[NETFILTER]: Move ip6_masked_addrcmp to include/net/ipv6.h
[linux-2.6/verdex.git] / drivers / i2c / busses / i2c-au1550.c
blobd06edce03bf40dd83604708018d4ce5165cd852f
1 /*
2 * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
3 * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
5 * 2.6 port by Matt Porter <mporter@kernel.crashing.org>
7 * The documentation describes this as an SMBus controller, but it doesn't
8 * understand any of the SMBus protocol in hardware. It's really an I2C
9 * controller that could emulate most of the SMBus in software.
11 * This is just a skeleton adapter to use with the Au1550 PSC
12 * algorithm. It was developed for the Pb1550, but will work with
13 * any Au1550 board that has a similar PSC configuration.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 #include <linux/delay.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/errno.h>
35 #include <linux/i2c.h>
37 #include <asm/mach-au1x00/au1000.h>
38 #include <asm/mach-pb1x00/pb1550.h>
39 #include <asm/mach-au1x00/au1xxx_psc.h>
41 #include "i2c-au1550.h"
43 static int
44 wait_xfer_done(struct i2c_au1550_data *adap)
46 u32 stat;
47 int i;
48 volatile psc_smb_t *sp;
50 sp = (volatile psc_smb_t *)(adap->psc_base);
52 /* Wait for Tx FIFO Underflow.
54 for (i = 0; i < adap->xfer_timeout; i++) {
55 stat = sp->psc_smbevnt;
56 au_sync();
57 if ((stat & PSC_SMBEVNT_TU) != 0) {
58 /* Clear it. */
59 sp->psc_smbevnt = PSC_SMBEVNT_TU;
60 au_sync();
61 return 0;
63 udelay(1);
66 return -ETIMEDOUT;
69 static int
70 wait_ack(struct i2c_au1550_data *adap)
72 u32 stat;
73 volatile psc_smb_t *sp;
75 if (wait_xfer_done(adap))
76 return -ETIMEDOUT;
78 sp = (volatile psc_smb_t *)(adap->psc_base);
80 stat = sp->psc_smbevnt;
81 au_sync();
83 if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0)
84 return -ETIMEDOUT;
86 return 0;
89 static int
90 wait_master_done(struct i2c_au1550_data *adap)
92 u32 stat;
93 int i;
94 volatile psc_smb_t *sp;
96 sp = (volatile psc_smb_t *)(adap->psc_base);
98 /* Wait for Master Done.
100 for (i = 0; i < adap->xfer_timeout; i++) {
101 stat = sp->psc_smbevnt;
102 au_sync();
103 if ((stat & PSC_SMBEVNT_MD) != 0)
104 return 0;
105 udelay(1);
108 return -ETIMEDOUT;
111 static int
112 do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd)
114 volatile psc_smb_t *sp;
115 u32 stat;
117 sp = (volatile psc_smb_t *)(adap->psc_base);
119 /* Reset the FIFOs, clear events.
121 sp->psc_smbpcr = PSC_SMBPCR_DC;
122 sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR;
123 au_sync();
124 do {
125 stat = sp->psc_smbpcr;
126 au_sync();
127 } while ((stat & PSC_SMBPCR_DC) != 0);
129 /* Write out the i2c chip address and specify operation
131 addr <<= 1;
132 if (rd)
133 addr |= 1;
135 /* Put byte into fifo, start up master.
137 sp->psc_smbtxrx = addr;
138 au_sync();
139 sp->psc_smbpcr = PSC_SMBPCR_MS;
140 au_sync();
141 if (wait_ack(adap))
142 return -EIO;
143 return 0;
146 static u32
147 wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data)
149 int j;
150 u32 data, stat;
151 volatile psc_smb_t *sp;
153 if (wait_xfer_done(adap))
154 return -EIO;
156 sp = (volatile psc_smb_t *)(adap->psc_base);
158 j = adap->xfer_timeout * 100;
159 do {
160 j--;
161 if (j <= 0)
162 return -EIO;
164 stat = sp->psc_smbstat;
165 au_sync();
166 if ((stat & PSC_SMBSTAT_RE) == 0)
167 j = 0;
168 else
169 udelay(1);
170 } while (j > 0);
171 data = sp->psc_smbtxrx;
172 au_sync();
173 *ret_data = data;
175 return 0;
178 static int
179 i2c_read(struct i2c_au1550_data *adap, unsigned char *buf,
180 unsigned int len)
182 int i;
183 u32 data;
184 volatile psc_smb_t *sp;
186 if (len == 0)
187 return 0;
189 /* A read is performed by stuffing the transmit fifo with
190 * zero bytes for timing, waiting for bytes to appear in the
191 * receive fifo, then reading the bytes.
194 sp = (volatile psc_smb_t *)(adap->psc_base);
196 i = 0;
197 while (i < (len-1)) {
198 sp->psc_smbtxrx = 0;
199 au_sync();
200 if (wait_for_rx_byte(adap, &data))
201 return -EIO;
203 buf[i] = data;
204 i++;
207 /* The last byte has to indicate transfer done.
209 sp->psc_smbtxrx = PSC_SMBTXRX_STP;
210 au_sync();
211 if (wait_master_done(adap))
212 return -EIO;
214 data = sp->psc_smbtxrx;
215 au_sync();
216 buf[i] = data;
217 return 0;
220 static int
221 i2c_write(struct i2c_au1550_data *adap, unsigned char *buf,
222 unsigned int len)
224 int i;
225 u32 data;
226 volatile psc_smb_t *sp;
228 if (len == 0)
229 return 0;
231 sp = (volatile psc_smb_t *)(adap->psc_base);
233 i = 0;
234 while (i < (len-1)) {
235 data = buf[i];
236 sp->psc_smbtxrx = data;
237 au_sync();
238 if (wait_ack(adap))
239 return -EIO;
240 i++;
243 /* The last byte has to indicate transfer done.
245 data = buf[i];
246 data |= PSC_SMBTXRX_STP;
247 sp->psc_smbtxrx = data;
248 au_sync();
249 if (wait_master_done(adap))
250 return -EIO;
251 return 0;
254 static int
255 au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
257 struct i2c_au1550_data *adap = i2c_adap->algo_data;
258 struct i2c_msg *p;
259 int i, err = 0;
261 for (i = 0; !err && i < num; i++) {
262 p = &msgs[i];
263 err = do_address(adap, p->addr, p->flags & I2C_M_RD);
264 if (err || !p->len)
265 continue;
266 if (p->flags & I2C_M_RD)
267 err = i2c_read(adap, p->buf, p->len);
268 else
269 err = i2c_write(adap, p->buf, p->len);
272 /* Return the number of messages processed, or the error code.
274 if (err == 0)
275 err = num;
276 return err;
279 static u32
280 au1550_func(struct i2c_adapter *adap)
282 return I2C_FUNC_I2C;
285 static struct i2c_algorithm au1550_algo = {
286 .master_xfer = au1550_xfer,
287 .functionality = au1550_func,
291 * registering functions to load algorithms at runtime
292 * Prior to calling us, the 50MHz clock frequency and routing
293 * must have been set up for the PSC indicated by the adapter.
296 i2c_au1550_add_bus(struct i2c_adapter *i2c_adap)
298 struct i2c_au1550_data *adap = i2c_adap->algo_data;
299 volatile psc_smb_t *sp;
300 u32 stat;
302 i2c_adap->algo = &au1550_algo;
304 /* Now, set up the PSC for SMBus PIO mode.
306 sp = (volatile psc_smb_t *)(adap->psc_base);
307 sp->psc_ctrl = PSC_CTRL_DISABLE;
308 au_sync();
309 sp->psc_sel = PSC_SEL_PS_SMBUSMODE;
310 sp->psc_smbcfg = 0;
311 au_sync();
312 sp->psc_ctrl = PSC_CTRL_ENABLE;
313 au_sync();
314 do {
315 stat = sp->psc_smbstat;
316 au_sync();
317 } while ((stat & PSC_SMBSTAT_SR) == 0);
319 sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 |
320 PSC_SMBCFG_DD_DISABLE);
322 /* Divide by 8 to get a 6.25 MHz clock. The later protocol
323 * timings are based on this clock.
325 sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8);
326 sp->psc_smbmsk = PSC_SMBMSK_ALLMASK;
327 au_sync();
329 /* Set the protocol timer values. See Table 71 in the
330 * Au1550 Data Book for standard timing values.
332 sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
333 PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
334 PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
335 PSC_SMBTMR_SET_CH(15);
336 au_sync();
338 sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE;
339 do {
340 stat = sp->psc_smbstat;
341 au_sync();
342 } while ((stat & PSC_SMBSTAT_DR) == 0);
344 return i2c_add_adapter(i2c_adap);
349 i2c_au1550_del_bus(struct i2c_adapter *adap)
351 return i2c_del_adapter(adap);
354 static int
355 pb1550_reg(struct i2c_client *client)
357 return 0;
360 static int
361 pb1550_unreg(struct i2c_client *client)
363 return 0;
366 static struct i2c_au1550_data pb1550_i2c_info = {
367 SMBUS_PSC_BASE, 200, 200
370 static struct i2c_adapter pb1550_board_adapter = {
371 name: "pb1550 adapter",
372 id: I2C_HW_AU1550_PSC,
373 algo: NULL,
374 algo_data: &pb1550_i2c_info,
375 client_register: pb1550_reg,
376 client_unregister: pb1550_unreg,
379 /* BIG hack to support the control interface on the Wolfson WM8731
380 * audio codec on the Pb1550 board. We get an address and two data
381 * bytes to write, create an i2c message, and send it across the
382 * i2c transfer function. We do this here because we have access to
383 * the i2c adapter structure.
385 static struct i2c_msg wm_i2c_msg; /* We don't want this stuff on the stack */
386 static u8 i2cbuf[2];
389 pb1550_wm_codec_write(u8 addr, u8 reg, u8 val)
391 wm_i2c_msg.addr = addr;
392 wm_i2c_msg.flags = 0;
393 wm_i2c_msg.buf = i2cbuf;
394 wm_i2c_msg.len = 2;
395 i2cbuf[0] = reg;
396 i2cbuf[1] = val;
398 return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1);
401 static int __init
402 i2c_au1550_init(void)
404 printk(KERN_INFO "Au1550 I2C: ");
406 /* This is where we would set up a 50MHz clock source
407 * and routing. On the Pb1550, the SMBus is PSC2, which
408 * uses a shared clock with USB. This has been already
409 * configured by Yamon as a 48MHz clock, close enough
410 * for our work.
412 if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) {
413 printk("failed to initialize.\n");
414 return -ENODEV;
417 printk("initialized.\n");
418 return 0;
421 static void __exit
422 i2c_au1550_exit(void)
424 i2c_au1550_del_bus(&pb1550_board_adapter);
427 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
428 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
429 MODULE_LICENSE("GPL");
431 module_init (i2c_au1550_init);
432 module_exit (i2c_au1550_exit);