[PATCH] w1: Added default generic read/write operations.
[linux-2.6/verdex.git] / drivers / net / fec.c
blobbd6983d1afbac77ed852c8991cb7b653d4272128
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2005 Macq Electronique SA.
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/string.h>
32 #include <linux/ptrace.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/skbuff.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/pgtable.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54 defined(CONFIG_M520x)
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
57 #include "fec.h"
58 #else
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
61 #include "commproc.h"
62 #endif
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
66 #else
67 #define FEC_MAX_PORTS 1
68 #endif
71 * Define the fixed address of the FEC hardware.
73 static unsigned int fec_hw[] = {
74 #if defined(CONFIG_M5272)
75 (MCF_MBAR + 0x840),
76 #elif defined(CONFIG_M527x)
77 (MCF_MBAR + 0x1000),
78 (MCF_MBAR + 0x1800),
79 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
80 (MCF_MBAR + 0x1000),
81 #elif defined(CONFIG_M520x)
82 (MCF_MBAR+0x30000),
83 #else
84 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
85 #endif
88 static unsigned char fec_mac_default[] = {
89 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
93 * Some hardware gets it MAC address out of local flash memory.
94 * if this is non-zero then assume it is the address to get MAC from.
96 #if defined(CONFIG_NETtel)
97 #define FEC_FLASHMAC 0xf0006006
98 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
99 #define FEC_FLASHMAC 0xf0006000
100 #elif defined (CONFIG_MTD_KeyTechnology)
101 #define FEC_FLASHMAC 0xffe04000
102 #elif defined(CONFIG_CANCam)
103 #define FEC_FLASHMAC 0xf0020000
104 #elif defined (CONFIG_M5272C3)
105 #define FEC_FLASHMAC (0xffe04000 + 4)
106 #elif defined(CONFIG_MOD5272)
107 #define FEC_FLASHMAC 0xffc0406b
108 #else
109 #define FEC_FLASHMAC 0
110 #endif
112 /* Forward declarations of some structures to support different PHYs
115 typedef struct {
116 uint mii_data;
117 void (*funct)(uint mii_reg, struct net_device *dev);
118 } phy_cmd_t;
120 typedef struct {
121 uint id;
122 char *name;
124 const phy_cmd_t *config;
125 const phy_cmd_t *startup;
126 const phy_cmd_t *ack_int;
127 const phy_cmd_t *shutdown;
128 } phy_info_t;
130 /* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
136 #define FEC_ENET_RX_PAGES 8
137 #define FEC_ENET_RX_FRSIZE 2048
138 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140 #define FEC_ENET_TX_FRSIZE 2048
141 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142 #define TX_RING_SIZE 16 /* Must be power of two */
143 #define TX_RING_MOD_MASK 15 /* for this to work */
145 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
146 #error "FEC: descriptor ring size contants too large"
147 #endif
149 /* Interrupt events/masks.
151 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
162 /* The FEC stores dest/src/type, data, and checksum for receive packets.
164 #define PKT_MAXBUF_SIZE 1518
165 #define PKT_MINBUF_SIZE 64
166 #define PKT_MAXBLR_SIZE 1520
170 * The 5270/5271/5280/5282 RX control register also contains maximum frame
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
174 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
175 defined(CONFIG_M520x)
176 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
177 #else
178 #define OPT_FRAME_SIZE 0
179 #endif
181 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
189 struct fec_enet_private {
190 /* Hardware registers of the FEC device */
191 volatile fec_t *hwp;
193 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
194 unsigned char *tx_bounce[TX_RING_SIZE];
195 struct sk_buff* tx_skbuff[TX_RING_SIZE];
196 ushort skb_cur;
197 ushort skb_dirty;
199 /* CPM dual port RAM relative addresses.
201 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
202 cbd_t *tx_bd_base;
203 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
204 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
205 struct net_device_stats stats;
206 uint tx_full;
207 spinlock_t lock;
209 uint phy_id;
210 uint phy_id_done;
211 uint phy_status;
212 uint phy_speed;
213 phy_info_t const *phy;
214 struct work_struct phy_task;
216 uint sequence_done;
217 uint mii_phy_task_queued;
219 uint phy_addr;
221 int index;
222 int opened;
223 int link;
224 int old_link;
225 int full_duplex;
228 static int fec_enet_open(struct net_device *dev);
229 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
230 static void fec_enet_mii(struct net_device *dev);
231 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
232 static void fec_enet_tx(struct net_device *dev);
233 static void fec_enet_rx(struct net_device *dev);
234 static int fec_enet_close(struct net_device *dev);
235 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
236 static void set_multicast_list(struct net_device *dev);
237 static void fec_restart(struct net_device *dev, int duplex);
238 static void fec_stop(struct net_device *dev);
239 static void fec_set_mac_address(struct net_device *dev);
242 /* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
246 typedef struct mii_list {
247 uint mii_regval;
248 void (*mii_func)(uint val, struct net_device *dev);
249 struct mii_list *mii_next;
250 } mii_list_t;
252 #define NMII 20
253 static mii_list_t mii_cmds[NMII];
254 static mii_list_t *mii_free;
255 static mii_list_t *mii_head;
256 static mii_list_t *mii_tail;
258 static int mii_queue(struct net_device *dev, int request,
259 void (*func)(uint, struct net_device *));
261 /* Make MII read/write commands for the FEC.
263 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
265 (VAL & 0xffff))
266 #define mk_mii_end 0
268 /* Transmitter timeout.
270 #define TX_TIMEOUT (2*HZ)
272 /* Register definitions for the PHY.
275 #define MII_REG_CR 0 /* Control Register */
276 #define MII_REG_SR 1 /* Status Register */
277 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
279 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
280 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281 #define MII_REG_ANER 6 /* A-N Expansion Register */
282 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
285 /* values for phy_status */
287 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
291 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
292 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
293 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
295 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
300 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
301 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
302 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
305 static int
306 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
308 struct fec_enet_private *fep;
309 volatile fec_t *fecp;
310 volatile cbd_t *bdp;
312 fep = netdev_priv(dev);
313 fecp = (volatile fec_t*)dev->base_addr;
315 if (!fep->link) {
316 /* Link is down or autonegotiation is in progress. */
317 return 1;
320 /* Fill in a Tx ring entry */
321 bdp = fep->cur_tx;
323 #ifndef final_version
324 if (bdp->cbd_sc & BD_ENET_TX_READY) {
325 /* Ooops. All transmit buffers are full. Bail out.
326 * This should not happen, since dev->tbusy should be set.
328 printk("%s: tx queue full!.\n", dev->name);
329 return 1;
331 #endif
333 /* Clear all of the status flags.
335 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
337 /* Set buffer length and buffer pointer.
339 bdp->cbd_bufaddr = __pa(skb->data);
340 bdp->cbd_datlen = skb->len;
343 * On some FEC implementations data must be aligned on
344 * 4-byte boundaries. Use bounce buffers to copy data
345 * and get it aligned. Ugh.
347 if (bdp->cbd_bufaddr & 0x3) {
348 unsigned int index;
349 index = bdp - fep->tx_bd_base;
350 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
351 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
354 /* Save skb pointer.
356 fep->tx_skbuff[fep->skb_cur] = skb;
358 fep->stats.tx_bytes += skb->len;
359 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
361 /* Push the data cache so the CPM does not get stale memory
362 * data.
364 flush_dcache_range((unsigned long)skb->data,
365 (unsigned long)skb->data + skb->len);
367 spin_lock_irq(&fep->lock);
369 /* Send it on its way. Tell FEC its ready, interrupt when done,
370 * its the last BD of the frame, and to put the CRC on the end.
373 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
374 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
376 dev->trans_start = jiffies;
378 /* Trigger transmission start */
379 fecp->fec_x_des_active = 0x01000000;
381 /* If this was the last BD in the ring, start at the beginning again.
383 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
384 bdp = fep->tx_bd_base;
385 } else {
386 bdp++;
389 if (bdp == fep->dirty_tx) {
390 fep->tx_full = 1;
391 netif_stop_queue(dev);
394 fep->cur_tx = (cbd_t *)bdp;
396 spin_unlock_irq(&fep->lock);
398 return 0;
401 static void
402 fec_timeout(struct net_device *dev)
404 struct fec_enet_private *fep = netdev_priv(dev);
406 printk("%s: transmit timed out.\n", dev->name);
407 fep->stats.tx_errors++;
408 #ifndef final_version
410 int i;
411 cbd_t *bdp;
413 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
414 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
415 (unsigned long)fep->dirty_tx,
416 (unsigned long)fep->cur_rx);
418 bdp = fep->tx_bd_base;
419 printk(" tx: %u buffers\n", TX_RING_SIZE);
420 for (i = 0 ; i < TX_RING_SIZE; i++) {
421 printk(" %08x: %04x %04x %08x\n",
422 (uint) bdp,
423 bdp->cbd_sc,
424 bdp->cbd_datlen,
425 (int) bdp->cbd_bufaddr);
426 bdp++;
429 bdp = fep->rx_bd_base;
430 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
431 for (i = 0 ; i < RX_RING_SIZE; i++) {
432 printk(" %08x: %04x %04x %08x\n",
433 (uint) bdp,
434 bdp->cbd_sc,
435 bdp->cbd_datlen,
436 (int) bdp->cbd_bufaddr);
437 bdp++;
440 #endif
441 fec_restart(dev, fep->full_duplex);
442 netif_wake_queue(dev);
445 /* The interrupt handler.
446 * This is called from the MPC core interrupt.
448 static irqreturn_t
449 fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
451 struct net_device *dev = dev_id;
452 volatile fec_t *fecp;
453 uint int_events;
454 int handled = 0;
456 fecp = (volatile fec_t*)dev->base_addr;
458 /* Get the interrupt events that caused us to be here.
460 while ((int_events = fecp->fec_ievent) != 0) {
461 fecp->fec_ievent = int_events;
463 /* Handle receive event in its own function.
465 if (int_events & FEC_ENET_RXF) {
466 handled = 1;
467 fec_enet_rx(dev);
470 /* Transmit OK, or non-fatal error. Update the buffer
471 descriptors. FEC handles all errors, we just discover
472 them as part of the transmit process.
474 if (int_events & FEC_ENET_TXF) {
475 handled = 1;
476 fec_enet_tx(dev);
479 if (int_events & FEC_ENET_MII) {
480 handled = 1;
481 fec_enet_mii(dev);
485 return IRQ_RETVAL(handled);
489 static void
490 fec_enet_tx(struct net_device *dev)
492 struct fec_enet_private *fep;
493 volatile cbd_t *bdp;
494 struct sk_buff *skb;
496 fep = netdev_priv(dev);
497 spin_lock(&fep->lock);
498 bdp = fep->dirty_tx;
500 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
501 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
503 skb = fep->tx_skbuff[fep->skb_dirty];
504 /* Check for errors. */
505 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
506 BD_ENET_TX_RL | BD_ENET_TX_UN |
507 BD_ENET_TX_CSL)) {
508 fep->stats.tx_errors++;
509 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
510 fep->stats.tx_heartbeat_errors++;
511 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
512 fep->stats.tx_window_errors++;
513 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
514 fep->stats.tx_aborted_errors++;
515 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
516 fep->stats.tx_fifo_errors++;
517 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
518 fep->stats.tx_carrier_errors++;
519 } else {
520 fep->stats.tx_packets++;
523 #ifndef final_version
524 if (bdp->cbd_sc & BD_ENET_TX_READY)
525 printk("HEY! Enet xmit interrupt and TX_READY.\n");
526 #endif
527 /* Deferred means some collisions occurred during transmit,
528 * but we eventually sent the packet OK.
530 if (bdp->cbd_sc & BD_ENET_TX_DEF)
531 fep->stats.collisions++;
533 /* Free the sk buffer associated with this last transmit.
535 dev_kfree_skb_any(skb);
536 fep->tx_skbuff[fep->skb_dirty] = NULL;
537 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
539 /* Update pointer to next buffer descriptor to be transmitted.
541 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
542 bdp = fep->tx_bd_base;
543 else
544 bdp++;
546 /* Since we have freed up a buffer, the ring is no longer
547 * full.
549 if (fep->tx_full) {
550 fep->tx_full = 0;
551 if (netif_queue_stopped(dev))
552 netif_wake_queue(dev);
555 fep->dirty_tx = (cbd_t *)bdp;
556 spin_unlock(&fep->lock);
560 /* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
565 static void
566 fec_enet_rx(struct net_device *dev)
568 struct fec_enet_private *fep;
569 volatile fec_t *fecp;
570 volatile cbd_t *bdp;
571 struct sk_buff *skb;
572 ushort pkt_len;
573 __u8 *data;
575 fep = netdev_priv(dev);
576 fecp = (volatile fec_t*)dev->base_addr;
578 /* First, grab all of the stats for the incoming packet.
579 * These get messed up if we get called due to a busy condition.
581 bdp = fep->cur_rx;
583 while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
585 #ifndef final_version
586 /* Since we have allocated space to hold a complete frame,
587 * the last indicator should be set.
589 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
590 printk("FEC ENET: rcv is not +last\n");
591 #endif
593 if (!fep->opened)
594 goto rx_processing_done;
596 /* Check for errors. */
597 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
598 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
599 fep->stats.rx_errors++;
600 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
601 /* Frame too long or too short. */
602 fep->stats.rx_length_errors++;
604 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
605 fep->stats.rx_frame_errors++;
606 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
607 fep->stats.rx_crc_errors++;
608 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
609 fep->stats.rx_crc_errors++;
612 /* Report late collisions as a frame error.
613 * On this error, the BD is closed, but we don't know what we
614 * have in the buffer. So, just drop this frame on the floor.
616 if (bdp->cbd_sc & BD_ENET_RX_CL) {
617 fep->stats.rx_errors++;
618 fep->stats.rx_frame_errors++;
619 goto rx_processing_done;
622 /* Process the incoming frame.
624 fep->stats.rx_packets++;
625 pkt_len = bdp->cbd_datlen;
626 fep->stats.rx_bytes += pkt_len;
627 data = (__u8*)__va(bdp->cbd_bufaddr);
629 /* This does 16 byte alignment, exactly what we need.
630 * The packet length includes FCS, but we don't want to
631 * include that when passing upstream as it messes up
632 * bridging applications.
634 skb = dev_alloc_skb(pkt_len-4);
636 if (skb == NULL) {
637 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
638 fep->stats.rx_dropped++;
639 } else {
640 skb->dev = dev;
641 skb_put(skb,pkt_len-4); /* Make room */
642 eth_copy_and_sum(skb,
643 (unsigned char *)__va(bdp->cbd_bufaddr),
644 pkt_len-4, 0);
645 skb->protocol=eth_type_trans(skb,dev);
646 netif_rx(skb);
648 rx_processing_done:
650 /* Clear the status flags for this buffer.
652 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
654 /* Mark the buffer empty.
656 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
658 /* Update BD pointer to next entry.
660 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
661 bdp = fep->rx_bd_base;
662 else
663 bdp++;
665 #if 1
666 /* Doing this here will keep the FEC running while we process
667 * incoming frames. On a heavily loaded network, we should be
668 * able to keep up at the expense of system resources.
670 fecp->fec_r_des_active = 0x01000000;
671 #endif
672 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
673 fep->cur_rx = (cbd_t *)bdp;
675 #if 0
676 /* Doing this here will allow us to process all frames in the
677 * ring before the FEC is allowed to put more there. On a heavily
678 * loaded network, some frames may be lost. Unfortunately, this
679 * increases the interrupt overhead since we can potentially work
680 * our way back to the interrupt return only to come right back
681 * here.
683 fecp->fec_r_des_active = 0x01000000;
684 #endif
688 static void
689 fec_enet_mii(struct net_device *dev)
691 struct fec_enet_private *fep;
692 volatile fec_t *ep;
693 mii_list_t *mip;
694 uint mii_reg;
696 fep = netdev_priv(dev);
697 ep = fep->hwp;
698 mii_reg = ep->fec_mii_data;
700 if ((mip = mii_head) == NULL) {
701 printk("MII and no head!\n");
702 return;
705 if (mip->mii_func != NULL)
706 (*(mip->mii_func))(mii_reg, dev);
708 mii_head = mip->mii_next;
709 mip->mii_next = mii_free;
710 mii_free = mip;
712 if ((mip = mii_head) != NULL)
713 ep->fec_mii_data = mip->mii_regval;
716 static int
717 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
719 struct fec_enet_private *fep;
720 unsigned long flags;
721 mii_list_t *mip;
722 int retval;
724 /* Add PHY address to register command.
726 fep = netdev_priv(dev);
727 regval |= fep->phy_addr << 23;
729 retval = 0;
731 save_flags(flags);
732 cli();
734 if ((mip = mii_free) != NULL) {
735 mii_free = mip->mii_next;
736 mip->mii_regval = regval;
737 mip->mii_func = func;
738 mip->mii_next = NULL;
739 if (mii_head) {
740 mii_tail->mii_next = mip;
741 mii_tail = mip;
743 else {
744 mii_head = mii_tail = mip;
745 fep->hwp->fec_mii_data = regval;
748 else {
749 retval = 1;
752 restore_flags(flags);
754 return(retval);
757 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
759 int k;
761 if(!c)
762 return;
764 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
765 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
769 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
771 struct fec_enet_private *fep = netdev_priv(dev);
772 volatile uint *s = &(fep->phy_status);
773 uint status;
775 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
777 if (mii_reg & 0x0004)
778 status |= PHY_STAT_LINK;
779 if (mii_reg & 0x0010)
780 status |= PHY_STAT_FAULT;
781 if (mii_reg & 0x0020)
782 status |= PHY_STAT_ANC;
784 *s = status;
787 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
789 struct fec_enet_private *fep = netdev_priv(dev);
790 volatile uint *s = &(fep->phy_status);
791 uint status;
793 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
795 if (mii_reg & 0x1000)
796 status |= PHY_CONF_ANE;
797 if (mii_reg & 0x4000)
798 status |= PHY_CONF_LOOP;
799 *s = status;
802 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
804 struct fec_enet_private *fep = netdev_priv(dev);
805 volatile uint *s = &(fep->phy_status);
806 uint status;
808 status = *s & ~(PHY_CONF_SPMASK);
810 if (mii_reg & 0x0020)
811 status |= PHY_CONF_10HDX;
812 if (mii_reg & 0x0040)
813 status |= PHY_CONF_10FDX;
814 if (mii_reg & 0x0080)
815 status |= PHY_CONF_100HDX;
816 if (mii_reg & 0x00100)
817 status |= PHY_CONF_100FDX;
818 *s = status;
821 /* ------------------------------------------------------------------------- */
822 /* The Level one LXT970 is used by many boards */
824 #define MII_LXT970_MIRROR 16 /* Mirror register */
825 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
826 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
827 #define MII_LXT970_CONFIG 19 /* Configuration Register */
828 #define MII_LXT970_CSR 20 /* Chip Status Register */
830 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
832 struct fec_enet_private *fep = netdev_priv(dev);
833 volatile uint *s = &(fep->phy_status);
834 uint status;
836 status = *s & ~(PHY_STAT_SPMASK);
837 if (mii_reg & 0x0800) {
838 if (mii_reg & 0x1000)
839 status |= PHY_STAT_100FDX;
840 else
841 status |= PHY_STAT_100HDX;
842 } else {
843 if (mii_reg & 0x1000)
844 status |= PHY_STAT_10FDX;
845 else
846 status |= PHY_STAT_10HDX;
848 *s = status;
851 static phy_cmd_t const phy_cmd_lxt970_config[] = {
852 { mk_mii_read(MII_REG_CR), mii_parse_cr },
853 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
854 { mk_mii_end, }
856 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
857 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
858 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
859 { mk_mii_end, }
861 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
862 /* read SR and ISR to acknowledge */
863 { mk_mii_read(MII_REG_SR), mii_parse_sr },
864 { mk_mii_read(MII_LXT970_ISR), NULL },
866 /* find out the current status */
867 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
868 { mk_mii_end, }
870 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
871 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
872 { mk_mii_end, }
874 static phy_info_t const phy_info_lxt970 = {
875 .id = 0x07810000,
876 .name = "LXT970",
877 .config = phy_cmd_lxt970_config,
878 .startup = phy_cmd_lxt970_startup,
879 .ack_int = phy_cmd_lxt970_ack_int,
880 .shutdown = phy_cmd_lxt970_shutdown
883 /* ------------------------------------------------------------------------- */
884 /* The Level one LXT971 is used on some of my custom boards */
886 /* register definitions for the 971 */
888 #define MII_LXT971_PCR 16 /* Port Control Register */
889 #define MII_LXT971_SR2 17 /* Status Register 2 */
890 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
891 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
892 #define MII_LXT971_LCR 20 /* LED Control Register */
893 #define MII_LXT971_TCR 30 /* Transmit Control Register */
896 * I had some nice ideas of running the MDIO faster...
897 * The 971 should support 8MHz and I tried it, but things acted really
898 * weird, so 2.5 MHz ought to be enough for anyone...
901 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
903 struct fec_enet_private *fep = netdev_priv(dev);
904 volatile uint *s = &(fep->phy_status);
905 uint status;
907 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
909 if (mii_reg & 0x0400) {
910 fep->link = 1;
911 status |= PHY_STAT_LINK;
912 } else {
913 fep->link = 0;
915 if (mii_reg & 0x0080)
916 status |= PHY_STAT_ANC;
917 if (mii_reg & 0x4000) {
918 if (mii_reg & 0x0200)
919 status |= PHY_STAT_100FDX;
920 else
921 status |= PHY_STAT_100HDX;
922 } else {
923 if (mii_reg & 0x0200)
924 status |= PHY_STAT_10FDX;
925 else
926 status |= PHY_STAT_10HDX;
928 if (mii_reg & 0x0008)
929 status |= PHY_STAT_FAULT;
931 *s = status;
934 static phy_cmd_t const phy_cmd_lxt971_config[] = {
935 /* limit to 10MBit because my prototype board
936 * doesn't work with 100. */
937 { mk_mii_read(MII_REG_CR), mii_parse_cr },
938 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
939 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
940 { mk_mii_end, }
942 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
943 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
944 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
945 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
946 /* Somehow does the 971 tell me that the link is down
947 * the first read after power-up.
948 * read here to get a valid value in ack_int */
949 { mk_mii_read(MII_REG_SR), mii_parse_sr },
950 { mk_mii_end, }
952 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
953 /* acknowledge the int before reading status ! */
954 { mk_mii_read(MII_LXT971_ISR), NULL },
955 /* find out the current status */
956 { mk_mii_read(MII_REG_SR), mii_parse_sr },
957 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
958 { mk_mii_end, }
960 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
961 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
962 { mk_mii_end, }
964 static phy_info_t const phy_info_lxt971 = {
965 .id = 0x0001378e,
966 .name = "LXT971",
967 .config = phy_cmd_lxt971_config,
968 .startup = phy_cmd_lxt971_startup,
969 .ack_int = phy_cmd_lxt971_ack_int,
970 .shutdown = phy_cmd_lxt971_shutdown
973 /* ------------------------------------------------------------------------- */
974 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
976 /* register definitions */
978 #define MII_QS6612_MCR 17 /* Mode Control Register */
979 #define MII_QS6612_FTR 27 /* Factory Test Register */
980 #define MII_QS6612_MCO 28 /* Misc. Control Register */
981 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
982 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
983 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
985 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
987 struct fec_enet_private *fep = netdev_priv(dev);
988 volatile uint *s = &(fep->phy_status);
989 uint status;
991 status = *s & ~(PHY_STAT_SPMASK);
993 switch((mii_reg >> 2) & 7) {
994 case 1: status |= PHY_STAT_10HDX; break;
995 case 2: status |= PHY_STAT_100HDX; break;
996 case 5: status |= PHY_STAT_10FDX; break;
997 case 6: status |= PHY_STAT_100FDX; break;
1000 *s = status;
1003 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1004 /* The PHY powers up isolated on the RPX,
1005 * so send a command to allow operation.
1007 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1009 /* parse cr and anar to get some info */
1010 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1011 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1012 { mk_mii_end, }
1014 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1015 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1016 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1017 { mk_mii_end, }
1019 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1020 /* we need to read ISR, SR and ANER to acknowledge */
1021 { mk_mii_read(MII_QS6612_ISR), NULL },
1022 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1023 { mk_mii_read(MII_REG_ANER), NULL },
1025 /* read pcr to get info */
1026 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1027 { mk_mii_end, }
1029 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1030 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1031 { mk_mii_end, }
1033 static phy_info_t const phy_info_qs6612 = {
1034 .id = 0x00181440,
1035 .name = "QS6612",
1036 .config = phy_cmd_qs6612_config,
1037 .startup = phy_cmd_qs6612_startup,
1038 .ack_int = phy_cmd_qs6612_ack_int,
1039 .shutdown = phy_cmd_qs6612_shutdown
1042 /* ------------------------------------------------------------------------- */
1043 /* AMD AM79C874 phy */
1045 /* register definitions for the 874 */
1047 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1048 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1049 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1050 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1051 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1052 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1053 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1055 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1057 struct fec_enet_private *fep = netdev_priv(dev);
1058 volatile uint *s = &(fep->phy_status);
1059 uint status;
1061 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1063 if (mii_reg & 0x0080)
1064 status |= PHY_STAT_ANC;
1065 if (mii_reg & 0x0400)
1066 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1067 else
1068 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1070 *s = status;
1073 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1074 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1075 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1076 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1077 { mk_mii_end, }
1079 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1080 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1081 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1082 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1083 { mk_mii_end, }
1085 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1086 /* find out the current status */
1087 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1088 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1089 /* we only need to read ISR to acknowledge */
1090 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1091 { mk_mii_end, }
1093 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1094 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1095 { mk_mii_end, }
1097 static phy_info_t const phy_info_am79c874 = {
1098 .id = 0x00022561,
1099 .name = "AM79C874",
1100 .config = phy_cmd_am79c874_config,
1101 .startup = phy_cmd_am79c874_startup,
1102 .ack_int = phy_cmd_am79c874_ack_int,
1103 .shutdown = phy_cmd_am79c874_shutdown
1107 /* ------------------------------------------------------------------------- */
1108 /* Kendin KS8721BL phy */
1110 /* register definitions for the 8721 */
1112 #define MII_KS8721BL_RXERCR 21
1113 #define MII_KS8721BL_ICSR 22
1114 #define MII_KS8721BL_PHYCR 31
1116 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1117 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1118 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1119 { mk_mii_end, }
1121 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1122 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1123 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1124 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1125 { mk_mii_end, }
1127 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1128 /* find out the current status */
1129 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1130 /* we only need to read ISR to acknowledge */
1131 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1132 { mk_mii_end, }
1134 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1135 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1136 { mk_mii_end, }
1138 static phy_info_t const phy_info_ks8721bl = {
1139 .id = 0x00022161,
1140 .name = "KS8721BL",
1141 .config = phy_cmd_ks8721bl_config,
1142 .startup = phy_cmd_ks8721bl_startup,
1143 .ack_int = phy_cmd_ks8721bl_ack_int,
1144 .shutdown = phy_cmd_ks8721bl_shutdown
1147 /* ------------------------------------------------------------------------- */
1148 /* register definitions for the DP83848 */
1150 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1152 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1154 struct fec_enet_private *fep = dev->priv;
1155 volatile uint *s = &(fep->phy_status);
1157 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1159 /* Link up */
1160 if (mii_reg & 0x0001) {
1161 fep->link = 1;
1162 *s |= PHY_STAT_LINK;
1163 } else
1164 fep->link = 0;
1165 /* Status of link */
1166 if (mii_reg & 0x0010) /* Autonegotioation complete */
1167 *s |= PHY_STAT_ANC;
1168 if (mii_reg & 0x0002) { /* 10MBps? */
1169 if (mii_reg & 0x0004) /* Full Duplex? */
1170 *s |= PHY_STAT_10FDX;
1171 else
1172 *s |= PHY_STAT_10HDX;
1173 } else { /* 100 Mbps? */
1174 if (mii_reg & 0x0004) /* Full Duplex? */
1175 *s |= PHY_STAT_100FDX;
1176 else
1177 *s |= PHY_STAT_100HDX;
1179 if (mii_reg & 0x0008)
1180 *s |= PHY_STAT_FAULT;
1183 static phy_info_t phy_info_dp83848= {
1184 0x020005c9,
1185 "DP83848",
1187 (const phy_cmd_t []) { /* config */
1188 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1189 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1190 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1191 { mk_mii_end, }
1193 (const phy_cmd_t []) { /* startup - enable interrupts */
1194 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1195 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1196 { mk_mii_end, }
1198 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1199 { mk_mii_end, }
1201 (const phy_cmd_t []) { /* shutdown */
1202 { mk_mii_end, }
1206 /* ------------------------------------------------------------------------- */
1208 static phy_info_t const * const phy_info[] = {
1209 &phy_info_lxt970,
1210 &phy_info_lxt971,
1211 &phy_info_qs6612,
1212 &phy_info_am79c874,
1213 &phy_info_ks8721bl,
1214 &phy_info_dp83848,
1215 NULL
1218 /* ------------------------------------------------------------------------- */
1220 #ifdef CONFIG_RPXCLASSIC
1221 static void
1222 mii_link_interrupt(void *dev_id);
1223 #else
1224 static irqreturn_t
1225 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
1226 #endif
1228 #if defined(CONFIG_M5272)
1231 * Code specific to Coldfire 5272 setup.
1233 static void __inline__ fec_request_intrs(struct net_device *dev)
1235 volatile unsigned long *icrp;
1236 static const struct idesc {
1237 char *name;
1238 unsigned short irq;
1239 irqreturn_t (*handler)(int, void *, struct pt_regs *);
1240 } *idp, id[] = {
1241 { "fec(RX)", 86, fec_enet_interrupt },
1242 { "fec(TX)", 87, fec_enet_interrupt },
1243 { "fec(OTHER)", 88, fec_enet_interrupt },
1244 { "fec(MII)", 66, mii_link_interrupt },
1245 { NULL },
1248 /* Setup interrupt handlers. */
1249 for (idp = id; idp->name; idp++) {
1250 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1251 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1254 /* Unmask interrupt at ColdFire 5272 SIM */
1255 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1256 *icrp = 0x00000ddd;
1257 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1258 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1261 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1263 volatile fec_t *fecp;
1265 fecp = fep->hwp;
1266 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1267 fecp->fec_x_cntrl = 0x00;
1270 * Set MII speed to 2.5 MHz
1271 * See 5272 manual section 11.5.8: MSCR
1273 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1274 fecp->fec_mii_speed = fep->phy_speed;
1276 fec_restart(dev, 0);
1279 static void __inline__ fec_get_mac(struct net_device *dev)
1281 struct fec_enet_private *fep = netdev_priv(dev);
1282 volatile fec_t *fecp;
1283 unsigned char *iap, tmpaddr[ETH_ALEN];
1285 fecp = fep->hwp;
1287 if (FEC_FLASHMAC) {
1289 * Get MAC address from FLASH.
1290 * If it is all 1's or 0's, use the default.
1292 iap = (unsigned char *)FEC_FLASHMAC;
1293 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1294 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1295 iap = fec_mac_default;
1296 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1297 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1298 iap = fec_mac_default;
1299 } else {
1300 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1301 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1302 iap = &tmpaddr[0];
1305 memcpy(dev->dev_addr, iap, ETH_ALEN);
1307 /* Adjust MAC if using default MAC address */
1308 if (iap == fec_mac_default)
1309 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1312 static void __inline__ fec_enable_phy_intr(void)
1316 static void __inline__ fec_disable_phy_intr(void)
1318 volatile unsigned long *icrp;
1319 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1320 *icrp = (*icrp & 0x70777777) | 0x08000000;
1323 static void __inline__ fec_phy_ack_intr(void)
1325 volatile unsigned long *icrp;
1326 /* Acknowledge the interrupt */
1327 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1328 *icrp = (*icrp & 0x77777777) | 0x08000000;
1331 static void __inline__ fec_localhw_setup(void)
1336 * Do not need to make region uncached on 5272.
1338 static void __inline__ fec_uncache(unsigned long addr)
1342 /* ------------------------------------------------------------------------- */
1344 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1347 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1348 * the 5270/5271/5274/5275 and 5280/5282 setups.
1350 static void __inline__ fec_request_intrs(struct net_device *dev)
1352 struct fec_enet_private *fep;
1353 int b;
1354 static const struct idesc {
1355 char *name;
1356 unsigned short irq;
1357 } *idp, id[] = {
1358 { "fec(TXF)", 23 },
1359 { "fec(TXB)", 24 },
1360 { "fec(TXFIFO)", 25 },
1361 { "fec(TXCR)", 26 },
1362 { "fec(RXF)", 27 },
1363 { "fec(RXB)", 28 },
1364 { "fec(MII)", 29 },
1365 { "fec(LC)", 30 },
1366 { "fec(HBERR)", 31 },
1367 { "fec(GRA)", 32 },
1368 { "fec(EBERR)", 33 },
1369 { "fec(BABT)", 34 },
1370 { "fec(BABR)", 35 },
1371 { NULL },
1374 fep = netdev_priv(dev);
1375 b = (fep->index) ? 128 : 64;
1377 /* Setup interrupt handlers. */
1378 for (idp = id; idp->name; idp++) {
1379 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1380 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1383 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1385 volatile unsigned char *icrp;
1386 volatile unsigned long *imrp;
1387 int i;
1389 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1390 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1391 MCFINTC_ICR0);
1392 for (i = 23; (i < 36); i++)
1393 icrp[i] = 0x23;
1395 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1396 MCFINTC_IMRH);
1397 *imrp &= ~0x0000000f;
1398 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1399 MCFINTC_IMRL);
1400 *imrp &= ~0xff800001;
1403 #if defined(CONFIG_M528x)
1404 /* Set up gpio outputs for MII lines */
1406 volatile u16 *gpio_paspar;
1407 volatile u8 *gpio_pehlpar;
1409 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1410 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1411 *gpio_paspar |= 0x0f00;
1412 *gpio_pehlpar = 0xc0;
1414 #endif
1417 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1419 volatile fec_t *fecp;
1421 fecp = fep->hwp;
1422 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1423 fecp->fec_x_cntrl = 0x00;
1426 * Set MII speed to 2.5 MHz
1427 * See 5282 manual section 17.5.4.7: MSCR
1429 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1430 fecp->fec_mii_speed = fep->phy_speed;
1432 fec_restart(dev, 0);
1435 static void __inline__ fec_get_mac(struct net_device *dev)
1437 struct fec_enet_private *fep = netdev_priv(dev);
1438 volatile fec_t *fecp;
1439 unsigned char *iap, tmpaddr[ETH_ALEN];
1441 fecp = fep->hwp;
1443 if (FEC_FLASHMAC) {
1445 * Get MAC address from FLASH.
1446 * If it is all 1's or 0's, use the default.
1448 iap = FEC_FLASHMAC;
1449 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1450 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1451 iap = fec_mac_default;
1452 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1453 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1454 iap = fec_mac_default;
1455 } else {
1456 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1457 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1458 iap = &tmpaddr[0];
1461 memcpy(dev->dev_addr, iap, ETH_ALEN);
1463 /* Adjust MAC if using default MAC address */
1464 if (iap == fec_mac_default)
1465 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1468 static void __inline__ fec_enable_phy_intr(void)
1472 static void __inline__ fec_disable_phy_intr(void)
1476 static void __inline__ fec_phy_ack_intr(void)
1480 static void __inline__ fec_localhw_setup(void)
1485 * Do not need to make region uncached on 5272.
1487 static void __inline__ fec_uncache(unsigned long addr)
1491 /* ------------------------------------------------------------------------- */
1493 #elif defined(CONFIG_M520x)
1496 * Code specific to Coldfire 520x
1498 static void __inline__ fec_request_intrs(struct net_device *dev)
1500 struct fec_enet_private *fep;
1501 int b;
1502 static const struct idesc {
1503 char *name;
1504 unsigned short irq;
1505 } *idp, id[] = {
1506 { "fec(TXF)", 23 },
1507 { "fec(TXB)", 24 },
1508 { "fec(TXFIFO)", 25 },
1509 { "fec(TXCR)", 26 },
1510 { "fec(RXF)", 27 },
1511 { "fec(RXB)", 28 },
1512 { "fec(MII)", 29 },
1513 { "fec(LC)", 30 },
1514 { "fec(HBERR)", 31 },
1515 { "fec(GRA)", 32 },
1516 { "fec(EBERR)", 33 },
1517 { "fec(BABT)", 34 },
1518 { "fec(BABR)", 35 },
1519 { NULL },
1522 fep = netdev_priv(dev);
1523 b = 64 + 13;
1525 /* Setup interrupt handlers. */
1526 for (idp = id; idp->name; idp++) {
1527 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1528 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1531 /* Unmask interrupts at ColdFire interrupt controller */
1533 volatile unsigned char *icrp;
1534 volatile unsigned long *imrp;
1536 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1537 MCFINTC_ICR0);
1538 for (b = 36; (b < 49); b++)
1539 icrp[b] = 0x04;
1540 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1541 MCFINTC_IMRH);
1542 *imrp &= ~0x0001FFF0;
1544 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1545 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1548 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1550 volatile fec_t *fecp;
1552 fecp = fep->hwp;
1553 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1554 fecp->fec_x_cntrl = 0x00;
1557 * Set MII speed to 2.5 MHz
1558 * See 5282 manual section 17.5.4.7: MSCR
1560 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1561 fecp->fec_mii_speed = fep->phy_speed;
1563 fec_restart(dev, 0);
1566 static void __inline__ fec_get_mac(struct net_device *dev)
1568 struct fec_enet_private *fep = netdev_priv(dev);
1569 volatile fec_t *fecp;
1570 unsigned char *iap, tmpaddr[ETH_ALEN];
1572 fecp = fep->hwp;
1574 if (FEC_FLASHMAC) {
1576 * Get MAC address from FLASH.
1577 * If it is all 1's or 0's, use the default.
1579 iap = FEC_FLASHMAC;
1580 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1581 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1582 iap = fec_mac_default;
1583 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1584 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1585 iap = fec_mac_default;
1586 } else {
1587 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1588 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1589 iap = &tmpaddr[0];
1592 memcpy(dev->dev_addr, iap, ETH_ALEN);
1594 /* Adjust MAC if using default MAC address */
1595 if (iap == fec_mac_default)
1596 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1599 static void __inline__ fec_enable_phy_intr(void)
1603 static void __inline__ fec_disable_phy_intr(void)
1607 static void __inline__ fec_phy_ack_intr(void)
1611 static void __inline__ fec_localhw_setup(void)
1615 static void __inline__ fec_uncache(unsigned long addr)
1619 /* ------------------------------------------------------------------------- */
1621 #else
1624 * Code specific to the MPC860T setup.
1626 static void __inline__ fec_request_intrs(struct net_device *dev)
1628 volatile immap_t *immap;
1630 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1632 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1633 panic("Could not allocate FEC IRQ!");
1635 #ifdef CONFIG_RPXCLASSIC
1636 /* Make Port C, bit 15 an input that causes interrupts.
1638 immap->im_ioport.iop_pcpar &= ~0x0001;
1639 immap->im_ioport.iop_pcdir &= ~0x0001;
1640 immap->im_ioport.iop_pcso &= ~0x0001;
1641 immap->im_ioport.iop_pcint |= 0x0001;
1642 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1644 /* Make LEDS reflect Link status.
1646 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1647 #endif
1648 #ifdef CONFIG_FADS
1649 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1650 panic("Could not allocate MII IRQ!");
1651 #endif
1654 static void __inline__ fec_get_mac(struct net_device *dev)
1656 bd_t *bd;
1658 bd = (bd_t *)__res;
1659 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1661 #ifdef CONFIG_RPXCLASSIC
1662 /* The Embedded Planet boards have only one MAC address in
1663 * the EEPROM, but can have two Ethernet ports. For the
1664 * FEC port, we create another address by setting one of
1665 * the address bits above something that would have (up to
1666 * now) been allocated.
1668 dev->dev_adrd[3] |= 0x80;
1669 #endif
1672 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1674 extern uint _get_IMMR(void);
1675 volatile immap_t *immap;
1676 volatile fec_t *fecp;
1678 fecp = fep->hwp;
1679 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1681 /* Configure all of port D for MII.
1683 immap->im_ioport.iop_pdpar = 0x1fff;
1685 /* Bits moved from Rev. D onward.
1687 if ((_get_IMMR() & 0xffff) < 0x0501)
1688 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1689 else
1690 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1692 /* Set MII speed to 2.5 MHz
1694 fecp->fec_mii_speed = fep->phy_speed =
1695 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1698 static void __inline__ fec_enable_phy_intr(void)
1700 volatile fec_t *fecp;
1702 fecp = fep->hwp;
1704 /* Enable MII command finished interrupt
1706 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1709 static void __inline__ fec_disable_phy_intr(void)
1713 static void __inline__ fec_phy_ack_intr(void)
1717 static void __inline__ fec_localhw_setup(void)
1719 volatile fec_t *fecp;
1721 fecp = fep->hwp;
1722 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1723 /* Enable big endian and don't care about SDMA FC.
1725 fecp->fec_fun_code = 0x78000000;
1728 static void __inline__ fec_uncache(unsigned long addr)
1730 pte_t *pte;
1731 pte = va_to_pte(mem_addr);
1732 pte_val(*pte) |= _PAGE_NO_CACHE;
1733 flush_tlb_page(init_mm.mmap, mem_addr);
1736 #endif
1738 /* ------------------------------------------------------------------------- */
1740 static void mii_display_status(struct net_device *dev)
1742 struct fec_enet_private *fep = netdev_priv(dev);
1743 volatile uint *s = &(fep->phy_status);
1745 if (!fep->link && !fep->old_link) {
1746 /* Link is still down - don't print anything */
1747 return;
1750 printk("%s: status: ", dev->name);
1752 if (!fep->link) {
1753 printk("link down");
1754 } else {
1755 printk("link up");
1757 switch(*s & PHY_STAT_SPMASK) {
1758 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1759 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1760 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1761 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1762 default:
1763 printk(", Unknown speed/duplex");
1766 if (*s & PHY_STAT_ANC)
1767 printk(", auto-negotiation complete");
1770 if (*s & PHY_STAT_FAULT)
1771 printk(", remote fault");
1773 printk(".\n");
1776 static void mii_display_config(struct net_device *dev)
1778 struct fec_enet_private *fep = netdev_priv(dev);
1779 uint status = fep->phy_status;
1782 ** When we get here, phy_task is already removed from
1783 ** the workqueue. It is thus safe to allow to reuse it.
1785 fep->mii_phy_task_queued = 0;
1786 printk("%s: config: auto-negotiation ", dev->name);
1788 if (status & PHY_CONF_ANE)
1789 printk("on");
1790 else
1791 printk("off");
1793 if (status & PHY_CONF_100FDX)
1794 printk(", 100FDX");
1795 if (status & PHY_CONF_100HDX)
1796 printk(", 100HDX");
1797 if (status & PHY_CONF_10FDX)
1798 printk(", 10FDX");
1799 if (status & PHY_CONF_10HDX)
1800 printk(", 10HDX");
1801 if (!(status & PHY_CONF_SPMASK))
1802 printk(", No speed/duplex selected?");
1804 if (status & PHY_CONF_LOOP)
1805 printk(", loopback enabled");
1807 printk(".\n");
1809 fep->sequence_done = 1;
1812 static void mii_relink(struct net_device *dev)
1814 struct fec_enet_private *fep = netdev_priv(dev);
1815 int duplex;
1818 ** When we get here, phy_task is already removed from
1819 ** the workqueue. It is thus safe to allow to reuse it.
1821 fep->mii_phy_task_queued = 0;
1822 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1823 mii_display_status(dev);
1824 fep->old_link = fep->link;
1826 if (fep->link) {
1827 duplex = 0;
1828 if (fep->phy_status
1829 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1830 duplex = 1;
1831 fec_restart(dev, duplex);
1833 else
1834 fec_stop(dev);
1836 #if 0
1837 enable_irq(fep->mii_irq);
1838 #endif
1842 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1843 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1845 struct fec_enet_private *fep = netdev_priv(dev);
1848 ** We cannot queue phy_task twice in the workqueue. It
1849 ** would cause an endless loop in the workqueue.
1850 ** Fortunately, if the last mii_relink entry has not yet been
1851 ** executed now, it will do the job for the current interrupt,
1852 ** which is just what we want.
1854 if (fep->mii_phy_task_queued)
1855 return;
1857 fep->mii_phy_task_queued = 1;
1858 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
1859 schedule_work(&fep->phy_task);
1862 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1863 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1865 struct fec_enet_private *fep = netdev_priv(dev);
1867 if (fep->mii_phy_task_queued)
1868 return;
1870 fep->mii_phy_task_queued = 1;
1871 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
1872 schedule_work(&fep->phy_task);
1875 phy_cmd_t const phy_cmd_relink[] = {
1876 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1877 { mk_mii_end, }
1879 phy_cmd_t const phy_cmd_config[] = {
1880 { mk_mii_read(MII_REG_CR), mii_queue_config },
1881 { mk_mii_end, }
1884 /* Read remainder of PHY ID.
1886 static void
1887 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1889 struct fec_enet_private *fep;
1890 int i;
1892 fep = netdev_priv(dev);
1893 fep->phy_id |= (mii_reg & 0xffff);
1894 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1896 for(i = 0; phy_info[i]; i++) {
1897 if(phy_info[i]->id == (fep->phy_id >> 4))
1898 break;
1901 if (phy_info[i])
1902 printk(" -- %s\n", phy_info[i]->name);
1903 else
1904 printk(" -- unknown PHY!\n");
1906 fep->phy = phy_info[i];
1907 fep->phy_id_done = 1;
1910 /* Scan all of the MII PHY addresses looking for someone to respond
1911 * with a valid ID. This usually happens quickly.
1913 static void
1914 mii_discover_phy(uint mii_reg, struct net_device *dev)
1916 struct fec_enet_private *fep;
1917 volatile fec_t *fecp;
1918 uint phytype;
1920 fep = netdev_priv(dev);
1921 fecp = fep->hwp;
1923 if (fep->phy_addr < 32) {
1924 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1926 /* Got first part of ID, now get remainder.
1928 fep->phy_id = phytype << 16;
1929 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1930 mii_discover_phy3);
1932 else {
1933 fep->phy_addr++;
1934 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1935 mii_discover_phy);
1937 } else {
1938 printk("FEC: No PHY device found.\n");
1939 /* Disable external MII interface */
1940 fecp->fec_mii_speed = fep->phy_speed = 0;
1941 fec_disable_phy_intr();
1945 /* This interrupt occurs when the PHY detects a link change.
1947 #ifdef CONFIG_RPXCLASSIC
1948 static void
1949 mii_link_interrupt(void *dev_id)
1950 #else
1951 static irqreturn_t
1952 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
1953 #endif
1955 struct net_device *dev = dev_id;
1956 struct fec_enet_private *fep = netdev_priv(dev);
1958 fec_phy_ack_intr();
1960 #if 0
1961 disable_irq(fep->mii_irq); /* disable now, enable later */
1962 #endif
1964 mii_do_cmd(dev, fep->phy->ack_int);
1965 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1967 return IRQ_HANDLED;
1970 static int
1971 fec_enet_open(struct net_device *dev)
1973 struct fec_enet_private *fep = netdev_priv(dev);
1975 /* I should reset the ring buffers here, but I don't yet know
1976 * a simple way to do that.
1978 fec_set_mac_address(dev);
1980 fep->sequence_done = 0;
1981 fep->link = 0;
1983 if (fep->phy) {
1984 mii_do_cmd(dev, fep->phy->ack_int);
1985 mii_do_cmd(dev, fep->phy->config);
1986 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1988 /* FIXME: use netif_carrier_{on,off} ; this polls
1989 * until link is up which is wrong... could be
1990 * 30 seconds or more we are trapped in here. -jgarzik
1992 while(!fep->sequence_done)
1993 schedule();
1995 mii_do_cmd(dev, fep->phy->startup);
1997 /* Set the initial link state to true. A lot of hardware
1998 * based on this device does not implement a PHY interrupt,
1999 * so we are never notified of link change.
2001 fep->link = 1;
2002 } else {
2003 fep->link = 1; /* lets just try it and see */
2004 /* no phy, go full duplex, it's most likely a hub chip */
2005 fec_restart(dev, 1);
2008 netif_start_queue(dev);
2009 fep->opened = 1;
2010 return 0; /* Success */
2013 static int
2014 fec_enet_close(struct net_device *dev)
2016 struct fec_enet_private *fep = netdev_priv(dev);
2018 /* Don't know what to do yet.
2020 fep->opened = 0;
2021 netif_stop_queue(dev);
2022 fec_stop(dev);
2024 return 0;
2027 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
2029 struct fec_enet_private *fep = netdev_priv(dev);
2031 return &fep->stats;
2034 /* Set or clear the multicast filter for this adaptor.
2035 * Skeleton taken from sunlance driver.
2036 * The CPM Ethernet implementation allows Multicast as well as individual
2037 * MAC address filtering. Some of the drivers check to make sure it is
2038 * a group multicast address, and discard those that are not. I guess I
2039 * will do the same for now, but just remove the test if you want
2040 * individual filtering as well (do the upper net layers want or support
2041 * this kind of feature?).
2044 #define HASH_BITS 6 /* #bits in hash */
2045 #define CRC32_POLY 0xEDB88320
2047 static void set_multicast_list(struct net_device *dev)
2049 struct fec_enet_private *fep;
2050 volatile fec_t *ep;
2051 struct dev_mc_list *dmi;
2052 unsigned int i, j, bit, data, crc;
2053 unsigned char hash;
2055 fep = netdev_priv(dev);
2056 ep = fep->hwp;
2058 if (dev->flags&IFF_PROMISC) {
2059 /* Log any net taps. */
2060 printk("%s: Promiscuous mode enabled.\n", dev->name);
2061 ep->fec_r_cntrl |= 0x0008;
2062 } else {
2064 ep->fec_r_cntrl &= ~0x0008;
2066 if (dev->flags & IFF_ALLMULTI) {
2067 /* Catch all multicast addresses, so set the
2068 * filter to all 1's.
2070 ep->fec_hash_table_high = 0xffffffff;
2071 ep->fec_hash_table_low = 0xffffffff;
2072 } else {
2073 /* Clear filter and add the addresses in hash register.
2075 ep->fec_hash_table_high = 0;
2076 ep->fec_hash_table_low = 0;
2078 dmi = dev->mc_list;
2080 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2082 /* Only support group multicast for now.
2084 if (!(dmi->dmi_addr[0] & 1))
2085 continue;
2087 /* calculate crc32 value of mac address
2089 crc = 0xffffffff;
2091 for (i = 0; i < dmi->dmi_addrlen; i++)
2093 data = dmi->dmi_addr[i];
2094 for (bit = 0; bit < 8; bit++, data >>= 1)
2096 crc = (crc >> 1) ^
2097 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2101 /* only upper 6 bits (HASH_BITS) are used
2102 which point to specific bit in he hash registers
2104 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2106 if (hash > 31)
2107 ep->fec_hash_table_high |= 1 << (hash - 32);
2108 else
2109 ep->fec_hash_table_low |= 1 << hash;
2115 /* Set a MAC change in hardware.
2117 static void
2118 fec_set_mac_address(struct net_device *dev)
2120 volatile fec_t *fecp;
2122 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2124 /* Set station address. */
2125 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2126 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2127 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2128 (dev->dev_addr[4] << 24);
2132 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2135 * XXX: We need to clean up on failure exits here.
2137 int __init fec_enet_init(struct net_device *dev)
2139 struct fec_enet_private *fep = netdev_priv(dev);
2140 unsigned long mem_addr;
2141 volatile cbd_t *bdp;
2142 cbd_t *cbd_base;
2143 volatile fec_t *fecp;
2144 int i, j;
2145 static int index = 0;
2147 /* Only allow us to be probed once. */
2148 if (index >= FEC_MAX_PORTS)
2149 return -ENXIO;
2151 /* Allocate memory for buffer descriptors.
2153 mem_addr = __get_free_page(GFP_KERNEL);
2154 if (mem_addr == 0) {
2155 printk("FEC: allocate descriptor memory failed?\n");
2156 return -ENOMEM;
2159 /* Create an Ethernet device instance.
2161 fecp = (volatile fec_t *) fec_hw[index];
2163 fep->index = index;
2164 fep->hwp = fecp;
2166 /* Whack a reset. We should wait for this.
2168 fecp->fec_ecntrl = 1;
2169 udelay(10);
2171 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2172 * this needs some work to get unique addresses.
2174 * This is our default MAC address unless the user changes
2175 * it via eth_mac_addr (our dev->set_mac_addr handler).
2177 fec_get_mac(dev);
2179 cbd_base = (cbd_t *)mem_addr;
2180 /* XXX: missing check for allocation failure */
2182 fec_uncache(mem_addr);
2184 /* Set receive and transmit descriptor base.
2186 fep->rx_bd_base = cbd_base;
2187 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2189 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2190 fep->cur_rx = fep->rx_bd_base;
2192 fep->skb_cur = fep->skb_dirty = 0;
2194 /* Initialize the receive buffer descriptors.
2196 bdp = fep->rx_bd_base;
2197 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2199 /* Allocate a page.
2201 mem_addr = __get_free_page(GFP_KERNEL);
2202 /* XXX: missing check for allocation failure */
2204 fec_uncache(mem_addr);
2206 /* Initialize the BD for every fragment in the page.
2208 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2209 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2210 bdp->cbd_bufaddr = __pa(mem_addr);
2211 mem_addr += FEC_ENET_RX_FRSIZE;
2212 bdp++;
2216 /* Set the last buffer to wrap.
2218 bdp--;
2219 bdp->cbd_sc |= BD_SC_WRAP;
2221 /* ...and the same for transmmit.
2223 bdp = fep->tx_bd_base;
2224 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2225 if (j >= FEC_ENET_TX_FRPPG) {
2226 mem_addr = __get_free_page(GFP_KERNEL);
2227 j = 1;
2228 } else {
2229 mem_addr += FEC_ENET_TX_FRSIZE;
2230 j++;
2232 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2234 /* Initialize the BD for every fragment in the page.
2236 bdp->cbd_sc = 0;
2237 bdp->cbd_bufaddr = 0;
2238 bdp++;
2241 /* Set the last buffer to wrap.
2243 bdp--;
2244 bdp->cbd_sc |= BD_SC_WRAP;
2246 /* Set receive and transmit descriptor base.
2248 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2249 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2251 /* Install our interrupt handlers. This varies depending on
2252 * the architecture.
2254 fec_request_intrs(dev);
2256 /* Clear and enable interrupts */
2257 fecp->fec_ievent = 0xffc00000;
2258 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2259 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2260 fecp->fec_hash_table_high = 0;
2261 fecp->fec_hash_table_low = 0;
2262 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2263 fecp->fec_ecntrl = 2;
2264 fecp->fec_r_des_active = 0x01000000;
2266 dev->base_addr = (unsigned long)fecp;
2268 /* The FEC Ethernet specific entries in the device structure. */
2269 dev->open = fec_enet_open;
2270 dev->hard_start_xmit = fec_enet_start_xmit;
2271 dev->tx_timeout = fec_timeout;
2272 dev->watchdog_timeo = TX_TIMEOUT;
2273 dev->stop = fec_enet_close;
2274 dev->get_stats = fec_enet_get_stats;
2275 dev->set_multicast_list = set_multicast_list;
2277 for (i=0; i<NMII-1; i++)
2278 mii_cmds[i].mii_next = &mii_cmds[i+1];
2279 mii_free = mii_cmds;
2281 /* setup MII interface */
2282 fec_set_mii(dev, fep);
2284 /* Queue up command to detect the PHY and initialize the
2285 * remainder of the interface.
2287 fep->phy_id_done = 0;
2288 fep->phy_addr = 0;
2289 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2291 index++;
2292 return 0;
2295 /* This function is called to start or restart the FEC during a link
2296 * change. This only happens when switching between half and full
2297 * duplex.
2299 static void
2300 fec_restart(struct net_device *dev, int duplex)
2302 struct fec_enet_private *fep;
2303 volatile cbd_t *bdp;
2304 volatile fec_t *fecp;
2305 int i;
2307 fep = netdev_priv(dev);
2308 fecp = fep->hwp;
2310 /* Whack a reset. We should wait for this.
2312 fecp->fec_ecntrl = 1;
2313 udelay(10);
2315 /* Enable interrupts we wish to service.
2317 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2318 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2320 /* Clear any outstanding interrupt.
2322 fecp->fec_ievent = 0xffc00000;
2323 fec_enable_phy_intr();
2325 /* Set station address.
2327 fec_set_mac_address(dev);
2329 /* Reset all multicast.
2331 fecp->fec_hash_table_high = 0;
2332 fecp->fec_hash_table_low = 0;
2334 /* Set maximum receive buffer size.
2336 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2338 fec_localhw_setup();
2340 /* Set receive and transmit descriptor base.
2342 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2343 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2345 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2346 fep->cur_rx = fep->rx_bd_base;
2348 /* Reset SKB transmit buffers.
2350 fep->skb_cur = fep->skb_dirty = 0;
2351 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2352 if (fep->tx_skbuff[i] != NULL) {
2353 dev_kfree_skb_any(fep->tx_skbuff[i]);
2354 fep->tx_skbuff[i] = NULL;
2358 /* Initialize the receive buffer descriptors.
2360 bdp = fep->rx_bd_base;
2361 for (i=0; i<RX_RING_SIZE; i++) {
2363 /* Initialize the BD for every fragment in the page.
2365 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2366 bdp++;
2369 /* Set the last buffer to wrap.
2371 bdp--;
2372 bdp->cbd_sc |= BD_SC_WRAP;
2374 /* ...and the same for transmmit.
2376 bdp = fep->tx_bd_base;
2377 for (i=0; i<TX_RING_SIZE; i++) {
2379 /* Initialize the BD for every fragment in the page.
2381 bdp->cbd_sc = 0;
2382 bdp->cbd_bufaddr = 0;
2383 bdp++;
2386 /* Set the last buffer to wrap.
2388 bdp--;
2389 bdp->cbd_sc |= BD_SC_WRAP;
2391 /* Enable MII mode.
2393 if (duplex) {
2394 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2395 fecp->fec_x_cntrl = 0x04; /* FD enable */
2397 else {
2398 /* MII enable|No Rcv on Xmit */
2399 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2400 fecp->fec_x_cntrl = 0x00;
2402 fep->full_duplex = duplex;
2404 /* Set MII speed.
2406 fecp->fec_mii_speed = fep->phy_speed;
2408 /* And last, enable the transmit and receive processing.
2410 fecp->fec_ecntrl = 2;
2411 fecp->fec_r_des_active = 0x01000000;
2414 static void
2415 fec_stop(struct net_device *dev)
2417 volatile fec_t *fecp;
2418 struct fec_enet_private *fep;
2420 fep = netdev_priv(dev);
2421 fecp = fep->hwp;
2423 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2425 while(!(fecp->fec_ievent & FEC_ENET_GRA));
2427 /* Whack a reset. We should wait for this.
2429 fecp->fec_ecntrl = 1;
2430 udelay(10);
2432 /* Clear outstanding MII command interrupts.
2434 fecp->fec_ievent = FEC_ENET_MII;
2435 fec_enable_phy_intr();
2437 fecp->fec_imask = FEC_ENET_MII;
2438 fecp->fec_mii_speed = fep->phy_speed;
2441 static int __init fec_enet_module_init(void)
2443 struct net_device *dev;
2444 int i, j, err;
2446 printk("FEC ENET Version 0.2\n");
2448 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2449 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2450 if (!dev)
2451 return -ENOMEM;
2452 err = fec_enet_init(dev);
2453 if (err) {
2454 free_netdev(dev);
2455 continue;
2457 if (register_netdev(dev) != 0) {
2458 /* XXX: missing cleanup here */
2459 free_netdev(dev);
2460 return -EIO;
2463 printk("%s: ethernet ", dev->name);
2464 for (j = 0; (j < 5); j++)
2465 printk("%02x:", dev->dev_addr[j]);
2466 printk("%02x\n", dev->dev_addr[5]);
2468 return 0;
2471 module_init(fec_enet_module_init);
2473 MODULE_LICENSE("GPL");