2 * linux/arch/arm/vfp/vfpdouble.c
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
36 #include <asm/div64.h>
37 #include <asm/ptrace.h>
43 static struct vfp_double vfp_double_default_qnan
= {
46 .significand
= VFP_DOUBLE_SIGNIFICAND_QNAN
,
49 static void vfp_double_dump(const char *str
, struct vfp_double
*d
)
51 pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
52 str
, d
->sign
!= 0, d
->exponent
, d
->significand
);
55 static void vfp_double_normalise_denormal(struct vfp_double
*vd
)
57 int bits
= 31 - fls(vd
->significand
>> 32);
59 bits
= 62 - fls(vd
->significand
);
61 vfp_double_dump("normalise_denormal: in", vd
);
64 vd
->exponent
-= bits
- 1;
65 vd
->significand
<<= bits
;
68 vfp_double_dump("normalise_denormal: out", vd
);
71 u32
vfp_double_normaliseround(int dd
, struct vfp_double
*vd
, u32 fpscr
, u32 exceptions
, const char *func
)
73 u64 significand
, incr
;
74 int exponent
, shift
, underflow
;
77 vfp_double_dump("pack: in", vd
);
80 * Infinities and NaNs are a special case.
82 if (vd
->exponent
== 2047 && (vd
->significand
== 0 || exceptions
))
88 if (vd
->significand
== 0) {
93 exponent
= vd
->exponent
;
94 significand
= vd
->significand
;
96 shift
= 32 - fls(significand
>> 32);
98 shift
= 64 - fls(significand
);
101 significand
<<= shift
;
105 vd
->exponent
= exponent
;
106 vd
->significand
= significand
;
107 vfp_double_dump("pack: normalised", vd
);
113 underflow
= exponent
< 0;
115 significand
= vfp_shiftright64jamming(significand
, -exponent
);
118 vd
->exponent
= exponent
;
119 vd
->significand
= significand
;
120 vfp_double_dump("pack: tiny number", vd
);
122 if (!(significand
& ((1ULL << (VFP_DOUBLE_LOW_BITS
+ 1)) - 1)))
127 * Select rounding increment.
130 rmode
= fpscr
& FPSCR_RMODE_MASK
;
132 if (rmode
== FPSCR_ROUND_NEAREST
) {
133 incr
= 1ULL << VFP_DOUBLE_LOW_BITS
;
134 if ((significand
& (1ULL << (VFP_DOUBLE_LOW_BITS
+ 1))) == 0)
136 } else if (rmode
== FPSCR_ROUND_TOZERO
) {
138 } else if ((rmode
== FPSCR_ROUND_PLUSINF
) ^ (vd
->sign
!= 0))
139 incr
= (1ULL << (VFP_DOUBLE_LOW_BITS
+ 1)) - 1;
141 pr_debug("VFP: rounding increment = 0x%08llx\n", incr
);
144 * Is our rounding going to overflow?
146 if ((significand
+ incr
) < significand
) {
148 significand
= (significand
>> 1) | (significand
& 1);
151 vd
->exponent
= exponent
;
152 vd
->significand
= significand
;
153 vfp_double_dump("pack: overflow", vd
);
158 * If any of the low bits (which will be shifted out of the
159 * number) are non-zero, the result is inexact.
161 if (significand
& ((1 << (VFP_DOUBLE_LOW_BITS
+ 1)) - 1))
162 exceptions
|= FPSCR_IXC
;
172 if (exponent
>= 2046) {
173 exceptions
|= FPSCR_OFC
| FPSCR_IXC
;
176 vd
->significand
= 0x7fffffffffffffffULL
;
178 vd
->exponent
= 2047; /* infinity */
182 if (significand
>> (VFP_DOUBLE_LOW_BITS
+ 1) == 0)
184 if (exponent
|| significand
> 0x8000000000000000ULL
)
187 exceptions
|= FPSCR_UFC
;
188 vd
->exponent
= exponent
;
189 vd
->significand
= significand
>> 1;
193 vfp_double_dump("pack: final", vd
);
195 s64 d
= vfp_double_pack(vd
);
196 pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func
,
198 vfp_put_double(dd
, d
);
200 return exceptions
& ~VFP_NAN_FLAG
;
204 * Propagate the NaN, setting exceptions if it is signalling.
205 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
208 vfp_propagate_nan(struct vfp_double
*vdd
, struct vfp_double
*vdn
,
209 struct vfp_double
*vdm
, u32 fpscr
)
211 struct vfp_double
*nan
;
214 tn
= vfp_double_type(vdn
);
217 tm
= vfp_double_type(vdm
);
219 if (fpscr
& FPSCR_DEFAULT_NAN
)
221 * Default NaN mode - always returns a quiet NaN
223 nan
= &vfp_double_default_qnan
;
226 * Contemporary mode - select the first signalling
227 * NAN, or if neither are signalling, the first
230 if (tn
== VFP_SNAN
|| (tm
!= VFP_SNAN
&& tn
== VFP_QNAN
))
235 * Make the NaN quiet.
237 nan
->significand
|= VFP_DOUBLE_SIGNIFICAND_QNAN
;
243 * If one was a signalling NAN, raise invalid operation.
245 return tn
== VFP_SNAN
|| tm
== VFP_SNAN
? FPSCR_IOC
: VFP_NAN_FLAG
;
249 * Extended operations
251 static u32
vfp_double_fabs(int dd
, int unused
, int dm
, u32 fpscr
)
253 vfp_put_double(dd
, vfp_double_packed_abs(vfp_get_double(dm
)));
257 static u32
vfp_double_fcpy(int dd
, int unused
, int dm
, u32 fpscr
)
259 vfp_put_double(dd
, vfp_get_double(dm
));
263 static u32
vfp_double_fneg(int dd
, int unused
, int dm
, u32 fpscr
)
265 vfp_put_double(dd
, vfp_double_packed_negate(vfp_get_double(dm
)));
269 static u32
vfp_double_fsqrt(int dd
, int unused
, int dm
, u32 fpscr
)
271 struct vfp_double vdm
, vdd
;
274 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
275 tm
= vfp_double_type(&vdm
);
276 if (tm
& (VFP_NAN
|VFP_INFINITY
)) {
277 struct vfp_double
*vdp
= &vdd
;
280 ret
= vfp_propagate_nan(vdp
, &vdm
, NULL
, fpscr
);
281 else if (vdm
.sign
== 0) {
287 vdp
= &vfp_double_default_qnan
;
290 vfp_put_double(dd
, vfp_double_pack(vdp
));
295 * sqrt(+/- 0) == +/- 0
301 * Normalise a denormalised number
303 if (tm
& VFP_DENORMAL
)
304 vfp_double_normalise_denormal(&vdm
);
312 vfp_double_dump("sqrt", &vdm
);
315 * Estimate the square root.
318 vdd
.exponent
= ((vdm
.exponent
- 1023) >> 1) + 1023;
319 vdd
.significand
= (u64
)vfp_estimate_sqrt_significand(vdm
.exponent
, vdm
.significand
>> 32) << 31;
321 vfp_double_dump("sqrt estimate1", &vdd
);
323 vdm
.significand
>>= 1 + (vdm
.exponent
& 1);
324 vdd
.significand
+= 2 + vfp_estimate_div128to64(vdm
.significand
, 0, vdd
.significand
);
326 vfp_double_dump("sqrt estimate2", &vdd
);
331 if ((vdd
.significand
& VFP_DOUBLE_LOW_BITS_MASK
) <= 5) {
332 if (vdd
.significand
< 2) {
333 vdd
.significand
= ~0ULL;
335 u64 termh
, terml
, remh
, reml
;
336 vdm
.significand
<<= 2;
337 mul64to128(&termh
, &terml
, vdd
.significand
, vdd
.significand
);
338 sub128(&remh
, &reml
, vdm
.significand
, 0, termh
, terml
);
339 while ((s64
)remh
< 0) {
340 vdd
.significand
-= 1;
341 shift64left(&termh
, &terml
, vdd
.significand
);
343 add128(&remh
, &reml
, remh
, reml
, termh
, terml
);
345 vdd
.significand
|= (remh
| reml
) != 0;
348 vdd
.significand
= vfp_shiftright64jamming(vdd
.significand
, 1);
350 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, 0, "fsqrt");
359 static u32
vfp_compare(int dd
, int signal_on_qnan
, int dm
, u32 fpscr
)
364 m
= vfp_get_double(dm
);
365 if (vfp_double_packed_exponent(m
) == 2047 && vfp_double_packed_mantissa(m
)) {
366 ret
|= FPSCR_C
| FPSCR_V
;
367 if (signal_on_qnan
|| !(vfp_double_packed_mantissa(m
) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS
- 1))))
369 * Signalling NaN, or signalling on quiet NaN
374 d
= vfp_get_double(dd
);
375 if (vfp_double_packed_exponent(d
) == 2047 && vfp_double_packed_mantissa(d
)) {
376 ret
|= FPSCR_C
| FPSCR_V
;
377 if (signal_on_qnan
|| !(vfp_double_packed_mantissa(d
) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS
- 1))))
379 * Signalling NaN, or signalling on quiet NaN
385 if (d
== m
|| vfp_double_packed_abs(d
| m
) == 0) {
389 ret
|= FPSCR_Z
| FPSCR_C
;
390 } else if (vfp_double_packed_sign(d
^ m
)) {
394 if (vfp_double_packed_sign(d
))
396 * d is negative, so d < m
401 * d is positive, so d > m
404 } else if ((vfp_double_packed_sign(d
) != 0) ^ (d
< m
)) {
409 } else if ((vfp_double_packed_sign(d
) != 0) ^ (d
> m
)) {
420 static u32
vfp_double_fcmp(int dd
, int unused
, int dm
, u32 fpscr
)
422 return vfp_compare(dd
, 0, dm
, fpscr
);
425 static u32
vfp_double_fcmpe(int dd
, int unused
, int dm
, u32 fpscr
)
427 return vfp_compare(dd
, 1, dm
, fpscr
);
430 static u32
vfp_double_fcmpz(int dd
, int unused
, int dm
, u32 fpscr
)
432 return vfp_compare(dd
, 0, VFP_REG_ZERO
, fpscr
);
435 static u32
vfp_double_fcmpez(int dd
, int unused
, int dm
, u32 fpscr
)
437 return vfp_compare(dd
, 1, VFP_REG_ZERO
, fpscr
);
440 static u32
vfp_double_fcvts(int sd
, int unused
, int dm
, u32 fpscr
)
442 struct vfp_double vdm
;
443 struct vfp_single vsd
;
447 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
449 tm
= vfp_double_type(&vdm
);
452 * If we have a signalling NaN, signal invalid operation.
455 exceptions
= FPSCR_IOC
;
457 if (tm
& VFP_DENORMAL
)
458 vfp_double_normalise_denormal(&vdm
);
461 vsd
.significand
= vfp_hi64to32jamming(vdm
.significand
);
464 * If we have an infinity or a NaN, the exponent must be 255
466 if (tm
& (VFP_INFINITY
|VFP_NAN
)) {
469 vsd
.significand
|= VFP_SINGLE_SIGNIFICAND_QNAN
;
471 } else if (tm
& VFP_ZERO
)
474 vsd
.exponent
= vdm
.exponent
- (1023 - 127);
476 return vfp_single_normaliseround(sd
, &vsd
, fpscr
, exceptions
, "fcvts");
479 vfp_put_float(sd
, vfp_single_pack(&vsd
));
483 static u32
vfp_double_fuito(int dd
, int unused
, int dm
, u32 fpscr
)
485 struct vfp_double vdm
;
486 u32 m
= vfp_get_float(dm
);
489 vdm
.exponent
= 1023 + 63 - 1;
490 vdm
.significand
= (u64
)m
;
492 return vfp_double_normaliseround(dd
, &vdm
, fpscr
, 0, "fuito");
495 static u32
vfp_double_fsito(int dd
, int unused
, int dm
, u32 fpscr
)
497 struct vfp_double vdm
;
498 u32 m
= vfp_get_float(dm
);
500 vdm
.sign
= (m
& 0x80000000) >> 16;
501 vdm
.exponent
= 1023 + 63 - 1;
502 vdm
.significand
= vdm
.sign
? -m
: m
;
504 return vfp_double_normaliseround(dd
, &vdm
, fpscr
, 0, "fsito");
507 static u32
vfp_double_ftoui(int sd
, int unused
, int dm
, u32 fpscr
)
509 struct vfp_double vdm
;
510 u32 d
, exceptions
= 0;
511 int rmode
= fpscr
& FPSCR_RMODE_MASK
;
514 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
517 * Do we have a denormalised number?
519 tm
= vfp_double_type(&vdm
);
520 if (tm
& VFP_DENORMAL
)
521 exceptions
|= FPSCR_IDC
;
526 if (vdm
.exponent
>= 1023 + 32) {
527 d
= vdm
.sign
? 0 : 0xffffffff;
528 exceptions
= FPSCR_IOC
;
529 } else if (vdm
.exponent
>= 1023 - 1) {
530 int shift
= 1023 + 63 - vdm
.exponent
;
534 * 2^0 <= m < 2^32-2^8
536 d
= (vdm
.significand
<< 1) >> shift
;
537 rem
= vdm
.significand
<< (65 - shift
);
539 if (rmode
== FPSCR_ROUND_NEAREST
) {
540 incr
= 0x8000000000000000ULL
;
543 } else if (rmode
== FPSCR_ROUND_TOZERO
) {
545 } else if ((rmode
== FPSCR_ROUND_PLUSINF
) ^ (vdm
.sign
!= 0)) {
549 if ((rem
+ incr
) < rem
) {
553 exceptions
|= FPSCR_IOC
;
558 exceptions
|= FPSCR_IOC
;
560 exceptions
|= FPSCR_IXC
;
563 if (vdm
.exponent
| vdm
.significand
) {
564 exceptions
|= FPSCR_IXC
;
565 if (rmode
== FPSCR_ROUND_PLUSINF
&& vdm
.sign
== 0)
567 else if (rmode
== FPSCR_ROUND_MINUSINF
&& vdm
.sign
) {
569 exceptions
|= FPSCR_IOC
;
574 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd
, d
, exceptions
);
576 vfp_put_float(sd
, d
);
581 static u32
vfp_double_ftouiz(int sd
, int unused
, int dm
, u32 fpscr
)
583 return vfp_double_ftoui(sd
, unused
, dm
, FPSCR_ROUND_TOZERO
);
586 static u32
vfp_double_ftosi(int sd
, int unused
, int dm
, u32 fpscr
)
588 struct vfp_double vdm
;
589 u32 d
, exceptions
= 0;
590 int rmode
= fpscr
& FPSCR_RMODE_MASK
;
592 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
593 vfp_double_dump("VDM", &vdm
);
596 * Do we have denormalised number?
598 if (vfp_double_type(&vdm
) & VFP_DENORMAL
)
599 exceptions
|= FPSCR_IDC
;
601 if (vdm
.exponent
>= 1023 + 32) {
605 exceptions
|= FPSCR_IOC
;
606 } else if (vdm
.exponent
>= 1023 - 1) {
607 int shift
= 1023 + 63 - vdm
.exponent
; /* 58 */
610 d
= (vdm
.significand
<< 1) >> shift
;
611 rem
= vdm
.significand
<< (65 - shift
);
613 if (rmode
== FPSCR_ROUND_NEAREST
) {
614 incr
= 0x8000000000000000ULL
;
617 } else if (rmode
== FPSCR_ROUND_TOZERO
) {
619 } else if ((rmode
== FPSCR_ROUND_PLUSINF
) ^ (vdm
.sign
!= 0)) {
623 if ((rem
+ incr
) < rem
&& d
< 0xffffffff)
625 if (d
> 0x7fffffff + (vdm
.sign
!= 0)) {
626 d
= 0x7fffffff + (vdm
.sign
!= 0);
627 exceptions
|= FPSCR_IOC
;
629 exceptions
|= FPSCR_IXC
;
635 if (vdm
.exponent
| vdm
.significand
) {
636 exceptions
|= FPSCR_IXC
;
637 if (rmode
== FPSCR_ROUND_PLUSINF
&& vdm
.sign
== 0)
639 else if (rmode
== FPSCR_ROUND_MINUSINF
&& vdm
.sign
)
644 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd
, d
, exceptions
);
646 vfp_put_float(sd
, (s32
)d
);
651 static u32
vfp_double_ftosiz(int dd
, int unused
, int dm
, u32 fpscr
)
653 return vfp_double_ftosi(dd
, unused
, dm
, FPSCR_ROUND_TOZERO
);
657 static u32 (* const fop_extfns
[32])(int dd
, int unused
, int dm
, u32 fpscr
) = {
658 [FEXT_TO_IDX(FEXT_FCPY
)] = vfp_double_fcpy
,
659 [FEXT_TO_IDX(FEXT_FABS
)] = vfp_double_fabs
,
660 [FEXT_TO_IDX(FEXT_FNEG
)] = vfp_double_fneg
,
661 [FEXT_TO_IDX(FEXT_FSQRT
)] = vfp_double_fsqrt
,
662 [FEXT_TO_IDX(FEXT_FCMP
)] = vfp_double_fcmp
,
663 [FEXT_TO_IDX(FEXT_FCMPE
)] = vfp_double_fcmpe
,
664 [FEXT_TO_IDX(FEXT_FCMPZ
)] = vfp_double_fcmpz
,
665 [FEXT_TO_IDX(FEXT_FCMPEZ
)] = vfp_double_fcmpez
,
666 [FEXT_TO_IDX(FEXT_FCVT
)] = vfp_double_fcvts
,
667 [FEXT_TO_IDX(FEXT_FUITO
)] = vfp_double_fuito
,
668 [FEXT_TO_IDX(FEXT_FSITO
)] = vfp_double_fsito
,
669 [FEXT_TO_IDX(FEXT_FTOUI
)] = vfp_double_ftoui
,
670 [FEXT_TO_IDX(FEXT_FTOUIZ
)] = vfp_double_ftouiz
,
671 [FEXT_TO_IDX(FEXT_FTOSI
)] = vfp_double_ftosi
,
672 [FEXT_TO_IDX(FEXT_FTOSIZ
)] = vfp_double_ftosiz
,
679 vfp_double_fadd_nonnumber(struct vfp_double
*vdd
, struct vfp_double
*vdn
,
680 struct vfp_double
*vdm
, u32 fpscr
)
682 struct vfp_double
*vdp
;
686 tn
= vfp_double_type(vdn
);
687 tm
= vfp_double_type(vdm
);
689 if (tn
& tm
& VFP_INFINITY
) {
691 * Two infinities. Are they different signs?
693 if (vdn
->sign
^ vdm
->sign
) {
695 * different signs -> invalid
697 exceptions
= FPSCR_IOC
;
698 vdp
= &vfp_double_default_qnan
;
701 * same signs -> valid
705 } else if (tn
& VFP_INFINITY
&& tm
& VFP_NUMBER
) {
707 * One infinity and one number -> infinity
712 * 'n' is a NaN of some type
714 return vfp_propagate_nan(vdd
, vdn
, vdm
, fpscr
);
721 vfp_double_add(struct vfp_double
*vdd
, struct vfp_double
*vdn
,
722 struct vfp_double
*vdm
, u32 fpscr
)
727 if (vdn
->significand
& (1ULL << 63) ||
728 vdm
->significand
& (1ULL << 63)) {
729 pr_info("VFP: bad FP values in %s\n", __func__
);
730 vfp_double_dump("VDN", vdn
);
731 vfp_double_dump("VDM", vdm
);
735 * Ensure that 'n' is the largest magnitude number. Note that
736 * if 'n' and 'm' have equal exponents, we do not swap them.
737 * This ensures that NaN propagation works correctly.
739 if (vdn
->exponent
< vdm
->exponent
) {
740 struct vfp_double
*t
= vdn
;
746 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
747 * infinity or a NaN here.
749 if (vdn
->exponent
== 2047)
750 return vfp_double_fadd_nonnumber(vdd
, vdn
, vdm
, fpscr
);
753 * We have two proper numbers, where 'vdn' is the larger magnitude.
755 * Copy 'n' to 'd' before doing the arithmetic.
760 * Align 'm' with the result.
762 exp_diff
= vdn
->exponent
- vdm
->exponent
;
763 m_sig
= vfp_shiftright64jamming(vdm
->significand
, exp_diff
);
766 * If the signs are different, we are really subtracting.
768 if (vdn
->sign
^ vdm
->sign
) {
769 m_sig
= vdn
->significand
- m_sig
;
770 if ((s64
)m_sig
< 0) {
771 vdd
->sign
= vfp_sign_negate(vdd
->sign
);
773 } else if (m_sig
== 0) {
774 vdd
->sign
= (fpscr
& FPSCR_RMODE_MASK
) ==
775 FPSCR_ROUND_MINUSINF
? 0x8000 : 0;
778 m_sig
+= vdn
->significand
;
780 vdd
->significand
= m_sig
;
786 vfp_double_multiply(struct vfp_double
*vdd
, struct vfp_double
*vdn
,
787 struct vfp_double
*vdm
, u32 fpscr
)
789 vfp_double_dump("VDN", vdn
);
790 vfp_double_dump("VDM", vdm
);
793 * Ensure that 'n' is the largest magnitude number. Note that
794 * if 'n' and 'm' have equal exponents, we do not swap them.
795 * This ensures that NaN propagation works correctly.
797 if (vdn
->exponent
< vdm
->exponent
) {
798 struct vfp_double
*t
= vdn
;
801 pr_debug("VFP: swapping M <-> N\n");
804 vdd
->sign
= vdn
->sign
^ vdm
->sign
;
807 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
809 if (vdn
->exponent
== 2047) {
810 if (vdn
->significand
|| (vdm
->exponent
== 2047 && vdm
->significand
))
811 return vfp_propagate_nan(vdd
, vdn
, vdm
, fpscr
);
812 if ((vdm
->exponent
| vdm
->significand
) == 0) {
813 *vdd
= vfp_double_default_qnan
;
816 vdd
->exponent
= vdn
->exponent
;
817 vdd
->significand
= 0;
822 * If 'm' is zero, the result is always zero. In this case,
823 * 'n' may be zero or a number, but it doesn't matter which.
825 if ((vdm
->exponent
| vdm
->significand
) == 0) {
827 vdd
->significand
= 0;
832 * We add 2 to the destination exponent for the same reason
833 * as the addition case - though this time we have +1 from
834 * each input operand.
836 vdd
->exponent
= vdn
->exponent
+ vdm
->exponent
- 1023 + 2;
837 vdd
->significand
= vfp_hi64multiply64(vdn
->significand
, vdm
->significand
);
839 vfp_double_dump("VDD", vdd
);
843 #define NEG_MULTIPLY (1 << 0)
844 #define NEG_SUBTRACT (1 << 1)
847 vfp_double_multiply_accumulate(int dd
, int dn
, int dm
, u32 fpscr
, u32 negate
, char *func
)
849 struct vfp_double vdd
, vdp
, vdn
, vdm
;
852 vfp_double_unpack(&vdn
, vfp_get_double(dn
));
853 if (vdn
.exponent
== 0 && vdn
.significand
)
854 vfp_double_normalise_denormal(&vdn
);
856 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
857 if (vdm
.exponent
== 0 && vdm
.significand
)
858 vfp_double_normalise_denormal(&vdm
);
860 exceptions
= vfp_double_multiply(&vdp
, &vdn
, &vdm
, fpscr
);
861 if (negate
& NEG_MULTIPLY
)
862 vdp
.sign
= vfp_sign_negate(vdp
.sign
);
864 vfp_double_unpack(&vdn
, vfp_get_double(dd
));
865 if (negate
& NEG_SUBTRACT
)
866 vdn
.sign
= vfp_sign_negate(vdn
.sign
);
868 exceptions
|= vfp_double_add(&vdd
, &vdn
, &vdp
, fpscr
);
870 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, exceptions
, func
);
874 * Standard operations
878 * sd = sd + (sn * sm)
880 static u32
vfp_double_fmac(int dd
, int dn
, int dm
, u32 fpscr
)
882 return vfp_double_multiply_accumulate(dd
, dn
, dm
, fpscr
, 0, "fmac");
886 * sd = sd - (sn * sm)
888 static u32
vfp_double_fnmac(int dd
, int dn
, int dm
, u32 fpscr
)
890 return vfp_double_multiply_accumulate(dd
, dn
, dm
, fpscr
, NEG_MULTIPLY
, "fnmac");
894 * sd = -sd + (sn * sm)
896 static u32
vfp_double_fmsc(int dd
, int dn
, int dm
, u32 fpscr
)
898 return vfp_double_multiply_accumulate(dd
, dn
, dm
, fpscr
, NEG_SUBTRACT
, "fmsc");
902 * sd = -sd - (sn * sm)
904 static u32
vfp_double_fnmsc(int dd
, int dn
, int dm
, u32 fpscr
)
906 return vfp_double_multiply_accumulate(dd
, dn
, dm
, fpscr
, NEG_SUBTRACT
| NEG_MULTIPLY
, "fnmsc");
912 static u32
vfp_double_fmul(int dd
, int dn
, int dm
, u32 fpscr
)
914 struct vfp_double vdd
, vdn
, vdm
;
917 vfp_double_unpack(&vdn
, vfp_get_double(dn
));
918 if (vdn
.exponent
== 0 && vdn
.significand
)
919 vfp_double_normalise_denormal(&vdn
);
921 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
922 if (vdm
.exponent
== 0 && vdm
.significand
)
923 vfp_double_normalise_denormal(&vdm
);
925 exceptions
= vfp_double_multiply(&vdd
, &vdn
, &vdm
, fpscr
);
926 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, exceptions
, "fmul");
932 static u32
vfp_double_fnmul(int dd
, int dn
, int dm
, u32 fpscr
)
934 struct vfp_double vdd
, vdn
, vdm
;
937 vfp_double_unpack(&vdn
, vfp_get_double(dn
));
938 if (vdn
.exponent
== 0 && vdn
.significand
)
939 vfp_double_normalise_denormal(&vdn
);
941 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
942 if (vdm
.exponent
== 0 && vdm
.significand
)
943 vfp_double_normalise_denormal(&vdm
);
945 exceptions
= vfp_double_multiply(&vdd
, &vdn
, &vdm
, fpscr
);
946 vdd
.sign
= vfp_sign_negate(vdd
.sign
);
948 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, exceptions
, "fnmul");
954 static u32
vfp_double_fadd(int dd
, int dn
, int dm
, u32 fpscr
)
956 struct vfp_double vdd
, vdn
, vdm
;
959 vfp_double_unpack(&vdn
, vfp_get_double(dn
));
960 if (vdn
.exponent
== 0 && vdn
.significand
)
961 vfp_double_normalise_denormal(&vdn
);
963 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
964 if (vdm
.exponent
== 0 && vdm
.significand
)
965 vfp_double_normalise_denormal(&vdm
);
967 exceptions
= vfp_double_add(&vdd
, &vdn
, &vdm
, fpscr
);
969 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, exceptions
, "fadd");
975 static u32
vfp_double_fsub(int dd
, int dn
, int dm
, u32 fpscr
)
977 struct vfp_double vdd
, vdn
, vdm
;
980 vfp_double_unpack(&vdn
, vfp_get_double(dn
));
981 if (vdn
.exponent
== 0 && vdn
.significand
)
982 vfp_double_normalise_denormal(&vdn
);
984 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
985 if (vdm
.exponent
== 0 && vdm
.significand
)
986 vfp_double_normalise_denormal(&vdm
);
989 * Subtraction is like addition, but with a negated operand.
991 vdm
.sign
= vfp_sign_negate(vdm
.sign
);
993 exceptions
= vfp_double_add(&vdd
, &vdn
, &vdm
, fpscr
);
995 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, exceptions
, "fsub");
1001 static u32
vfp_double_fdiv(int dd
, int dn
, int dm
, u32 fpscr
)
1003 struct vfp_double vdd
, vdn
, vdm
;
1007 vfp_double_unpack(&vdn
, vfp_get_double(dn
));
1008 vfp_double_unpack(&vdm
, vfp_get_double(dm
));
1010 vdd
.sign
= vdn
.sign
^ vdm
.sign
;
1012 tn
= vfp_double_type(&vdn
);
1013 tm
= vfp_double_type(&vdm
);
1028 * If n and m are infinity, the result is invalid
1029 * If n and m are zero, the result is invalid
1031 if (tm
& tn
& (VFP_INFINITY
|VFP_ZERO
))
1035 * If n is infinity, the result is infinity
1037 if (tn
& VFP_INFINITY
)
1041 * If m is zero, raise div0 exceptions
1047 * If m is infinity, or n is zero, the result is zero
1049 if (tm
& VFP_INFINITY
|| tn
& VFP_ZERO
)
1052 if (tn
& VFP_DENORMAL
)
1053 vfp_double_normalise_denormal(&vdn
);
1054 if (tm
& VFP_DENORMAL
)
1055 vfp_double_normalise_denormal(&vdm
);
1058 * Ok, we have two numbers, we can perform division.
1060 vdd
.exponent
= vdn
.exponent
- vdm
.exponent
+ 1023 - 1;
1061 vdm
.significand
<<= 1;
1062 if (vdm
.significand
<= (2 * vdn
.significand
)) {
1063 vdn
.significand
>>= 1;
1066 vdd
.significand
= vfp_estimate_div128to64(vdn
.significand
, 0, vdm
.significand
);
1067 if ((vdd
.significand
& 0x1ff) <= 2) {
1068 u64 termh
, terml
, remh
, reml
;
1069 mul64to128(&termh
, &terml
, vdm
.significand
, vdd
.significand
);
1070 sub128(&remh
, &reml
, vdn
.significand
, 0, termh
, terml
);
1071 while ((s64
)remh
< 0) {
1072 vdd
.significand
-= 1;
1073 add128(&remh
, &reml
, remh
, reml
, 0, vdm
.significand
);
1075 vdd
.significand
|= (reml
!= 0);
1077 return vfp_double_normaliseround(dd
, &vdd
, fpscr
, 0, "fdiv");
1080 exceptions
= vfp_propagate_nan(&vdd
, &vdn
, &vdm
, fpscr
);
1082 vfp_put_double(dd
, vfp_double_pack(&vdd
));
1086 exceptions
= vfp_propagate_nan(&vdd
, &vdm
, &vdn
, fpscr
);
1091 vdd
.significand
= 0;
1095 exceptions
= FPSCR_DZC
;
1097 vdd
.exponent
= 2047;
1098 vdd
.significand
= 0;
1102 vfp_put_double(dd
, vfp_double_pack(&vfp_double_default_qnan
));
1106 static u32 (* const fop_fns
[16])(int dd
, int dn
, int dm
, u32 fpscr
) = {
1107 [FOP_TO_IDX(FOP_FMAC
)] = vfp_double_fmac
,
1108 [FOP_TO_IDX(FOP_FNMAC
)] = vfp_double_fnmac
,
1109 [FOP_TO_IDX(FOP_FMSC
)] = vfp_double_fmsc
,
1110 [FOP_TO_IDX(FOP_FNMSC
)] = vfp_double_fnmsc
,
1111 [FOP_TO_IDX(FOP_FMUL
)] = vfp_double_fmul
,
1112 [FOP_TO_IDX(FOP_FNMUL
)] = vfp_double_fnmul
,
1113 [FOP_TO_IDX(FOP_FADD
)] = vfp_double_fadd
,
1114 [FOP_TO_IDX(FOP_FSUB
)] = vfp_double_fsub
,
1115 [FOP_TO_IDX(FOP_FDIV
)] = vfp_double_fdiv
,
1118 #define FREG_BANK(x) ((x) & 0x0c)
1119 #define FREG_IDX(x) ((x) & 3)
1121 u32
vfp_double_cpdo(u32 inst
, u32 fpscr
)
1123 u32 op
= inst
& FOP_MASK
;
1125 unsigned int dd
= vfp_get_sd(inst
);
1126 unsigned int dn
= vfp_get_sn(inst
);
1127 unsigned int dm
= vfp_get_sm(inst
);
1128 unsigned int vecitr
, veclen
, vecstride
;
1129 u32 (*fop
)(int, int, s32
, u32
);
1131 veclen
= fpscr
& FPSCR_LENGTH_MASK
;
1132 vecstride
= (1 + ((fpscr
& FPSCR_STRIDE_MASK
) == FPSCR_STRIDE_MASK
)) * 2;
1135 * If destination bank is zero, vector length is always '1'.
1136 * ARM DDI0100F C5.1.3, C5.3.2.
1138 if (FREG_BANK(dd
) == 0)
1141 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride
,
1142 (veclen
>> FPSCR_LENGTH_BIT
) + 1);
1144 fop
= (op
== FOP_EXT
) ? fop_extfns
[dn
] : fop_fns
[FOP_TO_IDX(op
)];
1148 for (vecitr
= 0; vecitr
<= veclen
; vecitr
+= 1 << FPSCR_LENGTH_BIT
) {
1152 pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n",
1153 vecitr
>> FPSCR_LENGTH_BIT
,
1154 dd
>> 1, dd
& 1, dn
,
1157 pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n",
1158 vecitr
>> FPSCR_LENGTH_BIT
,
1164 except
= fop(dd
, dn
, dm
, fpscr
);
1165 pr_debug("VFP: itr%d: exceptions=%08x\n",
1166 vecitr
>> FPSCR_LENGTH_BIT
, except
);
1168 exceptions
|= except
;
1171 * This ensures that comparisons only operate on scalars;
1172 * comparisons always return with one FPSCR status bit set.
1174 if (except
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
1178 * CHECK: It appears to be undefined whether we stop when
1179 * we encounter an exception. We continue.
1182 dd
= FREG_BANK(dd
) + ((FREG_IDX(dd
) + vecstride
) & 6);
1183 dn
= FREG_BANK(dn
) + ((FREG_IDX(dn
) + vecstride
) & 6);
1184 if (FREG_BANK(dm
) != 0)
1185 dm
= FREG_BANK(dm
) + ((FREG_IDX(dm
) + vecstride
) & 6);