m68k: use KBUILD_DEFCONFIG
[linux-2.6/verdex.git] / drivers / net / wan / farsync.c
blob547368e9633d7bd511ceb3a4820146bd87e12486
1 /*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/if.h>
25 #include <linux/hdlc.h>
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
29 #include "farsync.h"
32 * Module info
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
38 /* Driver configuration and global parameters
39 * ==========================================
42 /* Number of ports (per card) and cards supported
44 #define FST_MAX_PORTS 4
45 #define FST_MAX_CARDS 32
47 /* Default parameters for the link
49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
50 * useful, the syncppp module forces
51 * this down assuming a slower line I
52 * guess.
54 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
55 * of frames on the way down to the card
56 * so that we can keep the card busy
57 * and maximise throughput
59 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
60 * network layer */
61 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
62 * control from network layer */
63 #define FST_MAX_MTU 8000 /* Huge but possible */
64 #define FST_DEF_MTU 1500 /* Common sane value */
66 #define FST_TX_TIMEOUT (2*HZ)
68 #ifdef ARPHRD_RAWHDLC
69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70 #else
71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
72 #endif
75 * Modules parameters and associated varaibles
77 static int fst_txq_low = FST_LOW_WATER_MARK;
78 static int fst_txq_high = FST_HIGH_WATER_MARK;
79 static int fst_max_reads = 7;
80 static int fst_excluded_cards = 0;
81 static int fst_excluded_list[FST_MAX_CARDS];
83 module_param(fst_txq_low, int, 0);
84 module_param(fst_txq_high, int, 0);
85 module_param(fst_max_reads, int, 0);
86 module_param(fst_excluded_cards, int, 0);
87 module_param_array(fst_excluded_list, int, NULL, 0);
89 /* Card shared memory layout
90 * =========================
92 #pragma pack(1)
94 /* This information is derived in part from the FarSite FarSync Smc.h
95 * file. Unfortunately various name clashes and the non-portability of the
96 * bit field declarations in that file have meant that I have chosen to
97 * recreate the information here.
99 * The SMC (Shared Memory Configuration) has a version number that is
100 * incremented every time there is a significant change. This number can
101 * be used to check that we have not got out of step with the firmware
102 * contained in the .CDE files.
104 #define SMC_VERSION 24
106 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
108 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
109 * configuration structure */
110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
111 * buffers */
113 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
114 #define LEN_RX_BUFFER 8192
116 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
117 #define LEN_SMALL_RX_BUFFER 256
119 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
120 #define NUM_RX_BUFFER 8
122 /* Interrupt retry time in milliseconds */
123 #define INT_RETRY_TIME 2
125 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
126 * of buffer descriptors. The structure is almost identical to that used
127 * in the LANCE Ethernet controllers. Details available as PDF from the
128 * AMD web site: http://www.amd.com/products/epd/processors/\
129 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
131 struct txdesc { /* Transmit descriptor */
132 volatile u16 ladr; /* Low order address of packet. This is a
133 * linear address in the Am186 memory space
135 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
136 * bits must be zero
138 volatile u8 bits; /* Status and config */
139 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
140 * Transmit terminal count interrupt enable in
141 * top bit.
143 u16 unused; /* Not used in Tx */
146 struct rxdesc { /* Receive descriptor */
147 volatile u16 ladr; /* Low order address of packet */
148 volatile u8 hadr; /* High order address */
149 volatile u8 bits; /* Status and config */
150 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
151 * Receive terminal count interrupt enable in
152 * top bit.
154 volatile u16 mcnt; /* Message byte count (15 bits) */
157 /* Convert a length into the 15 bit 2's complement */
158 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
159 /* Since we need to set the high bit to enable the completion interrupt this
160 * can be made a lot simpler
162 #define cnv_bcnt(len) (-(len))
164 /* Status and config bits for the above */
165 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
166 #define TX_STP 0x02 /* Tx: start of packet */
167 #define TX_ENP 0x01 /* Tx: end of packet */
168 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
169 #define RX_FRAM 0x20 /* Rx: framing error */
170 #define RX_OFLO 0x10 /* Rx: overflow error */
171 #define RX_CRC 0x08 /* Rx: CRC error */
172 #define RX_HBUF 0x04 /* Rx: buffer error */
173 #define RX_STP 0x02 /* Rx: start of packet */
174 #define RX_ENP 0x01 /* Rx: end of packet */
176 /* Interrupts from the card are caused by various events which are presented
177 * in a circular buffer as several events may be processed on one physical int
179 #define MAX_CIRBUFF 32
181 struct cirbuff {
182 u8 rdindex; /* read, then increment and wrap */
183 u8 wrindex; /* write, then increment and wrap */
184 u8 evntbuff[MAX_CIRBUFF];
187 /* Interrupt event codes.
188 * Where appropriate the two low order bits indicate the port number
190 #define CTLA_CHG 0x18 /* Control signal changed */
191 #define CTLB_CHG 0x19
192 #define CTLC_CHG 0x1A
193 #define CTLD_CHG 0x1B
195 #define INIT_CPLT 0x20 /* Initialisation complete */
196 #define INIT_FAIL 0x21 /* Initialisation failed */
198 #define ABTA_SENT 0x24 /* Abort sent */
199 #define ABTB_SENT 0x25
200 #define ABTC_SENT 0x26
201 #define ABTD_SENT 0x27
203 #define TXA_UNDF 0x28 /* Transmission underflow */
204 #define TXB_UNDF 0x29
205 #define TXC_UNDF 0x2A
206 #define TXD_UNDF 0x2B
208 #define F56_INT 0x2C
209 #define M32_INT 0x2D
211 #define TE1_ALMA 0x30
213 /* Port physical configuration. See farsync.h for field values */
214 struct port_cfg {
215 u16 lineInterface; /* Physical interface type */
216 u8 x25op; /* Unused at present */
217 u8 internalClock; /* 1 => internal clock, 0 => external */
218 u8 transparentMode; /* 1 => on, 0 => off */
219 u8 invertClock; /* 0 => normal, 1 => inverted */
220 u8 padBytes[6]; /* Padding */
221 u32 lineSpeed; /* Speed in bps */
224 /* TE1 port physical configuration */
225 struct su_config {
226 u32 dataRate;
227 u8 clocking;
228 u8 framing;
229 u8 structure;
230 u8 interface;
231 u8 coding;
232 u8 lineBuildOut;
233 u8 equalizer;
234 u8 transparentMode;
235 u8 loopMode;
236 u8 range;
237 u8 txBufferMode;
238 u8 rxBufferMode;
239 u8 startingSlot;
240 u8 losThreshold;
241 u8 enableIdleCode;
242 u8 idleCode;
243 u8 spare[44];
246 /* TE1 Status */
247 struct su_status {
248 u32 receiveBufferDelay;
249 u32 framingErrorCount;
250 u32 codeViolationCount;
251 u32 crcErrorCount;
252 u32 lineAttenuation;
253 u8 portStarted;
254 u8 lossOfSignal;
255 u8 receiveRemoteAlarm;
256 u8 alarmIndicationSignal;
257 u8 spare[40];
260 /* Finally sling all the above together into the shared memory structure.
261 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
262 * evolving under NT for some time so I guess we're stuck with it.
263 * The structure starts at offset SMC_BASE.
264 * See farsync.h for some field values.
266 struct fst_shared {
267 /* DMA descriptor rings */
268 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
269 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
271 /* Obsolete small buffers */
272 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
273 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
275 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
276 * 0xFF => halted
279 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
280 * set to 0xEE by host to acknowledge interrupt
283 u16 smcVersion; /* Must match SMC_VERSION */
285 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
286 * version, RR = revision and BB = build
289 u16 txa_done; /* Obsolete completion flags */
290 u16 rxa_done;
291 u16 txb_done;
292 u16 rxb_done;
293 u16 txc_done;
294 u16 rxc_done;
295 u16 txd_done;
296 u16 rxd_done;
298 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
300 struct cirbuff interruptEvent; /* interrupt causes */
302 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
303 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
305 struct port_cfg portConfig[FST_MAX_PORTS];
307 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
309 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
311 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
312 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
314 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
315 u16 cardMailbox[4]; /* Not used */
317 /* Number of times the card thinks the host has
318 * missed an interrupt by not acknowledging
319 * within 2mS (I guess NT has problems)
321 u32 interruptRetryCount;
323 /* Driver private data used as an ID. We'll not
324 * use this as I'd rather keep such things
325 * in main memory rather than on the PCI bus
327 u32 portHandle[FST_MAX_PORTS];
329 /* Count of Tx underflows for stats */
330 u32 transmitBufferUnderflow[FST_MAX_PORTS];
332 /* Debounced V.24 control input status */
333 u32 v24DebouncedSts[FST_MAX_PORTS];
335 /* Adapter debounce timers. Don't touch */
336 u32 ctsTimer[FST_MAX_PORTS];
337 u32 ctsTimerRun[FST_MAX_PORTS];
338 u32 dcdTimer[FST_MAX_PORTS];
339 u32 dcdTimerRun[FST_MAX_PORTS];
341 u32 numberOfPorts; /* Number of ports detected at startup */
343 u16 _reserved[64];
345 u16 cardMode; /* Bit-mask to enable features:
346 * Bit 0: 1 enables LED identify mode
349 u16 portScheduleOffset;
351 struct su_config suConfig; /* TE1 Bits */
352 struct su_status suStatus;
354 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
355 * the structure and marks the end of shared
356 * memory. Adapter code initializes it as
357 * END_SIG.
361 /* endOfSmcSignature value */
362 #define END_SIG 0x12345678
364 /* Mailbox values. (portMailbox) */
365 #define NOP 0 /* No operation */
366 #define ACK 1 /* Positive acknowledgement to PC driver */
367 #define NAK 2 /* Negative acknowledgement to PC driver */
368 #define STARTPORT 3 /* Start an HDLC port */
369 #define STOPPORT 4 /* Stop an HDLC port */
370 #define ABORTTX 5 /* Abort the transmitter for a port */
371 #define SETV24O 6 /* Set V24 outputs */
373 /* PLX Chip Register Offsets */
374 #define CNTRL_9052 0x50 /* Control Register */
375 #define CNTRL_9054 0x6c /* Control Register */
377 #define INTCSR_9052 0x4c /* Interrupt control/status register */
378 #define INTCSR_9054 0x68 /* Interrupt control/status register */
380 /* 9054 DMA Registers */
382 * Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
385 #define DMAMODE0 0x80
386 #define DMAPADR0 0x84
387 #define DMALADR0 0x88
388 #define DMASIZ0 0x8c
389 #define DMADPR0 0x90
390 #define DMAMODE1 0x94
391 #define DMAPADR1 0x98
392 #define DMALADR1 0x9c
393 #define DMASIZ1 0xa0
394 #define DMADPR1 0xa4
395 #define DMACSR0 0xa8
396 #define DMACSR1 0xa9
397 #define DMAARB 0xac
398 #define DMATHR 0xb0
399 #define DMADAC0 0xb4
400 #define DMADAC1 0xb8
401 #define DMAMARBR 0xac
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT 0x01
405 #define FST_TX_DMA_INT 0x02
406 #define FST_CARD_INT 0x04
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 struct buf_window {
410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
417 #pragma pack()
419 /* Device driver private information
420 * =================================
422 /* Per port (line or channel) information
424 struct fst_port_info {
425 struct net_device *dev; /* Device struct - must be first */
426 struct fst_card_info *card; /* Card we're associated with */
427 int index; /* Port index on the card */
428 int hwif; /* Line hardware (lineInterface copy) */
429 int run; /* Port is running */
430 int mode; /* Normal or FarSync raw */
431 int rxpos; /* Next Rx buffer to use */
432 int txpos; /* Next Tx buffer to use */
433 int txipos; /* Next Tx buffer to check for free */
434 int start; /* Indication of start/stop to network */
436 * A sixteen entry transmit queue
438 int txqs; /* index to get next buffer to tx */
439 int txqe; /* index to queue next packet */
440 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
441 int rxqdepth;
444 /* Per card information
446 struct fst_card_info {
447 char __iomem *mem; /* Card memory mapped to kernel space */
448 char __iomem *ctlmem; /* Control memory for PCI cards */
449 unsigned int phys_mem; /* Physical memory window address */
450 unsigned int phys_ctlmem; /* Physical control memory address */
451 unsigned int irq; /* Interrupt request line number */
452 unsigned int nports; /* Number of serial ports */
453 unsigned int type; /* Type index of card */
454 unsigned int state; /* State of card */
455 spinlock_t card_lock; /* Lock for SMP access */
456 unsigned short pci_conf; /* PCI card config in I/O space */
457 /* Per port info */
458 struct fst_port_info ports[FST_MAX_PORTS];
459 struct pci_dev *device; /* Information about the pci device */
460 int card_no; /* Inst of the card on the system */
461 int family; /* TxP or TxU */
462 int dmarx_in_progress;
463 int dmatx_in_progress;
464 unsigned long int_count;
465 unsigned long int_time_ave;
466 void *rx_dma_handle_host;
467 dma_addr_t rx_dma_handle_card;
468 void *tx_dma_handle_host;
469 dma_addr_t tx_dma_handle_card;
470 struct sk_buff *dma_skb_rx;
471 struct fst_port_info *dma_port_rx;
472 struct fst_port_info *dma_port_tx;
473 int dma_len_rx;
474 int dma_len_tx;
475 int dma_txpos;
476 int dma_rxpos;
479 /* Convert an HDLC device pointer into a port info pointer and similar */
480 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
481 #define port_to_dev(P) ((P)->dev)
485 * Shared memory window access macros
487 * We have a nice memory based structure above, which could be directly
488 * mapped on i386 but might not work on other architectures unless we use
489 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
490 * physical offsets so we have to convert. The only saving grace is that
491 * this should all collapse back to a simple indirection eventually.
493 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
495 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
497 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
499 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
501 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
504 * Debug support
506 #if FST_DEBUG
508 static int fst_debug_mask = { FST_DEBUG };
510 /* Most common debug activity is to print something if the corresponding bit
511 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
512 * support variable numbers of macro parameters. The inverted if prevents us
513 * eating someone else's else clause.
515 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
517 else \
518 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
520 #else
521 #define dbg(X...) /* NOP */
522 #endif
524 /* Printing short cuts
526 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
527 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
528 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
531 * PCI ID lookup table
533 static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 {0,} /* End */
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
560 * Device Driver Work Queues
562 * So that we don't spend too much time processing events in the
563 * Interrupt Service routine, we will declare a work queue per Card
564 * and make the ISR schedule a task in the queue for later execution.
565 * In the 2.4 Kernel we used to use the immediate queue for BH's
566 * Now that they are gone, tasklets seem to be much better than work
567 * queues.
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
586 unsigned long flags;
587 u64 mask;
590 * Grab the queue exclusively
592 spin_lock_irqsave(&fst_work_q_lock, flags);
595 * Making an entry in the queue is simply a matter of setting
596 * a bit for the card indicating that there is work to do in the
597 * bottom half for the card. Note the limitation of 64 cards.
598 * That ought to be enough
600 mask = 1 << card_index;
601 *queue |= mask;
602 spin_unlock_irqrestore(&fst_work_q_lock, flags);
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
608 unsigned long flags;
609 u64 work_txq;
610 int i;
613 * Grab the queue exclusively
615 dbg(DBG_TX, "fst_process_tx_work_q\n");
616 spin_lock_irqsave(&fst_work_q_lock, flags);
617 work_txq = fst_work_txq;
618 fst_work_txq = 0;
619 spin_unlock_irqrestore(&fst_work_q_lock, flags);
622 * Call the bottom half for each card with work waiting
624 for (i = 0; i < FST_MAX_CARDS; i++) {
625 if (work_txq & 0x01) {
626 if (fst_card_array[i] != NULL) {
627 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 do_bottom_half_tx(fst_card_array[i]);
631 work_txq = work_txq >> 1;
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
638 unsigned long flags;
639 u64 work_intq;
640 int i;
643 * Grab the queue exclusively
645 dbg(DBG_INTR, "fst_process_int_work_q\n");
646 spin_lock_irqsave(&fst_work_q_lock, flags);
647 work_intq = fst_work_intq;
648 fst_work_intq = 0;
649 spin_unlock_irqrestore(&fst_work_q_lock, flags);
652 * Call the bottom half for each card with work waiting
654 for (i = 0; i < FST_MAX_CARDS; i++) {
655 if (work_intq & 0x01) {
656 if (fst_card_array[i] != NULL) {
657 dbg(DBG_INTR,
658 "Calling rx & tx bh for card %d\n", i);
659 do_bottom_half_rx(fst_card_array[i]);
660 do_bottom_half_tx(fst_card_array[i]);
663 work_intq = work_intq >> 1;
667 /* Card control functions
668 * ======================
670 /* Place the processor in reset state
672 * Used to be a simple write to card control space but a glitch in the latest
673 * AMD Am186CH processor means that we now have to do it by asserting and de-
674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675 * at offset 9052_CNTRL. Note the updates for the TXU.
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
680 unsigned char interrupt_line_register;
681 unsigned long j = jiffies + 1;
682 unsigned int regval;
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
697 * We are delaying here to allow the 9054 to reset itself
699 j = jiffies + 1;
700 while (jiffies < j)
701 /* Do nothing */ ;
702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
704 * We are delaying here to allow the 9054 to reload its eeprom
706 j = jiffies + 1;
707 while (jiffies < j)
708 /* Do nothing */ ;
709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
711 if (pci_write_config_byte
712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 dbg(DBG_ASS,
714 "Error in writing interrupt line register\n");
717 } else {
718 regval = inl(card->pci_conf + CNTRL_9052);
720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
725 /* Release the processor from reset
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
730 if (card->family == FST_FAMILY_TXU) {
732 * Force posted writes to complete
734 (void) readb(card->mem);
737 * Release LRESET DO = 1
738 * Then release Local Hold, DO = 1
740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 } else {
743 (void) readb(card->ctlmem);
747 /* Clear the cards interrupt flag
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
752 if (card->family == FST_FAMILY_TXU) {
753 (void) readb(card->ctlmem);
754 } else {
755 /* Poke the appropriate PLX chip register (same as enabling interrupts)
757 outw(0x0543, card->pci_conf + INTCSR_9052);
761 /* Enable card interrupts
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
766 if (card->family == FST_FAMILY_TXU) {
767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 } else {
769 outw(0x0543, card->pci_conf + INTCSR_9052);
773 /* Disable card interrupts
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
778 if (card->family == FST_FAMILY_TXU) {
779 outl(0x00000000, card->pci_conf + INTCSR_9054);
780 } else {
781 outw(0x0000, card->pci_conf + INTCSR_9052);
785 /* Process the result of trying to pass a received frame up the stack
787 static void
788 fst_process_rx_status(int rx_status, char *name)
790 switch (rx_status) {
791 case NET_RX_SUCCESS:
794 * Nothing to do here
796 break;
799 case NET_RX_CN_LOW:
801 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
802 break;
805 case NET_RX_CN_MOD:
807 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
808 break;
811 case NET_RX_CN_HIGH:
813 dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
814 break;
817 case NET_RX_DROP:
819 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
820 break;
825 /* Initilaise DMA for PLX 9054
827 static inline void
828 fst_init_dma(struct fst_card_info *card)
831 * This is only required for the PLX 9054
833 if (card->family == FST_FAMILY_TXU) {
834 pci_set_master(card->device);
835 outl(0x00020441, card->pci_conf + DMAMODE0);
836 outl(0x00020441, card->pci_conf + DMAMODE1);
837 outl(0x0, card->pci_conf + DMATHR);
841 /* Tx dma complete interrupt
843 static void
844 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
845 int len, int txpos)
847 struct net_device *dev = port_to_dev(port);
848 struct net_device_stats *stats = hdlc_stats(dev);
851 * Everything is now set, just tell the card to go
853 dbg(DBG_TX, "fst_tx_dma_complete\n");
854 FST_WRB(card, txDescrRing[port->index][txpos].bits,
855 DMA_OWN | TX_STP | TX_ENP);
856 stats->tx_packets++;
857 stats->tx_bytes += len;
858 dev->trans_start = jiffies;
862 * Mark it for our own raw sockets interface
864 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
866 skb->dev = dev;
867 skb_reset_mac_header(skb);
868 skb->pkt_type = PACKET_HOST;
869 return htons(ETH_P_CUST);
872 /* Rx dma complete interrupt
874 static void
875 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
876 int len, struct sk_buff *skb, int rxp)
878 struct net_device *dev = port_to_dev(port);
879 struct net_device_stats *stats = hdlc_stats(dev);
880 int pi;
881 int rx_status;
883 dbg(DBG_TX, "fst_rx_dma_complete\n");
884 pi = port->index;
885 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
887 /* Reset buffer descriptor */
888 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
890 /* Update stats */
891 stats->rx_packets++;
892 stats->rx_bytes += len;
894 /* Push upstream */
895 dbg(DBG_RX, "Pushing the frame up the stack\n");
896 if (port->mode == FST_RAW)
897 skb->protocol = farsync_type_trans(skb, dev);
898 else
899 skb->protocol = hdlc_type_trans(skb, dev);
900 rx_status = netif_rx(skb);
901 fst_process_rx_status(rx_status, port_to_dev(port)->name);
902 if (rx_status == NET_RX_DROP)
903 stats->rx_dropped++;
904 dev->last_rx = jiffies;
908 * Receive a frame through the DMA
910 static inline void
911 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
912 unsigned char *mem, int len)
915 * This routine will setup the DMA and start it
918 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
919 if (card->dmarx_in_progress) {
920 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
923 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
924 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
925 outl(len, card->pci_conf + DMASIZ0); /* for this length */
926 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
929 * We use the dmarx_in_progress flag to flag the channel as busy
931 card->dmarx_in_progress = 1;
932 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
936 * Send a frame through the DMA
938 static inline void
939 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
940 unsigned char *mem, int len)
943 * This routine will setup the DMA and start it.
946 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
947 if (card->dmatx_in_progress) {
948 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
951 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
952 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
953 outl(len, card->pci_conf + DMASIZ1); /* for this length */
954 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
957 * We use the dmatx_in_progress to flag the channel as busy
959 card->dmatx_in_progress = 1;
960 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
963 /* Issue a Mailbox command for a port.
964 * Note we issue them on a fire and forget basis, not expecting to see an
965 * error and not waiting for completion.
967 static void
968 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
970 struct fst_card_info *card;
971 unsigned short mbval;
972 unsigned long flags;
973 int safety;
975 card = port->card;
976 spin_lock_irqsave(&card->card_lock, flags);
977 mbval = FST_RDW(card, portMailbox[port->index][0]);
979 safety = 0;
980 /* Wait for any previous command to complete */
981 while (mbval > NAK) {
982 spin_unlock_irqrestore(&card->card_lock, flags);
983 schedule_timeout_uninterruptible(1);
984 spin_lock_irqsave(&card->card_lock, flags);
986 if (++safety > 2000) {
987 printk_err("Mailbox safety timeout\n");
988 break;
991 mbval = FST_RDW(card, portMailbox[port->index][0]);
993 if (safety > 0) {
994 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
996 if (mbval == NAK) {
997 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
1000 FST_WRW(card, portMailbox[port->index][0], cmd);
1002 if (cmd == ABORTTX || cmd == STARTPORT) {
1003 port->txpos = 0;
1004 port->txipos = 0;
1005 port->start = 0;
1008 spin_unlock_irqrestore(&card->card_lock, flags);
1011 /* Port output signals control
1013 static inline void
1014 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1016 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1017 FST_WRL(port->card, v24OpSts[port->index], outputs);
1019 if (port->run)
1020 fst_issue_cmd(port, SETV24O);
1023 static inline void
1024 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1026 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1027 FST_WRL(port->card, v24OpSts[port->index], outputs);
1029 if (port->run)
1030 fst_issue_cmd(port, SETV24O);
1034 * Setup port Rx buffers
1036 static void
1037 fst_rx_config(struct fst_port_info *port)
1039 int i;
1040 int pi;
1041 unsigned int offset;
1042 unsigned long flags;
1043 struct fst_card_info *card;
1045 pi = port->index;
1046 card = port->card;
1047 spin_lock_irqsave(&card->card_lock, flags);
1048 for (i = 0; i < NUM_RX_BUFFER; i++) {
1049 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1051 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1052 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1053 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1054 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1055 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1057 port->rxpos = 0;
1058 spin_unlock_irqrestore(&card->card_lock, flags);
1062 * Setup port Tx buffers
1064 static void
1065 fst_tx_config(struct fst_port_info *port)
1067 int i;
1068 int pi;
1069 unsigned int offset;
1070 unsigned long flags;
1071 struct fst_card_info *card;
1073 pi = port->index;
1074 card = port->card;
1075 spin_lock_irqsave(&card->card_lock, flags);
1076 for (i = 0; i < NUM_TX_BUFFER; i++) {
1077 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1079 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1080 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1081 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1082 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1084 port->txpos = 0;
1085 port->txipos = 0;
1086 port->start = 0;
1087 spin_unlock_irqrestore(&card->card_lock, flags);
1090 /* TE1 Alarm change interrupt event
1092 static void
1093 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1095 u8 los;
1096 u8 rra;
1097 u8 ais;
1099 los = FST_RDB(card, suStatus.lossOfSignal);
1100 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1101 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1103 if (los) {
1105 * Lost the link
1107 if (netif_carrier_ok(port_to_dev(port))) {
1108 dbg(DBG_INTR, "Net carrier off\n");
1109 netif_carrier_off(port_to_dev(port));
1111 } else {
1113 * Link available
1115 if (!netif_carrier_ok(port_to_dev(port))) {
1116 dbg(DBG_INTR, "Net carrier on\n");
1117 netif_carrier_on(port_to_dev(port));
1121 if (los)
1122 dbg(DBG_INTR, "Assert LOS Alarm\n");
1123 else
1124 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1125 if (rra)
1126 dbg(DBG_INTR, "Assert RRA Alarm\n");
1127 else
1128 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1130 if (ais)
1131 dbg(DBG_INTR, "Assert AIS Alarm\n");
1132 else
1133 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1136 /* Control signal change interrupt event
1138 static void
1139 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1141 int signals;
1143 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1145 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1146 ? IPSTS_INDICATE : IPSTS_DCD)) {
1147 if (!netif_carrier_ok(port_to_dev(port))) {
1148 dbg(DBG_INTR, "DCD active\n");
1149 netif_carrier_on(port_to_dev(port));
1151 } else {
1152 if (netif_carrier_ok(port_to_dev(port))) {
1153 dbg(DBG_INTR, "DCD lost\n");
1154 netif_carrier_off(port_to_dev(port));
1159 /* Log Rx Errors
1161 static void
1162 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1163 unsigned char dmabits, int rxp, unsigned short len)
1165 struct net_device *dev = port_to_dev(port);
1166 struct net_device_stats *stats = hdlc_stats(dev);
1169 * Increment the appropriate error counter
1171 stats->rx_errors++;
1172 if (dmabits & RX_OFLO) {
1173 stats->rx_fifo_errors++;
1174 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1175 card->card_no, port->index, rxp);
1177 if (dmabits & RX_CRC) {
1178 stats->rx_crc_errors++;
1179 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1180 card->card_no, port->index);
1182 if (dmabits & RX_FRAM) {
1183 stats->rx_frame_errors++;
1184 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1185 card->card_no, port->index);
1187 if (dmabits == (RX_STP | RX_ENP)) {
1188 stats->rx_length_errors++;
1189 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1190 len, card->card_no, port->index);
1194 /* Rx Error Recovery
1196 static void
1197 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1198 unsigned char dmabits, int rxp, unsigned short len)
1200 int i;
1201 int pi;
1203 pi = port->index;
1205 * Discard buffer descriptors until we see the start of the
1206 * next frame. Note that for long frames this could be in
1207 * a subsequent interrupt.
1209 i = 0;
1210 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1211 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1212 rxp = (rxp+1) % NUM_RX_BUFFER;
1213 if (++i > NUM_RX_BUFFER) {
1214 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1215 " than we have\n");
1216 break;
1218 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1219 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1221 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1223 /* Discard the terminal buffer */
1224 if (!(dmabits & DMA_OWN)) {
1225 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1226 rxp = (rxp+1) % NUM_RX_BUFFER;
1228 port->rxpos = rxp;
1229 return;
1233 /* Rx complete interrupt
1235 static void
1236 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1238 unsigned char dmabits;
1239 int pi;
1240 int rxp;
1241 int rx_status;
1242 unsigned short len;
1243 struct sk_buff *skb;
1244 struct net_device *dev = port_to_dev(port);
1245 struct net_device_stats *stats = hdlc_stats(dev);
1247 /* Check we have a buffer to process */
1248 pi = port->index;
1249 rxp = port->rxpos;
1250 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1251 if (dmabits & DMA_OWN) {
1252 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1253 pi, rxp);
1254 return;
1256 if (card->dmarx_in_progress) {
1257 return;
1260 /* Get buffer length */
1261 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1262 /* Discard the CRC */
1263 len -= 2;
1264 if (len == 0) {
1266 * This seems to happen on the TE1 interface sometimes
1267 * so throw the frame away and log the event.
1269 printk_err("Frame received with 0 length. Card %d Port %d\n",
1270 card->card_no, port->index);
1271 /* Return descriptor to card */
1272 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1274 rxp = (rxp+1) % NUM_RX_BUFFER;
1275 port->rxpos = rxp;
1276 return;
1279 /* Check buffer length and for other errors. We insist on one packet
1280 * in one buffer. This simplifies things greatly and since we've
1281 * allocated 8K it shouldn't be a real world limitation
1283 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1284 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1285 fst_log_rx_error(card, port, dmabits, rxp, len);
1286 fst_recover_rx_error(card, port, dmabits, rxp, len);
1287 return;
1290 /* Allocate SKB */
1291 if ((skb = dev_alloc_skb(len)) == NULL) {
1292 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1294 stats->rx_dropped++;
1296 /* Return descriptor to card */
1297 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1299 rxp = (rxp+1) % NUM_RX_BUFFER;
1300 port->rxpos = rxp;
1301 return;
1305 * We know the length we need to receive, len.
1306 * It's not worth using the DMA for reads of less than
1307 * FST_MIN_DMA_LEN
1310 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1311 memcpy_fromio(skb_put(skb, len),
1312 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1313 len);
1315 /* Reset buffer descriptor */
1316 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1318 /* Update stats */
1319 stats->rx_packets++;
1320 stats->rx_bytes += len;
1322 /* Push upstream */
1323 dbg(DBG_RX, "Pushing frame up the stack\n");
1324 if (port->mode == FST_RAW)
1325 skb->protocol = farsync_type_trans(skb, dev);
1326 else
1327 skb->protocol = hdlc_type_trans(skb, dev);
1328 rx_status = netif_rx(skb);
1329 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1330 if (rx_status == NET_RX_DROP) {
1331 stats->rx_dropped++;
1333 dev->last_rx = jiffies;
1334 } else {
1335 card->dma_skb_rx = skb;
1336 card->dma_port_rx = port;
1337 card->dma_len_rx = len;
1338 card->dma_rxpos = rxp;
1339 fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1340 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1342 if (rxp != port->rxpos) {
1343 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1344 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1346 rxp = (rxp+1) % NUM_RX_BUFFER;
1347 port->rxpos = rxp;
1351 * The bottom halfs to the ISR
1355 static void
1356 do_bottom_half_tx(struct fst_card_info *card)
1358 struct fst_port_info *port;
1359 int pi;
1360 int txq_length;
1361 struct sk_buff *skb;
1362 unsigned long flags;
1363 struct net_device *dev;
1364 struct net_device_stats *stats;
1367 * Find a free buffer for the transmit
1368 * Step through each port on this card
1371 dbg(DBG_TX, "do_bottom_half_tx\n");
1372 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1373 if (!port->run)
1374 continue;
1376 dev = port_to_dev(port);
1377 stats = hdlc_stats(dev);
1378 while (!
1379 (FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1380 DMA_OWN)
1381 && !(card->dmatx_in_progress)) {
1383 * There doesn't seem to be a txdone event per-se
1384 * We seem to have to deduce it, by checking the DMA_OWN
1385 * bit on the next buffer we think we can use
1387 spin_lock_irqsave(&card->card_lock, flags);
1388 if ((txq_length = port->txqe - port->txqs) < 0) {
1390 * This is the case where one has wrapped and the
1391 * maths gives us a negative number
1393 txq_length = txq_length + FST_TXQ_DEPTH;
1395 spin_unlock_irqrestore(&card->card_lock, flags);
1396 if (txq_length > 0) {
1398 * There is something to send
1400 spin_lock_irqsave(&card->card_lock, flags);
1401 skb = port->txq[port->txqs];
1402 port->txqs++;
1403 if (port->txqs == FST_TXQ_DEPTH) {
1404 port->txqs = 0;
1406 spin_unlock_irqrestore(&card->card_lock, flags);
1408 * copy the data and set the required indicators on the
1409 * card.
1411 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1412 cnv_bcnt(skb->len));
1413 if ((skb->len < FST_MIN_DMA_LEN)
1414 || (card->family == FST_FAMILY_TXP)) {
1415 /* Enqueue the packet with normal io */
1416 memcpy_toio(card->mem +
1417 BUF_OFFSET(txBuffer[pi]
1418 [port->
1419 txpos][0]),
1420 skb->data, skb->len);
1421 FST_WRB(card,
1422 txDescrRing[pi][port->txpos].
1423 bits,
1424 DMA_OWN | TX_STP | TX_ENP);
1425 stats->tx_packets++;
1426 stats->tx_bytes += skb->len;
1427 dev->trans_start = jiffies;
1428 } else {
1429 /* Or do it through dma */
1430 memcpy(card->tx_dma_handle_host,
1431 skb->data, skb->len);
1432 card->dma_port_tx = port;
1433 card->dma_len_tx = skb->len;
1434 card->dma_txpos = port->txpos;
1435 fst_tx_dma(card,
1436 (char *) card->
1437 tx_dma_handle_card,
1438 (char *)
1439 BUF_OFFSET(txBuffer[pi]
1440 [port->txpos][0]),
1441 skb->len);
1443 if (++port->txpos >= NUM_TX_BUFFER)
1444 port->txpos = 0;
1446 * If we have flow control on, can we now release it?
1448 if (port->start) {
1449 if (txq_length < fst_txq_low) {
1450 netif_wake_queue(port_to_dev
1451 (port));
1452 port->start = 0;
1455 dev_kfree_skb(skb);
1456 } else {
1458 * Nothing to send so break out of the while loop
1460 break;
1466 static void
1467 do_bottom_half_rx(struct fst_card_info *card)
1469 struct fst_port_info *port;
1470 int pi;
1471 int rx_count = 0;
1473 /* Check for rx completions on all ports on this card */
1474 dbg(DBG_RX, "do_bottom_half_rx\n");
1475 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1476 if (!port->run)
1477 continue;
1479 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1480 & DMA_OWN) && !(card->dmarx_in_progress)) {
1481 if (rx_count > fst_max_reads) {
1483 * Don't spend forever in receive processing
1484 * Schedule another event
1486 fst_q_work_item(&fst_work_intq, card->card_no);
1487 tasklet_schedule(&fst_int_task);
1488 break; /* Leave the loop */
1490 fst_intr_rx(card, port);
1491 rx_count++;
1497 * The interrupt service routine
1498 * Dev_id is our fst_card_info pointer
1500 static irqreturn_t
1501 fst_intr(int dummy, void *dev_id)
1503 struct fst_card_info *card = dev_id;
1504 struct fst_port_info *port;
1505 int rdidx; /* Event buffer indices */
1506 int wridx;
1507 int event; /* Actual event for processing */
1508 unsigned int dma_intcsr = 0;
1509 unsigned int do_card_interrupt;
1510 unsigned int int_retry_count;
1513 * Check to see if the interrupt was for this card
1514 * return if not
1515 * Note that the call to clear the interrupt is important
1517 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1518 if (card->state != FST_RUNNING) {
1519 printk_err
1520 ("Interrupt received for card %d in a non running state (%d)\n",
1521 card->card_no, card->state);
1524 * It is possible to really be running, i.e. we have re-loaded
1525 * a running card
1526 * Clear and reprime the interrupt source
1528 fst_clear_intr(card);
1529 return IRQ_HANDLED;
1532 /* Clear and reprime the interrupt source */
1533 fst_clear_intr(card);
1536 * Is the interrupt for this card (handshake == 1)
1538 do_card_interrupt = 0;
1539 if (FST_RDB(card, interruptHandshake) == 1) {
1540 do_card_interrupt += FST_CARD_INT;
1541 /* Set the software acknowledge */
1542 FST_WRB(card, interruptHandshake, 0xEE);
1544 if (card->family == FST_FAMILY_TXU) {
1546 * Is it a DMA Interrupt
1548 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1549 if (dma_intcsr & 0x00200000) {
1551 * DMA Channel 0 (Rx transfer complete)
1553 dbg(DBG_RX, "DMA Rx xfer complete\n");
1554 outb(0x8, card->pci_conf + DMACSR0);
1555 fst_rx_dma_complete(card, card->dma_port_rx,
1556 card->dma_len_rx, card->dma_skb_rx,
1557 card->dma_rxpos);
1558 card->dmarx_in_progress = 0;
1559 do_card_interrupt += FST_RX_DMA_INT;
1561 if (dma_intcsr & 0x00400000) {
1563 * DMA Channel 1 (Tx transfer complete)
1565 dbg(DBG_TX, "DMA Tx xfer complete\n");
1566 outb(0x8, card->pci_conf + DMACSR1);
1567 fst_tx_dma_complete(card, card->dma_port_tx,
1568 card->dma_len_tx, card->dma_txpos);
1569 card->dmatx_in_progress = 0;
1570 do_card_interrupt += FST_TX_DMA_INT;
1575 * Have we been missing Interrupts
1577 int_retry_count = FST_RDL(card, interruptRetryCount);
1578 if (int_retry_count) {
1579 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1580 card->card_no, int_retry_count);
1581 FST_WRL(card, interruptRetryCount, 0);
1584 if (!do_card_interrupt) {
1585 return IRQ_HANDLED;
1588 /* Scehdule the bottom half of the ISR */
1589 fst_q_work_item(&fst_work_intq, card->card_no);
1590 tasklet_schedule(&fst_int_task);
1592 /* Drain the event queue */
1593 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1594 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1595 while (rdidx != wridx) {
1596 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1597 port = &card->ports[event & 0x03];
1599 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1601 switch (event) {
1602 case TE1_ALMA:
1603 dbg(DBG_INTR, "TE1 Alarm intr\n");
1604 if (port->run)
1605 fst_intr_te1_alarm(card, port);
1606 break;
1608 case CTLA_CHG:
1609 case CTLB_CHG:
1610 case CTLC_CHG:
1611 case CTLD_CHG:
1612 if (port->run)
1613 fst_intr_ctlchg(card, port);
1614 break;
1616 case ABTA_SENT:
1617 case ABTB_SENT:
1618 case ABTC_SENT:
1619 case ABTD_SENT:
1620 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1621 break;
1623 case TXA_UNDF:
1624 case TXB_UNDF:
1625 case TXC_UNDF:
1626 case TXD_UNDF:
1627 /* Difficult to see how we'd get this given that we
1628 * always load up the entire packet for DMA.
1630 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1631 hdlc_stats(port_to_dev(port))->tx_errors++;
1632 hdlc_stats(port_to_dev(port))->tx_fifo_errors++;
1633 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1634 card->card_no, port->index);
1635 break;
1637 case INIT_CPLT:
1638 dbg(DBG_INIT, "Card init OK intr\n");
1639 break;
1641 case INIT_FAIL:
1642 dbg(DBG_INIT, "Card init FAILED intr\n");
1643 card->state = FST_IFAILED;
1644 break;
1646 default:
1647 printk_err("intr: unknown card event %d. ignored\n",
1648 event);
1649 break;
1652 /* Bump and wrap the index */
1653 if (++rdidx >= MAX_CIRBUFF)
1654 rdidx = 0;
1656 FST_WRB(card, interruptEvent.rdindex, rdidx);
1657 return IRQ_HANDLED;
1660 /* Check that the shared memory configuration is one that we can handle
1661 * and that some basic parameters are correct
1663 static void
1664 check_started_ok(struct fst_card_info *card)
1666 int i;
1668 /* Check structure version and end marker */
1669 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1670 printk_err("Bad shared memory version %d expected %d\n",
1671 FST_RDW(card, smcVersion), SMC_VERSION);
1672 card->state = FST_BADVERSION;
1673 return;
1675 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1676 printk_err("Missing shared memory signature\n");
1677 card->state = FST_BADVERSION;
1678 return;
1680 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1681 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1682 card->state = FST_RUNNING;
1683 } else if (i == 0xFF) {
1684 printk_err("Firmware initialisation failed. Card halted\n");
1685 card->state = FST_HALTED;
1686 return;
1687 } else if (i != 0x00) {
1688 printk_err("Unknown firmware status 0x%x\n", i);
1689 card->state = FST_HALTED;
1690 return;
1693 /* Finally check the number of ports reported by firmware against the
1694 * number we assumed at card detection. Should never happen with
1695 * existing firmware etc so we just report it for the moment.
1697 if (FST_RDL(card, numberOfPorts) != card->nports) {
1698 printk_warn("Port count mismatch on card %d."
1699 " Firmware thinks %d we say %d\n", card->card_no,
1700 FST_RDL(card, numberOfPorts), card->nports);
1704 static int
1705 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1706 struct fstioc_info *info)
1708 int err;
1709 unsigned char my_framing;
1711 /* Set things according to the user set valid flags
1712 * Several of the old options have been invalidated/replaced by the
1713 * generic hdlc package.
1715 err = 0;
1716 if (info->valid & FSTVAL_PROTO) {
1717 if (info->proto == FST_RAW)
1718 port->mode = FST_RAW;
1719 else
1720 port->mode = FST_GEN_HDLC;
1723 if (info->valid & FSTVAL_CABLE)
1724 err = -EINVAL;
1726 if (info->valid & FSTVAL_SPEED)
1727 err = -EINVAL;
1729 if (info->valid & FSTVAL_PHASE)
1730 FST_WRB(card, portConfig[port->index].invertClock,
1731 info->invertClock);
1732 if (info->valid & FSTVAL_MODE)
1733 FST_WRW(card, cardMode, info->cardMode);
1734 if (info->valid & FSTVAL_TE1) {
1735 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1736 FST_WRB(card, suConfig.clocking, info->clockSource);
1737 my_framing = FRAMING_E1;
1738 if (info->framing == E1)
1739 my_framing = FRAMING_E1;
1740 if (info->framing == T1)
1741 my_framing = FRAMING_T1;
1742 if (info->framing == J1)
1743 my_framing = FRAMING_J1;
1744 FST_WRB(card, suConfig.framing, my_framing);
1745 FST_WRB(card, suConfig.structure, info->structure);
1746 FST_WRB(card, suConfig.interface, info->interface);
1747 FST_WRB(card, suConfig.coding, info->coding);
1748 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1749 FST_WRB(card, suConfig.equalizer, info->equalizer);
1750 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1751 FST_WRB(card, suConfig.loopMode, info->loopMode);
1752 FST_WRB(card, suConfig.range, info->range);
1753 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1754 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1755 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1756 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1757 if (info->idleCode)
1758 FST_WRB(card, suConfig.enableIdleCode, 1);
1759 else
1760 FST_WRB(card, suConfig.enableIdleCode, 0);
1761 FST_WRB(card, suConfig.idleCode, info->idleCode);
1762 #if FST_DEBUG
1763 if (info->valid & FSTVAL_TE1) {
1764 printk("Setting TE1 data\n");
1765 printk("Line Speed = %d\n", info->lineSpeed);
1766 printk("Start slot = %d\n", info->startingSlot);
1767 printk("Clock source = %d\n", info->clockSource);
1768 printk("Framing = %d\n", my_framing);
1769 printk("Structure = %d\n", info->structure);
1770 printk("interface = %d\n", info->interface);
1771 printk("Coding = %d\n", info->coding);
1772 printk("Line build out = %d\n", info->lineBuildOut);
1773 printk("Equaliser = %d\n", info->equalizer);
1774 printk("Transparent mode = %d\n",
1775 info->transparentMode);
1776 printk("Loop mode = %d\n", info->loopMode);
1777 printk("Range = %d\n", info->range);
1778 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1779 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1780 printk("LOS Threshold = %d\n", info->losThreshold);
1781 printk("Idle Code = %d\n", info->idleCode);
1783 #endif
1785 #if FST_DEBUG
1786 if (info->valid & FSTVAL_DEBUG) {
1787 fst_debug_mask = info->debug;
1789 #endif
1791 return err;
1794 static void
1795 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1796 struct fstioc_info *info)
1798 int i;
1800 memset(info, 0, sizeof (struct fstioc_info));
1802 i = port->index;
1803 info->kernelVersion = LINUX_VERSION_CODE;
1804 info->nports = card->nports;
1805 info->type = card->type;
1806 info->state = card->state;
1807 info->proto = FST_GEN_HDLC;
1808 info->index = i;
1809 #if FST_DEBUG
1810 info->debug = fst_debug_mask;
1811 #endif
1813 /* Only mark information as valid if card is running.
1814 * Copy the data anyway in case it is useful for diagnostics
1816 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1817 #if FST_DEBUG
1818 | FSTVAL_DEBUG
1819 #endif
1822 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1823 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1824 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1825 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1826 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1827 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1828 info->clockStatus = FST_RDW(card, clockStatus[i]);
1829 info->cableStatus = FST_RDW(card, cableStatus);
1830 info->cardMode = FST_RDW(card, cardMode);
1831 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1834 * The T2U can report cable presence for both A or B
1835 * in bits 0 and 1 of cableStatus. See which port we are and
1836 * do the mapping.
1838 if (card->family == FST_FAMILY_TXU) {
1839 if (port->index == 0) {
1841 * Port A
1843 info->cableStatus = info->cableStatus & 1;
1844 } else {
1846 * Port B
1848 info->cableStatus = info->cableStatus >> 1;
1849 info->cableStatus = info->cableStatus & 1;
1853 * Some additional bits if we are TE1
1855 if (card->type == FST_TYPE_TE1) {
1856 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1857 info->clockSource = FST_RDB(card, suConfig.clocking);
1858 info->framing = FST_RDB(card, suConfig.framing);
1859 info->structure = FST_RDB(card, suConfig.structure);
1860 info->interface = FST_RDB(card, suConfig.interface);
1861 info->coding = FST_RDB(card, suConfig.coding);
1862 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1863 info->equalizer = FST_RDB(card, suConfig.equalizer);
1864 info->loopMode = FST_RDB(card, suConfig.loopMode);
1865 info->range = FST_RDB(card, suConfig.range);
1866 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1867 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1868 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1869 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1870 if (FST_RDB(card, suConfig.enableIdleCode))
1871 info->idleCode = FST_RDB(card, suConfig.idleCode);
1872 else
1873 info->idleCode = 0;
1874 info->receiveBufferDelay =
1875 FST_RDL(card, suStatus.receiveBufferDelay);
1876 info->framingErrorCount =
1877 FST_RDL(card, suStatus.framingErrorCount);
1878 info->codeViolationCount =
1879 FST_RDL(card, suStatus.codeViolationCount);
1880 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1881 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1882 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1883 info->receiveRemoteAlarm =
1884 FST_RDB(card, suStatus.receiveRemoteAlarm);
1885 info->alarmIndicationSignal =
1886 FST_RDB(card, suStatus.alarmIndicationSignal);
1890 static int
1891 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1892 struct ifreq *ifr)
1894 sync_serial_settings sync;
1895 int i;
1897 if (ifr->ifr_settings.size != sizeof (sync)) {
1898 return -ENOMEM;
1901 if (copy_from_user
1902 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1903 return -EFAULT;
1906 if (sync.loopback)
1907 return -EINVAL;
1909 i = port->index;
1911 switch (ifr->ifr_settings.type) {
1912 case IF_IFACE_V35:
1913 FST_WRW(card, portConfig[i].lineInterface, V35);
1914 port->hwif = V35;
1915 break;
1917 case IF_IFACE_V24:
1918 FST_WRW(card, portConfig[i].lineInterface, V24);
1919 port->hwif = V24;
1920 break;
1922 case IF_IFACE_X21:
1923 FST_WRW(card, portConfig[i].lineInterface, X21);
1924 port->hwif = X21;
1925 break;
1927 case IF_IFACE_X21D:
1928 FST_WRW(card, portConfig[i].lineInterface, X21D);
1929 port->hwif = X21D;
1930 break;
1932 case IF_IFACE_T1:
1933 FST_WRW(card, portConfig[i].lineInterface, T1);
1934 port->hwif = T1;
1935 break;
1937 case IF_IFACE_E1:
1938 FST_WRW(card, portConfig[i].lineInterface, E1);
1939 port->hwif = E1;
1940 break;
1942 case IF_IFACE_SYNC_SERIAL:
1943 break;
1945 default:
1946 return -EINVAL;
1949 switch (sync.clock_type) {
1950 case CLOCK_EXT:
1951 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1952 break;
1954 case CLOCK_INT:
1955 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1956 break;
1958 default:
1959 return -EINVAL;
1961 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1962 return 0;
1965 static int
1966 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1967 struct ifreq *ifr)
1969 sync_serial_settings sync;
1970 int i;
1972 /* First check what line type is set, we'll default to reporting X.21
1973 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1974 * changed
1976 switch (port->hwif) {
1977 case E1:
1978 ifr->ifr_settings.type = IF_IFACE_E1;
1979 break;
1980 case T1:
1981 ifr->ifr_settings.type = IF_IFACE_T1;
1982 break;
1983 case V35:
1984 ifr->ifr_settings.type = IF_IFACE_V35;
1985 break;
1986 case V24:
1987 ifr->ifr_settings.type = IF_IFACE_V24;
1988 break;
1989 case X21D:
1990 ifr->ifr_settings.type = IF_IFACE_X21D;
1991 break;
1992 case X21:
1993 default:
1994 ifr->ifr_settings.type = IF_IFACE_X21;
1995 break;
1997 if (ifr->ifr_settings.size == 0) {
1998 return 0; /* only type requested */
2000 if (ifr->ifr_settings.size < sizeof (sync)) {
2001 return -ENOMEM;
2004 i = port->index;
2005 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
2006 /* Lucky card and linux use same encoding here */
2007 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
2008 INTCLK ? CLOCK_INT : CLOCK_EXT;
2009 sync.loopback = 0;
2011 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2012 return -EFAULT;
2015 ifr->ifr_settings.size = sizeof (sync);
2016 return 0;
2019 static int
2020 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2022 struct fst_card_info *card;
2023 struct fst_port_info *port;
2024 struct fstioc_write wrthdr;
2025 struct fstioc_info info;
2026 unsigned long flags;
2027 void *buf;
2029 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2031 port = dev_to_port(dev);
2032 card = port->card;
2034 if (!capable(CAP_NET_ADMIN))
2035 return -EPERM;
2037 switch (cmd) {
2038 case FSTCPURESET:
2039 fst_cpureset(card);
2040 card->state = FST_RESET;
2041 return 0;
2043 case FSTCPURELEASE:
2044 fst_cpurelease(card);
2045 card->state = FST_STARTING;
2046 return 0;
2048 case FSTWRITE: /* Code write (download) */
2050 /* First copy in the header with the length and offset of data
2051 * to write
2053 if (ifr->ifr_data == NULL) {
2054 return -EINVAL;
2056 if (copy_from_user(&wrthdr, ifr->ifr_data,
2057 sizeof (struct fstioc_write))) {
2058 return -EFAULT;
2061 /* Sanity check the parameters. We don't support partial writes
2062 * when going over the top
2064 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2065 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2066 return -ENXIO;
2069 /* Now copy the data to the card. */
2071 buf = kmalloc(wrthdr.size, GFP_KERNEL);
2072 if (!buf)
2073 return -ENOMEM;
2075 if (copy_from_user(buf,
2076 ifr->ifr_data + sizeof (struct fstioc_write),
2077 wrthdr.size)) {
2078 kfree(buf);
2079 return -EFAULT;
2082 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2083 kfree(buf);
2085 /* Writes to the memory of a card in the reset state constitute
2086 * a download
2088 if (card->state == FST_RESET) {
2089 card->state = FST_DOWNLOAD;
2091 return 0;
2093 case FSTGETCONF:
2095 /* If card has just been started check the shared memory config
2096 * version and marker
2098 if (card->state == FST_STARTING) {
2099 check_started_ok(card);
2101 /* If everything checked out enable card interrupts */
2102 if (card->state == FST_RUNNING) {
2103 spin_lock_irqsave(&card->card_lock, flags);
2104 fst_enable_intr(card);
2105 FST_WRB(card, interruptHandshake, 0xEE);
2106 spin_unlock_irqrestore(&card->card_lock, flags);
2110 if (ifr->ifr_data == NULL) {
2111 return -EINVAL;
2114 gather_conf_info(card, port, &info);
2116 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2117 return -EFAULT;
2119 return 0;
2121 case FSTSETCONF:
2124 * Most of the settings have been moved to the generic ioctls
2125 * this just covers debug and board ident now
2128 if (card->state != FST_RUNNING) {
2129 printk_err
2130 ("Attempt to configure card %d in non-running state (%d)\n",
2131 card->card_no, card->state);
2132 return -EIO;
2134 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2135 return -EFAULT;
2138 return set_conf_from_info(card, port, &info);
2140 case SIOCWANDEV:
2141 switch (ifr->ifr_settings.type) {
2142 case IF_GET_IFACE:
2143 return fst_get_iface(card, port, ifr);
2145 case IF_IFACE_SYNC_SERIAL:
2146 case IF_IFACE_V35:
2147 case IF_IFACE_V24:
2148 case IF_IFACE_X21:
2149 case IF_IFACE_X21D:
2150 case IF_IFACE_T1:
2151 case IF_IFACE_E1:
2152 return fst_set_iface(card, port, ifr);
2154 case IF_PROTO_RAW:
2155 port->mode = FST_RAW;
2156 return 0;
2158 case IF_GET_PROTO:
2159 if (port->mode == FST_RAW) {
2160 ifr->ifr_settings.type = IF_PROTO_RAW;
2161 return 0;
2163 return hdlc_ioctl(dev, ifr, cmd);
2165 default:
2166 port->mode = FST_GEN_HDLC;
2167 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2168 ifr->ifr_settings.type);
2169 return hdlc_ioctl(dev, ifr, cmd);
2172 default:
2173 /* Not one of ours. Pass through to HDLC package */
2174 return hdlc_ioctl(dev, ifr, cmd);
2178 static void
2179 fst_openport(struct fst_port_info *port)
2181 int signals;
2182 int txq_length;
2184 /* Only init things if card is actually running. This allows open to
2185 * succeed for downloads etc.
2187 if (port->card->state == FST_RUNNING) {
2188 if (port->run) {
2189 dbg(DBG_OPEN, "open: found port already running\n");
2191 fst_issue_cmd(port, STOPPORT);
2192 port->run = 0;
2195 fst_rx_config(port);
2196 fst_tx_config(port);
2197 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2199 fst_issue_cmd(port, STARTPORT);
2200 port->run = 1;
2202 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2203 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2204 ? IPSTS_INDICATE : IPSTS_DCD))
2205 netif_carrier_on(port_to_dev(port));
2206 else
2207 netif_carrier_off(port_to_dev(port));
2209 txq_length = port->txqe - port->txqs;
2210 port->txqe = 0;
2211 port->txqs = 0;
2216 static void
2217 fst_closeport(struct fst_port_info *port)
2219 if (port->card->state == FST_RUNNING) {
2220 if (port->run) {
2221 port->run = 0;
2222 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2224 fst_issue_cmd(port, STOPPORT);
2225 } else {
2226 dbg(DBG_OPEN, "close: port not running\n");
2231 static int
2232 fst_open(struct net_device *dev)
2234 int err;
2235 struct fst_port_info *port;
2237 port = dev_to_port(dev);
2238 if (!try_module_get(THIS_MODULE))
2239 return -EBUSY;
2241 if (port->mode != FST_RAW) {
2242 err = hdlc_open(dev);
2243 if (err)
2244 return err;
2247 fst_openport(port);
2248 netif_wake_queue(dev);
2249 return 0;
2252 static int
2253 fst_close(struct net_device *dev)
2255 struct fst_port_info *port;
2256 struct fst_card_info *card;
2257 unsigned char tx_dma_done;
2258 unsigned char rx_dma_done;
2260 port = dev_to_port(dev);
2261 card = port->card;
2263 tx_dma_done = inb(card->pci_conf + DMACSR1);
2264 rx_dma_done = inb(card->pci_conf + DMACSR0);
2265 dbg(DBG_OPEN,
2266 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2267 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2268 rx_dma_done);
2270 netif_stop_queue(dev);
2271 fst_closeport(dev_to_port(dev));
2272 if (port->mode != FST_RAW) {
2273 hdlc_close(dev);
2275 module_put(THIS_MODULE);
2276 return 0;
2279 static int
2280 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2283 * Setting currently fixed in FarSync card so we check and forget
2285 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2286 return -EINVAL;
2287 return 0;
2290 static void
2291 fst_tx_timeout(struct net_device *dev)
2293 struct fst_port_info *port;
2294 struct fst_card_info *card;
2295 struct net_device_stats *stats = hdlc_stats(dev);
2297 port = dev_to_port(dev);
2298 card = port->card;
2299 stats->tx_errors++;
2300 stats->tx_aborted_errors++;
2301 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2302 card->card_no, port->index);
2303 fst_issue_cmd(port, ABORTTX);
2305 dev->trans_start = jiffies;
2306 netif_wake_queue(dev);
2307 port->start = 0;
2310 static int
2311 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2313 struct fst_card_info *card;
2314 struct fst_port_info *port;
2315 struct net_device_stats *stats = hdlc_stats(dev);
2316 unsigned long flags;
2317 int txq_length;
2319 port = dev_to_port(dev);
2320 card = port->card;
2321 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2323 /* Drop packet with error if we don't have carrier */
2324 if (!netif_carrier_ok(dev)) {
2325 dev_kfree_skb(skb);
2326 stats->tx_errors++;
2327 stats->tx_carrier_errors++;
2328 dbg(DBG_ASS,
2329 "Tried to transmit but no carrier on card %d port %d\n",
2330 card->card_no, port->index);
2331 return 0;
2334 /* Drop it if it's too big! MTU failure ? */
2335 if (skb->len > LEN_TX_BUFFER) {
2336 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2337 LEN_TX_BUFFER);
2338 dev_kfree_skb(skb);
2339 stats->tx_errors++;
2340 return 0;
2344 * We are always going to queue the packet
2345 * so that the bottom half is the only place we tx from
2346 * Check there is room in the port txq
2348 spin_lock_irqsave(&card->card_lock, flags);
2349 if ((txq_length = port->txqe - port->txqs) < 0) {
2351 * This is the case where the next free has wrapped but the
2352 * last used hasn't
2354 txq_length = txq_length + FST_TXQ_DEPTH;
2356 spin_unlock_irqrestore(&card->card_lock, flags);
2357 if (txq_length > fst_txq_high) {
2359 * We have got enough buffers in the pipeline. Ask the network
2360 * layer to stop sending frames down
2362 netif_stop_queue(dev);
2363 port->start = 1; /* I'm using this to signal stop sent up */
2366 if (txq_length == FST_TXQ_DEPTH - 1) {
2368 * This shouldn't have happened but such is life
2370 dev_kfree_skb(skb);
2371 stats->tx_errors++;
2372 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2373 card->card_no, port->index);
2374 return 0;
2378 * queue the buffer
2380 spin_lock_irqsave(&card->card_lock, flags);
2381 port->txq[port->txqe] = skb;
2382 port->txqe++;
2383 if (port->txqe == FST_TXQ_DEPTH)
2384 port->txqe = 0;
2385 spin_unlock_irqrestore(&card->card_lock, flags);
2387 /* Scehdule the bottom half which now does transmit processing */
2388 fst_q_work_item(&fst_work_txq, card->card_no);
2389 tasklet_schedule(&fst_tx_task);
2391 return 0;
2395 * Card setup having checked hardware resources.
2396 * Should be pretty bizarre if we get an error here (kernel memory
2397 * exhaustion is one possibility). If we do see a problem we report it
2398 * via a printk and leave the corresponding interface and all that follow
2399 * disabled.
2401 static char *type_strings[] __devinitdata = {
2402 "no hardware", /* Should never be seen */
2403 "FarSync T2P",
2404 "FarSync T4P",
2405 "FarSync T1U",
2406 "FarSync T2U",
2407 "FarSync T4U",
2408 "FarSync TE1"
2411 static void __devinit
2412 fst_init_card(struct fst_card_info *card)
2414 int i;
2415 int err;
2417 /* We're working on a number of ports based on the card ID. If the
2418 * firmware detects something different later (should never happen)
2419 * we'll have to revise it in some way then.
2421 for (i = 0; i < card->nports; i++) {
2422 err = register_hdlc_device(card->ports[i].dev);
2423 if (err < 0) {
2424 int j;
2425 printk_err ("Cannot register HDLC device for port %d"
2426 " (errno %d)\n", i, -err );
2427 for (j = i; j < card->nports; j++) {
2428 free_netdev(card->ports[j].dev);
2429 card->ports[j].dev = NULL;
2431 card->nports = i;
2432 break;
2436 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2437 port_to_dev(&card->ports[0])->name,
2438 port_to_dev(&card->ports[card->nports - 1])->name,
2439 type_strings[card->type], card->irq, card->nports);
2443 * Initialise card when detected.
2444 * Returns 0 to indicate success, or errno otherwise.
2446 static int __devinit
2447 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2449 static int firsttime_done = 0;
2450 static int no_of_cards_added = 0;
2451 struct fst_card_info *card;
2452 int err = 0;
2453 int i;
2455 if (!firsttime_done) {
2456 printk_info("FarSync WAN driver " FST_USER_VERSION
2457 " (c) 2001-2004 FarSite Communications Ltd.\n");
2458 firsttime_done = 1;
2459 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2463 * We are going to be clever and allow certain cards not to be
2464 * configured. An exclude list can be provided in /etc/modules.conf
2466 if (fst_excluded_cards != 0) {
2468 * There are cards to exclude
2471 for (i = 0; i < fst_excluded_cards; i++) {
2472 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2473 printk_info("FarSync PCI device %d not assigned\n",
2474 (pdev->devfn) >> 3);
2475 return -EBUSY;
2480 /* Allocate driver private data */
2481 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2482 if (card == NULL) {
2483 printk_err("FarSync card found but insufficient memory for"
2484 " driver storage\n");
2485 return -ENOMEM;
2488 /* Try to enable the device */
2489 if ((err = pci_enable_device(pdev)) != 0) {
2490 printk_err("Failed to enable card. Err %d\n", -err);
2491 kfree(card);
2492 return err;
2495 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2496 printk_err("Failed to allocate regions. Err %d\n", -err);
2497 pci_disable_device(pdev);
2498 kfree(card);
2499 return err;
2502 /* Get virtual addresses of memory regions */
2503 card->pci_conf = pci_resource_start(pdev, 1);
2504 card->phys_mem = pci_resource_start(pdev, 2);
2505 card->phys_ctlmem = pci_resource_start(pdev, 3);
2506 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2507 printk_err("Physical memory remap failed\n");
2508 pci_release_regions(pdev);
2509 pci_disable_device(pdev);
2510 kfree(card);
2511 return -ENODEV;
2513 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2514 printk_err("Control memory remap failed\n");
2515 pci_release_regions(pdev);
2516 pci_disable_device(pdev);
2517 kfree(card);
2518 return -ENODEV;
2520 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2522 /* Register the interrupt handler */
2523 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2524 printk_err("Unable to register interrupt %d\n", card->irq);
2525 pci_release_regions(pdev);
2526 pci_disable_device(pdev);
2527 iounmap(card->ctlmem);
2528 iounmap(card->mem);
2529 kfree(card);
2530 return -ENODEV;
2533 /* Record info we need */
2534 card->irq = pdev->irq;
2535 card->type = ent->driver_data;
2536 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2537 (ent->driver_data == FST_TYPE_T4P))
2538 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2539 if ((ent->driver_data == FST_TYPE_T1U) ||
2540 (ent->driver_data == FST_TYPE_TE1))
2541 card->nports = 1;
2542 else
2543 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2544 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2546 card->state = FST_UNINIT;
2547 spin_lock_init ( &card->card_lock );
2549 for ( i = 0 ; i < card->nports ; i++ ) {
2550 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2551 hdlc_device *hdlc;
2552 if (!dev) {
2553 while (i--)
2554 free_netdev(card->ports[i].dev);
2555 printk_err ("FarSync: out of memory\n");
2556 free_irq(card->irq, card);
2557 pci_release_regions(pdev);
2558 pci_disable_device(pdev);
2559 iounmap(card->ctlmem);
2560 iounmap(card->mem);
2561 kfree(card);
2562 return -ENODEV;
2564 card->ports[i].dev = dev;
2565 card->ports[i].card = card;
2566 card->ports[i].index = i;
2567 card->ports[i].run = 0;
2569 hdlc = dev_to_hdlc(dev);
2571 /* Fill in the net device info */
2572 /* Since this is a PCI setup this is purely
2573 * informational. Give them the buffer addresses
2574 * and basic card I/O.
2576 dev->mem_start = card->phys_mem
2577 + BUF_OFFSET ( txBuffer[i][0][0]);
2578 dev->mem_end = card->phys_mem
2579 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2580 dev->base_addr = card->pci_conf;
2581 dev->irq = card->irq;
2583 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2584 dev->open = fst_open;
2585 dev->stop = fst_close;
2586 dev->do_ioctl = fst_ioctl;
2587 dev->watchdog_timeo = FST_TX_TIMEOUT;
2588 dev->tx_timeout = fst_tx_timeout;
2589 hdlc->attach = fst_attach;
2590 hdlc->xmit = fst_start_xmit;
2593 card->device = pdev;
2595 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2596 card->nports, card->irq);
2597 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2598 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2600 /* Reset the card's processor */
2601 fst_cpureset(card);
2602 card->state = FST_RESET;
2604 /* Initialise DMA (if required) */
2605 fst_init_dma(card);
2607 /* Record driver data for later use */
2608 pci_set_drvdata(pdev, card);
2610 /* Remainder of card setup */
2611 fst_card_array[no_of_cards_added] = card;
2612 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2613 fst_init_card(card);
2614 if (card->family == FST_FAMILY_TXU) {
2616 * Allocate a dma buffer for transmit and receives
2618 card->rx_dma_handle_host =
2619 pci_alloc_consistent(card->device, FST_MAX_MTU,
2620 &card->rx_dma_handle_card);
2621 if (card->rx_dma_handle_host == NULL) {
2622 printk_err("Could not allocate rx dma buffer\n");
2623 fst_disable_intr(card);
2624 pci_release_regions(pdev);
2625 pci_disable_device(pdev);
2626 iounmap(card->ctlmem);
2627 iounmap(card->mem);
2628 kfree(card);
2629 return -ENOMEM;
2631 card->tx_dma_handle_host =
2632 pci_alloc_consistent(card->device, FST_MAX_MTU,
2633 &card->tx_dma_handle_card);
2634 if (card->tx_dma_handle_host == NULL) {
2635 printk_err("Could not allocate tx dma buffer\n");
2636 fst_disable_intr(card);
2637 pci_release_regions(pdev);
2638 pci_disable_device(pdev);
2639 iounmap(card->ctlmem);
2640 iounmap(card->mem);
2641 kfree(card);
2642 return -ENOMEM;
2645 return 0; /* Success */
2649 * Cleanup and close down a card
2651 static void __devexit
2652 fst_remove_one(struct pci_dev *pdev)
2654 struct fst_card_info *card;
2655 int i;
2657 card = pci_get_drvdata(pdev);
2659 for (i = 0; i < card->nports; i++) {
2660 struct net_device *dev = port_to_dev(&card->ports[i]);
2661 unregister_hdlc_device(dev);
2664 fst_disable_intr(card);
2665 free_irq(card->irq, card);
2667 iounmap(card->ctlmem);
2668 iounmap(card->mem);
2669 pci_release_regions(pdev);
2670 if (card->family == FST_FAMILY_TXU) {
2672 * Free dma buffers
2674 pci_free_consistent(card->device, FST_MAX_MTU,
2675 card->rx_dma_handle_host,
2676 card->rx_dma_handle_card);
2677 pci_free_consistent(card->device, FST_MAX_MTU,
2678 card->tx_dma_handle_host,
2679 card->tx_dma_handle_card);
2681 fst_card_array[card->card_no] = NULL;
2684 static struct pci_driver fst_driver = {
2685 .name = FST_NAME,
2686 .id_table = fst_pci_dev_id,
2687 .probe = fst_add_one,
2688 .remove = __devexit_p(fst_remove_one),
2689 .suspend = NULL,
2690 .resume = NULL,
2693 static int __init
2694 fst_init(void)
2696 int i;
2698 for (i = 0; i < FST_MAX_CARDS; i++)
2699 fst_card_array[i] = NULL;
2700 spin_lock_init(&fst_work_q_lock);
2701 return pci_register_driver(&fst_driver);
2704 static void __exit
2705 fst_cleanup_module(void)
2707 printk_info("FarSync WAN driver unloading\n");
2708 pci_unregister_driver(&fst_driver);
2711 module_init(fst_init);
2712 module_exit(fst_cleanup_module);