleaned
= false;
3440 int cleaned_count
= 0;
3441 unsigned int total_bytes
= 0, total_packets
= 0;
3443 i
= rx_ring
->next_to_clean
;
3444 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3445 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3447 while (staterr
& E1000_RXD_STAT_DD
) {
3448 if (*work_done
>= budget
)
3451 buffer_info
= &rx_ring
->buffer_info
[i
];
3453 /* HW will not DMA in data larger than the given buffer, even
3454 * if it parses the (NFS, of course) header to be larger. In
3455 * that case, it fills the header buffer and spills the rest
3458 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
3459 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
3460 if (hlen
> adapter
->rx_ps_hdr_size
)
3461 hlen
= adapter
->rx_ps_hdr_size
;
3463 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3467 if (rx_ring
->pending_skb
!= NULL
) {
3468 skb
= rx_ring
->pending_skb
;
3469 rx_ring
->pending_skb
= NULL
;
3470 j
= rx_ring
->pending_skb_page
;
3472 skb
= buffer_info
->skb
;
3473 prefetch(skb
->data
- NET_IP_ALIGN
);
3474 buffer_info
->skb
= NULL
;
3476 pci_unmap_single(pdev
, buffer_info
->dma
,
3477 adapter
->rx_ps_hdr_size
+
3479 PCI_DMA_FROMDEVICE
);
3482 pci_unmap_single(pdev
, buffer_info
->dma
,
3483 adapter
->rx_buffer_len
+
3485 PCI_DMA_FROMDEVICE
);
3486 skb_put(skb
, length
);
3493 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3494 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3495 buffer_info
->page_dma
= 0;
3496 skb_fill_page_desc(skb
, j
, buffer_info
->page
,
3498 buffer_info
->page
= NULL
;
3501 skb
->data_len
+= length
;
3502 skb
->truesize
+= length
;
3503 rx_desc
->wb
.upper
.status_error
= 0;
3504 if (staterr
& E1000_RXD_STAT_EOP
)
3510 if (i
== rx_ring
->count
)
3513 buffer_info
= &rx_ring
->buffer_info
[i
];
3514 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3515 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3516 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3517 if (!(staterr
& E1000_RXD_STAT_DD
)) {
3518 rx_ring
->pending_skb
= skb
;
3519 rx_ring
->pending_skb_page
= j
;
3524 pskb_trim(skb
, skb
->len
- 4);
3526 if (i
== rx_ring
->count
)
3528 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3530 next_buffer
= &rx_ring
->buffer_info
[i
];
3532 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3533 dev_kfree_skb_irq(skb
);
3536 rx_ring
->no_itr_adjust
|= (staterr
& E1000_RXD_STAT_DYNINT
);
3538 total_bytes
+= skb
->len
;
3541 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3543 skb
->protocol
= eth_type_trans(skb
, netdev
);
3545 igb_receive_skb(adapter
, staterr
, rx_desc
->wb
.upper
.vlan
, skb
);
3547 netdev
->last_rx
= jiffies
;
3550 rx_desc
->wb
.upper
.status_error
= 0;
3552 /* return some buffers to hardware, one at a time is too slow */
3553 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3554 igb_alloc_rx_buffers_adv(adapter
, rx_ring
,
3559 /* use prefetched values */
3561 buffer_info
= next_buffer
;
3563 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3566 rx_ring
->next_to_clean
= i
;
3567 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3570 igb_alloc_rx_buffers_adv(adapter
, rx_ring
, cleaned_count
);
3572 rx_ring
->total_packets
+= total_packets
;
3573 rx_ring
->total_bytes
+= total_bytes
;
3574 rx_ring
->rx_stats
.packets
+= total_packets
;
3575 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3576 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3577 adapter
->net_stats
.rx_packets
+= total_packets
;
3583 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3584 * @adapter: address of board private structure
3586 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*adapter
,
3587 struct igb_ring
*rx_ring
,
3590 struct net_device
*netdev
= adapter
->netdev
;
3591 struct pci_dev
*pdev
= adapter
->pdev
;
3592 union e1000_adv_rx_desc
*rx_desc
;
3593 struct igb_buffer
*buffer_info
;
3594 struct sk_buff
*skb
;
3597 i
= rx_ring
->next_to_use
;
3598 buffer_info
= &rx_ring
->buffer_info
[i
];
3600 while (cleaned_count
--) {
3601 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3603 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page
) {
3604 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3605 if (!buffer_info
->page
) {
3606 adapter
->alloc_rx_buff_failed
++;
3609 buffer_info
->page_dma
=
3613 PCI_DMA_FROMDEVICE
);
3616 if (!buffer_info
->skb
) {
3619 if (adapter
->rx_ps_hdr_size
)
3620 bufsz
= adapter
->rx_ps_hdr_size
;
3622 bufsz
= adapter
->rx_buffer_len
;
3623 bufsz
+= NET_IP_ALIGN
;
3624 skb
= netdev_alloc_skb(netdev
, bufsz
);
3627 adapter
->alloc_rx_buff_failed
++;
3631 /* Make buffer alignment 2 beyond a 16 byte boundary
3632 * this will result in a 16 byte aligned IP header after
3633 * the 14 byte MAC header is removed
3635 skb_reserve(skb
, NET_IP_ALIGN
);
3637 buffer_info
->skb
= skb
;
3638 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
3640 PCI_DMA_FROMDEVICE
);
3643 /* Refresh the desc even if buffer_addrs didn't change because
3644 * each write-back erases this info. */
3645 if (adapter
->rx_ps_hdr_size
) {
3646 rx_desc
->read
.pkt_addr
=
3647 cpu_to_le64(buffer_info
->page_dma
);
3648 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
3650 rx_desc
->read
.pkt_addr
=
3651 cpu_to_le64(buffer_info
->dma
);
3652 rx_desc
->read
.hdr_addr
= 0;
3656 if (i
== rx_ring
->count
)
3658 buffer_info
= &rx_ring
->buffer_info
[i
];
3662 if (rx_ring
->next_to_use
!= i
) {
3663 rx_ring
->next_to_use
= i
;
3665 i
= (rx_ring
->count
- 1);
3669 /* Force memory writes to complete before letting h/w
3670 * know there are new descriptors to fetch. (Only
3671 * applicable for weak-ordered memory model archs,
3672 * such as IA-64). */
3674 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
3684 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3686 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3687 struct mii_ioctl_data
*data
= if_mii(ifr
);
3689 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3694 data
->phy_id
= adapter
->hw
.phy
.addr
;
3697 if (!capable(CAP_NET_ADMIN
))
3699 if (adapter
->hw
.phy
.ops
.read_phy_reg(&adapter
->hw
,
3701 & 0x1F, &data
->val_out
))
3717 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3723 return igb_mii_ioctl(netdev
, ifr
, cmd
);
3729 static void igb_vlan_rx_register(struct net_device
*netdev
,
3730 struct vlan_group
*grp
)
3732 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3733 struct e1000_hw
*hw
= &adapter
->hw
;
3736 igb_irq_disable(adapter
);
3737 adapter
->vlgrp
= grp
;
3740 /* enable VLAN tag insert/strip */
3741 ctrl
= rd32(E1000_CTRL
);
3742 ctrl
|= E1000_CTRL_VME
;
3743 wr32(E1000_CTRL
, ctrl
);
3745 /* enable VLAN receive filtering */
3746 rctl
= rd32(E1000_RCTL
);
3747 rctl
|= E1000_RCTL_VFE
;
3748 rctl
&= ~E1000_RCTL_CFIEN
;
3749 wr32(E1000_RCTL
, rctl
);
3750 igb_update_mng_vlan(adapter
);
3752 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
3754 /* disable VLAN tag insert/strip */
3755 ctrl
= rd32(E1000_CTRL
);
3756 ctrl
&= ~E1000_CTRL_VME
;
3757 wr32(E1000_CTRL
, ctrl
);
3759 /* disable VLAN filtering */
3760 rctl
= rd32(E1000_RCTL
);
3761 rctl
&= ~E1000_RCTL_VFE
;
3762 wr32(E1000_RCTL
, rctl
);
3763 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
3764 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3765 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
3768 adapter
->max_frame_size
);
3771 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3772 igb_irq_enable(adapter
);
3775 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
3777 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3778 struct e1000_hw
*hw
= &adapter
->hw
;
3781 if ((adapter
->hw
.mng_cookie
.status
&
3782 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3783 (vid
== adapter
->mng_vlan_id
))
3785 /* add VID to filter table */
3786 index
= (vid
>> 5) & 0x7F;
3787 vfta
= array_rd32(E1000_VFTA
, index
);
3788 vfta
|= (1 << (vid
& 0x1F));
3789 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3792 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
3794 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3795 struct e1000_hw
*hw
= &adapter
->hw
;
3798 igb_irq_disable(adapter
);
3799 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
3801 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3802 igb_irq_enable(adapter
);
3804 if ((adapter
->hw
.mng_cookie
.status
&
3805 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3806 (vid
== adapter
->mng_vlan_id
)) {
3807 /* release control to f/w */
3808 igb_release_hw_control(adapter
);
3812 /* remove VID from filter table */
3813 index
= (vid
>> 5) & 0x7F;
3814 vfta
= array_rd32(E1000_VFTA
, index
);
3815 vfta
&= ~(1 << (vid
& 0x1F));
3816 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3819 static void igb_restore_vlan(struct igb_adapter
*adapter
)
3821 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
3823 if (adapter
->vlgrp
) {
3825 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
3826 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
3828 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
3833 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
3835 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3839 /* Fiber NICs only allow 1000 gbps Full duplex */
3840 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
3841 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
3842 dev_err(&adapter
->pdev
->dev
,
3843 "Unsupported Speed/Duplex configuration\n");
3848 case SPEED_10
+ DUPLEX_HALF
:
3849 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
3851 case SPEED_10
+ DUPLEX_FULL
:
3852 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
3854 case SPEED_100
+ DUPLEX_HALF
:
3855 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
3857 case SPEED_100
+ DUPLEX_FULL
:
3858 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
3860 case SPEED_1000
+ DUPLEX_FULL
:
3862 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
3864 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
3866 dev_err(&adapter
->pdev
->dev
,
3867 "Unsupported Speed/Duplex configuration\n");
3874 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3876 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3877 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3878 struct e1000_hw
*hw
= &adapter
->hw
;
3879 u32 ctrl
, ctrl_ext
, rctl
, status
;
3880 u32 wufc
= adapter
->wol
;
3885 netif_device_detach(netdev
);
3887 if (netif_running(netdev
)) {
3888 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
3890 igb_free_irq(adapter
);
3894 retval
= pci_save_state(pdev
);
3899 status
= rd32(E1000_STATUS
);
3900 if (status
& E1000_STATUS_LU
)
3901 wufc
&= ~E1000_WUFC_LNKC
;
3904 igb_setup_rctl(adapter
);
3905 igb_set_multi(netdev
);
3907 /* turn on all-multi mode if wake on multicast is enabled */
3908 if (wufc
& E1000_WUFC_MC
) {
3909 rctl
= rd32(E1000_RCTL
);
3910 rctl
|= E1000_RCTL_MPE
;
3911 wr32(E1000_RCTL
, rctl
);
3914 ctrl
= rd32(E1000_CTRL
);
3915 /* advertise wake from D3Cold */
3916 #define E1000_CTRL_ADVD3WUC 0x00100000
3917 /* phy power management enable */
3918 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3919 ctrl
|= E1000_CTRL_ADVD3WUC
;
3920 wr32(E1000_CTRL
, ctrl
);
3922 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
3923 adapter
->hw
.phy
.media_type
==
3924 e1000_media_type_internal_serdes
) {
3925 /* keep the laser running in D3 */
3926 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3927 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3928 wr32(E1000_CTRL_EXT
, ctrl_ext
);
3931 /* Allow time for pending master requests to run */
3932 igb_disable_pcie_master(&adapter
->hw
);
3934 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
3935 wr32(E1000_WUFC
, wufc
);
3936 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3937 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3940 wr32(E1000_WUFC
, 0);
3941 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3942 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3945 /* make sure adapter isn't asleep if manageability is enabled */
3946 if (adapter
->en_mng_pt
) {
3947 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3948 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3951 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3952 * would have already happened in close and is redundant. */
3953 igb_release_hw_control(adapter
);
3955 pci_disable_device(pdev
);
3957 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3963 static int igb_resume(struct pci_dev
*pdev
)
3965 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3966 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3967 struct e1000_hw
*hw
= &adapter
->hw
;
3970 pci_set_power_state(pdev
, PCI_D0
);
3971 pci_restore_state(pdev
);
3972 err
= pci_enable_device(pdev
);
3975 "igb: Cannot enable PCI device from suspend\n");
3978 pci_set_master(pdev
);
3980 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3981 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3983 if (netif_running(netdev
)) {
3984 err
= igb_request_irq(adapter
);
3989 /* e1000_power_up_phy(adapter); */
3992 wr32(E1000_WUS
, ~0);
3994 igb_init_manageability(adapter
);
3996 if (netif_running(netdev
))
3999 netif_device_attach(netdev
);
4001 /* let the f/w know that the h/w is now under the control of the
4003 igb_get_hw_control(adapter
);
4009 static void igb_shutdown(struct pci_dev
*pdev
)
4011 igb_suspend(pdev
, PMSG_SUSPEND
);
4014 #ifdef CONFIG_NET_POLL_CONTROLLER
4016 * Polling 'interrupt' - used by things like netconsole to send skbs
4017 * without having to re-enable interrupts. It's not called while
4018 * the interrupt routine is executing.
4020 static void igb_netpoll(struct net_device
*netdev
)
4022 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4026 igb_irq_disable(adapter
);
4027 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4028 igb_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
4030 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4031 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
],
4033 adapter
->rx_ring
[i
].napi
.weight
);
4035 igb_irq_enable(adapter
);
4037 #endif /* CONFIG_NET_POLL_CONTROLLER */
4040 * igb_io_error_detected - called when PCI error is detected
4041 * @pdev: Pointer to PCI device
4042 * @state: The current pci connection state
4044 * This function is called after a PCI bus error affecting
4045 * this device has been detected.
4047 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4048 pci_channel_state_t state
)
4050 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4051 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4053 netif_device_detach(netdev
);
4055 if (netif_running(netdev
))
4057 pci_disable_device(pdev
);
4059 /* Request a slot slot reset. */
4060 return PCI_ERS_RESULT_NEED_RESET
;
4064 * igb_io_slot_reset - called after the pci bus has been reset.
4065 * @pdev: Pointer to PCI device
4067 * Restart the card from scratch, as if from a cold-boot. Implementation
4068 * resembles the first-half of the igb_resume routine.
4070 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4072 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4073 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4074 struct e1000_hw
*hw
= &adapter
->hw
;
4076 if (pci_enable_device(pdev
)) {
4078 "Cannot re-enable PCI device after reset.\n");
4079 return PCI_ERS_RESULT_DISCONNECT
;
4081 pci_set_master(pdev
);
4083 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4084 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4087 wr32(E1000_WUS
, ~0);
4089 return PCI_ERS_RESULT_RECOVERED
;
4093 * igb_io_resume - called when traffic can start flowing again.
4094 * @pdev: Pointer to PCI device
4096 * This callback is called when the error recovery driver tells us that
4097 * its OK to resume normal operation. Implementation resembles the
4098 * second-half of the igb_resume routine.
4100 static void igb_io_resume(struct pci_dev
*pdev
)
4102 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4103 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4105 igb_init_manageability(adapter
);
4107 if (netif_running(netdev
)) {
4108 if (igb_up(adapter
)) {
4109 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4114 netif_device_attach(netdev
);
4116 /* let the f/w know that the h/w is now under the control of the
4118 igb_get_hw_control(adapter
);