2 * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
3 * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
5 * 2.6 port by Matt Porter <mporter@kernel.crashing.org>
7 * The documentation describes this as an SMBus controller, but it doesn't
8 * understand any of the SMBus protocol in hardware. It's really an I2C
9 * controller that could emulate most of the SMBus in software.
11 * This is just a skeleton adapter to use with the Au1550 PSC
12 * algorithm. It was developed for the Pb1550, but will work with
13 * any Au1550 board that has a similar PSC configuration.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 #include <linux/delay.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/errno.h>
35 #include <linux/i2c.h>
37 #include <asm/mach-au1x00/au1000.h>
38 #include <asm/mach-pb1x00/pb1550.h>
39 #include <asm/mach-au1x00/au1xxx_psc.h>
41 #include "i2c-au1550.h"
44 wait_xfer_done(struct i2c_au1550_data
*adap
)
48 volatile psc_smb_t
*sp
;
50 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
52 /* Wait for Tx FIFO Underflow.
54 for (i
= 0; i
< adap
->xfer_timeout
; i
++) {
55 stat
= sp
->psc_smbevnt
;
57 if ((stat
& PSC_SMBEVNT_TU
) != 0) {
59 sp
->psc_smbevnt
= PSC_SMBEVNT_TU
;
70 wait_ack(struct i2c_au1550_data
*adap
)
73 volatile psc_smb_t
*sp
;
75 if (wait_xfer_done(adap
))
78 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
80 stat
= sp
->psc_smbevnt
;
83 if ((stat
& (PSC_SMBEVNT_DN
| PSC_SMBEVNT_AN
| PSC_SMBEVNT_AL
)) != 0)
90 wait_master_done(struct i2c_au1550_data
*adap
)
94 volatile psc_smb_t
*sp
;
96 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
98 /* Wait for Master Done.
100 for (i
= 0; i
< adap
->xfer_timeout
; i
++) {
101 stat
= sp
->psc_smbevnt
;
103 if ((stat
& PSC_SMBEVNT_MD
) != 0)
112 do_address(struct i2c_au1550_data
*adap
, unsigned int addr
, int rd
)
114 volatile psc_smb_t
*sp
;
117 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
119 /* Reset the FIFOs, clear events.
121 sp
->psc_smbpcr
= PSC_SMBPCR_DC
;
122 sp
->psc_smbevnt
= PSC_SMBEVNT_ALLCLR
;
125 stat
= sp
->psc_smbpcr
;
127 } while ((stat
& PSC_SMBPCR_DC
) != 0);
129 /* Write out the i2c chip address and specify operation
135 /* Put byte into fifo, start up master.
137 sp
->psc_smbtxrx
= addr
;
139 sp
->psc_smbpcr
= PSC_SMBPCR_MS
;
147 wait_for_rx_byte(struct i2c_au1550_data
*adap
, u32
*ret_data
)
151 volatile psc_smb_t
*sp
;
153 if (wait_xfer_done(adap
))
156 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
158 j
= adap
->xfer_timeout
* 100;
164 stat
= sp
->psc_smbstat
;
166 if ((stat
& PSC_SMBSTAT_RE
) == 0)
171 data
= sp
->psc_smbtxrx
;
179 i2c_read(struct i2c_au1550_data
*adap
, unsigned char *buf
,
184 volatile psc_smb_t
*sp
;
189 /* A read is performed by stuffing the transmit fifo with
190 * zero bytes for timing, waiting for bytes to appear in the
191 * receive fifo, then reading the bytes.
194 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
197 while (i
< (len
-1)) {
200 if (wait_for_rx_byte(adap
, &data
))
207 /* The last byte has to indicate transfer done.
209 sp
->psc_smbtxrx
= PSC_SMBTXRX_STP
;
211 if (wait_master_done(adap
))
214 data
= sp
->psc_smbtxrx
;
221 i2c_write(struct i2c_au1550_data
*adap
, unsigned char *buf
,
226 volatile psc_smb_t
*sp
;
231 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
234 while (i
< (len
-1)) {
236 sp
->psc_smbtxrx
= data
;
243 /* The last byte has to indicate transfer done.
246 data
|= PSC_SMBTXRX_STP
;
247 sp
->psc_smbtxrx
= data
;
249 if (wait_master_done(adap
))
255 au1550_xfer(struct i2c_adapter
*i2c_adap
, struct i2c_msg
*msgs
, int num
)
257 struct i2c_au1550_data
*adap
= i2c_adap
->algo_data
;
261 for (i
= 0; !err
&& i
< num
; i
++) {
263 err
= do_address(adap
, p
->addr
, p
->flags
& I2C_M_RD
);
266 if (p
->flags
& I2C_M_RD
)
267 err
= i2c_read(adap
, p
->buf
, p
->len
);
269 err
= i2c_write(adap
, p
->buf
, p
->len
);
272 /* Return the number of messages processed, or the error code.
280 au1550_func(struct i2c_adapter
*adap
)
285 static struct i2c_algorithm au1550_algo
= {
286 .master_xfer
= au1550_xfer
,
287 .functionality
= au1550_func
,
291 * registering functions to load algorithms at runtime
292 * Prior to calling us, the 50MHz clock frequency and routing
293 * must have been set up for the PSC indicated by the adapter.
296 i2c_au1550_add_bus(struct i2c_adapter
*i2c_adap
)
298 struct i2c_au1550_data
*adap
= i2c_adap
->algo_data
;
299 volatile psc_smb_t
*sp
;
302 i2c_adap
->algo
= &au1550_algo
;
304 /* Now, set up the PSC for SMBus PIO mode.
306 sp
= (volatile psc_smb_t
*)(adap
->psc_base
);
307 sp
->psc_ctrl
= PSC_CTRL_DISABLE
;
309 sp
->psc_sel
= PSC_SEL_PS_SMBUSMODE
;
312 sp
->psc_ctrl
= PSC_CTRL_ENABLE
;
315 stat
= sp
->psc_smbstat
;
317 } while ((stat
& PSC_SMBSTAT_SR
) == 0);
319 sp
->psc_smbcfg
= (PSC_SMBCFG_RT_FIFO8
| PSC_SMBCFG_TT_FIFO8
|
320 PSC_SMBCFG_DD_DISABLE
);
322 /* Divide by 8 to get a 6.25 MHz clock. The later protocol
323 * timings are based on this clock.
325 sp
->psc_smbcfg
|= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8
);
326 sp
->psc_smbmsk
= PSC_SMBMSK_ALLMASK
;
329 /* Set the protocol timer values. See Table 71 in the
330 * Au1550 Data Book for standard timing values.
332 sp
->psc_smbtmr
= PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
333 PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
334 PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
335 PSC_SMBTMR_SET_CH(15);
338 sp
->psc_smbcfg
|= PSC_SMBCFG_DE_ENABLE
;
340 stat
= sp
->psc_smbstat
;
342 } while ((stat
& PSC_SMBSTAT_DR
) == 0);
344 return i2c_add_adapter(i2c_adap
);
349 i2c_au1550_del_bus(struct i2c_adapter
*adap
)
351 return i2c_del_adapter(adap
);
355 pb1550_reg(struct i2c_client
*client
)
361 pb1550_unreg(struct i2c_client
*client
)
366 static struct i2c_au1550_data pb1550_i2c_info
= {
367 SMBUS_PSC_BASE
, 200, 200
370 static struct i2c_adapter pb1550_board_adapter
= {
371 name
: "pb1550 adapter",
372 id
: I2C_HW_AU1550_PSC
,
374 algo_data
: &pb1550_i2c_info
,
375 client_register
: pb1550_reg
,
376 client_unregister
: pb1550_unreg
,
379 /* BIG hack to support the control interface on the Wolfson WM8731
380 * audio codec on the Pb1550 board. We get an address and two data
381 * bytes to write, create an i2c message, and send it across the
382 * i2c transfer function. We do this here because we have access to
383 * the i2c adapter structure.
385 static struct i2c_msg wm_i2c_msg
; /* We don't want this stuff on the stack */
389 pb1550_wm_codec_write(u8 addr
, u8 reg
, u8 val
)
391 wm_i2c_msg
.addr
= addr
;
392 wm_i2c_msg
.flags
= 0;
393 wm_i2c_msg
.buf
= i2cbuf
;
398 return pb1550_board_adapter
.algo
->master_xfer(&pb1550_board_adapter
, &wm_i2c_msg
, 1);
402 i2c_au1550_init(void)
404 printk(KERN_INFO
"Au1550 I2C: ");
406 /* This is where we would set up a 50MHz clock source
407 * and routing. On the Pb1550, the SMBus is PSC2, which
408 * uses a shared clock with USB. This has been already
409 * configured by Yamon as a 48MHz clock, close enough
412 if (i2c_au1550_add_bus(&pb1550_board_adapter
) < 0) {
413 printk("failed to initialize.\n");
417 printk("initialized.\n");
422 i2c_au1550_exit(void)
424 i2c_au1550_del_bus(&pb1550_board_adapter
);
427 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
428 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
429 MODULE_LICENSE("GPL");
431 module_init (i2c_au1550_init
);
432 module_exit (i2c_au1550_exit
);