[NETFILTER]: Move ip6_masked_addrcmp to include/net/ipv6.h
[linux-2.6/verdex.git] / drivers / atm / firestream.c
blob7f7ec288824d075ed2826422e113abba8bebd1a1
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/errno.h>
37 #include <linux/atm.h>
38 #include <linux/atmdev.h>
39 #include <linux/sonet.h>
40 #include <linux/skbuff.h>
41 #include <linux/netdevice.h>
42 #include <linux/delay.h>
43 #include <linux/ioport.h> /* for request_region */
44 #include <linux/uio.h>
45 #include <linux/init.h>
46 #include <linux/capability.h>
47 #include <linux/bitops.h>
48 #include <asm/byteorder.h>
49 #include <asm/system.h>
50 #include <asm/string.h>
51 #include <asm/io.h>
52 #include <asm/atomic.h>
53 #include <asm/uaccess.h>
54 #include <linux/wait.h>
56 #include "firestream.h"
58 static int loopback = 0;
59 static int num=0x5a;
61 /* According to measurements (but they look suspicious to me!) done in
62 * '97, 37% of the packets are one cell in size. So it pays to have
63 * buffers allocated at that size. A large jump in percentage of
64 * packets occurs at packets around 536 bytes in length. So it also
65 * pays to have those pre-allocated. Unfortunately, we can't fully
66 * take advantage of this as the majority of the packets is likely to
67 * be TCP/IP (As where obviously the measurement comes from) There the
68 * link would be opened with say a 1500 byte MTU, and we can't handle
69 * smaller buffers more efficiently than the larger ones. -- REW
72 /* Due to the way Linux memory management works, specifying "576" as
73 * an allocation size here isn't going to help. They are allocated
74 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
75 * large), it doesn't pay to allocate the smallest size (64) -- REW */
77 /* This is all guesswork. Hard numbers to back this up or disprove this,
78 * are appreciated. -- REW */
80 /* The last entry should be about 64k. However, the "buffer size" is
81 * passed to the chip in a 16 bit field. I don't know how "65536"
82 * would be interpreted. -- REW */
84 #define NP FS_NR_FREE_POOLS
85 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
86 /* log2: 7 8 9 10 11 12 14 16 */
88 #if 0
89 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
90 #else
91 /* debug */
92 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
93 #endif
94 /* log2: 10 10 9 8 7 6 5 5 */
95 /* sumlog2: 17 18 18 18 18 18 19 21 */
96 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
97 /* tot mem: almost 4M */
99 /* NP is shorter, so that it fits on a single line. */
100 #undef NP
103 /* Small hardware gotcha:
105 The FS50 CAM (VP/VC match registers) always take the lowest channel
106 number that matches. This is not a problem.
108 However, they also ignore whether the channel is enabled or
109 not. This means that if you allocate channel 0 to 1.2 and then
110 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
111 match channel for channel 0 will "steal" the traffic from channel
112 1, even if you correctly disable channel 0.
114 Workaround:
116 - When disabling channels, write an invalid VP/VC value to the
117 match register. (We use 0xffffffff, which in the worst case
118 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
119 anything as some "when not in use, program to 0" bits are now
120 programmed to 1...)
122 - Don't initialize the match registers to 0, as 0.0 is a valid
123 channel.
127 /* Optimization hints and tips.
129 The FireStream chips are very capable of reducing the amount of
130 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
131 action. You could try to minimize this a bit.
133 Besides that, the userspace->kernel copy and the PCI bus are the
134 performance limiting issues for this driver.
136 You could queue up a bunch of outgoing packets without telling the
137 FireStream. I'm not sure that's going to win you much though. The
138 Linux layer won't tell us in advance when it's not going to give us
139 any more packets in a while. So this is tricky to implement right without
140 introducing extra delays.
142 -- REW
148 /* The strings that define what the RX queue entry is all about. */
149 /* Fujitsu: Please tell me which ones can have a pointer to a
150 freepool descriptor! */
151 static char *res_strings[] = {
152 "RX OK: streaming not EOP",
153 "RX OK: streaming EOP",
154 "RX OK: Single buffer packet",
155 "RX OK: packet mode",
156 "RX OK: F4 OAM (end to end)",
157 "RX OK: F4 OAM (Segment)",
158 "RX OK: F5 OAM (end to end)",
159 "RX OK: F5 OAM (Segment)",
160 "RX OK: RM cell",
161 "RX OK: TRANSP cell",
162 "RX OK: TRANSPC cell",
163 "Unmatched cell",
164 "reserved 12",
165 "reserved 13",
166 "reserved 14",
167 "Unrecognized cell",
168 "reserved 16",
169 "reassemby abort: AAL5 abort",
170 "packet purged",
171 "packet ageing timeout",
172 "channel ageing timeout",
173 "calculated lenght error",
174 "programmed lenght limit error",
175 "aal5 crc32 error",
176 "oam transp or transpc crc10 error",
177 "reserved 25",
178 "reserved 26",
179 "reserved 27",
180 "reserved 28",
181 "reserved 29",
182 "reserved 30",
183 "reassembly abort: no buffers",
184 "receive buffer overflow",
185 "change in GFC",
186 "receive buffer full",
187 "low priority discard - no receive descriptor",
188 "low priority discard - missing end of packet",
189 "reserved 41",
190 "reserved 42",
191 "reserved 43",
192 "reserved 44",
193 "reserved 45",
194 "reserved 46",
195 "reserved 47",
196 "reserved 48",
197 "reserved 49",
198 "reserved 50",
199 "reserved 51",
200 "reserved 52",
201 "reserved 53",
202 "reserved 54",
203 "reserved 55",
204 "reserved 56",
205 "reserved 57",
206 "reserved 58",
207 "reserved 59",
208 "reserved 60",
209 "reserved 61",
210 "reserved 62",
211 "reserved 63",
214 static char *irq_bitname[] = {
215 "LPCO",
216 "DPCO",
217 "RBRQ0_W",
218 "RBRQ1_W",
219 "RBRQ2_W",
220 "RBRQ3_W",
221 "RBRQ0_NF",
222 "RBRQ1_NF",
223 "RBRQ2_NF",
224 "RBRQ3_NF",
225 "BFP_SC",
226 "INIT",
227 "INIT_ERR",
228 "USCEO",
229 "UPEC0",
230 "VPFCO",
231 "CRCCO",
232 "HECO",
233 "TBRQ_W",
234 "TBRQ_NF",
235 "CTPQ_E",
236 "GFC_C0",
237 "PCI_FTL",
238 "CSQ_W",
239 "CSQ_NF",
240 "EXT_INT",
241 "RXDMA_S"
245 #define PHY_EOF -1
246 #define PHY_CLEARALL -2
248 struct reginit_item {
249 int reg, val;
253 static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
254 { PHY_CLEARALL, 0x40 },
255 { 0x12, 0x0001 },
256 { 0x13, 0x7605 },
257 { 0x1A, 0x0001 },
258 { 0x1B, 0x0005 },
259 { 0x38, 0x0003 },
260 { 0x39, 0x0006 }, /* changed here to make loopback */
261 { 0x01, 0x5262 },
262 { 0x15, 0x0213 },
263 { 0x00, 0x0003 },
264 { PHY_EOF, 0}, /* -1 signals end of list */
268 /* Safetyfeature: If the card interrupts more than this number of times
269 in a jiffy (1/100th of a second) then we just disable the interrupt and
270 print a message. This prevents the system from hanging.
272 150000 packets per second is close to the limit a PC is going to have
273 anyway. We therefore have to disable this for production. -- REW */
274 #undef IRQ_RATE_LIMIT // 100
276 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
277 that great without interrupts. -- REW */
278 #undef FS_POLL_FREQ // 100
281 This driver can spew a whole lot of debugging output at you. If you
282 need maximum performance, you should disable the DEBUG define. To
283 aid in debugging in the field, I'm leaving the compile-time debug
284 features enabled, and disable them "runtime". That allows me to
285 instruct people with problems to enable debugging without requiring
286 them to recompile... -- REW
288 #define DEBUG
290 #ifdef DEBUG
291 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
292 #else
293 #define fs_dprintk(f, str...) /* nothing */
294 #endif
297 static int fs_keystream = 0;
299 #ifdef DEBUG
300 /* I didn't forget to set this to zero before shipping. Hit me with a stick
301 if you get this with the debug default not set to zero again. -- REW */
302 static int fs_debug = 0;
303 #else
304 #define fs_debug 0
305 #endif
307 #ifdef MODULE
308 #ifdef DEBUG
309 module_param(fs_debug, int, 0644);
310 #endif
311 module_param(loopback, int, 0);
312 module_param(num, int, 0);
313 module_param(fs_keystream, int, 0);
314 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
315 #endif
318 #define FS_DEBUG_FLOW 0x00000001
319 #define FS_DEBUG_OPEN 0x00000002
320 #define FS_DEBUG_QUEUE 0x00000004
321 #define FS_DEBUG_IRQ 0x00000008
322 #define FS_DEBUG_INIT 0x00000010
323 #define FS_DEBUG_SEND 0x00000020
324 #define FS_DEBUG_PHY 0x00000040
325 #define FS_DEBUG_CLEANUP 0x00000080
326 #define FS_DEBUG_QOS 0x00000100
327 #define FS_DEBUG_TXQ 0x00000200
328 #define FS_DEBUG_ALLOC 0x00000400
329 #define FS_DEBUG_TXMEM 0x00000800
330 #define FS_DEBUG_QSIZE 0x00001000
333 #define func_enter() fs_dprintk (FS_DEBUG_FLOW, "fs: enter %s\n", __FUNCTION__)
334 #define func_exit() fs_dprintk (FS_DEBUG_FLOW, "fs: exit %s\n", __FUNCTION__)
337 static struct fs_dev *fs_boards = NULL;
339 #ifdef DEBUG
341 static void my_hd (void *addr, int len)
343 int j, ch;
344 unsigned char *ptr = addr;
346 while (len > 0) {
347 printk ("%p ", ptr);
348 for (j=0;j < ((len < 16)?len:16);j++) {
349 printk ("%02x %s", ptr[j], (j==7)?" ":"");
351 for ( ;j < 16;j++) {
352 printk (" %s", (j==7)?" ":"");
354 for (j=0;j < ((len < 16)?len:16);j++) {
355 ch = ptr[j];
356 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
358 printk ("\n");
359 ptr += 16;
360 len -= 16;
363 #else /* DEBUG */
364 static void my_hd (void *addr, int len){}
365 #endif /* DEBUG */
367 /********** free an skb (as per ATM device driver documentation) **********/
369 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
370 * I copied it over from the ambassador driver. -- REW */
372 static inline void fs_kfree_skb (struct sk_buff * skb)
374 if (ATM_SKB(skb)->vcc->pop)
375 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
376 else
377 dev_kfree_skb_any (skb);
383 /* It seems the ATM forum recommends this horribly complicated 16bit
384 * floating point format. Turns out the Ambassador uses the exact same
385 * encoding. I just copied it over. If Mitch agrees, I'll move it over
386 * to the atm_misc file or something like that. (and remove it from
387 * here and the ambassador driver) -- REW
390 /* The good thing about this format is that it is monotonic. So,
391 a conversion routine need not be very complicated. To be able to
392 round "nearest" we need to take along a few extra bits. Lets
393 put these after 16 bits, so that we can just return the top 16
394 bits of the 32bit number as the result:
396 int mr (unsigned int rate, int r)
398 int e = 16+9;
399 static int round[4]={0, 0, 0xffff, 0x8000};
400 if (!rate) return 0;
401 while (rate & 0xfc000000) {
402 rate >>= 1;
403 e++;
405 while (! (rate & 0xfe000000)) {
406 rate <<= 1;
407 e--;
410 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
411 rate &= ~0x02000000;
412 // Next add in the exponent
413 rate |= e << (16+9);
414 // And perform the rounding:
415 return (rate + round[r]) >> 16;
418 14 lines-of-code. Compare that with the 120 that the Ambassador
419 guys needed. (would be 8 lines shorter if I'd try to really reduce
420 the number of lines:
422 int mr (unsigned int rate, int r)
424 int e = 16+9;
425 static int round[4]={0, 0, 0xffff, 0x8000};
426 if (!rate) return 0;
427 for (; rate & 0xfc000000 ;rate >>= 1, e++);
428 for (;!(rate & 0xfe000000);rate <<= 1, e--);
429 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
432 Exercise for the reader: Remove one more line-of-code, without
433 cheating. (Just joining two lines is cheating). (I know it's
434 possible, don't think you've beat me if you found it... If you
435 manage to lose two lines or more, keep me updated! ;-)
437 -- REW */
440 #define ROUND_UP 1
441 #define ROUND_DOWN 2
442 #define ROUND_NEAREST 3
443 /********** make rate (not quite as much fun as Horizon) **********/
445 static unsigned int make_rate (unsigned int rate, int r,
446 u16 * bits, unsigned int * actual)
448 unsigned char exp = -1; /* hush gcc */
449 unsigned int man = -1; /* hush gcc */
451 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
453 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
454 given 5-bit e and 9-bit m:
455 rate = EITHER (1+m/2^9)*2^e OR 0
456 bits = EITHER 1<<14 | e<<9 | m OR 0
457 (bit 15 is "reserved", bit 14 "non-zero")
458 smallest rate is 0 (special representation)
459 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
460 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
461 simple algorithm:
462 find position of top bit, this gives e
463 remove top bit and shift (rounding if feeling clever) by 9-e
465 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
466 representable. // This should move into the ambassador driver
467 when properly merged. -- REW */
469 if (rate > 0xffc00000U) {
470 /* larger than largest representable rate */
472 if (r == ROUND_UP) {
473 return -EINVAL;
474 } else {
475 exp = 31;
476 man = 511;
479 } else if (rate) {
480 /* representable rate */
482 exp = 31;
483 man = rate;
485 /* invariant: rate = man*2^(exp-31) */
486 while (!(man & (1<<31))) {
487 exp = exp - 1;
488 man = man<<1;
491 /* man has top bit set
492 rate = (2^31+(man-2^31))*2^(exp-31)
493 rate = (1+(man-2^31)/2^31)*2^exp
495 man = man<<1;
496 man &= 0xffffffffU; /* a nop on 32-bit systems */
497 /* rate = (1+man/2^32)*2^exp
499 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
500 time to lose significance... we want m in the range 0 to 2^9-1
501 rounding presents a minor problem... we first decide which way
502 we are rounding (based on given rounding direction and possibly
503 the bits of the mantissa that are to be discarded).
506 switch (r) {
507 case ROUND_DOWN: {
508 /* just truncate */
509 man = man>>(32-9);
510 break;
512 case ROUND_UP: {
513 /* check all bits that we are discarding */
514 if (man & (-1>>9)) {
515 man = (man>>(32-9)) + 1;
516 if (man == (1<<9)) {
517 /* no need to check for round up outside of range */
518 man = 0;
519 exp += 1;
521 } else {
522 man = (man>>(32-9));
524 break;
526 case ROUND_NEAREST: {
527 /* check msb that we are discarding */
528 if (man & (1<<(32-9-1))) {
529 man = (man>>(32-9)) + 1;
530 if (man == (1<<9)) {
531 /* no need to check for round up outside of range */
532 man = 0;
533 exp += 1;
535 } else {
536 man = (man>>(32-9));
538 break;
542 } else {
543 /* zero rate - not representable */
545 if (r == ROUND_DOWN) {
546 return -EINVAL;
547 } else {
548 exp = 0;
549 man = 0;
553 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
555 if (bits)
556 *bits = /* (1<<14) | */ (exp<<9) | man;
558 if (actual)
559 *actual = (exp >= 9)
560 ? (1 << exp) + (man << (exp-9))
561 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
563 return 0;
569 /* FireStream access routines */
570 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
571 certain registers or to just log all accesses. */
573 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
575 writel (val, dev->base + offset);
579 static inline u32 read_fs (struct fs_dev *dev, int offset)
581 return readl (dev->base + offset);
586 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
588 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
592 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
594 u32 wp;
595 struct FS_QENTRY *cqe;
597 /* XXX Sanity check: the write pointer can be checked to be
598 still the same as the value passed as qe... -- REW */
599 /* udelay (5); */
600 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
601 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
602 q->offset);
603 schedule ();
606 wp &= ~0xf;
607 cqe = bus_to_virt (wp);
608 if (qe != cqe) {
609 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
612 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
615 static int c;
616 if (!(c++ % 100))
618 int rp, wp;
619 rp = read_fs (dev, Q_RP(q->offset));
620 wp = read_fs (dev, Q_WP(q->offset));
621 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
622 q->offset, rp, wp, wp-rp);
627 #ifdef DEBUG_EXTRA
628 static struct FS_QENTRY pq[60];
629 static int qp;
631 static struct FS_BPENTRY dq[60];
632 static int qd;
633 static void *da[60];
634 #endif
636 static void submit_queue (struct fs_dev *dev, struct queue *q,
637 u32 cmd, u32 p1, u32 p2, u32 p3)
639 struct FS_QENTRY *qe;
641 qe = get_qentry (dev, q);
642 qe->cmd = cmd;
643 qe->p0 = p1;
644 qe->p1 = p2;
645 qe->p2 = p3;
646 submit_qentry (dev, q, qe);
648 #ifdef DEBUG_EXTRA
649 pq[qp].cmd = cmd;
650 pq[qp].p0 = p1;
651 pq[qp].p1 = p2;
652 pq[qp].p2 = p3;
653 qp++;
654 if (qp >= 60) qp = 0;
655 #endif
658 /* Test the "other" way one day... -- REW */
659 #if 1
660 #define submit_command submit_queue
661 #else
663 static void submit_command (struct fs_dev *dev, struct queue *q,
664 u32 cmd, u32 p1, u32 p2, u32 p3)
666 write_fs (dev, CMDR0, cmd);
667 write_fs (dev, CMDR1, p1);
668 write_fs (dev, CMDR2, p2);
669 write_fs (dev, CMDR3, p3);
671 #endif
675 static void process_return_queue (struct fs_dev *dev, struct queue *q)
677 long rq;
678 struct FS_QENTRY *qe;
679 void *tc;
681 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
682 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
683 qe = bus_to_virt (rq);
685 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
686 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
688 switch (STATUS_CODE (qe)) {
689 case 5:
690 tc = bus_to_virt (qe->p0);
691 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
692 kfree (tc);
693 break;
696 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
701 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
703 long rq;
704 long tmp;
705 struct FS_QENTRY *qe;
706 struct sk_buff *skb;
707 struct FS_BPENTRY *td;
709 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
710 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
711 qe = bus_to_virt (rq);
713 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
714 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
716 if (STATUS_CODE (qe) != 2)
717 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
718 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721 switch (STATUS_CODE (qe)) {
722 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
723 /* Fall through */
724 case 0x02:
725 /* Process a real txdone entry. */
726 tmp = qe->p0;
727 if (tmp & 0x0f)
728 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
729 tmp &= ~0x0f;
730 td = bus_to_virt (tmp);
732 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
733 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
735 skb = td->skb;
736 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
737 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
738 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
740 td->dev->ntxpckts--;
743 static int c=0;
745 if (!(c++ % 100)) {
746 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
750 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
752 fs_dprintk (FS_DEBUG_TXMEM, "i");
753 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
754 fs_kfree_skb (skb);
756 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
757 memset (td, 0x12, sizeof (struct FS_BPENTRY));
758 kfree (td);
759 break;
760 default:
761 /* Here we get the tx purge inhibit command ... */
762 /* Action, I believe, is "don't do anything". -- REW */
766 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
771 static void process_incoming (struct fs_dev *dev, struct queue *q)
773 long rq;
774 struct FS_QENTRY *qe;
775 struct FS_BPENTRY *pe;
776 struct sk_buff *skb;
777 unsigned int channo;
778 struct atm_vcc *atm_vcc;
780 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
781 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
782 qe = bus_to_virt (rq);
784 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
785 qe->cmd, qe->p0, qe->p1, qe->p2);
787 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
788 STATUS_CODE (qe),
789 res_strings[STATUS_CODE(qe)]);
791 pe = bus_to_virt (qe->p0);
792 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
793 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
794 pe->skb, pe->fp);
796 channo = qe->cmd & 0xffff;
798 if (channo < dev->nchannels)
799 atm_vcc = dev->atm_vccs[channo];
800 else
801 atm_vcc = NULL;
803 /* Single buffer packet */
804 switch (STATUS_CODE (qe)) {
805 case 0x1:
806 /* Fall through for streaming mode */
807 case 0x2:/* Packet received OK.... */
808 if (atm_vcc) {
809 skb = pe->skb;
810 pe->fp->n--;
811 #if 0
812 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
813 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
814 #endif
815 skb_put (skb, qe->p1 & 0xffff);
816 ATM_SKB(skb)->vcc = atm_vcc;
817 atomic_inc(&atm_vcc->stats->rx);
818 __net_timestamp(skb);
819 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
820 atm_vcc->push (atm_vcc, skb);
821 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
822 kfree (pe);
823 } else {
824 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
826 break;
827 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
828 has been consumed and needs to be processed. -- REW */
829 if (qe->p1 & 0xffff) {
830 pe = bus_to_virt (qe->p0);
831 pe->fp->n--;
832 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
833 dev_kfree_skb_any (pe->skb);
834 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
835 kfree (pe);
837 if (atm_vcc)
838 atomic_inc(&atm_vcc->stats->rx_drop);
839 break;
840 case 0x1f: /* Reassembly abort: no buffers. */
841 /* Silently increment error counter. */
842 if (atm_vcc)
843 atomic_inc(&atm_vcc->stats->rx_drop);
844 break;
845 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
846 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
847 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
849 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
855 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
857 static int fs_open(struct atm_vcc *atm_vcc)
859 struct fs_dev *dev;
860 struct fs_vcc *vcc;
861 struct fs_transmit_config *tc;
862 struct atm_trafprm * txtp;
863 struct atm_trafprm * rxtp;
864 /* struct fs_receive_config *rc;*/
865 /* struct FS_QENTRY *qe; */
866 int error;
867 int bfp;
868 int to;
869 unsigned short tmc0;
870 short vpi = atm_vcc->vpi;
871 int vci = atm_vcc->vci;
873 func_enter ();
875 dev = FS_DEV(atm_vcc->dev);
876 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
877 dev, atm_vcc);
879 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
880 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
882 if ((atm_vcc->qos.aal != ATM_AAL5) &&
883 (atm_vcc->qos.aal != ATM_AAL2))
884 return -EINVAL; /* XXX AAL0 */
886 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
887 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
889 /* XXX handle qos parameters (rate limiting) ? */
891 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
892 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
893 if (!vcc) {
894 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
895 return -ENOMEM;
898 atm_vcc->dev_data = vcc;
899 vcc->last_skb = NULL;
901 init_waitqueue_head (&vcc->close_wait);
903 txtp = &atm_vcc->qos.txtp;
904 rxtp = &atm_vcc->qos.rxtp;
906 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
907 if (IS_FS50(dev)) {
908 /* Increment the channel numer: take a free one next time. */
909 for (to=33;to;to--, dev->channo++) {
910 /* We only have 32 channels */
911 if (dev->channo >= 32)
912 dev->channo = 0;
913 /* If we need to do RX, AND the RX is inuse, try the next */
914 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
915 continue;
916 /* If we need to do TX, AND the TX is inuse, try the next */
917 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
918 continue;
919 /* Ok, both are free! (or not needed) */
920 break;
922 if (!to) {
923 printk ("No more free channels for FS50..\n");
924 return -EBUSY;
926 vcc->channo = dev->channo;
927 dev->channo &= dev->channel_mask;
929 } else {
930 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
931 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
932 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
933 printk ("Channel is in use for FS155.\n");
934 return -EBUSY;
937 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
938 vcc->channo, vcc->channo);
941 if (DO_DIRECTION (txtp)) {
942 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
943 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
944 tc, sizeof (struct fs_transmit_config));
945 if (!tc) {
946 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
947 return -ENOMEM;
950 /* Allocate the "open" entry from the high priority txq. This makes
951 it most likely that the chip will notice it. It also prevents us
952 from having to wait for completion. On the other hand, we may
953 need to wait for completion anyway, to see if it completed
954 succesfully. */
956 switch (atm_vcc->qos.aal) {
957 case ATM_AAL2:
958 case ATM_AAL0:
959 tc->flags = 0
960 | TC_FLAGS_TRANSPARENT_PAYLOAD
961 | TC_FLAGS_PACKET
962 | (1 << 28)
963 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
964 | TC_FLAGS_CAL0;
965 break;
966 case ATM_AAL5:
967 tc->flags = 0
968 | TC_FLAGS_AAL5
969 | TC_FLAGS_PACKET /* ??? */
970 | TC_FLAGS_TYPE_CBR
971 | TC_FLAGS_CAL0;
972 break;
973 default:
974 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
975 tc->flags = 0;
977 /* Docs are vague about this atm_hdr field. By the way, the FS
978 * chip makes odd errors if lower bits are set.... -- REW */
979 tc->atm_hdr = (vpi << 20) | (vci << 4);
981 int pcr = atm_pcr_goal (txtp);
983 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
985 /* XXX Hmm. officially we're only allowed to do this if rounding
986 is round_down -- REW */
987 if (IS_FS50(dev)) {
988 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
989 } else {
990 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
992 if (!pcr) {
993 /* no rate cap */
994 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
995 } else {
996 int r;
997 if (pcr < 0) {
998 r = ROUND_DOWN;
999 pcr = -pcr;
1000 } else {
1001 r = ROUND_UP;
1003 error = make_rate (pcr, r, &tmc0, NULL);
1005 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1008 tc->TMC[0] = tmc0 | 0x4000;
1009 tc->TMC[1] = 0; /* Unused */
1010 tc->TMC[2] = 0; /* Unused */
1011 tc->TMC[3] = 0; /* Unused */
1013 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1014 tc->rtag[0] = 0; /* What should I do with routing tags???
1015 -- Not used -- AS -- Thanks -- REW*/
1016 tc->rtag[1] = 0;
1017 tc->rtag[2] = 0;
1019 if (fs_debug & FS_DEBUG_OPEN) {
1020 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1021 my_hd (tc, sizeof (*tc));
1024 /* We now use the "submit_command" function to submit commands to
1025 the firestream. There is a define up near the definition of
1026 that routine that switches this routine between immediate write
1027 to the immediate comamnd registers and queuing the commands in
1028 the HPTXQ for execution. This last technique might be more
1029 efficient if we know we're going to submit a whole lot of
1030 commands in one go, but this driver is not setup to be able to
1031 use such a construct. So it probably doen't matter much right
1032 now. -- REW */
1034 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1035 submit_command (dev, &dev->hp_txq,
1036 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1037 virt_to_bus (tc), 0, 0);
1039 submit_command (dev, &dev->hp_txq,
1040 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1041 0, 0, 0);
1042 set_bit (vcc->channo, dev->tx_inuse);
1045 if (DO_DIRECTION (rxtp)) {
1046 dev->atm_vccs[vcc->channo] = atm_vcc;
1048 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1049 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1050 if (bfp >= FS_NR_FREE_POOLS) {
1051 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1052 atm_vcc->qos.rxtp.max_sdu);
1053 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1055 /* XXX clear tx inuse. Close TX part? */
1056 dev->atm_vccs[vcc->channo] = NULL;
1057 kfree (vcc);
1058 return -EINVAL;
1061 switch (atm_vcc->qos.aal) {
1062 case ATM_AAL0:
1063 case ATM_AAL2:
1064 submit_command (dev, &dev->hp_txq,
1065 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1066 RC_FLAGS_TRANSP |
1067 RC_FLAGS_BFPS_BFP * bfp |
1068 RC_FLAGS_RXBM_PSB, 0, 0);
1069 break;
1070 case ATM_AAL5:
1071 submit_command (dev, &dev->hp_txq,
1072 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 RC_FLAGS_AAL5 |
1074 RC_FLAGS_BFPS_BFP * bfp |
1075 RC_FLAGS_RXBM_PSB, 0, 0);
1076 break;
1078 if (IS_FS50 (dev)) {
1079 submit_command (dev, &dev->hp_txq,
1080 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1081 0x80 + vcc->channo,
1082 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1084 submit_command (dev, &dev->hp_txq,
1085 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1086 0, 0, 0);
1089 /* Indicate we're done! */
1090 set_bit(ATM_VF_READY, &atm_vcc->flags);
1092 func_exit ();
1093 return 0;
1097 static void fs_close(struct atm_vcc *atm_vcc)
1099 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1100 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1101 struct atm_trafprm * txtp;
1102 struct atm_trafprm * rxtp;
1104 func_enter ();
1106 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1108 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1109 if (vcc->last_skb) {
1110 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1111 vcc->last_skb);
1112 /* We're going to wait for the last packet to get sent on this VC. It would
1113 be impolite not to send them don't you think?
1115 We don't know which packets didn't get sent. So if we get interrupted in
1116 this sleep_on, we'll lose any reference to these packets. Memory leak!
1117 On the other hand, it's awfully convenient that we can abort a "close" that
1118 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1119 interruptible_sleep_on (& vcc->close_wait);
1122 txtp = &atm_vcc->qos.txtp;
1123 rxtp = &atm_vcc->qos.rxtp;
1126 /* See App note XXX (Unpublished as of now) for the reason for the
1127 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1129 if (DO_DIRECTION (txtp)) {
1130 submit_command (dev, &dev->hp_txq,
1131 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1132 clear_bit (vcc->channo, dev->tx_inuse);
1135 if (DO_DIRECTION (rxtp)) {
1136 submit_command (dev, &dev->hp_txq,
1137 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1138 dev->atm_vccs [vcc->channo] = NULL;
1140 /* This means that this is configured as a receive channel */
1141 if (IS_FS50 (dev)) {
1142 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1143 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1144 (0xfff...) -- REW */
1145 submit_command (dev, &dev->hp_txq,
1146 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1147 0x80 + vcc->channo, -1, 0 );
1151 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1152 kfree (vcc);
1154 func_exit ();
1158 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1160 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1161 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1162 struct FS_BPENTRY *td;
1164 func_enter ();
1166 fs_dprintk (FS_DEBUG_TXMEM, "I");
1167 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1168 atm_vcc, skb, vcc, dev);
1170 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1172 ATM_SKB(skb)->vcc = atm_vcc;
1174 vcc->last_skb = skb;
1176 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1177 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1178 if (!td) {
1179 /* Oops out of mem */
1180 return -ENOMEM;
1183 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1184 *(int *) skb->data);
1186 td->flags = TD_EPI | TD_DATA | skb->len;
1187 td->next = 0;
1188 td->bsa = virt_to_bus (skb->data);
1189 td->skb = skb;
1190 td->dev = dev;
1191 dev->ntxpckts++;
1193 #ifdef DEBUG_EXTRA
1194 da[qd] = td;
1195 dq[qd].flags = td->flags;
1196 dq[qd].next = td->next;
1197 dq[qd].bsa = td->bsa;
1198 dq[qd].skb = td->skb;
1199 dq[qd].dev = td->dev;
1200 qd++;
1201 if (qd >= 60) qd = 0;
1202 #endif
1204 submit_queue (dev, &dev->hp_txq,
1205 QE_TRANSMIT_DE | vcc->channo,
1206 virt_to_bus (td), 0,
1207 virt_to_bus (td));
1209 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1210 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1211 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1212 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1213 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1215 func_exit ();
1216 return 0;
1220 /* Some function placeholders for functions we don't yet support. */
1222 #if 0
1223 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1225 func_enter ();
1226 func_exit ();
1227 return -ENOIOCTLCMD;
1231 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1232 void __user *optval,int optlen)
1234 func_enter ();
1235 func_exit ();
1236 return 0;
1240 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1241 void __user *optval,int optlen)
1243 func_enter ();
1244 func_exit ();
1245 return 0;
1249 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1250 unsigned long addr)
1252 func_enter ();
1253 func_exit ();
1257 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1259 func_enter ();
1260 func_exit ();
1261 return 0;
1265 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1267 func_enter ();
1268 func_exit ();
1269 return 0;
1272 #endif
1275 static const struct atmdev_ops ops = {
1276 .open = fs_open,
1277 .close = fs_close,
1278 .send = fs_send,
1279 .owner = THIS_MODULE,
1280 /* ioctl: fs_ioctl, */
1281 /* getsockopt: fs_getsockopt, */
1282 /* setsockopt: fs_setsockopt, */
1283 /* change_qos: fs_change_qos, */
1285 /* For now implement these internally here... */
1286 /* phy_put: fs_phy_put, */
1287 /* phy_get: fs_phy_get, */
1291 static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1293 int tint;
1295 /* The Windows driver says: */
1296 /* Switch off FireStream Retry Limit Threshold
1299 /* The register at 0x28 is documented as "reserved", no further
1300 comments. */
1302 pci_read_config_dword (pdev, 0x28, &tint);
1303 if (tint != 0x80) {
1304 tint = 0x80;
1305 pci_write_config_dword (pdev, 0x28, tint);
1311 /**************************************************************************
1312 * PHY routines *
1313 **************************************************************************/
1315 static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1317 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1318 regnum, val, 0);
1321 static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1323 int i;
1325 func_enter ();
1326 while (reginit->reg != PHY_EOF) {
1327 if (reginit->reg == PHY_CLEARALL) {
1328 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1329 for (i=0;i<reginit->val;i++) {
1330 write_phy (dev, i, 0);
1332 } else {
1333 write_phy (dev, reginit->reg, reginit->val);
1335 reginit++;
1337 func_exit ();
1338 return 0;
1341 static void reset_chip (struct fs_dev *dev)
1343 int i;
1345 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1347 /* Undocumented delay */
1348 udelay (128);
1350 /* The "internal registers are documented to all reset to zero, but
1351 comments & code in the Windows driver indicates that the pools are
1352 NOT reset. */
1353 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1354 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1355 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1356 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1357 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1358 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1361 /* The same goes for the match channel registers, although those are
1362 NOT documented that way in the Windows driver. -- REW */
1363 /* The Windows driver DOES write 0 to these registers somewhere in
1364 the init sequence. However, a small hardware-feature, will
1365 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1366 allocated happens to have no disabled channels that have a lower
1367 number. -- REW */
1369 /* Clear the match channel registers. */
1370 if (IS_FS50 (dev)) {
1371 for (i=0;i<FS50_NR_CHANNELS;i++) {
1372 write_fs (dev, 0x200 + i * 4, -1);
1377 static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1379 void *t;
1381 if (alignment <= 0x10) {
1382 t = kmalloc (size, flags);
1383 if ((unsigned long)t & (alignment-1)) {
1384 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1385 kfree (t);
1386 return aligned_kmalloc (size, flags, alignment * 4);
1388 return t;
1390 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1391 return NULL;
1394 static int __devinit init_q (struct fs_dev *dev,
1395 struct queue *txq, int queue, int nentries, int is_rq)
1397 int sz = nentries * sizeof (struct FS_QENTRY);
1398 struct FS_QENTRY *p;
1400 func_enter ();
1402 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1403 queue, nentries);
1405 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1406 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1408 if (!p) return 0;
1410 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1411 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1412 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1413 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1414 if (is_rq) {
1415 /* Configuration for the receive queue: 0: interrupt immediately,
1416 no pre-warning to empty queues: We do our best to keep the
1417 queue filled anyway. */
1418 write_fs (dev, Q_CNF(queue), 0 );
1421 txq->sa = p;
1422 txq->ea = p;
1423 txq->offset = queue;
1425 func_exit ();
1426 return 1;
1430 static int __devinit init_fp (struct fs_dev *dev,
1431 struct freepool *fp, int queue, int bufsize, int nr_buffers)
1433 func_enter ();
1435 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1437 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1438 write_fs (dev, FP_SA(queue), 0);
1439 write_fs (dev, FP_EA(queue), 0);
1440 write_fs (dev, FP_CTU(queue), 0);
1441 write_fs (dev, FP_CNT(queue), 0);
1443 fp->offset = queue;
1444 fp->bufsize = bufsize;
1445 fp->nr_buffers = nr_buffers;
1447 func_exit ();
1448 return 1;
1452 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1454 #if 0
1455 /* This seems to be unreliable.... */
1456 return read_fs (dev, FP_CNT (fp->offset));
1457 #else
1458 return fp->n;
1459 #endif
1463 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1464 does. I've seen "receive abort: no buffers" and things started
1465 working again after that... -- REW */
1467 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1468 gfp_t gfp_flags)
1470 struct FS_BPENTRY *qe, *ne;
1471 struct sk_buff *skb;
1472 int n = 0;
1474 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1475 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1476 fp->nr_buffers);
1477 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1479 skb = alloc_skb (fp->bufsize, gfp_flags);
1480 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1481 if (!skb) break;
1482 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1483 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1484 if (!ne) {
1485 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1486 dev_kfree_skb_any (skb);
1487 break;
1490 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1491 skb, ne, skb->data, skb->head);
1492 n++;
1493 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1494 ne->next = virt_to_bus (NULL);
1495 ne->bsa = virt_to_bus (skb->data);
1496 ne->aal_bufsize = fp->bufsize;
1497 ne->skb = skb;
1498 ne->fp = fp;
1500 qe = (struct FS_BPENTRY *) (read_fs (dev, FP_EA(fp->offset)));
1501 fs_dprintk (FS_DEBUG_QUEUE, "link at %p\n", qe);
1502 if (qe) {
1503 qe = bus_to_virt ((long) qe);
1504 qe->next = virt_to_bus(ne);
1505 qe->flags &= ~FP_FLAGS_EPI;
1506 } else
1507 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1509 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1510 fp->n++; /* XXX Atomic_inc? */
1511 write_fs (dev, FP_CTU(fp->offset), 1);
1514 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1517 static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1519 func_enter ();
1521 write_fs (dev, Q_SA(txq->offset), 0);
1522 write_fs (dev, Q_EA(txq->offset), 0);
1523 write_fs (dev, Q_RP(txq->offset), 0);
1524 write_fs (dev, Q_WP(txq->offset), 0);
1525 /* Configuration ? */
1527 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1528 kfree (txq->sa);
1530 func_exit ();
1533 static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1535 func_enter ();
1537 write_fs (dev, FP_CNF(fp->offset), 0);
1538 write_fs (dev, FP_SA (fp->offset), 0);
1539 write_fs (dev, FP_EA (fp->offset), 0);
1540 write_fs (dev, FP_CNT(fp->offset), 0);
1541 write_fs (dev, FP_CTU(fp->offset), 0);
1543 func_exit ();
1548 static irqreturn_t fs_irq (int irq, void *dev_id, struct pt_regs * pt_regs)
1550 int i;
1551 u32 status;
1552 struct fs_dev *dev = dev_id;
1554 status = read_fs (dev, ISR);
1555 if (!status)
1556 return IRQ_NONE;
1558 func_enter ();
1560 #ifdef IRQ_RATE_LIMIT
1561 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1562 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1564 static int lastjif;
1565 static int nintr=0;
1567 if (lastjif == jiffies) {
1568 if (++nintr > IRQ_RATE_LIMIT) {
1569 free_irq (dev->irq, dev_id);
1570 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1571 dev->irq);
1573 } else {
1574 lastjif = jiffies;
1575 nintr = 0;
1578 #endif
1579 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1580 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1581 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1582 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1583 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1585 /* print the bits in the ISR register. */
1586 if (fs_debug & FS_DEBUG_IRQ) {
1587 /* The FS_DEBUG things are unneccesary here. But this way it is
1588 clear for grep that these are debug prints. */
1589 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1590 for (i=0;i<27;i++)
1591 if (status & (1 << i))
1592 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1593 fs_dprintk (FS_DEBUG_IRQ, "\n");
1596 if (status & ISR_RBRQ0_W) {
1597 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1598 process_incoming (dev, &dev->rx_rq[0]);
1599 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1600 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1601 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1604 if (status & ISR_RBRQ1_W) {
1605 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1606 process_incoming (dev, &dev->rx_rq[1]);
1607 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1608 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1611 if (status & ISR_RBRQ2_W) {
1612 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1613 process_incoming (dev, &dev->rx_rq[2]);
1614 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1615 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1618 if (status & ISR_RBRQ3_W) {
1619 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1620 process_incoming (dev, &dev->rx_rq[3]);
1621 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1622 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1625 if (status & ISR_CSQ_W) {
1626 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1627 process_return_queue (dev, &dev->st_q);
1630 if (status & ISR_TBRQ_W) {
1631 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1632 process_txdone_queue (dev, &dev->tx_relq);
1635 func_exit ();
1636 return IRQ_HANDLED;
1640 #ifdef FS_POLL_FREQ
1641 static void fs_poll (unsigned long data)
1643 struct fs_dev *dev = (struct fs_dev *) data;
1645 fs_irq (0, dev, NULL);
1646 dev->timer.expires = jiffies + FS_POLL_FREQ;
1647 add_timer (&dev->timer);
1649 #endif
1651 static int __devinit fs_init (struct fs_dev *dev)
1653 struct pci_dev *pci_dev;
1654 int isr, to;
1655 int i;
1657 func_enter ();
1658 pci_dev = dev->pci_dev;
1660 printk (KERN_INFO "found a FireStream %d card, base %08lx, irq%d.\n",
1661 IS_FS50(dev)?50:155,
1662 pci_resource_start(pci_dev, 0), dev->pci_dev->irq);
1664 if (fs_debug & FS_DEBUG_INIT)
1665 my_hd ((unsigned char *) dev, sizeof (*dev));
1667 undocumented_pci_fix (pci_dev);
1669 dev->hw_base = pci_resource_start(pci_dev, 0);
1671 dev->base = ioremap(dev->hw_base, 0x1000);
1673 reset_chip (dev);
1675 write_fs (dev, SARMODE0, 0
1676 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1677 | (1 * SARMODE0_INTMODE_READCLEAR)
1678 | (1 * SARMODE0_CWRE)
1679 | IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1680 SARMODE0_PRPWT_FS155_3
1681 | (1 * SARMODE0_CALSUP_1)
1682 | IS_FS50 (dev)?(0
1683 | SARMODE0_RXVCS_32
1684 | SARMODE0_ABRVCS_32
1685 | SARMODE0_TXVCS_32):
1687 | SARMODE0_RXVCS_1k
1688 | SARMODE0_ABRVCS_1k
1689 | SARMODE0_TXVCS_1k));
1691 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1692 1ms. */
1693 to = 100;
1694 while (--to) {
1695 isr = read_fs (dev, ISR);
1697 /* This bit is documented as "RESERVED" */
1698 if (isr & ISR_INIT_ERR) {
1699 printk (KERN_ERR "Error initializing the FS... \n");
1700 return 1;
1702 if (isr & ISR_INIT) {
1703 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1704 break;
1707 /* Try again after 10ms. */
1708 msleep(10);
1711 if (!to) {
1712 printk (KERN_ERR "timeout initializing the FS... \n");
1713 return 1;
1716 /* XXX fix for fs155 */
1717 dev->channel_mask = 0x1f;
1718 dev->channo = 0;
1720 /* AN3: 10 */
1721 write_fs (dev, SARMODE1, 0
1722 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1723 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1724 | (1 * SARMODE1_DCRM)
1725 | (1 * SARMODE1_DCOAM)
1726 | (0 * SARMODE1_OAMCRC)
1727 | (0 * SARMODE1_DUMPE)
1728 | (0 * SARMODE1_GPLEN)
1729 | (0 * SARMODE1_GNAM)
1730 | (0 * SARMODE1_GVAS)
1731 | (0 * SARMODE1_GPAS)
1732 | (1 * SARMODE1_GPRI)
1733 | (0 * SARMODE1_PMS)
1734 | (0 * SARMODE1_GFCR)
1735 | (1 * SARMODE1_HECM2)
1736 | (1 * SARMODE1_HECM1)
1737 | (1 * SARMODE1_HECM0)
1738 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1739 | (0 * 0xff) /* XXX FS155 */);
1742 /* Cal prescale etc */
1744 /* AN3: 11 */
1745 write_fs (dev, TMCONF, 0x0000000f);
1746 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1747 write_fs (dev, 0x80, 0x000F00E4);
1749 /* AN3: 12 */
1750 write_fs (dev, CELLOSCONF, 0
1751 | ( 0 * CELLOSCONF_CEN)
1752 | ( CELLOSCONF_SC1)
1753 | (0x80 * CELLOSCONF_COBS)
1754 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1755 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1756 * performance jumped 50->70... */
1758 /* Magic value by Hang */
1759 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1761 if (IS_FS50 (dev)) {
1762 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1763 dev->atm_dev->ci_range.vpi_bits = 12;
1764 dev->atm_dev->ci_range.vci_bits = 16;
1765 dev->nchannels = FS50_NR_CHANNELS;
1766 } else {
1767 write_fs (dev, RAS0, RAS0_DCD_XHLT
1768 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1769 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1770 /* We can chose the split arbitarily. We might be able to
1771 support more. Whatever. This should do for now. */
1772 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1773 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1775 /* Address bits we can't use should be compared to 0. */
1776 write_fs (dev, RAC, 0);
1778 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1779 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1780 * other bits, then compare with 0, which is exactly what we
1781 * want. */
1782 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1783 dev->nchannels = FS155_NR_CHANNELS;
1785 dev->atm_vccs = kmalloc (dev->nchannels * sizeof (struct atm_vcc *),
1786 GFP_KERNEL);
1787 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1788 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1790 if (!dev->atm_vccs) {
1791 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1792 /* XXX Clean up..... */
1793 return 1;
1795 memset (dev->atm_vccs, 0, dev->nchannels * sizeof (struct atm_vcc *));
1797 dev->tx_inuse = kmalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1798 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1799 dev->atm_vccs, dev->nchannels / 8);
1801 if (!dev->tx_inuse) {
1802 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1803 /* XXX Clean up..... */
1804 return 1;
1806 memset (dev->tx_inuse, 0, dev->nchannels / 8);
1808 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1809 /* -- RAS2 : FS50 only: Default is OK. */
1811 /* DMAMODE, default should be OK. -- REW */
1812 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1814 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1815 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1816 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1817 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1819 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1820 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1821 rx_buf_sizes[i], rx_pool_sizes[i]);
1822 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1826 for (i=0;i < FS_NR_RX_QUEUES;i++)
1827 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1829 dev->irq = pci_dev->irq;
1830 if (request_irq (dev->irq, fs_irq, SA_SHIRQ, "firestream", dev)) {
1831 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1832 /* XXX undo all previous stuff... */
1833 return 1;
1835 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1837 /* We want to be notified of most things. Just the statistics count
1838 overflows are not interesting */
1839 write_fs (dev, IMR, 0
1840 | ISR_RBRQ0_W
1841 | ISR_RBRQ1_W
1842 | ISR_RBRQ2_W
1843 | ISR_RBRQ3_W
1844 | ISR_TBRQ_W
1845 | ISR_CSQ_W);
1847 write_fs (dev, SARMODE0, 0
1848 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1849 | (1 * SARMODE0_GINT)
1850 | (1 * SARMODE0_INTMODE_READCLEAR)
1851 | (0 * SARMODE0_CWRE)
1852 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1853 SARMODE0_PRPWT_FS155_3)
1854 | (1 * SARMODE0_CALSUP_1)
1855 | (IS_FS50 (dev)?(0
1856 | SARMODE0_RXVCS_32
1857 | SARMODE0_ABRVCS_32
1858 | SARMODE0_TXVCS_32):
1860 | SARMODE0_RXVCS_1k
1861 | SARMODE0_ABRVCS_1k
1862 | SARMODE0_TXVCS_1k))
1863 | (1 * SARMODE0_RUN));
1865 init_phy (dev, PHY_NTC_INIT);
1867 if (loopback == 2) {
1868 write_phy (dev, 0x39, 0x000e);
1871 #ifdef FS_POLL_FREQ
1872 init_timer (&dev->timer);
1873 dev->timer.data = (unsigned long) dev;
1874 dev->timer.function = fs_poll;
1875 dev->timer.expires = jiffies + FS_POLL_FREQ;
1876 add_timer (&dev->timer);
1877 #endif
1879 dev->atm_dev->dev_data = dev;
1881 func_exit ();
1882 return 0;
1885 static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1886 const struct pci_device_id *ent)
1888 struct atm_dev *atm_dev;
1889 struct fs_dev *fs_dev;
1891 if (pci_enable_device(pci_dev))
1892 goto err_out;
1894 fs_dev = kmalloc (sizeof (struct fs_dev), GFP_KERNEL);
1895 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1896 fs_dev, sizeof (struct fs_dev));
1897 if (!fs_dev)
1898 goto err_out;
1900 memset (fs_dev, 0, sizeof (struct fs_dev));
1902 atm_dev = atm_dev_register("fs", &ops, -1, NULL);
1903 if (!atm_dev)
1904 goto err_out_free_fs_dev;
1906 fs_dev->pci_dev = pci_dev;
1907 fs_dev->atm_dev = atm_dev;
1908 fs_dev->flags = ent->driver_data;
1910 if (fs_init(fs_dev))
1911 goto err_out_free_atm_dev;
1913 fs_dev->next = fs_boards;
1914 fs_boards = fs_dev;
1915 return 0;
1917 err_out_free_atm_dev:
1918 atm_dev_deregister(atm_dev);
1919 err_out_free_fs_dev:
1920 kfree(fs_dev);
1921 err_out:
1922 return -ENODEV;
1925 static void __devexit firestream_remove_one (struct pci_dev *pdev)
1927 int i;
1928 struct fs_dev *dev, *nxtdev;
1929 struct fs_vcc *vcc;
1930 struct FS_BPENTRY *fp, *nxt;
1932 func_enter ();
1934 #if 0
1935 printk ("hptxq:\n");
1936 for (i=0;i<60;i++) {
1937 printk ("%d: %08x %08x %08x %08x \n",
1938 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1939 qp++;
1940 if (qp >= 60) qp = 0;
1943 printk ("descriptors:\n");
1944 for (i=0;i<60;i++) {
1945 printk ("%d: %p: %08x %08x %p %p\n",
1946 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1947 qd++;
1948 if (qd >= 60) qd = 0;
1950 #endif
1952 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1953 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1955 /* XXX Hit all the tx channels too! */
1957 for (i=0;i < dev->nchannels;i++) {
1958 if (dev->atm_vccs[i]) {
1959 vcc = FS_VCC (dev->atm_vccs[i]);
1960 submit_command (dev, &dev->hp_txq,
1961 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1962 submit_command (dev, &dev->hp_txq,
1963 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1968 /* XXX Wait a while for the chip to release all buffers. */
1970 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1971 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1972 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1973 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1974 dev_kfree_skb_any (fp->skb);
1975 nxt = bus_to_virt (fp->next);
1976 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1977 kfree (fp);
1979 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1980 dev_kfree_skb_any (fp->skb);
1981 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1982 kfree (fp);
1985 /* Hang the chip in "reset", prevent it clobbering memory that is
1986 no longer ours. */
1987 reset_chip (dev);
1989 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1990 free_irq (dev->irq, dev);
1991 del_timer (&dev->timer);
1993 atm_dev_deregister(dev->atm_dev);
1994 free_queue (dev, &dev->hp_txq);
1995 free_queue (dev, &dev->lp_txq);
1996 free_queue (dev, &dev->tx_relq);
1997 free_queue (dev, &dev->st_q);
1999 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2000 kfree (dev->atm_vccs);
2002 for (i=0;i< FS_NR_FREE_POOLS;i++)
2003 free_freepool (dev, &dev->rx_fp[i]);
2005 for (i=0;i < FS_NR_RX_QUEUES;i++)
2006 free_queue (dev, &dev->rx_rq[i]);
2008 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2009 nxtdev = dev->next;
2010 kfree (dev);
2013 func_exit ();
2016 static struct pci_device_id firestream_pci_tbl[] = {
2017 { PCI_VENDOR_ID_FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50,
2018 PCI_ANY_ID, PCI_ANY_ID, 0, 0, FS_IS50},
2019 { PCI_VENDOR_ID_FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155,
2020 PCI_ANY_ID, PCI_ANY_ID, 0, 0, FS_IS155},
2021 { 0, }
2024 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2026 static struct pci_driver firestream_driver = {
2027 .name = "firestream",
2028 .id_table = firestream_pci_tbl,
2029 .probe = firestream_init_one,
2030 .remove = __devexit_p(firestream_remove_one),
2033 static int __init firestream_init_module (void)
2035 int error;
2037 func_enter ();
2038 error = pci_register_driver(&firestream_driver);
2039 func_exit ();
2040 return error;
2043 static void __exit firestream_cleanup_module(void)
2045 pci_unregister_driver(&firestream_driver);
2048 module_init(firestream_init_module);
2049 module_exit(firestream_cleanup_module);
2051 MODULE_LICENSE("GPL");