2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/bitops.h>
35 #include <asm/processor.h> /* Processor type for cache alignment. */
37 #include <asm/cache.h>
39 /* This is only here until the firmware is ready. In that case,
40 the firmware leaves the ethernet address in the register for us. */
41 #ifdef CONFIG_SIBYTE_STANDALONE
42 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
43 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
44 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
45 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
49 /* These identify the driver base version and may not be removed. */
51 static char version1
[] __devinitdata
=
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
56 /* Operational parameters that usually are not changed. */
58 #define CONFIG_SBMAC_COALESCE
60 #define MAX_UNITS 4 /* More are supported, limit only on options */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
69 /* A few user-configurable values which may be modified when a driver
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
74 module_param(debug
, int, S_IRUGO
);
75 MODULE_PARM_DESC(debug
, "Debug messages");
78 static int noisy_mii
= 1;
79 module_param(noisy_mii
, int, S_IRUGO
);
80 MODULE_PARM_DESC(noisy_mii
, "MII status messages");
82 /* Used to pass the media type, etc.
83 Both 'options[]' and 'full_duplex[]' should exist for driver
85 The media type is usually passed in 'options[]'.
88 static int options
[MAX_UNITS
] = {-1, -1, -1, -1};
89 module_param_array(options
, int, NULL
, S_IRUGO
);
90 MODULE_PARM_DESC(options
, "1-" __MODULE_STRING(MAX_UNITS
));
92 static int full_duplex
[MAX_UNITS
] = {-1, -1, -1, -1};
93 module_param_array(full_duplex
, int, NULL
, S_IRUGO
);
94 MODULE_PARM_DESC(full_duplex
, "1-" __MODULE_STRING(MAX_UNITS
));
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt
= 0;
99 module_param(int_pktcnt
, int, S_IRUGO
);
100 MODULE_PARM_DESC(int_pktcnt
, "Packet count");
102 static int int_timeout
= 0;
103 module_param(int_timeout
, int, S_IRUGO
);
104 MODULE_PARM_DESC(int_timeout
, "Timeout value");
107 #include <asm/sibyte/sb1250.h>
108 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
109 #include <asm/sibyte/bcm1480_regs.h>
110 #include <asm/sibyte/bcm1480_int.h>
111 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
112 #include <asm/sibyte/sb1250_regs.h>
113 #include <asm/sibyte/sb1250_int.h>
115 #error invalid SiByte MAC configuation
117 #include <asm/sibyte/sb1250_scd.h>
118 #include <asm/sibyte/sb1250_mac.h>
119 #include <asm/sibyte/sb1250_dma.h>
121 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
122 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
123 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
124 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
126 #error invalid SiByte MAC configuation
129 /**********************************************************************
131 ********************************************************************* */
134 typedef enum { sbmac_speed_auto
, sbmac_speed_10
,
135 sbmac_speed_100
, sbmac_speed_1000
} sbmac_speed_t
;
137 typedef enum { sbmac_duplex_auto
, sbmac_duplex_half
,
138 sbmac_duplex_full
} sbmac_duplex_t
;
140 typedef enum { sbmac_fc_auto
, sbmac_fc_disabled
, sbmac_fc_frame
,
141 sbmac_fc_collision
, sbmac_fc_carrier
} sbmac_fc_t
;
143 typedef enum { sbmac_state_uninit
, sbmac_state_off
, sbmac_state_on
,
144 sbmac_state_broken
} sbmac_state_t
;
147 /**********************************************************************
149 ********************************************************************* */
152 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
153 (d)->sbdma_dscrtable : (d)->f+1)
156 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
158 #define SBMAC_MAX_TXDESCR 32
159 #define SBMAC_MAX_RXDESCR 32
161 #define ETHER_ALIGN 2
162 #define ETHER_ADDR_LEN 6
163 #define ENET_PACKET_SIZE 1518
164 /*#define ENET_PACKET_SIZE 9216 */
166 /**********************************************************************
167 * DMA Descriptor structure
168 ********************************************************************* */
170 typedef struct sbdmadscr_s
{
175 typedef unsigned long paddr_t
;
177 /**********************************************************************
178 * DMA Controller structure
179 ********************************************************************* */
181 typedef struct sbmacdma_s
{
184 * This stuff is used to identify the channel and the registers
185 * associated with it.
188 struct sbmac_softc
*sbdma_eth
; /* back pointer to associated MAC */
189 int sbdma_channel
; /* channel number */
190 int sbdma_txdir
; /* direction (1=transmit) */
191 int sbdma_maxdescr
; /* total # of descriptors in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193 int sbdma_int_pktcnt
; /* # descriptors rx/tx before interrupt*/
194 int sbdma_int_timeout
; /* # usec rx/tx interrupt */
197 volatile void __iomem
*sbdma_config0
; /* DMA config register 0 */
198 volatile void __iomem
*sbdma_config1
; /* DMA config register 1 */
199 volatile void __iomem
*sbdma_dscrbase
; /* Descriptor base address */
200 volatile void __iomem
*sbdma_dscrcnt
; /* Descriptor count register */
201 volatile void __iomem
*sbdma_curdscr
; /* current descriptor address */
204 * This stuff is for maintenance of the ring
207 sbdmadscr_t
*sbdma_dscrtable
; /* base of descriptor table */
208 sbdmadscr_t
*sbdma_dscrtable_end
; /* end of descriptor table */
210 struct sk_buff
**sbdma_ctxtable
; /* context table, one per descr */
212 paddr_t sbdma_dscrtable_phys
; /* and also the phys addr */
213 sbdmadscr_t
*sbdma_addptr
; /* next dscr for sw to add */
214 sbdmadscr_t
*sbdma_remptr
; /* next dscr for sw to remove */
218 /**********************************************************************
219 * Ethernet softc structure
220 ********************************************************************* */
225 * Linux-specific things
228 struct net_device
*sbm_dev
; /* pointer to linux device */
229 spinlock_t sbm_lock
; /* spin lock */
230 struct timer_list sbm_timer
; /* for monitoring MII */
231 struct net_device_stats sbm_stats
;
232 int sbm_devflags
; /* current device flags */
235 int sbm_phy_oldanlpar
;
236 int sbm_phy_oldk1stsr
;
237 int sbm_phy_oldlinkstat
;
240 unsigned char sbm_phys
[2];
243 * Controller-specific things
246 volatile void __iomem
*sbm_base
; /* MAC's base address */
247 sbmac_state_t sbm_state
; /* current state */
249 volatile void __iomem
*sbm_macenable
; /* MAC Enable Register */
250 volatile void __iomem
*sbm_maccfg
; /* MAC Configuration Register */
251 volatile void __iomem
*sbm_fifocfg
; /* FIFO configuration register */
252 volatile void __iomem
*sbm_framecfg
; /* Frame configuration register */
253 volatile void __iomem
*sbm_rxfilter
; /* receive filter register */
254 volatile void __iomem
*sbm_isr
; /* Interrupt status register */
255 volatile void __iomem
*sbm_imr
; /* Interrupt mask register */
256 volatile void __iomem
*sbm_mdio
; /* MDIO register */
258 sbmac_speed_t sbm_speed
; /* current speed */
259 sbmac_duplex_t sbm_duplex
; /* current duplex */
260 sbmac_fc_t sbm_fc
; /* current flow control setting */
262 unsigned char sbm_hwaddr
[ETHER_ADDR_LEN
];
264 sbmacdma_t sbm_txdma
; /* for now, only use channel 0 */
265 sbmacdma_t sbm_rxdma
;
271 /**********************************************************************
273 ********************************************************************* */
275 /**********************************************************************
277 ********************************************************************* */
279 static void sbdma_initctx(sbmacdma_t
*d
,
280 struct sbmac_softc
*s
,
284 static void sbdma_channel_start(sbmacdma_t
*d
, int rxtx
);
285 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
,struct sk_buff
*m
);
286 static int sbdma_add_txbuffer(sbmacdma_t
*d
,struct sk_buff
*m
);
287 static void sbdma_emptyring(sbmacdma_t
*d
);
288 static void sbdma_fillring(sbmacdma_t
*d
);
289 static void sbdma_rx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
);
290 static void sbdma_tx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
);
291 static int sbmac_initctx(struct sbmac_softc
*s
);
292 static void sbmac_channel_start(struct sbmac_softc
*s
);
293 static void sbmac_channel_stop(struct sbmac_softc
*s
);
294 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*,sbmac_state_t
);
295 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
);
296 static uint64_t sbmac_addr2reg(unsigned char *ptr
);
297 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
,struct pt_regs
*rgs
);
298 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
299 static void sbmac_setmulti(struct sbmac_softc
*sc
);
300 static int sbmac_init(struct net_device
*dev
, int idx
);
301 static int sbmac_set_speed(struct sbmac_softc
*s
,sbmac_speed_t speed
);
302 static int sbmac_set_duplex(struct sbmac_softc
*s
,sbmac_duplex_t duplex
,sbmac_fc_t fc
);
304 static int sbmac_open(struct net_device
*dev
);
305 static void sbmac_timer(unsigned long data
);
306 static void sbmac_tx_timeout (struct net_device
*dev
);
307 static struct net_device_stats
*sbmac_get_stats(struct net_device
*dev
);
308 static void sbmac_set_rx_mode(struct net_device
*dev
);
309 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
310 static int sbmac_close(struct net_device
*dev
);
311 static int sbmac_mii_poll(struct sbmac_softc
*s
,int noisy
);
312 static int sbmac_mii_probe(struct net_device
*dev
);
314 static void sbmac_mii_sync(struct sbmac_softc
*s
);
315 static void sbmac_mii_senddata(struct sbmac_softc
*s
,unsigned int data
, int bitcnt
);
316 static unsigned int sbmac_mii_read(struct sbmac_softc
*s
,int phyaddr
,int regidx
);
317 static void sbmac_mii_write(struct sbmac_softc
*s
,int phyaddr
,int regidx
,
318 unsigned int regval
);
321 /**********************************************************************
323 ********************************************************************* */
325 static uint64_t sbmac_orig_hwaddr
[MAX_UNITS
];
328 /**********************************************************************
330 ********************************************************************* */
332 #define MII_COMMAND_START 0x01
333 #define MII_COMMAND_READ 0x02
334 #define MII_COMMAND_WRITE 0x01
335 #define MII_COMMAND_ACK 0x02
337 #define BMCR_RESET 0x8000
338 #define BMCR_LOOPBACK 0x4000
339 #define BMCR_SPEED0 0x2000
340 #define BMCR_ANENABLE 0x1000
341 #define BMCR_POWERDOWN 0x0800
342 #define BMCR_ISOLATE 0x0400
343 #define BMCR_RESTARTAN 0x0200
344 #define BMCR_DUPLEX 0x0100
345 #define BMCR_COLTEST 0x0080
346 #define BMCR_SPEED1 0x0040
347 #define BMCR_SPEED1000 BMCR_SPEED1
348 #define BMCR_SPEED100 BMCR_SPEED0
349 #define BMCR_SPEED10 0
351 #define BMSR_100BT4 0x8000
352 #define BMSR_100BT_FDX 0x4000
353 #define BMSR_100BT_HDX 0x2000
354 #define BMSR_10BT_FDX 0x1000
355 #define BMSR_10BT_HDX 0x0800
356 #define BMSR_100BT2_FDX 0x0400
357 #define BMSR_100BT2_HDX 0x0200
358 #define BMSR_1000BT_XSR 0x0100
359 #define BMSR_PRESUP 0x0040
360 #define BMSR_ANCOMPLT 0x0020
361 #define BMSR_REMFAULT 0x0010
362 #define BMSR_AUTONEG 0x0008
363 #define BMSR_LINKSTAT 0x0004
364 #define BMSR_JABDETECT 0x0002
365 #define BMSR_EXTCAPAB 0x0001
367 #define PHYIDR1 0x2000
368 #define PHYIDR2 0x5C60
370 #define ANAR_NP 0x8000
371 #define ANAR_RF 0x2000
372 #define ANAR_ASYPAUSE 0x0800
373 #define ANAR_PAUSE 0x0400
374 #define ANAR_T4 0x0200
375 #define ANAR_TXFD 0x0100
376 #define ANAR_TXHD 0x0080
377 #define ANAR_10FD 0x0040
378 #define ANAR_10HD 0x0020
379 #define ANAR_PSB 0x0001
381 #define ANLPAR_NP 0x8000
382 #define ANLPAR_ACK 0x4000
383 #define ANLPAR_RF 0x2000
384 #define ANLPAR_ASYPAUSE 0x0800
385 #define ANLPAR_PAUSE 0x0400
386 #define ANLPAR_T4 0x0200
387 #define ANLPAR_TXFD 0x0100
388 #define ANLPAR_TXHD 0x0080
389 #define ANLPAR_10FD 0x0040
390 #define ANLPAR_10HD 0x0020
391 #define ANLPAR_PSB 0x0001 /* 802.3 */
393 #define ANER_PDF 0x0010
394 #define ANER_LPNPABLE 0x0008
395 #define ANER_NPABLE 0x0004
396 #define ANER_PAGERX 0x0002
397 #define ANER_LPANABLE 0x0001
399 #define ANNPTR_NP 0x8000
400 #define ANNPTR_MP 0x2000
401 #define ANNPTR_ACK2 0x1000
402 #define ANNPTR_TOGTX 0x0800
403 #define ANNPTR_CODE 0x0008
405 #define ANNPRR_NP 0x8000
406 #define ANNPRR_MP 0x2000
407 #define ANNPRR_ACK3 0x1000
408 #define ANNPRR_TOGTX 0x0800
409 #define ANNPRR_CODE 0x0008
411 #define K1TCR_TESTMODE 0x0000
412 #define K1TCR_MSMCE 0x1000
413 #define K1TCR_MSCV 0x0800
414 #define K1TCR_RPTR 0x0400
415 #define K1TCR_1000BT_FDX 0x200
416 #define K1TCR_1000BT_HDX 0x100
418 #define K1STSR_MSMCFLT 0x8000
419 #define K1STSR_MSCFGRES 0x4000
420 #define K1STSR_LRSTAT 0x2000
421 #define K1STSR_RRSTAT 0x1000
422 #define K1STSR_LP1KFD 0x0800
423 #define K1STSR_LP1KHD 0x0400
424 #define K1STSR_LPASMDIR 0x0200
426 #define K1SCR_1KX_FDX 0x8000
427 #define K1SCR_1KX_HDX 0x4000
428 #define K1SCR_1KT_FDX 0x2000
429 #define K1SCR_1KT_HDX 0x1000
431 #define STRAP_PHY1 0x0800
432 #define STRAP_NCMODE 0x0400
433 #define STRAP_MANMSCFG 0x0200
434 #define STRAP_ANENABLE 0x0100
435 #define STRAP_MSVAL 0x0080
436 #define STRAP_1KHDXADV 0x0010
437 #define STRAP_1KFDXADV 0x0008
438 #define STRAP_100ADV 0x0004
439 #define STRAP_SPEEDSEL 0x0000
440 #define STRAP_SPEED100 0x0001
442 #define PHYSUP_SPEED1000 0x10
443 #define PHYSUP_SPEED100 0x08
444 #define PHYSUP_SPEED10 0x00
445 #define PHYSUP_LINKUP 0x04
446 #define PHYSUP_FDX 0x02
448 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
449 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
450 #define MII_PHYIDR1 0x02
451 #define MII_PHYIDR2 0x03
453 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
454 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
457 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
462 /**********************************************************************
465 * Synchronize with the MII - send a pattern of bits to the MII
466 * that will guarantee that it is ready to accept a command.
469 * s - sbmac structure
473 ********************************************************************* */
475 static void sbmac_mii_sync(struct sbmac_softc
*s
)
481 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
483 bits
= M_MAC_MDIO_DIR_OUTPUT
| M_MAC_MDIO_OUT
;
485 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
487 for (cnt
= 0; cnt
< 32; cnt
++) {
488 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
489 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
493 /**********************************************************************
494 * SBMAC_MII_SENDDATA(s,data,bitcnt)
496 * Send some bits to the MII. The bits to be sent are right-
497 * justified in the 'data' parameter.
500 * s - sbmac structure
501 * data - data to send
502 * bitcnt - number of bits to send
503 ********************************************************************* */
505 static void sbmac_mii_senddata(struct sbmac_softc
*s
,unsigned int data
, int bitcnt
)
509 unsigned int curmask
;
512 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
514 bits
= M_MAC_MDIO_DIR_OUTPUT
;
515 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
517 curmask
= 1 << (bitcnt
- 1);
519 for (i
= 0; i
< bitcnt
; i
++) {
521 bits
|= M_MAC_MDIO_OUT
;
522 else bits
&= ~M_MAC_MDIO_OUT
;
523 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
524 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
525 __raw_writeq(bits
| mac_mdio_genc
, s
->sbm_mdio
);
532 /**********************************************************************
533 * SBMAC_MII_READ(s,phyaddr,regidx)
535 * Read a PHY register.
538 * s - sbmac structure
539 * phyaddr - PHY's address
540 * regidx = index of register to read
543 * value read, or 0 if an error occurred.
544 ********************************************************************* */
546 static unsigned int sbmac_mii_read(struct sbmac_softc
*s
,int phyaddr
,int regidx
)
554 * Synchronize ourselves so that the PHY knows the next
555 * thing coming down is a command
561 * Send the data to the PHY. The sequence is
562 * a "start" command (2 bits)
563 * a "read" command (2 bits)
564 * the PHY addr (5 bits)
565 * the register index (5 bits)
568 sbmac_mii_senddata(s
,MII_COMMAND_START
, 2);
569 sbmac_mii_senddata(s
,MII_COMMAND_READ
, 2);
570 sbmac_mii_senddata(s
,phyaddr
, 5);
571 sbmac_mii_senddata(s
,regidx
, 5);
573 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
576 * Switch the port around without a clock transition.
578 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
581 * Send out a clock pulse to signal we want the status
584 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
585 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
588 * If an error occurred, the PHY will signal '1' back
590 error
= __raw_readq(s
->sbm_mdio
) & M_MAC_MDIO_IN
;
593 * Issue an 'idle' clock pulse, but keep the direction
596 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
597 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
601 for (idx
= 0; idx
< 16; idx
++) {
605 if (__raw_readq(s
->sbm_mdio
) & M_MAC_MDIO_IN
)
609 __raw_writeq(M_MAC_MDIO_DIR_INPUT
|M_MAC_MDC
| mac_mdio_genc
, s
->sbm_mdio
);
610 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, s
->sbm_mdio
);
613 /* Switch back to output */
614 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, s
->sbm_mdio
);
622 /**********************************************************************
623 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
625 * Write a value to a PHY register.
628 * s - sbmac structure
629 * phyaddr - PHY to use
630 * regidx - register within the PHY
631 * regval - data to write to register
635 ********************************************************************* */
637 static void sbmac_mii_write(struct sbmac_softc
*s
,int phyaddr
,int regidx
,
644 sbmac_mii_senddata(s
,MII_COMMAND_START
,2);
645 sbmac_mii_senddata(s
,MII_COMMAND_WRITE
,2);
646 sbmac_mii_senddata(s
,phyaddr
, 5);
647 sbmac_mii_senddata(s
,regidx
, 5);
648 sbmac_mii_senddata(s
,MII_COMMAND_ACK
,2);
649 sbmac_mii_senddata(s
,regval
,16);
651 mac_mdio_genc
= __raw_readq(s
->sbm_mdio
) & M_MAC_GENC
;
653 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, s
->sbm_mdio
);
658 /**********************************************************************
659 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
661 * Initialize a DMA channel context. Since there are potentially
662 * eight DMA channels per MAC, it's nice to do this in a standard
666 * d - sbmacdma_t structure (DMA channel context)
667 * s - sbmac_softc structure (pointer to a MAC)
668 * chan - channel number (0..1 right now)
669 * txrx - Identifies DMA_TX or DMA_RX for channel direction
670 * maxdescr - number of descriptors
674 ********************************************************************* */
676 static void sbdma_initctx(sbmacdma_t
*d
,
677 struct sbmac_softc
*s
,
683 * Save away interesting stuff in the structure
687 d
->sbdma_channel
= chan
;
688 d
->sbdma_txdir
= txrx
;
692 s
->sbe_idx
=(s
->sbm_base
- A_MAC_BASE_0
)/MAC_SPACING
;
695 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_BYTES
)));
696 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_COLLISIONS
)));
697 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_LATE_COL
)));
698 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_EX_COL
)));
699 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_FCS_ERROR
)));
700 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_ABORT
)));
701 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_BAD
)));
702 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_GOOD
)));
703 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_RUNT
)));
704 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_TX_OVERSIZE
)));
705 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BYTES
)));
706 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_MCAST
)));
707 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BCAST
)));
708 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_BAD
)));
709 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_GOOD
)));
710 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_RUNT
)));
711 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_OVERSIZE
)));
712 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_FCS_ERROR
)));
713 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_LENGTH_ERROR
)));
714 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_CODE_ERROR
)));
715 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s
->sbe_idx
, R_MAC_RMON_RX_ALIGN_ERROR
)));
718 * initialize register pointers
722 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG0
);
724 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG1
);
726 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_BASE
);
728 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_CNT
);
730 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CUR_DSCRADDR
);
733 * Allocate memory for the ring
736 d
->sbdma_maxdescr
= maxdescr
;
738 d
->sbdma_dscrtable
= (sbdmadscr_t
*)
739 kmalloc((d
->sbdma_maxdescr
+1)*sizeof(sbdmadscr_t
), GFP_KERNEL
);
742 * The descriptor table must be aligned to at least 16 bytes or the
743 * MAC will corrupt it.
745 d
->sbdma_dscrtable
= (sbdmadscr_t
*)
746 ALIGN((unsigned long)d
->sbdma_dscrtable
, sizeof(sbdmadscr_t
));
748 memset(d
->sbdma_dscrtable
,0,d
->sbdma_maxdescr
*sizeof(sbdmadscr_t
));
750 d
->sbdma_dscrtable_end
= d
->sbdma_dscrtable
+ d
->sbdma_maxdescr
;
752 d
->sbdma_dscrtable_phys
= virt_to_phys(d
->sbdma_dscrtable
);
758 d
->sbdma_ctxtable
= (struct sk_buff
**)
759 kmalloc(d
->sbdma_maxdescr
*sizeof(struct sk_buff
*), GFP_KERNEL
);
761 memset(d
->sbdma_ctxtable
,0,d
->sbdma_maxdescr
*sizeof(struct sk_buff
*));
763 #ifdef CONFIG_SBMAC_COALESCE
765 * Setup Rx/Tx DMA coalescing defaults
769 d
->sbdma_int_pktcnt
= int_pktcnt
;
771 d
->sbdma_int_pktcnt
= 1;
775 d
->sbdma_int_timeout
= int_timeout
;
777 d
->sbdma_int_timeout
= 0;
783 /**********************************************************************
784 * SBDMA_CHANNEL_START(d)
786 * Initialize the hardware registers for a DMA channel.
789 * d - DMA channel to init (context must be previously init'd
790 * rxtx - DMA_RX or DMA_TX depending on what type of channel
794 ********************************************************************* */
796 static void sbdma_channel_start(sbmacdma_t
*d
, int rxtx
)
799 * Turn on the DMA channel
802 #ifdef CONFIG_SBMAC_COALESCE
803 __raw_writeq(V_DMA_INT_TIMEOUT(d
->sbdma_int_timeout
) |
804 0, d
->sbdma_config1
);
805 __raw_writeq(M_DMA_EOP_INT_EN
|
806 V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
807 V_DMA_INT_PKTCNT(d
->sbdma_int_pktcnt
) |
808 0, d
->sbdma_config0
);
810 __raw_writeq(0, d
->sbdma_config1
);
811 __raw_writeq(V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
812 0, d
->sbdma_config0
);
815 __raw_writeq(d
->sbdma_dscrtable_phys
, d
->sbdma_dscrbase
);
818 * Initialize ring pointers
821 d
->sbdma_addptr
= d
->sbdma_dscrtable
;
822 d
->sbdma_remptr
= d
->sbdma_dscrtable
;
825 /**********************************************************************
826 * SBDMA_CHANNEL_STOP(d)
828 * Initialize the hardware registers for a DMA channel.
831 * d - DMA channel to init (context must be previously init'd
835 ********************************************************************* */
837 static void sbdma_channel_stop(sbmacdma_t
*d
)
840 * Turn off the DMA channel
843 __raw_writeq(0, d
->sbdma_config1
);
845 __raw_writeq(0, d
->sbdma_dscrbase
);
847 __raw_writeq(0, d
->sbdma_config0
);
853 d
->sbdma_addptr
= NULL
;
854 d
->sbdma_remptr
= NULL
;
857 static void sbdma_align_skb(struct sk_buff
*skb
,int power2
,int offset
)
860 unsigned long newaddr
;
862 addr
= (unsigned long) skb
->data
;
864 newaddr
= (addr
+ power2
- 1) & ~(power2
- 1);
866 skb_reserve(skb
,newaddr
-addr
+offset
);
870 /**********************************************************************
871 * SBDMA_ADD_RCVBUFFER(d,sb)
873 * Add a buffer to the specified DMA channel. For receive channels,
874 * this queues a buffer for inbound packets.
877 * d - DMA channel descriptor
878 * sb - sk_buff to add, or NULL if we should allocate one
881 * 0 if buffer could not be added (ring is full)
882 * 1 if buffer added successfully
883 ********************************************************************* */
886 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
,struct sk_buff
*sb
)
889 sbdmadscr_t
*nextdsc
;
890 struct sk_buff
*sb_new
= NULL
;
891 int pktsize
= ENET_PACKET_SIZE
;
893 /* get pointer to our current place in the ring */
895 dsc
= d
->sbdma_addptr
;
896 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
899 * figure out if the ring is full - if the next descriptor
900 * is the same as the one that we're going to remove from
901 * the ring, the ring is full
904 if (nextdsc
== d
->sbdma_remptr
) {
909 * Allocate a sk_buff if we don't already have one.
910 * If we do have an sk_buff, reset it so that it's empty.
912 * Note: sk_buffs don't seem to be guaranteed to have any sort
913 * of alignment when they are allocated. Therefore, allocate enough
914 * extra space to make sure that:
916 * 1. the data does not start in the middle of a cache line.
917 * 2. The data does not end in the middle of a cache line
918 * 3. The buffer can be aligned such that the IP addresses are
921 * Remember, the SOCs MAC writes whole cache lines at a time,
922 * without reading the old contents first. So, if the sk_buff's
923 * data portion starts in the middle of a cache line, the SOC
924 * DMA will trash the beginning (and ending) portions.
928 sb_new
= dev_alloc_skb(ENET_PACKET_SIZE
+ SMP_CACHE_BYTES
* 2 + ETHER_ALIGN
);
929 if (sb_new
== NULL
) {
930 printk(KERN_INFO
"%s: sk_buff allocation failed\n",
931 d
->sbdma_eth
->sbm_dev
->name
);
935 sbdma_align_skb(sb_new
, SMP_CACHE_BYTES
, ETHER_ALIGN
);
937 /* mark skbuff owned by our device */
938 sb_new
->dev
= d
->sbdma_eth
->sbm_dev
;
943 * nothing special to reinit buffer, it's already aligned
944 * and sb->data already points to a good place.
949 * fill in the descriptor
952 #ifdef CONFIG_SBMAC_COALESCE
954 * Do not interrupt per DMA transfer.
956 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
957 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ETHER_ALIGN
)) | 0;
959 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
960 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ETHER_ALIGN
)) |
961 M_DMA_DSCRA_INTERRUPT
;
964 /* receiving: no options */
968 * fill in the context
971 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb_new
;
974 * point at next packet
977 d
->sbdma_addptr
= nextdsc
;
980 * Give the buffer to the DMA engine.
983 __raw_writeq(1, d
->sbdma_dscrcnt
);
985 return 0; /* we did it */
988 /**********************************************************************
989 * SBDMA_ADD_TXBUFFER(d,sb)
991 * Add a transmit buffer to the specified DMA channel, causing a
995 * d - DMA channel descriptor
996 * sb - sk_buff to add
999 * 0 transmit queued successfully
1000 * otherwise error code
1001 ********************************************************************* */
1004 static int sbdma_add_txbuffer(sbmacdma_t
*d
,struct sk_buff
*sb
)
1007 sbdmadscr_t
*nextdsc
;
1012 /* get pointer to our current place in the ring */
1014 dsc
= d
->sbdma_addptr
;
1015 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
1018 * figure out if the ring is full - if the next descriptor
1019 * is the same as the one that we're going to remove from
1020 * the ring, the ring is full
1023 if (nextdsc
== d
->sbdma_remptr
) {
1028 * Under Linux, it's not necessary to copy/coalesce buffers
1029 * like it is on NetBSD. We think they're all contiguous,
1030 * but that may not be true for GBE.
1036 * fill in the descriptor. Note that the number of cache
1037 * blocks in the descriptor is the number of blocks
1038 * *spanned*, so we need to add in the offset (if any)
1039 * while doing the calculation.
1042 phys
= virt_to_phys(sb
->data
);
1043 ncb
= NUMCACHEBLKS(length
+(phys
& (SMP_CACHE_BYTES
- 1)));
1045 dsc
->dscr_a
= phys
|
1046 V_DMA_DSCRA_A_SIZE(ncb
) |
1047 #ifndef CONFIG_SBMAC_COALESCE
1048 M_DMA_DSCRA_INTERRUPT
|
1052 /* transmitting: set outbound options and length */
1054 dsc
->dscr_b
= V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
1055 V_DMA_DSCRB_PKT_SIZE(length
);
1058 * fill in the context
1061 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb
;
1064 * point at next packet
1067 d
->sbdma_addptr
= nextdsc
;
1070 * Give the buffer to the DMA engine.
1073 __raw_writeq(1, d
->sbdma_dscrcnt
);
1075 return 0; /* we did it */
1081 /**********************************************************************
1082 * SBDMA_EMPTYRING(d)
1084 * Free all allocated sk_buffs on the specified DMA channel;
1091 ********************************************************************* */
1093 static void sbdma_emptyring(sbmacdma_t
*d
)
1098 for (idx
= 0; idx
< d
->sbdma_maxdescr
; idx
++) {
1099 sb
= d
->sbdma_ctxtable
[idx
];
1102 d
->sbdma_ctxtable
[idx
] = NULL
;
1108 /**********************************************************************
1111 * Fill the specified DMA channel (must be receive channel)
1119 ********************************************************************* */
1121 static void sbdma_fillring(sbmacdma_t
*d
)
1125 for (idx
= 0; idx
< SBMAC_MAX_RXDESCR
-1; idx
++) {
1126 if (sbdma_add_rcvbuffer(d
,NULL
) != 0)
1132 /**********************************************************************
1133 * SBDMA_RX_PROCESS(sc,d)
1135 * Process "completed" receive buffers on the specified DMA channel.
1136 * Note that this isn't really ideal for priority channels, since
1137 * it processes all of the packets on a given channel before
1141 * sc - softc structure
1142 * d - DMA channel context
1146 ********************************************************************* */
1148 static void sbdma_rx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
)
1158 * figure out where we are (as an index) and where
1159 * the hardware is (also as an index)
1161 * This could be done faster if (for example) the
1162 * descriptor table was page-aligned and contiguous in
1163 * both virtual and physical memory -- you could then
1164 * just compare the low-order bits of the virtual address
1165 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1168 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1169 hwidx
= (int) (((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1170 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1173 * If they're the same, that means we've processed all
1174 * of the descriptors up to (but not including) the one that
1175 * the hardware is working on right now.
1178 if (curidx
== hwidx
)
1182 * Otherwise, get the packet's sk_buff ptr back
1185 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1186 sb
= d
->sbdma_ctxtable
[curidx
];
1187 d
->sbdma_ctxtable
[curidx
] = NULL
;
1189 len
= (int)G_DMA_DSCRB_PKT_SIZE(dsc
->dscr_b
) - 4;
1192 * Check packet status. If good, process it.
1193 * If not, silently drop it and put it back on the
1197 if (!(dsc
->dscr_a
& M_DMA_ETHRX_BAD
)) {
1200 * Add a new buffer to replace the old one. If we fail
1201 * to allocate a buffer, we're going to drop this
1202 * packet and put it right back on the receive ring.
1205 if (sbdma_add_rcvbuffer(d
,NULL
) == -ENOBUFS
) {
1206 sc
->sbm_stats
.rx_dropped
++;
1207 sbdma_add_rcvbuffer(d
,sb
); /* re-add old buffer */
1210 * Set length into the packet
1215 * Buffer has been replaced on the
1216 * receive ring. Pass the buffer to
1219 sc
->sbm_stats
.rx_bytes
+= len
;
1220 sc
->sbm_stats
.rx_packets
++;
1221 sb
->protocol
= eth_type_trans(sb
,d
->sbdma_eth
->sbm_dev
);
1222 /* Check hw IPv4/TCP checksum if supported */
1223 if (sc
->rx_hw_checksum
== ENABLE
) {
1224 if (!((dsc
->dscr_a
) & M_DMA_ETHRX_BADIP4CS
) &&
1225 !((dsc
->dscr_a
) & M_DMA_ETHRX_BADTCPCS
)) {
1226 sb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1227 /* don't need to set sb->csum */
1229 sb
->ip_summed
= CHECKSUM_NONE
;
1237 * Packet was mangled somehow. Just drop it and
1238 * put it back on the receive ring.
1240 sc
->sbm_stats
.rx_errors
++;
1241 sbdma_add_rcvbuffer(d
,sb
);
1246 * .. and advance to the next buffer.
1249 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1256 /**********************************************************************
1257 * SBDMA_TX_PROCESS(sc,d)
1259 * Process "completed" transmit buffers on the specified DMA channel.
1260 * This is normally called within the interrupt service routine.
1261 * Note that this isn't really ideal for priority channels, since
1262 * it processes all of the packets on a given channel before
1266 * sc - softc structure
1267 * d - DMA channel context
1271 ********************************************************************* */
1273 static void sbdma_tx_process(struct sbmac_softc
*sc
,sbmacdma_t
*d
)
1279 unsigned long flags
;
1281 spin_lock_irqsave(&(sc
->sbm_lock
), flags
);
1285 * figure out where we are (as an index) and where
1286 * the hardware is (also as an index)
1288 * This could be done faster if (for example) the
1289 * descriptor table was page-aligned and contiguous in
1290 * both virtual and physical memory -- you could then
1291 * just compare the low-order bits of the virtual address
1292 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1295 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1296 hwidx
= (int) (((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1297 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1300 * If they're the same, that means we've processed all
1301 * of the descriptors up to (but not including) the one that
1302 * the hardware is working on right now.
1305 if (curidx
== hwidx
)
1309 * Otherwise, get the packet's sk_buff ptr back
1312 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1313 sb
= d
->sbdma_ctxtable
[curidx
];
1314 d
->sbdma_ctxtable
[curidx
] = NULL
;
1320 sc
->sbm_stats
.tx_bytes
+= sb
->len
;
1321 sc
->sbm_stats
.tx_packets
++;
1324 * for transmits, we just free buffers.
1327 dev_kfree_skb_irq(sb
);
1330 * .. and advance to the next buffer.
1333 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1338 * Decide if we should wake up the protocol or not.
1339 * Other drivers seem to do this when we reach a low
1340 * watermark on the transmit queue.
1343 netif_wake_queue(d
->sbdma_eth
->sbm_dev
);
1345 spin_unlock_irqrestore(&(sc
->sbm_lock
), flags
);
1351 /**********************************************************************
1354 * Initialize an Ethernet context structure - this is called
1355 * once per MAC on the 1250. Memory is allocated here, so don't
1356 * call it again from inside the ioctl routines that bring the
1360 * s - sbmac context structure
1364 ********************************************************************* */
1366 static int sbmac_initctx(struct sbmac_softc
*s
)
1370 * figure out the addresses of some ports
1373 s
->sbm_macenable
= s
->sbm_base
+ R_MAC_ENABLE
;
1374 s
->sbm_maccfg
= s
->sbm_base
+ R_MAC_CFG
;
1375 s
->sbm_fifocfg
= s
->sbm_base
+ R_MAC_THRSH_CFG
;
1376 s
->sbm_framecfg
= s
->sbm_base
+ R_MAC_FRAMECFG
;
1377 s
->sbm_rxfilter
= s
->sbm_base
+ R_MAC_ADFILTER_CFG
;
1378 s
->sbm_isr
= s
->sbm_base
+ R_MAC_STATUS
;
1379 s
->sbm_imr
= s
->sbm_base
+ R_MAC_INT_MASK
;
1380 s
->sbm_mdio
= s
->sbm_base
+ R_MAC_MDIO
;
1385 s
->sbm_phy_oldbmsr
= 0;
1386 s
->sbm_phy_oldanlpar
= 0;
1387 s
->sbm_phy_oldk1stsr
= 0;
1388 s
->sbm_phy_oldlinkstat
= 0;
1391 * Initialize the DMA channels. Right now, only one per MAC is used
1392 * Note: Only do this _once_, as it allocates memory from the kernel!
1395 sbdma_initctx(&(s
->sbm_txdma
),s
,0,DMA_TX
,SBMAC_MAX_TXDESCR
);
1396 sbdma_initctx(&(s
->sbm_rxdma
),s
,0,DMA_RX
,SBMAC_MAX_RXDESCR
);
1399 * initial state is OFF
1402 s
->sbm_state
= sbmac_state_off
;
1405 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1408 s
->sbm_speed
= sbmac_speed_10
;
1409 s
->sbm_duplex
= sbmac_duplex_half
;
1410 s
->sbm_fc
= sbmac_fc_disabled
;
1416 static void sbdma_uninitctx(struct sbmacdma_s
*d
)
1418 if (d
->sbdma_dscrtable
) {
1419 kfree(d
->sbdma_dscrtable
);
1420 d
->sbdma_dscrtable
= NULL
;
1423 if (d
->sbdma_ctxtable
) {
1424 kfree(d
->sbdma_ctxtable
);
1425 d
->sbdma_ctxtable
= NULL
;
1430 static void sbmac_uninitctx(struct sbmac_softc
*sc
)
1432 sbdma_uninitctx(&(sc
->sbm_txdma
));
1433 sbdma_uninitctx(&(sc
->sbm_rxdma
));
1437 /**********************************************************************
1438 * SBMAC_CHANNEL_START(s)
1440 * Start packet processing on this MAC.
1443 * s - sbmac structure
1447 ********************************************************************* */
1449 static void sbmac_channel_start(struct sbmac_softc
*s
)
1452 volatile void __iomem
*port
;
1453 uint64_t cfg
,fifo
,framecfg
;
1457 * Don't do this if running
1460 if (s
->sbm_state
== sbmac_state_on
)
1464 * Bring the controller out of reset, but leave it off.
1467 __raw_writeq(0, s
->sbm_macenable
);
1470 * Ignore all received packets
1473 __raw_writeq(0, s
->sbm_rxfilter
);
1476 * Calculate values for various control registers.
1479 cfg
= M_MAC_RETRY_EN
|
1480 M_MAC_TX_HOLD_SOP_EN
|
1481 V_MAC_TX_PAUSE_CNT_16K
|
1488 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1489 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1490 * Use a larger RD_THRSH for gigabit
1492 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2)
1497 fifo
= V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1498 ((s
->sbm_speed
== sbmac_speed_1000
)
1499 ? V_MAC_TX_RD_THRSH(th_value
) : V_MAC_TX_RD_THRSH(4)) |
1500 V_MAC_TX_RL_THRSH(4) |
1501 V_MAC_RX_PL_THRSH(4) |
1502 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1503 V_MAC_RX_PL_THRSH(4) |
1504 V_MAC_RX_RL_THRSH(8) |
1507 framecfg
= V_MAC_MIN_FRAMESZ_DEFAULT
|
1508 V_MAC_MAX_FRAMESZ_DEFAULT
|
1509 V_MAC_BACKOFF_SEL(1);
1512 * Clear out the hash address map
1515 port
= s
->sbm_base
+ R_MAC_HASH_BASE
;
1516 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1517 __raw_writeq(0, port
);
1518 port
+= sizeof(uint64_t);
1522 * Clear out the exact-match table
1525 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1526 for (idx
= 0; idx
< MAC_ADDR_COUNT
; idx
++) {
1527 __raw_writeq(0, port
);
1528 port
+= sizeof(uint64_t);
1532 * Clear out the DMA Channel mapping table registers
1535 port
= s
->sbm_base
+ R_MAC_CHUP0_BASE
;
1536 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1537 __raw_writeq(0, port
);
1538 port
+= sizeof(uint64_t);
1542 port
= s
->sbm_base
+ R_MAC_CHLO0_BASE
;
1543 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1544 __raw_writeq(0, port
);
1545 port
+= sizeof(uint64_t);
1549 * Program the hardware address. It goes into the hardware-address
1550 * register as well as the first filter register.
1553 reg
= sbmac_addr2reg(s
->sbm_hwaddr
);
1555 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1556 __raw_writeq(reg
, port
);
1557 port
= s
->sbm_base
+ R_MAC_ETHERNET_ADDR
;
1559 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1561 * Pass1 SOCs do not receive packets addressed to the
1562 * destination address in the R_MAC_ETHERNET_ADDR register.
1563 * Set the value to zero.
1565 __raw_writeq(0, port
);
1567 __raw_writeq(reg
, port
);
1571 * Set the receive filter for no packets, and write values
1572 * to the various config registers
1575 __raw_writeq(0, s
->sbm_rxfilter
);
1576 __raw_writeq(0, s
->sbm_imr
);
1577 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1578 __raw_writeq(fifo
, s
->sbm_fifocfg
);
1579 __raw_writeq(cfg
, s
->sbm_maccfg
);
1582 * Initialize DMA channels (rings should be ok now)
1585 sbdma_channel_start(&(s
->sbm_rxdma
), DMA_RX
);
1586 sbdma_channel_start(&(s
->sbm_txdma
), DMA_TX
);
1589 * Configure the speed, duplex, and flow control
1592 sbmac_set_speed(s
,s
->sbm_speed
);
1593 sbmac_set_duplex(s
,s
->sbm_duplex
,s
->sbm_fc
);
1596 * Fill the receive ring
1599 sbdma_fillring(&(s
->sbm_rxdma
));
1602 * Turn on the rest of the bits in the enable register
1605 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1606 __raw_writeq(M_MAC_RXDMA_EN0
|
1607 M_MAC_TXDMA_EN0
, s
->sbm_macenable
);
1608 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1609 __raw_writeq(M_MAC_RXDMA_EN0
|
1612 M_MAC_TX_ENABLE
, s
->sbm_macenable
);
1614 #error invalid SiByte MAC configuation
1617 #ifdef CONFIG_SBMAC_COALESCE
1619 * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1621 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1622 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
), s
->sbm_imr
);
1625 * Accept any kind of interrupt on TX and RX DMA channel 0
1627 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1628 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), s
->sbm_imr
);
1632 * Enable receiving unicasts and broadcasts
1635 __raw_writeq(M_MAC_UCAST_EN
| M_MAC_BCAST_EN
, s
->sbm_rxfilter
);
1638 * we're running now.
1641 s
->sbm_state
= sbmac_state_on
;
1644 * Program multicast addresses
1650 * If channel was in promiscuous mode before, turn that on
1653 if (s
->sbm_devflags
& IFF_PROMISC
) {
1654 sbmac_promiscuous_mode(s
,1);
1660 /**********************************************************************
1661 * SBMAC_CHANNEL_STOP(s)
1663 * Stop packet processing on this MAC.
1666 * s - sbmac structure
1670 ********************************************************************* */
1672 static void sbmac_channel_stop(struct sbmac_softc
*s
)
1674 /* don't do this if already stopped */
1676 if (s
->sbm_state
== sbmac_state_off
)
1679 /* don't accept any packets, disable all interrupts */
1681 __raw_writeq(0, s
->sbm_rxfilter
);
1682 __raw_writeq(0, s
->sbm_imr
);
1684 /* Turn off ticker */
1688 /* turn off receiver and transmitter */
1690 __raw_writeq(0, s
->sbm_macenable
);
1692 /* We're stopped now. */
1694 s
->sbm_state
= sbmac_state_off
;
1697 * Stop DMA channels (rings should be ok now)
1700 sbdma_channel_stop(&(s
->sbm_rxdma
));
1701 sbdma_channel_stop(&(s
->sbm_txdma
));
1703 /* Empty the receive and transmit rings */
1705 sbdma_emptyring(&(s
->sbm_rxdma
));
1706 sbdma_emptyring(&(s
->sbm_txdma
));
1710 /**********************************************************************
1711 * SBMAC_SET_CHANNEL_STATE(state)
1713 * Set the channel's state ON or OFF
1720 ********************************************************************* */
1721 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*sc
,
1722 sbmac_state_t state
)
1724 sbmac_state_t oldstate
= sc
->sbm_state
;
1727 * If same as previous state, return
1730 if (state
== oldstate
) {
1735 * If new state is ON, turn channel on
1738 if (state
== sbmac_state_on
) {
1739 sbmac_channel_start(sc
);
1742 sbmac_channel_stop(sc
);
1746 * Return previous state
1753 /**********************************************************************
1754 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1756 * Turn on or off promiscuous mode
1760 * onoff - 1 to turn on, 0 to turn off
1764 ********************************************************************* */
1766 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
)
1770 if (sc
->sbm_state
!= sbmac_state_on
)
1774 reg
= __raw_readq(sc
->sbm_rxfilter
);
1775 reg
|= M_MAC_ALLPKT_EN
;
1776 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1779 reg
= __raw_readq(sc
->sbm_rxfilter
);
1780 reg
&= ~M_MAC_ALLPKT_EN
;
1781 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1785 /**********************************************************************
1786 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1788 * Set the iphdr offset as 15 assuming ethernet encapsulation
1795 ********************************************************************* */
1797 static void sbmac_set_iphdr_offset(struct sbmac_softc
*sc
)
1801 /* Hard code the off set to 15 for now */
1802 reg
= __raw_readq(sc
->sbm_rxfilter
);
1803 reg
&= ~M_MAC_IPHDR_OFFSET
| V_MAC_IPHDR_OFFSET(15);
1804 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1806 /* BCM1250 pass1 didn't have hardware checksum. Everything
1808 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2) {
1809 sc
->rx_hw_checksum
= DISABLE
;
1811 sc
->rx_hw_checksum
= ENABLE
;
1816 /**********************************************************************
1817 * SBMAC_ADDR2REG(ptr)
1819 * Convert six bytes into the 64-bit register value that
1820 * we typically write into the SBMAC's address/mcast registers
1823 * ptr - pointer to 6 bytes
1827 ********************************************************************* */
1829 static uint64_t sbmac_addr2reg(unsigned char *ptr
)
1835 reg
|= (uint64_t) *(--ptr
);
1837 reg
|= (uint64_t) *(--ptr
);
1839 reg
|= (uint64_t) *(--ptr
);
1841 reg
|= (uint64_t) *(--ptr
);
1843 reg
|= (uint64_t) *(--ptr
);
1845 reg
|= (uint64_t) *(--ptr
);
1851 /**********************************************************************
1852 * SBMAC_SET_SPEED(s,speed)
1854 * Configure LAN speed for the specified MAC.
1855 * Warning: must be called when MAC is off!
1858 * s - sbmac structure
1859 * speed - speed to set MAC to (see sbmac_speed_t enum)
1863 * 0 indicates invalid parameters
1864 ********************************************************************* */
1866 static int sbmac_set_speed(struct sbmac_softc
*s
,sbmac_speed_t speed
)
1872 * Save new current values
1875 s
->sbm_speed
= speed
;
1877 if (s
->sbm_state
== sbmac_state_on
)
1878 return 0; /* save for next restart */
1881 * Read current register values
1884 cfg
= __raw_readq(s
->sbm_maccfg
);
1885 framecfg
= __raw_readq(s
->sbm_framecfg
);
1888 * Mask out the stuff we want to change
1891 cfg
&= ~(M_MAC_BURST_EN
| M_MAC_SPEED_SEL
);
1892 framecfg
&= ~(M_MAC_IFG_RX
| M_MAC_IFG_TX
| M_MAC_IFG_THRSH
|
1896 * Now add in the new bits
1900 case sbmac_speed_10
:
1901 framecfg
|= V_MAC_IFG_RX_10
|
1903 K_MAC_IFG_THRSH_10
|
1905 cfg
|= V_MAC_SPEED_SEL_10MBPS
;
1908 case sbmac_speed_100
:
1909 framecfg
|= V_MAC_IFG_RX_100
|
1911 V_MAC_IFG_THRSH_100
|
1912 V_MAC_SLOT_SIZE_100
;
1913 cfg
|= V_MAC_SPEED_SEL_100MBPS
;
1916 case sbmac_speed_1000
:
1917 framecfg
|= V_MAC_IFG_RX_1000
|
1919 V_MAC_IFG_THRSH_1000
|
1920 V_MAC_SLOT_SIZE_1000
;
1921 cfg
|= V_MAC_SPEED_SEL_1000MBPS
| M_MAC_BURST_EN
;
1924 case sbmac_speed_auto
: /* XXX not implemented */
1931 * Send the bits back to the hardware
1934 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1935 __raw_writeq(cfg
, s
->sbm_maccfg
);
1940 /**********************************************************************
1941 * SBMAC_SET_DUPLEX(s,duplex,fc)
1943 * Set Ethernet duplex and flow control options for this MAC
1944 * Warning: must be called when MAC is off!
1947 * s - sbmac structure
1948 * duplex - duplex setting (see sbmac_duplex_t)
1949 * fc - flow control setting (see sbmac_fc_t)
1953 * 0 if an invalid parameter combination was specified
1954 ********************************************************************* */
1956 static int sbmac_set_duplex(struct sbmac_softc
*s
,sbmac_duplex_t duplex
,sbmac_fc_t fc
)
1961 * Save new current values
1964 s
->sbm_duplex
= duplex
;
1967 if (s
->sbm_state
== sbmac_state_on
)
1968 return 0; /* save for next restart */
1971 * Read current register values
1974 cfg
= __raw_readq(s
->sbm_maccfg
);
1977 * Mask off the stuff we're about to change
1980 cfg
&= ~(M_MAC_FC_SEL
| M_MAC_FC_CMD
| M_MAC_HDX_EN
);
1984 case sbmac_duplex_half
:
1986 case sbmac_fc_disabled
:
1987 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_DISABLED
;
1990 case sbmac_fc_collision
:
1991 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENABLED
;
1994 case sbmac_fc_carrier
:
1995 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENAB_FALSECARR
;
1998 case sbmac_fc_auto
: /* XXX not implemented */
2000 case sbmac_fc_frame
: /* not valid in half duplex */
2001 default: /* invalid selection */
2006 case sbmac_duplex_full
:
2008 case sbmac_fc_disabled
:
2009 cfg
|= V_MAC_FC_CMD_DISABLED
;
2012 case sbmac_fc_frame
:
2013 cfg
|= V_MAC_FC_CMD_ENABLED
;
2016 case sbmac_fc_collision
: /* not valid in full duplex */
2017 case sbmac_fc_carrier
: /* not valid in full duplex */
2018 case sbmac_fc_auto
: /* XXX not implemented */
2024 case sbmac_duplex_auto
:
2025 /* XXX not implemented */
2030 * Send the bits back to the hardware
2033 __raw_writeq(cfg
, s
->sbm_maccfg
);
2041 /**********************************************************************
2044 * Interrupt handler for MAC interrupts
2051 ********************************************************************* */
2052 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
,struct pt_regs
*rgs
)
2054 struct net_device
*dev
= (struct net_device
*) dev_instance
;
2055 struct sbmac_softc
*sc
= netdev_priv(dev
);
2062 * Read the ISR (this clears the bits in the real
2063 * register, except for counter addr)
2066 isr
= __raw_readq(sc
->sbm_isr
) & ~M_MAC_COUNTER_ADDR
;
2074 * Transmits on channel 0
2077 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
)) {
2078 sbdma_tx_process(sc
,&(sc
->sbm_txdma
));
2082 * Receives on channel 0
2086 * It's important to test all the bits (or at least the
2087 * EOP_SEEN bit) when deciding to do the RX process
2088 * particularly when coalescing, to make sure we
2089 * take care of the following:
2091 * If you have some packets waiting (have been received
2092 * but no interrupt) and get a TX interrupt before
2093 * the RX timer or counter expires, reading the ISR
2094 * above will clear the timer and counter, and you
2095 * won't get another interrupt until a packet shows
2096 * up to start the timer again. Testing
2097 * EOP_SEEN here takes care of this case.
2098 * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2102 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
)) {
2103 sbdma_rx_process(sc
,&(sc
->sbm_rxdma
));
2106 return IRQ_RETVAL(handled
);
2110 /**********************************************************************
2111 * SBMAC_START_TX(skb,dev)
2113 * Start output on the specified interface. Basically, we
2114 * queue as many buffers as we can until the ring fills up, or
2115 * we run off the end of the queue, whichever comes first.
2122 ********************************************************************* */
2123 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2125 struct sbmac_softc
*sc
= netdev_priv(dev
);
2128 spin_lock_irq (&sc
->sbm_lock
);
2131 * Put the buffer on the transmit ring. If we
2132 * don't have room, stop the queue.
2135 if (sbdma_add_txbuffer(&(sc
->sbm_txdma
),skb
)) {
2136 /* XXX save skb that we could not send */
2137 netif_stop_queue(dev
);
2138 spin_unlock_irq(&sc
->sbm_lock
);
2143 dev
->trans_start
= jiffies
;
2145 spin_unlock_irq (&sc
->sbm_lock
);
2150 /**********************************************************************
2151 * SBMAC_SETMULTI(sc)
2153 * Reprogram the multicast table into the hardware, given
2154 * the list of multicasts associated with the interface
2162 ********************************************************************* */
2164 static void sbmac_setmulti(struct sbmac_softc
*sc
)
2167 volatile void __iomem
*port
;
2169 struct dev_mc_list
*mclist
;
2170 struct net_device
*dev
= sc
->sbm_dev
;
2173 * Clear out entire multicast table. We do this by nuking
2174 * the entire hash table and all the direct matches except
2175 * the first one, which is used for our station address
2178 for (idx
= 1; idx
< MAC_ADDR_COUNT
; idx
++) {
2179 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t));
2180 __raw_writeq(0, port
);
2183 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
2184 port
= sc
->sbm_base
+ R_MAC_HASH_BASE
+(idx
*sizeof(uint64_t));
2185 __raw_writeq(0, port
);
2189 * Clear the filter to say we don't want any multicasts.
2192 reg
= __raw_readq(sc
->sbm_rxfilter
);
2193 reg
&= ~(M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2194 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2196 if (dev
->flags
& IFF_ALLMULTI
) {
2198 * Enable ALL multicasts. Do this by inverting the
2199 * multicast enable bit.
2201 reg
= __raw_readq(sc
->sbm_rxfilter
);
2202 reg
|= (M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2203 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2209 * Progam new multicast entries. For now, only use the
2210 * perfect filter. In the future we'll need to use the
2211 * hash filter if the perfect filter overflows
2214 /* XXX only using perfect filter for now, need to use hash
2215 * XXX if the table overflows */
2217 idx
= 1; /* skip station address */
2218 mclist
= dev
->mc_list
;
2219 while (mclist
&& (idx
< MAC_ADDR_COUNT
)) {
2220 reg
= sbmac_addr2reg(mclist
->dmi_addr
);
2221 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
* sizeof(uint64_t));
2222 __raw_writeq(reg
, port
);
2224 mclist
= mclist
->next
;
2228 * Enable the "accept multicast bits" if we programmed at least one
2233 reg
= __raw_readq(sc
->sbm_rxfilter
);
2234 reg
|= M_MAC_MCAST_EN
;
2235 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2241 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2242 /**********************************************************************
2243 * SBMAC_PARSE_XDIGIT(str)
2245 * Parse a hex digit, returning its value
2251 * hex value, or -1 if invalid
2252 ********************************************************************* */
2254 static int sbmac_parse_xdigit(char str
)
2258 if ((str
>= '0') && (str
<= '9'))
2260 else if ((str
>= 'a') && (str
<= 'f'))
2261 digit
= str
- 'a' + 10;
2262 else if ((str
>= 'A') && (str
<= 'F'))
2263 digit
= str
- 'A' + 10;
2270 /**********************************************************************
2271 * SBMAC_PARSE_HWADDR(str,hwaddr)
2273 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2278 * hwaddr - pointer to hardware address
2282 ********************************************************************* */
2284 static int sbmac_parse_hwaddr(char *str
, unsigned char *hwaddr
)
2289 while (*str
&& (idx
> 0)) {
2290 digit1
= sbmac_parse_xdigit(*str
);
2297 if ((*str
== ':') || (*str
== '-')) {
2302 digit2
= sbmac_parse_xdigit(*str
);
2308 *hwaddr
++ = (digit1
<< 4) | digit2
;
2320 static int sb1250_change_mtu(struct net_device
*_dev
, int new_mtu
)
2322 if (new_mtu
> ENET_PACKET_SIZE
)
2324 _dev
->mtu
= new_mtu
;
2325 printk(KERN_INFO
"changing the mtu to %d\n", new_mtu
);
2329 /**********************************************************************
2332 * Attach routine - init hardware and hook ourselves into linux
2335 * dev - net_device structure
2339 ********************************************************************* */
2341 static int sbmac_init(struct net_device
*dev
, int idx
)
2343 struct sbmac_softc
*sc
;
2344 unsigned char *eaddr
;
2349 sc
= netdev_priv(dev
);
2351 /* Determine controller base address */
2353 sc
->sbm_base
= IOADDR(dev
->base_addr
);
2357 eaddr
= sc
->sbm_hwaddr
;
2360 * Read the ethernet address. The firwmare left this programmed
2361 * for us in the ethernet address register for each mac.
2364 ea_reg
= __raw_readq(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2365 __raw_writeq(0, sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2366 for (i
= 0; i
< 6; i
++) {
2367 eaddr
[i
] = (uint8_t) (ea_reg
& 0xFF);
2371 for (i
= 0; i
< 6; i
++) {
2372 dev
->dev_addr
[i
] = eaddr
[i
];
2380 sc
->sbm_buffersize
= ENET_PACKET_SIZE
+ SMP_CACHE_BYTES
* 2 + ETHER_ALIGN
;
2383 * Initialize context (get pointers to registers and stuff), then
2384 * allocate the memory for the descriptor tables.
2390 * Set up Linux device callins
2393 spin_lock_init(&(sc
->sbm_lock
));
2395 dev
->open
= sbmac_open
;
2396 dev
->hard_start_xmit
= sbmac_start_tx
;
2397 dev
->stop
= sbmac_close
;
2398 dev
->get_stats
= sbmac_get_stats
;
2399 dev
->set_multicast_list
= sbmac_set_rx_mode
;
2400 dev
->do_ioctl
= sbmac_mii_ioctl
;
2401 dev
->tx_timeout
= sbmac_tx_timeout
;
2402 dev
->watchdog_timeo
= TX_TIMEOUT
;
2404 dev
->change_mtu
= sb1250_change_mtu
;
2406 /* This is needed for PASS2 for Rx H/W checksum feature */
2407 sbmac_set_iphdr_offset(sc
);
2409 err
= register_netdev(dev
);
2413 if (sc
->rx_hw_checksum
== ENABLE
) {
2414 printk(KERN_INFO
"%s: enabling TCP rcv checksum\n",
2419 * Display Ethernet address (this is called during the config
2420 * process so we need to finish off the config message that
2421 * was being displayed)
2424 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2425 dev
->name
, dev
->base_addr
,
2426 eaddr
[0],eaddr
[1],eaddr
[2],eaddr
[3],eaddr
[4],eaddr
[5]);
2432 sbmac_uninitctx(sc
);
2438 static int sbmac_open(struct net_device
*dev
)
2440 struct sbmac_softc
*sc
= netdev_priv(dev
);
2443 printk(KERN_DEBUG
"%s: sbmac_open() irq %d.\n", dev
->name
, dev
->irq
);
2447 * map/route interrupt (clear status first, in case something
2448 * weird is pending; we haven't initialized the mac registers
2452 __raw_readq(sc
->sbm_isr
);
2453 if (request_irq(dev
->irq
, &sbmac_intr
, IRQF_SHARED
, dev
->name
, dev
))
2460 if(sbmac_mii_probe(dev
) == -1) {
2461 printk("%s: failed to probe PHY.\n", dev
->name
);
2466 * Configure default speed
2469 sbmac_mii_poll(sc
,noisy_mii
);
2472 * Turn on the channel
2475 sbmac_set_channel_state(sc
,sbmac_state_on
);
2478 * XXX Station address is in dev->dev_addr
2481 if (dev
->if_port
== 0)
2484 netif_start_queue(dev
);
2486 sbmac_set_rx_mode(dev
);
2488 /* Set the timer to check for link beat. */
2489 init_timer(&sc
->sbm_timer
);
2490 sc
->sbm_timer
.expires
= jiffies
+ 2 * HZ
/100;
2491 sc
->sbm_timer
.data
= (unsigned long)dev
;
2492 sc
->sbm_timer
.function
= &sbmac_timer
;
2493 add_timer(&sc
->sbm_timer
);
2498 static int sbmac_mii_probe(struct net_device
*dev
)
2501 struct sbmac_softc
*s
= netdev_priv(dev
);
2505 for (i
=1; i
<31; i
++) {
2506 bmsr
= sbmac_mii_read(s
, i
, MII_BMSR
);
2509 id1
= sbmac_mii_read(s
, i
, MII_PHYIDR1
);
2510 id2
= sbmac_mii_read(s
, i
, MII_PHYIDR2
);
2511 vendor
= ((u32
)id1
<< 6) | ((id2
>> 10) & 0x3f);
2512 device
= (id2
>> 4) & 0x3f;
2514 printk(KERN_INFO
"%s: found phy %d, vendor %06x part %02x\n",
2515 dev
->name
, i
, vendor
, device
);
2523 static int sbmac_mii_poll(struct sbmac_softc
*s
,int noisy
)
2525 int bmsr
,bmcr
,k1stsr
,anlpar
;
2530 /* Read the mode status and mode control registers. */
2531 bmsr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_BMSR
);
2532 bmcr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_BMCR
);
2534 /* get the link partner status */
2535 anlpar
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_ANLPAR
);
2537 /* if supported, read the 1000baseT register */
2538 if (bmsr
& BMSR_1000BT_XSR
) {
2539 k1stsr
= sbmac_mii_read(s
,s
->sbm_phys
[0],MII_K1STSR
);
2547 if ((bmsr
& BMSR_LINKSTAT
) == 0) {
2549 * If link status is down, clear out old info so that when
2550 * it comes back up it will force us to reconfigure speed
2552 s
->sbm_phy_oldbmsr
= 0;
2553 s
->sbm_phy_oldanlpar
= 0;
2554 s
->sbm_phy_oldk1stsr
= 0;
2558 if ((s
->sbm_phy_oldbmsr
!= bmsr
) ||
2559 (s
->sbm_phy_oldanlpar
!= anlpar
) ||
2560 (s
->sbm_phy_oldk1stsr
!= k1stsr
)) {
2562 printk(KERN_DEBUG
"%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2564 s
->sbm_phy_oldbmsr
,bmsr
,
2565 s
->sbm_phy_oldanlpar
,anlpar
,
2566 s
->sbm_phy_oldk1stsr
,k1stsr
);
2568 s
->sbm_phy_oldbmsr
= bmsr
;
2569 s
->sbm_phy_oldanlpar
= anlpar
;
2570 s
->sbm_phy_oldk1stsr
= k1stsr
;
2577 p
+= sprintf(p
,"Link speed: ");
2579 if (k1stsr
& K1STSR_LP1KFD
) {
2580 s
->sbm_speed
= sbmac_speed_1000
;
2581 s
->sbm_duplex
= sbmac_duplex_full
;
2582 s
->sbm_fc
= sbmac_fc_frame
;
2583 p
+= sprintf(p
,"1000BaseT FDX");
2585 else if (k1stsr
& K1STSR_LP1KHD
) {
2586 s
->sbm_speed
= sbmac_speed_1000
;
2587 s
->sbm_duplex
= sbmac_duplex_half
;
2588 s
->sbm_fc
= sbmac_fc_disabled
;
2589 p
+= sprintf(p
,"1000BaseT HDX");
2591 else if (anlpar
& ANLPAR_TXFD
) {
2592 s
->sbm_speed
= sbmac_speed_100
;
2593 s
->sbm_duplex
= sbmac_duplex_full
;
2594 s
->sbm_fc
= (anlpar
& ANLPAR_PAUSE
) ? sbmac_fc_frame
: sbmac_fc_disabled
;
2595 p
+= sprintf(p
,"100BaseT FDX");
2597 else if (anlpar
& ANLPAR_TXHD
) {
2598 s
->sbm_speed
= sbmac_speed_100
;
2599 s
->sbm_duplex
= sbmac_duplex_half
;
2600 s
->sbm_fc
= sbmac_fc_disabled
;
2601 p
+= sprintf(p
,"100BaseT HDX");
2603 else if (anlpar
& ANLPAR_10FD
) {
2604 s
->sbm_speed
= sbmac_speed_10
;
2605 s
->sbm_duplex
= sbmac_duplex_full
;
2606 s
->sbm_fc
= sbmac_fc_frame
;
2607 p
+= sprintf(p
,"10BaseT FDX");
2609 else if (anlpar
& ANLPAR_10HD
) {
2610 s
->sbm_speed
= sbmac_speed_10
;
2611 s
->sbm_duplex
= sbmac_duplex_half
;
2612 s
->sbm_fc
= sbmac_fc_collision
;
2613 p
+= sprintf(p
,"10BaseT HDX");
2616 p
+= sprintf(p
,"Unknown");
2620 printk(KERN_INFO
"%s: %s\n",s
->sbm_dev
->name
,buffer
);
2627 static void sbmac_timer(unsigned long data
)
2629 struct net_device
*dev
= (struct net_device
*)data
;
2630 struct sbmac_softc
*sc
= netdev_priv(dev
);
2634 spin_lock_irq (&sc
->sbm_lock
);
2636 /* make IFF_RUNNING follow the MII status bit "Link established" */
2637 mii_status
= sbmac_mii_read(sc
, sc
->sbm_phys
[0], MII_BMSR
);
2639 if ( (mii_status
& BMSR_LINKSTAT
) != (sc
->sbm_phy_oldlinkstat
) ) {
2640 sc
->sbm_phy_oldlinkstat
= mii_status
& BMSR_LINKSTAT
;
2641 if (mii_status
& BMSR_LINKSTAT
) {
2642 netif_carrier_on(dev
);
2645 netif_carrier_off(dev
);
2650 * Poll the PHY to see what speed we should be running at
2653 if (sbmac_mii_poll(sc
,noisy_mii
)) {
2654 if (sc
->sbm_state
!= sbmac_state_off
) {
2656 * something changed, restart the channel
2659 printk("%s: restarting channel because speed changed\n",
2662 sbmac_channel_stop(sc
);
2663 sbmac_channel_start(sc
);
2667 spin_unlock_irq (&sc
->sbm_lock
);
2669 sc
->sbm_timer
.expires
= jiffies
+ next_tick
;
2670 add_timer(&sc
->sbm_timer
);
2674 static void sbmac_tx_timeout (struct net_device
*dev
)
2676 struct sbmac_softc
*sc
= netdev_priv(dev
);
2678 spin_lock_irq (&sc
->sbm_lock
);
2681 dev
->trans_start
= jiffies
;
2682 sc
->sbm_stats
.tx_errors
++;
2684 spin_unlock_irq (&sc
->sbm_lock
);
2686 printk (KERN_WARNING
"%s: Transmit timed out\n",dev
->name
);
2692 static struct net_device_stats
*sbmac_get_stats(struct net_device
*dev
)
2694 struct sbmac_softc
*sc
= netdev_priv(dev
);
2695 unsigned long flags
;
2697 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2699 /* XXX update other stats here */
2701 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2703 return &sc
->sbm_stats
;
2708 static void sbmac_set_rx_mode(struct net_device
*dev
)
2710 unsigned long flags
;
2711 struct sbmac_softc
*sc
= netdev_priv(dev
);
2713 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2714 if ((dev
->flags
^ sc
->sbm_devflags
) & IFF_PROMISC
) {
2716 * Promiscuous changed.
2719 if (dev
->flags
& IFF_PROMISC
) {
2720 sbmac_promiscuous_mode(sc
,1);
2723 sbmac_promiscuous_mode(sc
,0);
2726 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2729 * Program the multicasts. Do this every time.
2736 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2738 struct sbmac_softc
*sc
= netdev_priv(dev
);
2739 u16
*data
= (u16
*)&rq
->ifr_ifru
;
2740 unsigned long flags
;
2743 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2747 case SIOCDEVPRIVATE
: /* Get the address of the PHY in use. */
2748 data
[0] = sc
->sbm_phys
[0] & 0x1f;
2750 case SIOCDEVPRIVATE
+1: /* Read the specified MII register. */
2751 data
[3] = sbmac_mii_read(sc
, data
[0] & 0x1f, data
[1] & 0x1f);
2753 case SIOCDEVPRIVATE
+2: /* Write the specified MII register */
2754 if (!capable(CAP_NET_ADMIN
)) {
2759 printk(KERN_DEBUG
"%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev
->name
,
2760 data
[0],data
[1],data
[2]);
2762 sbmac_mii_write(sc
, data
[0] & 0x1f, data
[1] & 0x1f, data
[2]);
2765 retval
= -EOPNOTSUPP
;
2768 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2772 static int sbmac_close(struct net_device
*dev
)
2774 struct sbmac_softc
*sc
= netdev_priv(dev
);
2775 unsigned long flags
;
2778 sbmac_set_channel_state(sc
,sbmac_state_off
);
2780 del_timer_sync(&sc
->sbm_timer
);
2782 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2784 netif_stop_queue(dev
);
2787 printk(KERN_DEBUG
"%s: Shutting down ethercard\n",dev
->name
);
2790 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2793 synchronize_irq(irq
);
2796 sbdma_emptyring(&(sc
->sbm_txdma
));
2797 sbdma_emptyring(&(sc
->sbm_rxdma
));
2804 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2806 sbmac_setup_hwaddr(int chan
,char *addr
)
2812 port
= A_MAC_CHANNEL_BASE(chan
);
2813 sbmac_parse_hwaddr(addr
,eaddr
);
2814 val
= sbmac_addr2reg(eaddr
);
2815 __raw_writeq(val
, IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2816 val
= __raw_readq(IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2820 static struct net_device
*dev_sbmac
[MAX_UNITS
];
2823 sbmac_init_module(void)
2826 struct net_device
*dev
;
2830 /* Set the number of available units based on the SOC type. */
2832 case K_SYS_SOC_TYPE_BCM1250
:
2833 case K_SYS_SOC_TYPE_BCM1250_ALT
:
2836 case K_SYS_SOC_TYPE_BCM1120
:
2837 case K_SYS_SOC_TYPE_BCM1125
:
2838 case K_SYS_SOC_TYPE_BCM1125H
:
2839 case K_SYS_SOC_TYPE_BCM1250_ALT2
: /* Hybrid */
2842 case K_SYS_SOC_TYPE_BCM1x55
:
2843 case K_SYS_SOC_TYPE_BCM1x80
:
2850 if (chip_max_units
> MAX_UNITS
)
2851 chip_max_units
= MAX_UNITS
;
2854 * For bringup when not using the firmware, we can pre-fill
2855 * the MAC addresses using the environment variables
2856 * specified in this file (or maybe from the config file?)
2858 #ifdef SBMAC_ETH0_HWADDR
2859 if (chip_max_units
> 0)
2860 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR
);
2862 #ifdef SBMAC_ETH1_HWADDR
2863 if (chip_max_units
> 1)
2864 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR
);
2866 #ifdef SBMAC_ETH2_HWADDR
2867 if (chip_max_units
> 2)
2868 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR
);
2870 #ifdef SBMAC_ETH3_HWADDR
2871 if (chip_max_units
> 3)
2872 sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR
);
2876 * Walk through the Ethernet controllers and find
2877 * those who have their MAC addresses set.
2879 for (idx
= 0; idx
< chip_max_units
; idx
++) {
2882 * This is the base address of the MAC.
2885 port
= A_MAC_CHANNEL_BASE(idx
);
2888 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2889 * value for us by the firmware if we're going to use this MAC.
2890 * If we find a zero, skip this MAC.
2893 sbmac_orig_hwaddr
[idx
] = __raw_readq(IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2894 if (sbmac_orig_hwaddr
[idx
] == 0) {
2895 printk(KERN_DEBUG
"sbmac: not configuring MAC at "
2901 * Okay, cool. Initialize this MAC.
2904 dev
= alloc_etherdev(sizeof(struct sbmac_softc
));
2906 return -ENOMEM
; /* return ENOMEM */
2908 printk(KERN_DEBUG
"sbmac: configuring MAC at %lx\n", port
);
2910 dev
->irq
= UNIT_INT(idx
);
2911 dev
->base_addr
= port
;
2913 if (sbmac_init(dev
, idx
)) {
2914 port
= A_MAC_CHANNEL_BASE(idx
);
2915 __raw_writeq(sbmac_orig_hwaddr
[idx
], IOADDR(port
+R_MAC_ETHERNET_ADDR
));
2919 dev_sbmac
[idx
] = dev
;
2926 sbmac_cleanup_module(void)
2928 struct net_device
*dev
;
2931 for (idx
= 0; idx
< MAX_UNITS
; idx
++) {
2932 struct sbmac_softc
*sc
;
2933 dev
= dev_sbmac
[idx
];
2937 sc
= netdev_priv(dev
);
2938 unregister_netdev(dev
);
2939 sbmac_uninitctx(sc
);
2944 module_init(sbmac_init_module
);
2945 module_exit(sbmac_cleanup_module
);