2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/config.h>
36 #include <linux/errno.h>
37 #include <linux/module.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/param.h>
41 #include <linux/string.h>
43 #include <linux/interrupt.h>
44 #include <linux/timex.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/time.h>
47 #include <linux/init.h>
48 #include <linux/profile.h>
49 #include <linux/cpu.h>
50 #include <linux/security.h>
51 #include <linux/percpu.h>
52 #include <linux/rtc.h>
55 #include <asm/processor.h>
56 #include <asm/nvram.h>
57 #include <asm/cache.h>
58 #include <asm/machdep.h>
59 #include <asm/uaccess.h>
63 #include <asm/div64.h>
65 #include <asm/vdso_datapage.h>
67 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
75 /* keep track of when we need to update the rtc */
76 time_t last_rtc_update
;
77 extern int piranha_simulator
;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan
= 0;
80 unsigned long iSeries_recal_tb
= 0;
81 static unsigned long first_settimeofday
= 1;
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
87 #define XSEC_PER_SEC (1024*1024)
90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96 unsigned long tb_ticks_per_jiffy
;
97 unsigned long tb_ticks_per_usec
= 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec
);
99 unsigned long tb_ticks_per_sec
;
102 unsigned long processor_freq
;
103 DEFINE_SPINLOCK(rtc_lock
);
104 EXPORT_SYMBOL_GPL(rtc_lock
);
107 unsigned tb_to_ns_shift
;
109 struct gettimeofday_struct do_gtod
;
111 extern unsigned long wall_jiffies
;
113 extern struct timezone sys_tz
;
114 static long timezone_offset
;
116 void ppc_adjtimex(void);
118 static unsigned adjusting_time
= 0;
120 unsigned long ppc_proc_freq
;
121 unsigned long ppc_tb_freq
;
123 u64 tb_last_jiffy __cacheline_aligned_in_smp
;
124 unsigned long tb_last_stamp
;
127 * Note that on ppc32 this only stores the bottom 32 bits of
128 * the timebase value, but that's enough to tell when a jiffy
131 DEFINE_PER_CPU(unsigned long, last_jiffy
);
133 void __delay(unsigned long loops
)
141 /* the RTCL register wraps at 1000000000 */
142 diff
= get_rtcl() - start
;
145 } while (diff
< loops
);
148 while (get_tbl() - start
< loops
)
153 EXPORT_SYMBOL(__delay
);
155 void udelay(unsigned long usecs
)
157 __delay(tb_ticks_per_usec
* usecs
);
159 EXPORT_SYMBOL(udelay
);
161 static __inline__
void timer_check_rtc(void)
164 * update the rtc when needed, this should be performed on the
165 * right fraction of a second. Half or full second ?
166 * Full second works on mk48t59 clocks, others need testing.
167 * Note that this update is basically only used through
168 * the adjtimex system calls. Setting the HW clock in
169 * any other way is a /dev/rtc and userland business.
170 * This is still wrong by -0.5/+1.5 jiffies because of the
171 * timer interrupt resolution and possible delay, but here we
172 * hit a quantization limit which can only be solved by higher
173 * resolution timers and decoupling time management from timer
174 * interrupts. This is also wrong on the clocks
175 * which require being written at the half second boundary.
176 * We should have an rtc call that only sets the minutes and
177 * seconds like on Intel to avoid problems with non UTC clocks.
179 if (ppc_md
.set_rtc_time
&& ntp_synced() &&
180 xtime
.tv_sec
- last_rtc_update
>= 659 &&
181 abs((xtime
.tv_nsec
/1000) - (1000000-1000000/HZ
)) < 500000/HZ
&&
182 jiffies
- wall_jiffies
== 1) {
184 to_tm(xtime
.tv_sec
+ 1 + timezone_offset
, &tm
);
187 if (ppc_md
.set_rtc_time(&tm
) == 0)
188 last_rtc_update
= xtime
.tv_sec
+ 1;
190 /* Try again one minute later */
191 last_rtc_update
+= 60;
196 * This version of gettimeofday has microsecond resolution.
198 static inline void __do_gettimeofday(struct timeval
*tv
, u64 tb_val
)
200 unsigned long sec
, usec
;
202 struct gettimeofday_vars
*temp_varp
;
203 u64 temp_tb_to_xs
, temp_stamp_xsec
;
206 * These calculations are faster (gets rid of divides)
207 * if done in units of 1/2^20 rather than microseconds.
208 * The conversion to microseconds at the end is done
209 * without a divide (and in fact, without a multiply)
211 temp_varp
= do_gtod
.varp
;
212 tb_ticks
= tb_val
- temp_varp
->tb_orig_stamp
;
213 temp_tb_to_xs
= temp_varp
->tb_to_xs
;
214 temp_stamp_xsec
= temp_varp
->stamp_xsec
;
215 xsec
= temp_stamp_xsec
+ mulhdu(tb_ticks
, temp_tb_to_xs
);
216 sec
= xsec
/ XSEC_PER_SEC
;
217 usec
= (unsigned long)xsec
& (XSEC_PER_SEC
- 1);
218 usec
= SCALE_XSEC(usec
, 1000000);
224 void do_gettimeofday(struct timeval
*tv
)
227 /* do this the old way */
228 unsigned long flags
, seq
;
229 unsigned int sec
, nsec
, usec
, lost
;
232 seq
= read_seqbegin_irqsave(&xtime_lock
, flags
);
234 nsec
= xtime
.tv_nsec
+ tb_ticks_since(tb_last_stamp
);
235 lost
= jiffies
- wall_jiffies
;
236 } while (read_seqretry_irqrestore(&xtime_lock
, seq
, flags
));
237 usec
= nsec
/ 1000 + lost
* (1000000 / HZ
);
238 while (usec
>= 1000000) {
246 __do_gettimeofday(tv
, get_tb());
249 EXPORT_SYMBOL(do_gettimeofday
);
251 /* Synchronize xtime with do_gettimeofday */
253 static inline void timer_sync_xtime(unsigned long cur_tb
)
256 /* why do we do this? */
257 struct timeval my_tv
;
259 __do_gettimeofday(&my_tv
, cur_tb
);
261 if (xtime
.tv_sec
<= my_tv
.tv_sec
) {
262 xtime
.tv_sec
= my_tv
.tv_sec
;
263 xtime
.tv_nsec
= my_tv
.tv_usec
* 1000;
269 * There are two copies of tb_to_xs and stamp_xsec so that no
270 * lock is needed to access and use these values in
271 * do_gettimeofday. We alternate the copies and as long as a
272 * reasonable time elapses between changes, there will never
273 * be inconsistent values. ntpd has a minimum of one minute
276 static inline void update_gtod(u64 new_tb_stamp
, u64 new_stamp_xsec
,
280 struct gettimeofday_vars
*temp_varp
;
282 temp_idx
= (do_gtod
.var_idx
== 0);
283 temp_varp
= &do_gtod
.vars
[temp_idx
];
285 temp_varp
->tb_to_xs
= new_tb_to_xs
;
286 temp_varp
->tb_orig_stamp
= new_tb_stamp
;
287 temp_varp
->stamp_xsec
= new_stamp_xsec
;
289 do_gtod
.varp
= temp_varp
;
290 do_gtod
.var_idx
= temp_idx
;
293 * tb_update_count is used to allow the userspace gettimeofday code
294 * to assure itself that it sees a consistent view of the tb_to_xs and
295 * stamp_xsec variables. It reads the tb_update_count, then reads
296 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
297 * the two values of tb_update_count match and are even then the
298 * tb_to_xs and stamp_xsec values are consistent. If not, then it
299 * loops back and reads them again until this criteria is met.
301 ++(vdso_data
->tb_update_count
);
303 vdso_data
->tb_orig_stamp
= new_tb_stamp
;
304 vdso_data
->stamp_xsec
= new_stamp_xsec
;
305 vdso_data
->tb_to_xs
= new_tb_to_xs
;
306 vdso_data
->wtom_clock_sec
= wall_to_monotonic
.tv_sec
;
307 vdso_data
->wtom_clock_nsec
= wall_to_monotonic
.tv_nsec
;
309 ++(vdso_data
->tb_update_count
);
313 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
314 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
315 * difference tb - tb_orig_stamp small enough to always fit inside a
316 * 32 bits number. This is a requirement of our fast 32 bits userland
317 * implementation in the vdso. If we "miss" a call to this function
318 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
319 * with a too big difference, then the vdso will fallback to calling
322 static __inline__
void timer_recalc_offset(u64 cur_tb
)
324 unsigned long offset
;
329 offset
= cur_tb
- do_gtod
.varp
->tb_orig_stamp
;
330 if ((offset
& 0x80000000u
) == 0)
332 new_stamp_xsec
= do_gtod
.varp
->stamp_xsec
333 + mulhdu(offset
, do_gtod
.varp
->tb_to_xs
);
334 update_gtod(cur_tb
, new_stamp_xsec
, do_gtod
.varp
->tb_to_xs
);
338 unsigned long profile_pc(struct pt_regs
*regs
)
340 unsigned long pc
= instruction_pointer(regs
);
342 if (in_lock_functions(pc
))
347 EXPORT_SYMBOL(profile_pc
);
350 #ifdef CONFIG_PPC_ISERIES
353 * This function recalibrates the timebase based on the 49-bit time-of-day
354 * value in the Titan chip. The Titan is much more accurate than the value
355 * returned by the service processor for the timebase frequency.
358 static void iSeries_tb_recal(void)
360 struct div_result divres
;
361 unsigned long titan
, tb
;
363 titan
= HvCallXm_loadTod();
364 if ( iSeries_recal_titan
) {
365 unsigned long tb_ticks
= tb
- iSeries_recal_tb
;
366 unsigned long titan_usec
= (titan
- iSeries_recal_titan
) >> 12;
367 unsigned long new_tb_ticks_per_sec
= (tb_ticks
* USEC_PER_SEC
)/titan_usec
;
368 unsigned long new_tb_ticks_per_jiffy
= (new_tb_ticks_per_sec
+(HZ
/2))/HZ
;
369 long tick_diff
= new_tb_ticks_per_jiffy
- tb_ticks_per_jiffy
;
371 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
372 new_tb_ticks_per_sec
= new_tb_ticks_per_jiffy
* HZ
;
374 if ( tick_diff
< 0 ) {
375 tick_diff
= -tick_diff
;
379 if ( tick_diff
< tb_ticks_per_jiffy
/25 ) {
380 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
381 new_tb_ticks_per_jiffy
, sign
, tick_diff
);
382 tb_ticks_per_jiffy
= new_tb_ticks_per_jiffy
;
383 tb_ticks_per_sec
= new_tb_ticks_per_sec
;
384 div128_by_32( XSEC_PER_SEC
, 0, tb_ticks_per_sec
, &divres
);
385 do_gtod
.tb_ticks_per_sec
= tb_ticks_per_sec
;
386 tb_to_xs
= divres
.result_low
;
387 do_gtod
.varp
->tb_to_xs
= tb_to_xs
;
388 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
389 vdso_data
->tb_to_xs
= tb_to_xs
;
392 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
393 " new tb_ticks_per_jiffy = %lu\n"
394 " old tb_ticks_per_jiffy = %lu\n",
395 new_tb_ticks_per_jiffy
, tb_ticks_per_jiffy
);
399 iSeries_recal_titan
= titan
;
400 iSeries_recal_tb
= tb
;
405 * For iSeries shared processors, we have to let the hypervisor
406 * set the hardware decrementer. We set a virtual decrementer
407 * in the lppaca and call the hypervisor if the virtual
408 * decrementer is less than the current value in the hardware
409 * decrementer. (almost always the new decrementer value will
410 * be greater than the current hardware decementer so the hypervisor
411 * call will not be needed)
415 * timer_interrupt - gets called when the decrementer overflows,
416 * with interrupts disabled.
418 void timer_interrupt(struct pt_regs
* regs
)
421 int cpu
= smp_processor_id();
425 if (atomic_read(&ppc_n_lost_interrupts
) != 0)
431 profile_tick(CPU_PROFILING
, regs
);
433 #ifdef CONFIG_PPC_ISERIES
434 get_paca()->lppaca
.int_dword
.fields
.decr_int
= 0;
437 while ((ticks
= tb_ticks_since(per_cpu(last_jiffy
, cpu
)))
438 >= tb_ticks_per_jiffy
) {
439 /* Update last_jiffy */
440 per_cpu(last_jiffy
, cpu
) += tb_ticks_per_jiffy
;
441 /* Handle RTCL overflow on 601 */
442 if (__USE_RTC() && per_cpu(last_jiffy
, cpu
) >= 1000000000)
443 per_cpu(last_jiffy
, cpu
) -= 1000000000;
446 * We cannot disable the decrementer, so in the period
447 * between this cpu's being marked offline in cpu_online_map
448 * and calling stop-self, it is taking timer interrupts.
449 * Avoid calling into the scheduler rebalancing code if this
452 if (!cpu_is_offline(cpu
))
453 update_process_times(user_mode(regs
));
456 * No need to check whether cpu is offline here; boot_cpuid
457 * should have been fixed up by now.
459 if (cpu
!= boot_cpuid
)
462 write_seqlock(&xtime_lock
);
463 tb_last_jiffy
+= tb_ticks_per_jiffy
;
464 tb_last_stamp
= per_cpu(last_jiffy
, cpu
);
465 timer_recalc_offset(tb_last_jiffy
);
467 timer_sync_xtime(tb_last_jiffy
);
469 write_sequnlock(&xtime_lock
);
470 if (adjusting_time
&& (time_adjust
== 0))
474 next_dec
= tb_ticks_per_jiffy
- ticks
;
477 #ifdef CONFIG_PPC_ISERIES
478 if (hvlpevent_is_pending())
479 process_hvlpevents(regs
);
483 /* collect purr register values often, for accurate calculations */
484 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
485 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
486 cu
->current_tb
= mfspr(SPRN_PURR
);
493 void wakeup_decrementer(void)
497 set_dec(tb_ticks_per_jiffy
);
499 * We don't expect this to be called on a machine with a 601,
500 * so using get_tbl is fine.
502 tb_last_stamp
= tb_last_jiffy
= get_tb();
504 per_cpu(last_jiffy
, i
) = tb_last_stamp
;
508 void __init
smp_space_timers(unsigned int max_cpus
)
511 unsigned long offset
= tb_ticks_per_jiffy
/ max_cpus
;
512 unsigned long previous_tb
= per_cpu(last_jiffy
, boot_cpuid
);
514 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
515 previous_tb
-= tb_ticks_per_jiffy
;
517 if (i
!= boot_cpuid
) {
518 previous_tb
+= offset
;
519 per_cpu(last_jiffy
, i
) = previous_tb
;
526 * Scheduler clock - returns current time in nanosec units.
528 * Note: mulhdu(a, b) (multiply high double unsigned) returns
529 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
530 * are 64-bit unsigned numbers.
532 unsigned long long sched_clock(void)
536 return mulhdu(get_tb(), tb_to_ns_scale
) << tb_to_ns_shift
;
539 int do_settimeofday(struct timespec
*tv
)
541 time_t wtm_sec
, new_sec
= tv
->tv_sec
;
542 long wtm_nsec
, new_nsec
= tv
->tv_nsec
;
545 u64 new_xsec
, tb_delta_xs
;
547 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
550 write_seqlock_irqsave(&xtime_lock
, flags
);
553 * Updating the RTC is not the job of this code. If the time is
554 * stepped under NTP, the RTC will be updated after STA_UNSYNC
555 * is cleared. Tools like clock/hwclock either copy the RTC
556 * to the system time, in which case there is no point in writing
557 * to the RTC again, or write to the RTC but then they don't call
558 * settimeofday to perform this operation.
560 #ifdef CONFIG_PPC_ISERIES
561 if (first_settimeofday
) {
563 first_settimeofday
= 0;
566 tb_delta
= tb_ticks_since(tb_last_stamp
);
567 tb_delta
+= (jiffies
- wall_jiffies
) * tb_ticks_per_jiffy
;
568 tb_delta_xs
= mulhdu(tb_delta
, do_gtod
.varp
->tb_to_xs
);
570 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- new_sec
);
571 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- new_nsec
);
573 set_normalized_timespec(&xtime
, new_sec
, new_nsec
);
574 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
576 /* In case of a large backwards jump in time with NTP, we want the
577 * clock to be updated as soon as the PLL is again in lock.
579 last_rtc_update
= new_sec
- 658;
585 new_xsec
= (u64
)new_nsec
* XSEC_PER_SEC
;
586 do_div(new_xsec
, NSEC_PER_SEC
);
588 new_xsec
+= (u64
)new_sec
* XSEC_PER_SEC
- tb_delta_xs
;
589 update_gtod(tb_last_jiffy
, new_xsec
, do_gtod
.varp
->tb_to_xs
);
591 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
592 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
594 write_sequnlock_irqrestore(&xtime_lock
, flags
);
599 EXPORT_SYMBOL(do_settimeofday
);
601 void __init
generic_calibrate_decr(void)
603 struct device_node
*cpu
;
608 * The cpu node should have a timebase-frequency property
609 * to tell us the rate at which the decrementer counts.
611 cpu
= of_find_node_by_type(NULL
, "cpu");
613 ppc_tb_freq
= DEFAULT_TB_FREQ
; /* hardcoded default */
616 fp
= (unsigned int *)get_property(cpu
, "timebase-frequency",
624 printk(KERN_ERR
"WARNING: Estimating decrementer frequency "
627 ppc_proc_freq
= DEFAULT_PROC_FREQ
;
630 fp
= (unsigned int *)get_property(cpu
, "clock-frequency",
638 /* Set the time base to zero */
642 /* Clear any pending timer interrupts */
643 mtspr(SPRN_TSR
, TSR_ENW
| TSR_WIS
| TSR_DIS
| TSR_FIS
);
645 /* Enable decrementer interrupt */
646 mtspr(SPRN_TCR
, TCR_DIE
);
649 printk(KERN_ERR
"WARNING: Estimating processor frequency "
655 unsigned long get_boot_time(void)
659 if (ppc_md
.get_boot_time
)
660 return ppc_md
.get_boot_time();
661 if (!ppc_md
.get_rtc_time
)
663 ppc_md
.get_rtc_time(&tm
);
664 return mktime(tm
.tm_year
+1900, tm
.tm_mon
+1, tm
.tm_mday
,
665 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
);
668 /* This function is only called on the boot processor */
669 void __init
time_init(void)
672 unsigned long tm
= 0;
673 struct div_result res
;
677 if (ppc_md
.time_init
!= NULL
)
678 timezone_offset
= ppc_md
.time_init();
681 /* 601 processor: dec counts down by 128 every 128ns */
682 ppc_tb_freq
= 1000000000;
683 tb_last_stamp
= get_rtcl();
684 tb_last_jiffy
= tb_last_stamp
;
686 /* Normal PowerPC with timebase register */
687 ppc_md
.calibrate_decr();
688 printk(KERN_INFO
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
689 ppc_tb_freq
/ 1000000, ppc_tb_freq
% 1000000);
690 printk(KERN_INFO
"time_init: processor frequency = %lu.%.6lu MHz\n",
691 ppc_proc_freq
/ 1000000, ppc_proc_freq
% 1000000);
692 tb_last_stamp
= tb_last_jiffy
= get_tb();
695 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
696 tb_ticks_per_sec
= tb_ticks_per_jiffy
* HZ
;
697 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
698 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
699 div128_by_32(1024*1024, 0, tb_ticks_per_sec
, &res
);
700 tb_to_xs
= res
.result_low
;
703 get_paca()->default_decr
= tb_ticks_per_jiffy
;
707 * Compute scale factor for sched_clock.
708 * The calibrate_decr() function has set tb_ticks_per_sec,
709 * which is the timebase frequency.
710 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
711 * the 128-bit result as a 64.64 fixed-point number.
712 * We then shift that number right until it is less than 1.0,
713 * giving us the scale factor and shift count to use in
716 div128_by_32(1000000000, 0, tb_ticks_per_sec
, &res
);
717 scale
= res
.result_low
;
718 for (shift
= 0; res
.result_high
!= 0; ++shift
) {
719 scale
= (scale
>> 1) | (res
.result_high
<< 63);
720 res
.result_high
>>= 1;
722 tb_to_ns_scale
= scale
;
723 tb_to_ns_shift
= shift
;
725 #ifdef CONFIG_PPC_ISERIES
726 if (!piranha_simulator
)
728 tm
= get_boot_time();
730 write_seqlock_irqsave(&xtime_lock
, flags
);
733 do_gtod
.varp
= &do_gtod
.vars
[0];
735 do_gtod
.varp
->tb_orig_stamp
= tb_last_jiffy
;
736 __get_cpu_var(last_jiffy
) = tb_last_stamp
;
737 do_gtod
.varp
->stamp_xsec
= (u64
) xtime
.tv_sec
* XSEC_PER_SEC
;
738 do_gtod
.tb_ticks_per_sec
= tb_ticks_per_sec
;
739 do_gtod
.varp
->tb_to_xs
= tb_to_xs
;
740 do_gtod
.tb_to_us
= tb_to_us
;
742 vdso_data
->tb_orig_stamp
= tb_last_jiffy
;
743 vdso_data
->tb_update_count
= 0;
744 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
745 vdso_data
->stamp_xsec
= xtime
.tv_sec
* XSEC_PER_SEC
;
746 vdso_data
->tb_to_xs
= tb_to_xs
;
750 /* If platform provided a timezone (pmac), we correct the time */
751 if (timezone_offset
) {
752 sys_tz
.tz_minuteswest
= -timezone_offset
/ 60;
753 sys_tz
.tz_dsttime
= 0;
754 xtime
.tv_sec
-= timezone_offset
;
757 last_rtc_update
= xtime
.tv_sec
;
758 set_normalized_timespec(&wall_to_monotonic
,
759 -xtime
.tv_sec
, -xtime
.tv_nsec
);
760 write_sequnlock_irqrestore(&xtime_lock
, flags
);
762 /* Not exact, but the timer interrupt takes care of this */
763 set_dec(tb_ticks_per_jiffy
);
767 * After adjtimex is called, adjust the conversion of tb ticks
768 * to microseconds to keep do_gettimeofday synchronized
771 * Use the time_adjust, time_freq and time_offset computed by adjtimex to
772 * adjust the frequency.
775 /* #define DEBUG_PPC_ADJTIMEX 1 */
777 void ppc_adjtimex(void)
780 unsigned long den
, new_tb_ticks_per_sec
, tb_ticks
, old_xsec
,
781 new_tb_to_xs
, new_xsec
, new_stamp_xsec
;
782 unsigned long tb_ticks_per_sec_delta
;
783 long delta_freq
, ltemp
;
784 struct div_result divres
;
786 long singleshot_ppm
= 0;
789 * Compute parts per million frequency adjustment to
790 * accomplish the time adjustment implied by time_offset to be
791 * applied over the elapsed time indicated by time_constant.
792 * Use SHIFT_USEC to get it into the same units as
795 if ( time_offset
< 0 ) {
796 ltemp
= -time_offset
;
797 ltemp
<<= SHIFT_USEC
- SHIFT_UPDATE
;
798 ltemp
>>= SHIFT_KG
+ time_constant
;
802 ltemp
<<= SHIFT_USEC
- SHIFT_UPDATE
;
803 ltemp
>>= SHIFT_KG
+ time_constant
;
806 /* If there is a single shot time adjustment in progress */
808 #ifdef DEBUG_PPC_ADJTIMEX
809 printk("ppc_adjtimex: ");
810 if ( adjusting_time
== 0 )
812 printk("single shot time_adjust = %ld\n", time_adjust
);
818 * Compute parts per million frequency adjustment
819 * to match time_adjust
821 singleshot_ppm
= tickadj
* HZ
;
823 * The adjustment should be tickadj*HZ to match the code in
824 * linux/kernel/timer.c, but experiments show that this is too
825 * large. 3/4 of tickadj*HZ seems about right
827 singleshot_ppm
-= singleshot_ppm
/ 4;
828 /* Use SHIFT_USEC to get it into the same units as time_freq */
829 singleshot_ppm
<<= SHIFT_USEC
;
830 if ( time_adjust
< 0 )
831 singleshot_ppm
= -singleshot_ppm
;
834 #ifdef DEBUG_PPC_ADJTIMEX
835 if ( adjusting_time
)
836 printk("ppc_adjtimex: ending single shot time_adjust\n");
841 /* Add up all of the frequency adjustments */
842 delta_freq
= time_freq
+ ltemp
+ singleshot_ppm
;
845 * Compute a new value for tb_ticks_per_sec based on
846 * the frequency adjustment
848 den
= 1000000 * (1 << (SHIFT_USEC
- 8));
849 if ( delta_freq
< 0 ) {
850 tb_ticks_per_sec_delta
= ( tb_ticks_per_sec
* ( (-delta_freq
) >> (SHIFT_USEC
- 8))) / den
;
851 new_tb_ticks_per_sec
= tb_ticks_per_sec
+ tb_ticks_per_sec_delta
;
854 tb_ticks_per_sec_delta
= ( tb_ticks_per_sec
* ( delta_freq
>> (SHIFT_USEC
- 8))) / den
;
855 new_tb_ticks_per_sec
= tb_ticks_per_sec
- tb_ticks_per_sec_delta
;
858 #ifdef DEBUG_PPC_ADJTIMEX
859 printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp
, time_freq
, singleshot_ppm
);
860 printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec
, new_tb_ticks_per_sec
);
864 * Compute a new value of tb_to_xs (used to convert tb to
865 * microseconds) and a new value of stamp_xsec which is the
866 * time (in 1/2^20 second units) corresponding to
867 * tb_orig_stamp. This new value of stamp_xsec compensates
868 * for the change in frequency (implied by the new tb_to_xs)
869 * which guarantees that the current time remains the same.
871 write_seqlock_irqsave( &xtime_lock
, flags
);
872 tb_ticks
= get_tb() - do_gtod
.varp
->tb_orig_stamp
;
873 div128_by_32(1024*1024, 0, new_tb_ticks_per_sec
, &divres
);
874 new_tb_to_xs
= divres
.result_low
;
875 new_xsec
= mulhdu(tb_ticks
, new_tb_to_xs
);
877 old_xsec
= mulhdu(tb_ticks
, do_gtod
.varp
->tb_to_xs
);
878 new_stamp_xsec
= do_gtod
.varp
->stamp_xsec
+ old_xsec
- new_xsec
;
880 update_gtod(do_gtod
.varp
->tb_orig_stamp
, new_stamp_xsec
, new_tb_to_xs
);
882 write_sequnlock_irqrestore( &xtime_lock
, flags
);
883 #endif /* CONFIG_PPC64 */
888 #define STARTOFTIME 1970
889 #define SECDAY 86400L
890 #define SECYR (SECDAY * 365)
891 #define leapyear(year) ((year) % 4 == 0 && \
892 ((year) % 100 != 0 || (year) % 400 == 0))
893 #define days_in_year(a) (leapyear(a) ? 366 : 365)
894 #define days_in_month(a) (month_days[(a) - 1])
896 static int month_days
[12] = {
897 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
901 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
903 void GregorianDay(struct rtc_time
* tm
)
908 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
910 lastYear
= tm
->tm_year
- 1;
913 * Number of leap corrections to apply up to end of last year
915 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
918 * This year is a leap year if it is divisible by 4 except when it is
919 * divisible by 100 unless it is divisible by 400
921 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
923 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
925 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
928 tm
->tm_wday
= day
% 7;
931 void to_tm(int tim
, struct rtc_time
* tm
)
934 register long hms
, day
;
939 /* Hours, minutes, seconds are easy */
940 tm
->tm_hour
= hms
/ 3600;
941 tm
->tm_min
= (hms
% 3600) / 60;
942 tm
->tm_sec
= (hms
% 3600) % 60;
944 /* Number of years in days */
945 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
946 day
-= days_in_year(i
);
949 /* Number of months in days left */
950 if (leapyear(tm
->tm_year
))
951 days_in_month(FEBRUARY
) = 29;
952 for (i
= 1; day
>= days_in_month(i
); i
++)
953 day
-= days_in_month(i
);
954 days_in_month(FEBRUARY
) = 28;
957 /* Days are what is left over (+1) from all that. */
958 tm
->tm_mday
= day
+ 1;
961 * Determine the day of week
966 /* Auxiliary function to compute scaling factors */
967 /* Actually the choice of a timebase running at 1/4 the of the bus
968 * frequency giving resolution of a few tens of nanoseconds is quite nice.
969 * It makes this computation very precise (27-28 bits typically) which
970 * is optimistic considering the stability of most processor clock
971 * oscillators and the precision with which the timebase frequency
972 * is measured but does not harm.
974 unsigned mulhwu_scale_factor(unsigned inscale
, unsigned outscale
)
976 unsigned mlt
=0, tmp
, err
;
977 /* No concern for performance, it's done once: use a stupid
978 * but safe and compact method to find the multiplier.
981 for (tmp
= 1U<<31; tmp
!= 0; tmp
>>= 1) {
982 if (mulhwu(inscale
, mlt
|tmp
) < outscale
)
986 /* We might still be off by 1 for the best approximation.
987 * A side effect of this is that if outscale is too large
988 * the returned value will be zero.
989 * Many corner cases have been checked and seem to work,
990 * some might have been forgotten in the test however.
993 err
= inscale
* (mlt
+1);
994 if (err
<= inscale
/2)
1000 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1003 void div128_by_32(u64 dividend_high
, u64 dividend_low
,
1004 unsigned divisor
, struct div_result
*dr
)
1006 unsigned long a
, b
, c
, d
;
1007 unsigned long w
, x
, y
, z
;
1010 a
= dividend_high
>> 32;
1011 b
= dividend_high
& 0xffffffff;
1012 c
= dividend_low
>> 32;
1013 d
= dividend_low
& 0xffffffff;
1016 ra
= ((u64
)(a
- (w
* divisor
)) << 32) + b
;
1018 rb
= ((u64
) do_div(ra
, divisor
) << 32) + c
;
1021 rc
= ((u64
) do_div(rb
, divisor
) << 32) + d
;
1024 do_div(rc
, divisor
);
1027 dr
->result_high
= ((u64
)w
<< 32) + x
;
1028 dr
->result_low
= ((u64
)y
<< 32) + z
;