[SPARC64]: Fix 2 bugs in huge page support.
[linux-2.6/verdex.git] / fs / buffer.c
bloba9b3994020074a800c4480bb72fed0ac0bc64f5f
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
54 bh->b_end_io = handler;
55 bh->b_private = private;
58 static int sync_buffer(void *word)
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
72 void fastcall __lock_buffer(struct buffer_head *bh)
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
77 EXPORT_SYMBOL(__lock_buffer);
79 void fastcall unlock_buffer(struct buffer_head *bh)
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head * bh)
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 static void
97 __clear_page_buffers(struct page *page)
99 ClearPagePrivate(page);
100 set_page_private(page, 0);
101 page_cache_release(page);
104 static void buffer_io_error(struct buffer_head *bh)
106 char b[BDEVNAME_SIZE];
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 if (uptodate) {
120 set_buffer_uptodate(bh);
121 } else {
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
125 unlock_buffer(bh);
126 put_bh(bh);
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
131 char b[BDEVNAME_SIZE];
133 if (uptodate) {
134 set_buffer_uptodate(bh);
135 } else {
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 buffer_io_error(bh);
138 printk(KERN_WARNING "lost page write due to "
139 "I/O error on %s\n",
140 bdevname(bh->b_bdev, b));
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
145 unlock_buffer(bh);
146 put_bh(bh);
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
153 int sync_blockdev(struct block_device *bdev)
155 int ret = 0;
157 if (bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159 return ret;
161 EXPORT_SYMBOL(sync_blockdev);
164 * Write out and wait upon all dirty data associated with this
165 * superblock. Filesystem data as well as the underlying block
166 * device. Takes the superblock lock.
168 int fsync_super(struct super_block *sb)
170 sync_inodes_sb(sb, 0);
171 DQUOT_SYNC(sb);
172 lock_super(sb);
173 if (sb->s_dirt && sb->s_op->write_super)
174 sb->s_op->write_super(sb);
175 unlock_super(sb);
176 if (sb->s_op->sync_fs)
177 sb->s_op->sync_fs(sb, 1);
178 sync_blockdev(sb->s_bdev);
179 sync_inodes_sb(sb, 1);
181 return sync_blockdev(sb->s_bdev);
185 * Write out and wait upon all dirty data associated with this
186 * device. Filesystem data as well as the underlying block
187 * device. Takes the superblock lock.
189 int fsync_bdev(struct block_device *bdev)
191 struct super_block *sb = get_super(bdev);
192 if (sb) {
193 int res = fsync_super(sb);
194 drop_super(sb);
195 return res;
197 return sync_blockdev(bdev);
201 * freeze_bdev -- lock a filesystem and force it into a consistent state
202 * @bdev: blockdevice to lock
204 * This takes the block device bd_mount_sem to make sure no new mounts
205 * happen on bdev until thaw_bdev() is called.
206 * If a superblock is found on this device, we take the s_umount semaphore
207 * on it to make sure nobody unmounts until the snapshot creation is done.
209 struct super_block *freeze_bdev(struct block_device *bdev)
211 struct super_block *sb;
213 down(&bdev->bd_mount_sem);
214 sb = get_super(bdev);
215 if (sb && !(sb->s_flags & MS_RDONLY)) {
216 sb->s_frozen = SB_FREEZE_WRITE;
217 smp_wmb();
219 sync_inodes_sb(sb, 0);
220 DQUOT_SYNC(sb);
222 lock_super(sb);
223 if (sb->s_dirt && sb->s_op->write_super)
224 sb->s_op->write_super(sb);
225 unlock_super(sb);
227 if (sb->s_op->sync_fs)
228 sb->s_op->sync_fs(sb, 1);
230 sync_blockdev(sb->s_bdev);
231 sync_inodes_sb(sb, 1);
233 sb->s_frozen = SB_FREEZE_TRANS;
234 smp_wmb();
236 sync_blockdev(sb->s_bdev);
238 if (sb->s_op->write_super_lockfs)
239 sb->s_op->write_super_lockfs(sb);
242 sync_blockdev(bdev);
243 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
245 EXPORT_SYMBOL(freeze_bdev);
248 * thaw_bdev -- unlock filesystem
249 * @bdev: blockdevice to unlock
250 * @sb: associated superblock
252 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
254 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
256 if (sb) {
257 BUG_ON(sb->s_bdev != bdev);
259 if (sb->s_op->unlockfs)
260 sb->s_op->unlockfs(sb);
261 sb->s_frozen = SB_UNFROZEN;
262 smp_wmb();
263 wake_up(&sb->s_wait_unfrozen);
264 drop_super(sb);
267 up(&bdev->bd_mount_sem);
269 EXPORT_SYMBOL(thaw_bdev);
272 * sync everything. Start out by waking pdflush, because that writes back
273 * all queues in parallel.
275 static void do_sync(unsigned long wait)
277 wakeup_pdflush(0);
278 sync_inodes(0); /* All mappings, inodes and their blockdevs */
279 DQUOT_SYNC(NULL);
280 sync_supers(); /* Write the superblocks */
281 sync_filesystems(0); /* Start syncing the filesystems */
282 sync_filesystems(wait); /* Waitingly sync the filesystems */
283 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
284 if (!wait)
285 printk("Emergency Sync complete\n");
286 if (unlikely(laptop_mode))
287 laptop_sync_completion();
290 asmlinkage long sys_sync(void)
292 do_sync(1);
293 return 0;
296 void emergency_sync(void)
298 pdflush_operation(do_sync, 0);
302 * Generic function to fsync a file.
304 * filp may be NULL if called via the msync of a vma.
307 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
309 struct inode * inode = dentry->d_inode;
310 struct super_block * sb;
311 int ret, err;
313 /* sync the inode to buffers */
314 ret = write_inode_now(inode, 0);
316 /* sync the superblock to buffers */
317 sb = inode->i_sb;
318 lock_super(sb);
319 if (sb->s_op->write_super)
320 sb->s_op->write_super(sb);
321 unlock_super(sb);
323 /* .. finally sync the buffers to disk */
324 err = sync_blockdev(sb->s_bdev);
325 if (!ret)
326 ret = err;
327 return ret;
330 static long do_fsync(unsigned int fd, int datasync)
332 struct file * file;
333 struct address_space *mapping;
334 int ret, err;
336 ret = -EBADF;
337 file = fget(fd);
338 if (!file)
339 goto out;
341 ret = -EINVAL;
342 if (!file->f_op || !file->f_op->fsync) {
343 /* Why? We can still call filemap_fdatawrite */
344 goto out_putf;
347 mapping = file->f_mapping;
349 current->flags |= PF_SYNCWRITE;
350 ret = filemap_fdatawrite(mapping);
353 * We need to protect against concurrent writers,
354 * which could cause livelocks in fsync_buffers_list
356 mutex_lock(&mapping->host->i_mutex);
357 err = file->f_op->fsync(file, file->f_dentry, datasync);
358 if (!ret)
359 ret = err;
360 mutex_unlock(&mapping->host->i_mutex);
361 err = filemap_fdatawait(mapping);
362 if (!ret)
363 ret = err;
364 current->flags &= ~PF_SYNCWRITE;
366 out_putf:
367 fput(file);
368 out:
369 return ret;
372 asmlinkage long sys_fsync(unsigned int fd)
374 return do_fsync(fd, 0);
377 asmlinkage long sys_fdatasync(unsigned int fd)
379 return do_fsync(fd, 1);
383 * Various filesystems appear to want __find_get_block to be non-blocking.
384 * But it's the page lock which protects the buffers. To get around this,
385 * we get exclusion from try_to_free_buffers with the blockdev mapping's
386 * private_lock.
388 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
389 * may be quite high. This code could TryLock the page, and if that
390 * succeeds, there is no need to take private_lock. (But if
391 * private_lock is contended then so is mapping->tree_lock).
393 static struct buffer_head *
394 __find_get_block_slow(struct block_device *bdev, sector_t block)
396 struct inode *bd_inode = bdev->bd_inode;
397 struct address_space *bd_mapping = bd_inode->i_mapping;
398 struct buffer_head *ret = NULL;
399 pgoff_t index;
400 struct buffer_head *bh;
401 struct buffer_head *head;
402 struct page *page;
403 int all_mapped = 1;
405 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
406 page = find_get_page(bd_mapping, index);
407 if (!page)
408 goto out;
410 spin_lock(&bd_mapping->private_lock);
411 if (!page_has_buffers(page))
412 goto out_unlock;
413 head = page_buffers(page);
414 bh = head;
415 do {
416 if (bh->b_blocknr == block) {
417 ret = bh;
418 get_bh(bh);
419 goto out_unlock;
421 if (!buffer_mapped(bh))
422 all_mapped = 0;
423 bh = bh->b_this_page;
424 } while (bh != head);
426 /* we might be here because some of the buffers on this page are
427 * not mapped. This is due to various races between
428 * file io on the block device and getblk. It gets dealt with
429 * elsewhere, don't buffer_error if we had some unmapped buffers
431 if (all_mapped) {
432 printk("__find_get_block_slow() failed. "
433 "block=%llu, b_blocknr=%llu\n",
434 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
435 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
436 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
438 out_unlock:
439 spin_unlock(&bd_mapping->private_lock);
440 page_cache_release(page);
441 out:
442 return ret;
445 /* If invalidate_buffers() will trash dirty buffers, it means some kind
446 of fs corruption is going on. Trashing dirty data always imply losing
447 information that was supposed to be just stored on the physical layer
448 by the user.
450 Thus invalidate_buffers in general usage is not allwowed to trash
451 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
452 be preserved. These buffers are simply skipped.
454 We also skip buffers which are still in use. For example this can
455 happen if a userspace program is reading the block device.
457 NOTE: In the case where the user removed a removable-media-disk even if
458 there's still dirty data not synced on disk (due a bug in the device driver
459 or due an error of the user), by not destroying the dirty buffers we could
460 generate corruption also on the next media inserted, thus a parameter is
461 necessary to handle this case in the most safe way possible (trying
462 to not corrupt also the new disk inserted with the data belonging to
463 the old now corrupted disk). Also for the ramdisk the natural thing
464 to do in order to release the ramdisk memory is to destroy dirty buffers.
466 These are two special cases. Normal usage imply the device driver
467 to issue a sync on the device (without waiting I/O completion) and
468 then an invalidate_buffers call that doesn't trash dirty buffers.
470 For handling cache coherency with the blkdev pagecache the 'update' case
471 is been introduced. It is needed to re-read from disk any pinned
472 buffer. NOTE: re-reading from disk is destructive so we can do it only
473 when we assume nobody is changing the buffercache under our I/O and when
474 we think the disk contains more recent information than the buffercache.
475 The update == 1 pass marks the buffers we need to update, the update == 2
476 pass does the actual I/O. */
477 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
479 invalidate_bh_lrus();
481 * FIXME: what about destroy_dirty_buffers?
482 * We really want to use invalidate_inode_pages2() for
483 * that, but not until that's cleaned up.
485 invalidate_inode_pages(bdev->bd_inode->i_mapping);
489 * Kick pdflush then try to free up some ZONE_NORMAL memory.
491 static void free_more_memory(void)
493 struct zone **zones;
494 pg_data_t *pgdat;
496 wakeup_pdflush(1024);
497 yield();
499 for_each_pgdat(pgdat) {
500 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
501 if (*zones)
502 try_to_free_pages(zones, GFP_NOFS);
507 * I/O completion handler for block_read_full_page() - pages
508 * which come unlocked at the end of I/O.
510 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
512 unsigned long flags;
513 struct buffer_head *first;
514 struct buffer_head *tmp;
515 struct page *page;
516 int page_uptodate = 1;
518 BUG_ON(!buffer_async_read(bh));
520 page = bh->b_page;
521 if (uptodate) {
522 set_buffer_uptodate(bh);
523 } else {
524 clear_buffer_uptodate(bh);
525 if (printk_ratelimit())
526 buffer_io_error(bh);
527 SetPageError(page);
531 * Be _very_ careful from here on. Bad things can happen if
532 * two buffer heads end IO at almost the same time and both
533 * decide that the page is now completely done.
535 first = page_buffers(page);
536 local_irq_save(flags);
537 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
538 clear_buffer_async_read(bh);
539 unlock_buffer(bh);
540 tmp = bh;
541 do {
542 if (!buffer_uptodate(tmp))
543 page_uptodate = 0;
544 if (buffer_async_read(tmp)) {
545 BUG_ON(!buffer_locked(tmp));
546 goto still_busy;
548 tmp = tmp->b_this_page;
549 } while (tmp != bh);
550 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
551 local_irq_restore(flags);
554 * If none of the buffers had errors and they are all
555 * uptodate then we can set the page uptodate.
557 if (page_uptodate && !PageError(page))
558 SetPageUptodate(page);
559 unlock_page(page);
560 return;
562 still_busy:
563 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
564 local_irq_restore(flags);
565 return;
569 * Completion handler for block_write_full_page() - pages which are unlocked
570 * during I/O, and which have PageWriteback cleared upon I/O completion.
572 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
574 char b[BDEVNAME_SIZE];
575 unsigned long flags;
576 struct buffer_head *first;
577 struct buffer_head *tmp;
578 struct page *page;
580 BUG_ON(!buffer_async_write(bh));
582 page = bh->b_page;
583 if (uptodate) {
584 set_buffer_uptodate(bh);
585 } else {
586 if (printk_ratelimit()) {
587 buffer_io_error(bh);
588 printk(KERN_WARNING "lost page write due to "
589 "I/O error on %s\n",
590 bdevname(bh->b_bdev, b));
592 set_bit(AS_EIO, &page->mapping->flags);
593 clear_buffer_uptodate(bh);
594 SetPageError(page);
597 first = page_buffers(page);
598 local_irq_save(flags);
599 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
601 clear_buffer_async_write(bh);
602 unlock_buffer(bh);
603 tmp = bh->b_this_page;
604 while (tmp != bh) {
605 if (buffer_async_write(tmp)) {
606 BUG_ON(!buffer_locked(tmp));
607 goto still_busy;
609 tmp = tmp->b_this_page;
611 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
612 local_irq_restore(flags);
613 end_page_writeback(page);
614 return;
616 still_busy:
617 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
618 local_irq_restore(flags);
619 return;
623 * If a page's buffers are under async readin (end_buffer_async_read
624 * completion) then there is a possibility that another thread of
625 * control could lock one of the buffers after it has completed
626 * but while some of the other buffers have not completed. This
627 * locked buffer would confuse end_buffer_async_read() into not unlocking
628 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
629 * that this buffer is not under async I/O.
631 * The page comes unlocked when it has no locked buffer_async buffers
632 * left.
634 * PageLocked prevents anyone starting new async I/O reads any of
635 * the buffers.
637 * PageWriteback is used to prevent simultaneous writeout of the same
638 * page.
640 * PageLocked prevents anyone from starting writeback of a page which is
641 * under read I/O (PageWriteback is only ever set against a locked page).
643 static void mark_buffer_async_read(struct buffer_head *bh)
645 bh->b_end_io = end_buffer_async_read;
646 set_buffer_async_read(bh);
649 void mark_buffer_async_write(struct buffer_head *bh)
651 bh->b_end_io = end_buffer_async_write;
652 set_buffer_async_write(bh);
654 EXPORT_SYMBOL(mark_buffer_async_write);
658 * fs/buffer.c contains helper functions for buffer-backed address space's
659 * fsync functions. A common requirement for buffer-based filesystems is
660 * that certain data from the backing blockdev needs to be written out for
661 * a successful fsync(). For example, ext2 indirect blocks need to be
662 * written back and waited upon before fsync() returns.
664 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
665 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
666 * management of a list of dependent buffers at ->i_mapping->private_list.
668 * Locking is a little subtle: try_to_free_buffers() will remove buffers
669 * from their controlling inode's queue when they are being freed. But
670 * try_to_free_buffers() will be operating against the *blockdev* mapping
671 * at the time, not against the S_ISREG file which depends on those buffers.
672 * So the locking for private_list is via the private_lock in the address_space
673 * which backs the buffers. Which is different from the address_space
674 * against which the buffers are listed. So for a particular address_space,
675 * mapping->private_lock does *not* protect mapping->private_list! In fact,
676 * mapping->private_list will always be protected by the backing blockdev's
677 * ->private_lock.
679 * Which introduces a requirement: all buffers on an address_space's
680 * ->private_list must be from the same address_space: the blockdev's.
682 * address_spaces which do not place buffers at ->private_list via these
683 * utility functions are free to use private_lock and private_list for
684 * whatever they want. The only requirement is that list_empty(private_list)
685 * be true at clear_inode() time.
687 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
688 * filesystems should do that. invalidate_inode_buffers() should just go
689 * BUG_ON(!list_empty).
691 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
692 * take an address_space, not an inode. And it should be called
693 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
694 * queued up.
696 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
697 * list if it is already on a list. Because if the buffer is on a list,
698 * it *must* already be on the right one. If not, the filesystem is being
699 * silly. This will save a ton of locking. But first we have to ensure
700 * that buffers are taken *off* the old inode's list when they are freed
701 * (presumably in truncate). That requires careful auditing of all
702 * filesystems (do it inside bforget()). It could also be done by bringing
703 * b_inode back.
707 * The buffer's backing address_space's private_lock must be held
709 static inline void __remove_assoc_queue(struct buffer_head *bh)
711 list_del_init(&bh->b_assoc_buffers);
714 int inode_has_buffers(struct inode *inode)
716 return !list_empty(&inode->i_data.private_list);
720 * osync is designed to support O_SYNC io. It waits synchronously for
721 * all already-submitted IO to complete, but does not queue any new
722 * writes to the disk.
724 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
725 * you dirty the buffers, and then use osync_inode_buffers to wait for
726 * completion. Any other dirty buffers which are not yet queued for
727 * write will not be flushed to disk by the osync.
729 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
731 struct buffer_head *bh;
732 struct list_head *p;
733 int err = 0;
735 spin_lock(lock);
736 repeat:
737 list_for_each_prev(p, list) {
738 bh = BH_ENTRY(p);
739 if (buffer_locked(bh)) {
740 get_bh(bh);
741 spin_unlock(lock);
742 wait_on_buffer(bh);
743 if (!buffer_uptodate(bh))
744 err = -EIO;
745 brelse(bh);
746 spin_lock(lock);
747 goto repeat;
750 spin_unlock(lock);
751 return err;
755 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
756 * buffers
757 * @mapping: the mapping which wants those buffers written
759 * Starts I/O against the buffers at mapping->private_list, and waits upon
760 * that I/O.
762 * Basically, this is a convenience function for fsync().
763 * @mapping is a file or directory which needs those buffers to be written for
764 * a successful fsync().
766 int sync_mapping_buffers(struct address_space *mapping)
768 struct address_space *buffer_mapping = mapping->assoc_mapping;
770 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
771 return 0;
773 return fsync_buffers_list(&buffer_mapping->private_lock,
774 &mapping->private_list);
776 EXPORT_SYMBOL(sync_mapping_buffers);
779 * Called when we've recently written block `bblock', and it is known that
780 * `bblock' was for a buffer_boundary() buffer. This means that the block at
781 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
782 * dirty, schedule it for IO. So that indirects merge nicely with their data.
784 void write_boundary_block(struct block_device *bdev,
785 sector_t bblock, unsigned blocksize)
787 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
788 if (bh) {
789 if (buffer_dirty(bh))
790 ll_rw_block(WRITE, 1, &bh);
791 put_bh(bh);
795 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
797 struct address_space *mapping = inode->i_mapping;
798 struct address_space *buffer_mapping = bh->b_page->mapping;
800 mark_buffer_dirty(bh);
801 if (!mapping->assoc_mapping) {
802 mapping->assoc_mapping = buffer_mapping;
803 } else {
804 if (mapping->assoc_mapping != buffer_mapping)
805 BUG();
807 if (list_empty(&bh->b_assoc_buffers)) {
808 spin_lock(&buffer_mapping->private_lock);
809 list_move_tail(&bh->b_assoc_buffers,
810 &mapping->private_list);
811 spin_unlock(&buffer_mapping->private_lock);
814 EXPORT_SYMBOL(mark_buffer_dirty_inode);
817 * Add a page to the dirty page list.
819 * It is a sad fact of life that this function is called from several places
820 * deeply under spinlocking. It may not sleep.
822 * If the page has buffers, the uptodate buffers are set dirty, to preserve
823 * dirty-state coherency between the page and the buffers. It the page does
824 * not have buffers then when they are later attached they will all be set
825 * dirty.
827 * The buffers are dirtied before the page is dirtied. There's a small race
828 * window in which a writepage caller may see the page cleanness but not the
829 * buffer dirtiness. That's fine. If this code were to set the page dirty
830 * before the buffers, a concurrent writepage caller could clear the page dirty
831 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
832 * page on the dirty page list.
834 * We use private_lock to lock against try_to_free_buffers while using the
835 * page's buffer list. Also use this to protect against clean buffers being
836 * added to the page after it was set dirty.
838 * FIXME: may need to call ->reservepage here as well. That's rather up to the
839 * address_space though.
841 int __set_page_dirty_buffers(struct page *page)
843 struct address_space * const mapping = page->mapping;
845 spin_lock(&mapping->private_lock);
846 if (page_has_buffers(page)) {
847 struct buffer_head *head = page_buffers(page);
848 struct buffer_head *bh = head;
850 do {
851 set_buffer_dirty(bh);
852 bh = bh->b_this_page;
853 } while (bh != head);
855 spin_unlock(&mapping->private_lock);
857 if (!TestSetPageDirty(page)) {
858 write_lock_irq(&mapping->tree_lock);
859 if (page->mapping) { /* Race with truncate? */
860 if (mapping_cap_account_dirty(mapping))
861 inc_page_state(nr_dirty);
862 radix_tree_tag_set(&mapping->page_tree,
863 page_index(page),
864 PAGECACHE_TAG_DIRTY);
866 write_unlock_irq(&mapping->tree_lock);
867 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
870 return 0;
872 EXPORT_SYMBOL(__set_page_dirty_buffers);
875 * Write out and wait upon a list of buffers.
877 * We have conflicting pressures: we want to make sure that all
878 * initially dirty buffers get waited on, but that any subsequently
879 * dirtied buffers don't. After all, we don't want fsync to last
880 * forever if somebody is actively writing to the file.
882 * Do this in two main stages: first we copy dirty buffers to a
883 * temporary inode list, queueing the writes as we go. Then we clean
884 * up, waiting for those writes to complete.
886 * During this second stage, any subsequent updates to the file may end
887 * up refiling the buffer on the original inode's dirty list again, so
888 * there is a chance we will end up with a buffer queued for write but
889 * not yet completed on that list. So, as a final cleanup we go through
890 * the osync code to catch these locked, dirty buffers without requeuing
891 * any newly dirty buffers for write.
893 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
895 struct buffer_head *bh;
896 struct list_head tmp;
897 int err = 0, err2;
899 INIT_LIST_HEAD(&tmp);
901 spin_lock(lock);
902 while (!list_empty(list)) {
903 bh = BH_ENTRY(list->next);
904 list_del_init(&bh->b_assoc_buffers);
905 if (buffer_dirty(bh) || buffer_locked(bh)) {
906 list_add(&bh->b_assoc_buffers, &tmp);
907 if (buffer_dirty(bh)) {
908 get_bh(bh);
909 spin_unlock(lock);
911 * Ensure any pending I/O completes so that
912 * ll_rw_block() actually writes the current
913 * contents - it is a noop if I/O is still in
914 * flight on potentially older contents.
916 ll_rw_block(SWRITE, 1, &bh);
917 brelse(bh);
918 spin_lock(lock);
923 while (!list_empty(&tmp)) {
924 bh = BH_ENTRY(tmp.prev);
925 __remove_assoc_queue(bh);
926 get_bh(bh);
927 spin_unlock(lock);
928 wait_on_buffer(bh);
929 if (!buffer_uptodate(bh))
930 err = -EIO;
931 brelse(bh);
932 spin_lock(lock);
935 spin_unlock(lock);
936 err2 = osync_buffers_list(lock, list);
937 if (err)
938 return err;
939 else
940 return err2;
944 * Invalidate any and all dirty buffers on a given inode. We are
945 * probably unmounting the fs, but that doesn't mean we have already
946 * done a sync(). Just drop the buffers from the inode list.
948 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
949 * assumes that all the buffers are against the blockdev. Not true
950 * for reiserfs.
952 void invalidate_inode_buffers(struct inode *inode)
954 if (inode_has_buffers(inode)) {
955 struct address_space *mapping = &inode->i_data;
956 struct list_head *list = &mapping->private_list;
957 struct address_space *buffer_mapping = mapping->assoc_mapping;
959 spin_lock(&buffer_mapping->private_lock);
960 while (!list_empty(list))
961 __remove_assoc_queue(BH_ENTRY(list->next));
962 spin_unlock(&buffer_mapping->private_lock);
967 * Remove any clean buffers from the inode's buffer list. This is called
968 * when we're trying to free the inode itself. Those buffers can pin it.
970 * Returns true if all buffers were removed.
972 int remove_inode_buffers(struct inode *inode)
974 int ret = 1;
976 if (inode_has_buffers(inode)) {
977 struct address_space *mapping = &inode->i_data;
978 struct list_head *list = &mapping->private_list;
979 struct address_space *buffer_mapping = mapping->assoc_mapping;
981 spin_lock(&buffer_mapping->private_lock);
982 while (!list_empty(list)) {
983 struct buffer_head *bh = BH_ENTRY(list->next);
984 if (buffer_dirty(bh)) {
985 ret = 0;
986 break;
988 __remove_assoc_queue(bh);
990 spin_unlock(&buffer_mapping->private_lock);
992 return ret;
996 * Create the appropriate buffers when given a page for data area and
997 * the size of each buffer.. Use the bh->b_this_page linked list to
998 * follow the buffers created. Return NULL if unable to create more
999 * buffers.
1001 * The retry flag is used to differentiate async IO (paging, swapping)
1002 * which may not fail from ordinary buffer allocations.
1004 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1005 int retry)
1007 struct buffer_head *bh, *head;
1008 long offset;
1010 try_again:
1011 head = NULL;
1012 offset = PAGE_SIZE;
1013 while ((offset -= size) >= 0) {
1014 bh = alloc_buffer_head(GFP_NOFS);
1015 if (!bh)
1016 goto no_grow;
1018 bh->b_bdev = NULL;
1019 bh->b_this_page = head;
1020 bh->b_blocknr = -1;
1021 head = bh;
1023 bh->b_state = 0;
1024 atomic_set(&bh->b_count, 0);
1025 bh->b_private = NULL;
1026 bh->b_size = size;
1028 /* Link the buffer to its page */
1029 set_bh_page(bh, page, offset);
1031 init_buffer(bh, NULL, NULL);
1033 return head;
1035 * In case anything failed, we just free everything we got.
1037 no_grow:
1038 if (head) {
1039 do {
1040 bh = head;
1041 head = head->b_this_page;
1042 free_buffer_head(bh);
1043 } while (head);
1047 * Return failure for non-async IO requests. Async IO requests
1048 * are not allowed to fail, so we have to wait until buffer heads
1049 * become available. But we don't want tasks sleeping with
1050 * partially complete buffers, so all were released above.
1052 if (!retry)
1053 return NULL;
1055 /* We're _really_ low on memory. Now we just
1056 * wait for old buffer heads to become free due to
1057 * finishing IO. Since this is an async request and
1058 * the reserve list is empty, we're sure there are
1059 * async buffer heads in use.
1061 free_more_memory();
1062 goto try_again;
1064 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1066 static inline void
1067 link_dev_buffers(struct page *page, struct buffer_head *head)
1069 struct buffer_head *bh, *tail;
1071 bh = head;
1072 do {
1073 tail = bh;
1074 bh = bh->b_this_page;
1075 } while (bh);
1076 tail->b_this_page = head;
1077 attach_page_buffers(page, head);
1081 * Initialise the state of a blockdev page's buffers.
1083 static void
1084 init_page_buffers(struct page *page, struct block_device *bdev,
1085 sector_t block, int size)
1087 struct buffer_head *head = page_buffers(page);
1088 struct buffer_head *bh = head;
1089 int uptodate = PageUptodate(page);
1091 do {
1092 if (!buffer_mapped(bh)) {
1093 init_buffer(bh, NULL, NULL);
1094 bh->b_bdev = bdev;
1095 bh->b_blocknr = block;
1096 if (uptodate)
1097 set_buffer_uptodate(bh);
1098 set_buffer_mapped(bh);
1100 block++;
1101 bh = bh->b_this_page;
1102 } while (bh != head);
1106 * Create the page-cache page that contains the requested block.
1108 * This is user purely for blockdev mappings.
1110 static struct page *
1111 grow_dev_page(struct block_device *bdev, sector_t block,
1112 pgoff_t index, int size)
1114 struct inode *inode = bdev->bd_inode;
1115 struct page *page;
1116 struct buffer_head *bh;
1118 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1119 if (!page)
1120 return NULL;
1122 if (!PageLocked(page))
1123 BUG();
1125 if (page_has_buffers(page)) {
1126 bh = page_buffers(page);
1127 if (bh->b_size == size) {
1128 init_page_buffers(page, bdev, block, size);
1129 return page;
1131 if (!try_to_free_buffers(page))
1132 goto failed;
1136 * Allocate some buffers for this page
1138 bh = alloc_page_buffers(page, size, 0);
1139 if (!bh)
1140 goto failed;
1143 * Link the page to the buffers and initialise them. Take the
1144 * lock to be atomic wrt __find_get_block(), which does not
1145 * run under the page lock.
1147 spin_lock(&inode->i_mapping->private_lock);
1148 link_dev_buffers(page, bh);
1149 init_page_buffers(page, bdev, block, size);
1150 spin_unlock(&inode->i_mapping->private_lock);
1151 return page;
1153 failed:
1154 BUG();
1155 unlock_page(page);
1156 page_cache_release(page);
1157 return NULL;
1161 * Create buffers for the specified block device block's page. If
1162 * that page was dirty, the buffers are set dirty also.
1164 * Except that's a bug. Attaching dirty buffers to a dirty
1165 * blockdev's page can result in filesystem corruption, because
1166 * some of those buffers may be aliases of filesystem data.
1167 * grow_dev_page() will go BUG() if this happens.
1169 static int
1170 grow_buffers(struct block_device *bdev, sector_t block, int size)
1172 struct page *page;
1173 pgoff_t index;
1174 int sizebits;
1176 sizebits = -1;
1177 do {
1178 sizebits++;
1179 } while ((size << sizebits) < PAGE_SIZE);
1181 index = block >> sizebits;
1182 block = index << sizebits;
1184 /* Create a page with the proper size buffers.. */
1185 page = grow_dev_page(bdev, block, index, size);
1186 if (!page)
1187 return 0;
1188 unlock_page(page);
1189 page_cache_release(page);
1190 return 1;
1193 static struct buffer_head *
1194 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1196 /* Size must be multiple of hard sectorsize */
1197 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1198 (size < 512 || size > PAGE_SIZE))) {
1199 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1200 size);
1201 printk(KERN_ERR "hardsect size: %d\n",
1202 bdev_hardsect_size(bdev));
1204 dump_stack();
1205 return NULL;
1208 for (;;) {
1209 struct buffer_head * bh;
1211 bh = __find_get_block(bdev, block, size);
1212 if (bh)
1213 return bh;
1215 if (!grow_buffers(bdev, block, size))
1216 free_more_memory();
1221 * The relationship between dirty buffers and dirty pages:
1223 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1224 * the page is tagged dirty in its radix tree.
1226 * At all times, the dirtiness of the buffers represents the dirtiness of
1227 * subsections of the page. If the page has buffers, the page dirty bit is
1228 * merely a hint about the true dirty state.
1230 * When a page is set dirty in its entirety, all its buffers are marked dirty
1231 * (if the page has buffers).
1233 * When a buffer is marked dirty, its page is dirtied, but the page's other
1234 * buffers are not.
1236 * Also. When blockdev buffers are explicitly read with bread(), they
1237 * individually become uptodate. But their backing page remains not
1238 * uptodate - even if all of its buffers are uptodate. A subsequent
1239 * block_read_full_page() against that page will discover all the uptodate
1240 * buffers, will set the page uptodate and will perform no I/O.
1244 * mark_buffer_dirty - mark a buffer_head as needing writeout
1245 * @bh: the buffer_head to mark dirty
1247 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1248 * backing page dirty, then tag the page as dirty in its address_space's radix
1249 * tree and then attach the address_space's inode to its superblock's dirty
1250 * inode list.
1252 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1253 * mapping->tree_lock and the global inode_lock.
1255 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1257 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1258 __set_page_dirty_nobuffers(bh->b_page);
1262 * Decrement a buffer_head's reference count. If all buffers against a page
1263 * have zero reference count, are clean and unlocked, and if the page is clean
1264 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1265 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1266 * a page but it ends up not being freed, and buffers may later be reattached).
1268 void __brelse(struct buffer_head * buf)
1270 if (atomic_read(&buf->b_count)) {
1271 put_bh(buf);
1272 return;
1274 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1275 WARN_ON(1);
1279 * bforget() is like brelse(), except it discards any
1280 * potentially dirty data.
1282 void __bforget(struct buffer_head *bh)
1284 clear_buffer_dirty(bh);
1285 if (!list_empty(&bh->b_assoc_buffers)) {
1286 struct address_space *buffer_mapping = bh->b_page->mapping;
1288 spin_lock(&buffer_mapping->private_lock);
1289 list_del_init(&bh->b_assoc_buffers);
1290 spin_unlock(&buffer_mapping->private_lock);
1292 __brelse(bh);
1295 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1297 lock_buffer(bh);
1298 if (buffer_uptodate(bh)) {
1299 unlock_buffer(bh);
1300 return bh;
1301 } else {
1302 get_bh(bh);
1303 bh->b_end_io = end_buffer_read_sync;
1304 submit_bh(READ, bh);
1305 wait_on_buffer(bh);
1306 if (buffer_uptodate(bh))
1307 return bh;
1309 brelse(bh);
1310 return NULL;
1314 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1315 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1316 * refcount elevated by one when they're in an LRU. A buffer can only appear
1317 * once in a particular CPU's LRU. A single buffer can be present in multiple
1318 * CPU's LRUs at the same time.
1320 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1321 * sb_find_get_block().
1323 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1324 * a local interrupt disable for that.
1327 #define BH_LRU_SIZE 8
1329 struct bh_lru {
1330 struct buffer_head *bhs[BH_LRU_SIZE];
1333 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1335 #ifdef CONFIG_SMP
1336 #define bh_lru_lock() local_irq_disable()
1337 #define bh_lru_unlock() local_irq_enable()
1338 #else
1339 #define bh_lru_lock() preempt_disable()
1340 #define bh_lru_unlock() preempt_enable()
1341 #endif
1343 static inline void check_irqs_on(void)
1345 #ifdef irqs_disabled
1346 BUG_ON(irqs_disabled());
1347 #endif
1351 * The LRU management algorithm is dopey-but-simple. Sorry.
1353 static void bh_lru_install(struct buffer_head *bh)
1355 struct buffer_head *evictee = NULL;
1356 struct bh_lru *lru;
1358 check_irqs_on();
1359 bh_lru_lock();
1360 lru = &__get_cpu_var(bh_lrus);
1361 if (lru->bhs[0] != bh) {
1362 struct buffer_head *bhs[BH_LRU_SIZE];
1363 int in;
1364 int out = 0;
1366 get_bh(bh);
1367 bhs[out++] = bh;
1368 for (in = 0; in < BH_LRU_SIZE; in++) {
1369 struct buffer_head *bh2 = lru->bhs[in];
1371 if (bh2 == bh) {
1372 __brelse(bh2);
1373 } else {
1374 if (out >= BH_LRU_SIZE) {
1375 BUG_ON(evictee != NULL);
1376 evictee = bh2;
1377 } else {
1378 bhs[out++] = bh2;
1382 while (out < BH_LRU_SIZE)
1383 bhs[out++] = NULL;
1384 memcpy(lru->bhs, bhs, sizeof(bhs));
1386 bh_lru_unlock();
1388 if (evictee)
1389 __brelse(evictee);
1393 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1395 static struct buffer_head *
1396 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1398 struct buffer_head *ret = NULL;
1399 struct bh_lru *lru;
1400 int i;
1402 check_irqs_on();
1403 bh_lru_lock();
1404 lru = &__get_cpu_var(bh_lrus);
1405 for (i = 0; i < BH_LRU_SIZE; i++) {
1406 struct buffer_head *bh = lru->bhs[i];
1408 if (bh && bh->b_bdev == bdev &&
1409 bh->b_blocknr == block && bh->b_size == size) {
1410 if (i) {
1411 while (i) {
1412 lru->bhs[i] = lru->bhs[i - 1];
1413 i--;
1415 lru->bhs[0] = bh;
1417 get_bh(bh);
1418 ret = bh;
1419 break;
1422 bh_lru_unlock();
1423 return ret;
1427 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1428 * it in the LRU and mark it as accessed. If it is not present then return
1429 * NULL
1431 struct buffer_head *
1432 __find_get_block(struct block_device *bdev, sector_t block, int size)
1434 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1436 if (bh == NULL) {
1437 bh = __find_get_block_slow(bdev, block);
1438 if (bh)
1439 bh_lru_install(bh);
1441 if (bh)
1442 touch_buffer(bh);
1443 return bh;
1445 EXPORT_SYMBOL(__find_get_block);
1448 * __getblk will locate (and, if necessary, create) the buffer_head
1449 * which corresponds to the passed block_device, block and size. The
1450 * returned buffer has its reference count incremented.
1452 * __getblk() cannot fail - it just keeps trying. If you pass it an
1453 * illegal block number, __getblk() will happily return a buffer_head
1454 * which represents the non-existent block. Very weird.
1456 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1457 * attempt is failing. FIXME, perhaps?
1459 struct buffer_head *
1460 __getblk(struct block_device *bdev, sector_t block, int size)
1462 struct buffer_head *bh = __find_get_block(bdev, block, size);
1464 might_sleep();
1465 if (bh == NULL)
1466 bh = __getblk_slow(bdev, block, size);
1467 return bh;
1469 EXPORT_SYMBOL(__getblk);
1472 * Do async read-ahead on a buffer..
1474 void __breadahead(struct block_device *bdev, sector_t block, int size)
1476 struct buffer_head *bh = __getblk(bdev, block, size);
1477 if (likely(bh)) {
1478 ll_rw_block(READA, 1, &bh);
1479 brelse(bh);
1482 EXPORT_SYMBOL(__breadahead);
1485 * __bread() - reads a specified block and returns the bh
1486 * @bdev: the block_device to read from
1487 * @block: number of block
1488 * @size: size (in bytes) to read
1490 * Reads a specified block, and returns buffer head that contains it.
1491 * It returns NULL if the block was unreadable.
1493 struct buffer_head *
1494 __bread(struct block_device *bdev, sector_t block, int size)
1496 struct buffer_head *bh = __getblk(bdev, block, size);
1498 if (likely(bh) && !buffer_uptodate(bh))
1499 bh = __bread_slow(bh);
1500 return bh;
1502 EXPORT_SYMBOL(__bread);
1505 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1506 * This doesn't race because it runs in each cpu either in irq
1507 * or with preempt disabled.
1509 static void invalidate_bh_lru(void *arg)
1511 struct bh_lru *b = &get_cpu_var(bh_lrus);
1512 int i;
1514 for (i = 0; i < BH_LRU_SIZE; i++) {
1515 brelse(b->bhs[i]);
1516 b->bhs[i] = NULL;
1518 put_cpu_var(bh_lrus);
1521 static void invalidate_bh_lrus(void)
1523 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1526 void set_bh_page(struct buffer_head *bh,
1527 struct page *page, unsigned long offset)
1529 bh->b_page = page;
1530 if (offset >= PAGE_SIZE)
1531 BUG();
1532 if (PageHighMem(page))
1534 * This catches illegal uses and preserves the offset:
1536 bh->b_data = (char *)(0 + offset);
1537 else
1538 bh->b_data = page_address(page) + offset;
1540 EXPORT_SYMBOL(set_bh_page);
1543 * Called when truncating a buffer on a page completely.
1545 static void discard_buffer(struct buffer_head * bh)
1547 lock_buffer(bh);
1548 clear_buffer_dirty(bh);
1549 bh->b_bdev = NULL;
1550 clear_buffer_mapped(bh);
1551 clear_buffer_req(bh);
1552 clear_buffer_new(bh);
1553 clear_buffer_delay(bh);
1554 unlock_buffer(bh);
1558 * try_to_release_page() - release old fs-specific metadata on a page
1560 * @page: the page which the kernel is trying to free
1561 * @gfp_mask: memory allocation flags (and I/O mode)
1563 * The address_space is to try to release any data against the page
1564 * (presumably at page->private). If the release was successful, return `1'.
1565 * Otherwise return zero.
1567 * The @gfp_mask argument specifies whether I/O may be performed to release
1568 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1570 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1572 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1574 struct address_space * const mapping = page->mapping;
1576 BUG_ON(!PageLocked(page));
1577 if (PageWriteback(page))
1578 return 0;
1580 if (mapping && mapping->a_ops->releasepage)
1581 return mapping->a_ops->releasepage(page, gfp_mask);
1582 return try_to_free_buffers(page);
1584 EXPORT_SYMBOL(try_to_release_page);
1587 * block_invalidatepage - invalidate part of all of a buffer-backed page
1589 * @page: the page which is affected
1590 * @offset: the index of the truncation point
1592 * block_invalidatepage() is called when all or part of the page has become
1593 * invalidatedby a truncate operation.
1595 * block_invalidatepage() does not have to release all buffers, but it must
1596 * ensure that no dirty buffer is left outside @offset and that no I/O
1597 * is underway against any of the blocks which are outside the truncation
1598 * point. Because the caller is about to free (and possibly reuse) those
1599 * blocks on-disk.
1601 int block_invalidatepage(struct page *page, unsigned long offset)
1603 struct buffer_head *head, *bh, *next;
1604 unsigned int curr_off = 0;
1605 int ret = 1;
1607 BUG_ON(!PageLocked(page));
1608 if (!page_has_buffers(page))
1609 goto out;
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1615 next = bh->b_this_page;
1618 * is this block fully invalidated?
1620 if (offset <= curr_off)
1621 discard_buffer(bh);
1622 curr_off = next_off;
1623 bh = next;
1624 } while (bh != head);
1627 * We release buffers only if the entire page is being invalidated.
1628 * The get_block cached value has been unconditionally invalidated,
1629 * so real IO is not possible anymore.
1631 if (offset == 0)
1632 ret = try_to_release_page(page, 0);
1633 out:
1634 return ret;
1636 EXPORT_SYMBOL(block_invalidatepage);
1638 int do_invalidatepage(struct page *page, unsigned long offset)
1640 int (*invalidatepage)(struct page *, unsigned long);
1641 invalidatepage = page->mapping->a_ops->invalidatepage;
1642 if (invalidatepage == NULL)
1643 invalidatepage = block_invalidatepage;
1644 return (*invalidatepage)(page, offset);
1648 * We attach and possibly dirty the buffers atomically wrt
1649 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1650 * is already excluded via the page lock.
1652 void create_empty_buffers(struct page *page,
1653 unsigned long blocksize, unsigned long b_state)
1655 struct buffer_head *bh, *head, *tail;
1657 head = alloc_page_buffers(page, blocksize, 1);
1658 bh = head;
1659 do {
1660 bh->b_state |= b_state;
1661 tail = bh;
1662 bh = bh->b_this_page;
1663 } while (bh);
1664 tail->b_this_page = head;
1666 spin_lock(&page->mapping->private_lock);
1667 if (PageUptodate(page) || PageDirty(page)) {
1668 bh = head;
1669 do {
1670 if (PageDirty(page))
1671 set_buffer_dirty(bh);
1672 if (PageUptodate(page))
1673 set_buffer_uptodate(bh);
1674 bh = bh->b_this_page;
1675 } while (bh != head);
1677 attach_page_buffers(page, head);
1678 spin_unlock(&page->mapping->private_lock);
1680 EXPORT_SYMBOL(create_empty_buffers);
1683 * We are taking a block for data and we don't want any output from any
1684 * buffer-cache aliases starting from return from that function and
1685 * until the moment when something will explicitly mark the buffer
1686 * dirty (hopefully that will not happen until we will free that block ;-)
1687 * We don't even need to mark it not-uptodate - nobody can expect
1688 * anything from a newly allocated buffer anyway. We used to used
1689 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1690 * don't want to mark the alias unmapped, for example - it would confuse
1691 * anyone who might pick it with bread() afterwards...
1693 * Also.. Note that bforget() doesn't lock the buffer. So there can
1694 * be writeout I/O going on against recently-freed buffers. We don't
1695 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1696 * only if we really need to. That happens here.
1698 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1700 struct buffer_head *old_bh;
1702 might_sleep();
1704 old_bh = __find_get_block_slow(bdev, block);
1705 if (old_bh) {
1706 clear_buffer_dirty(old_bh);
1707 wait_on_buffer(old_bh);
1708 clear_buffer_req(old_bh);
1709 __brelse(old_bh);
1712 EXPORT_SYMBOL(unmap_underlying_metadata);
1715 * NOTE! All mapped/uptodate combinations are valid:
1717 * Mapped Uptodate Meaning
1719 * No No "unknown" - must do get_block()
1720 * No Yes "hole" - zero-filled
1721 * Yes No "allocated" - allocated on disk, not read in
1722 * Yes Yes "valid" - allocated and up-to-date in memory.
1724 * "Dirty" is valid only with the last case (mapped+uptodate).
1728 * While block_write_full_page is writing back the dirty buffers under
1729 * the page lock, whoever dirtied the buffers may decide to clean them
1730 * again at any time. We handle that by only looking at the buffer
1731 * state inside lock_buffer().
1733 * If block_write_full_page() is called for regular writeback
1734 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1735 * locked buffer. This only can happen if someone has written the buffer
1736 * directly, with submit_bh(). At the address_space level PageWriteback
1737 * prevents this contention from occurring.
1739 static int __block_write_full_page(struct inode *inode, struct page *page,
1740 get_block_t *get_block, struct writeback_control *wbc)
1742 int err;
1743 sector_t block;
1744 sector_t last_block;
1745 struct buffer_head *bh, *head;
1746 int nr_underway = 0;
1748 BUG_ON(!PageLocked(page));
1750 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1752 if (!page_has_buffers(page)) {
1753 create_empty_buffers(page, 1 << inode->i_blkbits,
1754 (1 << BH_Dirty)|(1 << BH_Uptodate));
1758 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1759 * here, and the (potentially unmapped) buffers may become dirty at
1760 * any time. If a buffer becomes dirty here after we've inspected it
1761 * then we just miss that fact, and the page stays dirty.
1763 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1764 * handle that here by just cleaning them.
1767 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1768 head = page_buffers(page);
1769 bh = head;
1772 * Get all the dirty buffers mapped to disk addresses and
1773 * handle any aliases from the underlying blockdev's mapping.
1775 do {
1776 if (block > last_block) {
1778 * mapped buffers outside i_size will occur, because
1779 * this page can be outside i_size when there is a
1780 * truncate in progress.
1783 * The buffer was zeroed by block_write_full_page()
1785 clear_buffer_dirty(bh);
1786 set_buffer_uptodate(bh);
1787 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1788 err = get_block(inode, block, bh, 1);
1789 if (err)
1790 goto recover;
1791 if (buffer_new(bh)) {
1792 /* blockdev mappings never come here */
1793 clear_buffer_new(bh);
1794 unmap_underlying_metadata(bh->b_bdev,
1795 bh->b_blocknr);
1798 bh = bh->b_this_page;
1799 block++;
1800 } while (bh != head);
1802 do {
1803 if (!buffer_mapped(bh))
1804 continue;
1806 * If it's a fully non-blocking write attempt and we cannot
1807 * lock the buffer then redirty the page. Note that this can
1808 * potentially cause a busy-wait loop from pdflush and kswapd
1809 * activity, but those code paths have their own higher-level
1810 * throttling.
1812 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1813 lock_buffer(bh);
1814 } else if (test_set_buffer_locked(bh)) {
1815 redirty_page_for_writepage(wbc, page);
1816 continue;
1818 if (test_clear_buffer_dirty(bh)) {
1819 mark_buffer_async_write(bh);
1820 } else {
1821 unlock_buffer(bh);
1823 } while ((bh = bh->b_this_page) != head);
1826 * The page and its buffers are protected by PageWriteback(), so we can
1827 * drop the bh refcounts early.
1829 BUG_ON(PageWriteback(page));
1830 set_page_writeback(page);
1832 do {
1833 struct buffer_head *next = bh->b_this_page;
1834 if (buffer_async_write(bh)) {
1835 submit_bh(WRITE, bh);
1836 nr_underway++;
1838 bh = next;
1839 } while (bh != head);
1840 unlock_page(page);
1842 err = 0;
1843 done:
1844 if (nr_underway == 0) {
1846 * The page was marked dirty, but the buffers were
1847 * clean. Someone wrote them back by hand with
1848 * ll_rw_block/submit_bh. A rare case.
1850 int uptodate = 1;
1851 do {
1852 if (!buffer_uptodate(bh)) {
1853 uptodate = 0;
1854 break;
1856 bh = bh->b_this_page;
1857 } while (bh != head);
1858 if (uptodate)
1859 SetPageUptodate(page);
1860 end_page_writeback(page);
1862 * The page and buffer_heads can be released at any time from
1863 * here on.
1865 wbc->pages_skipped++; /* We didn't write this page */
1867 return err;
1869 recover:
1871 * ENOSPC, or some other error. We may already have added some
1872 * blocks to the file, so we need to write these out to avoid
1873 * exposing stale data.
1874 * The page is currently locked and not marked for writeback
1876 bh = head;
1877 /* Recovery: lock and submit the mapped buffers */
1878 do {
1879 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1880 lock_buffer(bh);
1881 mark_buffer_async_write(bh);
1882 } else {
1884 * The buffer may have been set dirty during
1885 * attachment to a dirty page.
1887 clear_buffer_dirty(bh);
1889 } while ((bh = bh->b_this_page) != head);
1890 SetPageError(page);
1891 BUG_ON(PageWriteback(page));
1892 set_page_writeback(page);
1893 unlock_page(page);
1894 do {
1895 struct buffer_head *next = bh->b_this_page;
1896 if (buffer_async_write(bh)) {
1897 clear_buffer_dirty(bh);
1898 submit_bh(WRITE, bh);
1899 nr_underway++;
1901 bh = next;
1902 } while (bh != head);
1903 goto done;
1906 static int __block_prepare_write(struct inode *inode, struct page *page,
1907 unsigned from, unsigned to, get_block_t *get_block)
1909 unsigned block_start, block_end;
1910 sector_t block;
1911 int err = 0;
1912 unsigned blocksize, bbits;
1913 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1915 BUG_ON(!PageLocked(page));
1916 BUG_ON(from > PAGE_CACHE_SIZE);
1917 BUG_ON(to > PAGE_CACHE_SIZE);
1918 BUG_ON(from > to);
1920 blocksize = 1 << inode->i_blkbits;
1921 if (!page_has_buffers(page))
1922 create_empty_buffers(page, blocksize, 0);
1923 head = page_buffers(page);
1925 bbits = inode->i_blkbits;
1926 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1928 for(bh = head, block_start = 0; bh != head || !block_start;
1929 block++, block_start=block_end, bh = bh->b_this_page) {
1930 block_end = block_start + blocksize;
1931 if (block_end <= from || block_start >= to) {
1932 if (PageUptodate(page)) {
1933 if (!buffer_uptodate(bh))
1934 set_buffer_uptodate(bh);
1936 continue;
1938 if (buffer_new(bh))
1939 clear_buffer_new(bh);
1940 if (!buffer_mapped(bh)) {
1941 err = get_block(inode, block, bh, 1);
1942 if (err)
1943 break;
1944 if (buffer_new(bh)) {
1945 unmap_underlying_metadata(bh->b_bdev,
1946 bh->b_blocknr);
1947 if (PageUptodate(page)) {
1948 set_buffer_uptodate(bh);
1949 continue;
1951 if (block_end > to || block_start < from) {
1952 void *kaddr;
1954 kaddr = kmap_atomic(page, KM_USER0);
1955 if (block_end > to)
1956 memset(kaddr+to, 0,
1957 block_end-to);
1958 if (block_start < from)
1959 memset(kaddr+block_start,
1960 0, from-block_start);
1961 flush_dcache_page(page);
1962 kunmap_atomic(kaddr, KM_USER0);
1964 continue;
1967 if (PageUptodate(page)) {
1968 if (!buffer_uptodate(bh))
1969 set_buffer_uptodate(bh);
1970 continue;
1972 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1973 (block_start < from || block_end > to)) {
1974 ll_rw_block(READ, 1, &bh);
1975 *wait_bh++=bh;
1979 * If we issued read requests - let them complete.
1981 while(wait_bh > wait) {
1982 wait_on_buffer(*--wait_bh);
1983 if (!buffer_uptodate(*wait_bh))
1984 err = -EIO;
1986 if (!err) {
1987 bh = head;
1988 do {
1989 if (buffer_new(bh))
1990 clear_buffer_new(bh);
1991 } while ((bh = bh->b_this_page) != head);
1992 return 0;
1994 /* Error case: */
1996 * Zero out any newly allocated blocks to avoid exposing stale
1997 * data. If BH_New is set, we know that the block was newly
1998 * allocated in the above loop.
2000 bh = head;
2001 block_start = 0;
2002 do {
2003 block_end = block_start+blocksize;
2004 if (block_end <= from)
2005 goto next_bh;
2006 if (block_start >= to)
2007 break;
2008 if (buffer_new(bh)) {
2009 void *kaddr;
2011 clear_buffer_new(bh);
2012 kaddr = kmap_atomic(page, KM_USER0);
2013 memset(kaddr+block_start, 0, bh->b_size);
2014 kunmap_atomic(kaddr, KM_USER0);
2015 set_buffer_uptodate(bh);
2016 mark_buffer_dirty(bh);
2018 next_bh:
2019 block_start = block_end;
2020 bh = bh->b_this_page;
2021 } while (bh != head);
2022 return err;
2025 static int __block_commit_write(struct inode *inode, struct page *page,
2026 unsigned from, unsigned to)
2028 unsigned block_start, block_end;
2029 int partial = 0;
2030 unsigned blocksize;
2031 struct buffer_head *bh, *head;
2033 blocksize = 1 << inode->i_blkbits;
2035 for(bh = head = page_buffers(page), block_start = 0;
2036 bh != head || !block_start;
2037 block_start=block_end, bh = bh->b_this_page) {
2038 block_end = block_start + blocksize;
2039 if (block_end <= from || block_start >= to) {
2040 if (!buffer_uptodate(bh))
2041 partial = 1;
2042 } else {
2043 set_buffer_uptodate(bh);
2044 mark_buffer_dirty(bh);
2049 * If this is a partial write which happened to make all buffers
2050 * uptodate then we can optimize away a bogus readpage() for
2051 * the next read(). Here we 'discover' whether the page went
2052 * uptodate as a result of this (potentially partial) write.
2054 if (!partial)
2055 SetPageUptodate(page);
2056 return 0;
2060 * Generic "read page" function for block devices that have the normal
2061 * get_block functionality. This is most of the block device filesystems.
2062 * Reads the page asynchronously --- the unlock_buffer() and
2063 * set/clear_buffer_uptodate() functions propagate buffer state into the
2064 * page struct once IO has completed.
2066 int block_read_full_page(struct page *page, get_block_t *get_block)
2068 struct inode *inode = page->mapping->host;
2069 sector_t iblock, lblock;
2070 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2071 unsigned int blocksize;
2072 int nr, i;
2073 int fully_mapped = 1;
2075 BUG_ON(!PageLocked(page));
2076 blocksize = 1 << inode->i_blkbits;
2077 if (!page_has_buffers(page))
2078 create_empty_buffers(page, blocksize, 0);
2079 head = page_buffers(page);
2081 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2083 bh = head;
2084 nr = 0;
2085 i = 0;
2087 do {
2088 if (buffer_uptodate(bh))
2089 continue;
2091 if (!buffer_mapped(bh)) {
2092 int err = 0;
2094 fully_mapped = 0;
2095 if (iblock < lblock) {
2096 err = get_block(inode, iblock, bh, 0);
2097 if (err)
2098 SetPageError(page);
2100 if (!buffer_mapped(bh)) {
2101 void *kaddr = kmap_atomic(page, KM_USER0);
2102 memset(kaddr + i * blocksize, 0, blocksize);
2103 flush_dcache_page(page);
2104 kunmap_atomic(kaddr, KM_USER0);
2105 if (!err)
2106 set_buffer_uptodate(bh);
2107 continue;
2110 * get_block() might have updated the buffer
2111 * synchronously
2113 if (buffer_uptodate(bh))
2114 continue;
2116 arr[nr++] = bh;
2117 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2119 if (fully_mapped)
2120 SetPageMappedToDisk(page);
2122 if (!nr) {
2124 * All buffers are uptodate - we can set the page uptodate
2125 * as well. But not if get_block() returned an error.
2127 if (!PageError(page))
2128 SetPageUptodate(page);
2129 unlock_page(page);
2130 return 0;
2133 /* Stage two: lock the buffers */
2134 for (i = 0; i < nr; i++) {
2135 bh = arr[i];
2136 lock_buffer(bh);
2137 mark_buffer_async_read(bh);
2141 * Stage 3: start the IO. Check for uptodateness
2142 * inside the buffer lock in case another process reading
2143 * the underlying blockdev brought it uptodate (the sct fix).
2145 for (i = 0; i < nr; i++) {
2146 bh = arr[i];
2147 if (buffer_uptodate(bh))
2148 end_buffer_async_read(bh, 1);
2149 else
2150 submit_bh(READ, bh);
2152 return 0;
2155 /* utility function for filesystems that need to do work on expanding
2156 * truncates. Uses prepare/commit_write to allow the filesystem to
2157 * deal with the hole.
2159 static int __generic_cont_expand(struct inode *inode, loff_t size,
2160 pgoff_t index, unsigned int offset)
2162 struct address_space *mapping = inode->i_mapping;
2163 struct page *page;
2164 unsigned long limit;
2165 int err;
2167 err = -EFBIG;
2168 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2169 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2170 send_sig(SIGXFSZ, current, 0);
2171 goto out;
2173 if (size > inode->i_sb->s_maxbytes)
2174 goto out;
2176 err = -ENOMEM;
2177 page = grab_cache_page(mapping, index);
2178 if (!page)
2179 goto out;
2180 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2181 if (err) {
2183 * ->prepare_write() may have instantiated a few blocks
2184 * outside i_size. Trim these off again.
2186 unlock_page(page);
2187 page_cache_release(page);
2188 vmtruncate(inode, inode->i_size);
2189 goto out;
2192 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2194 unlock_page(page);
2195 page_cache_release(page);
2196 if (err > 0)
2197 err = 0;
2198 out:
2199 return err;
2202 int generic_cont_expand(struct inode *inode, loff_t size)
2204 pgoff_t index;
2205 unsigned int offset;
2207 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2209 /* ugh. in prepare/commit_write, if from==to==start of block, we
2210 ** skip the prepare. make sure we never send an offset for the start
2211 ** of a block
2213 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2214 /* caller must handle this extra byte. */
2215 offset++;
2217 index = size >> PAGE_CACHE_SHIFT;
2219 return __generic_cont_expand(inode, size, index, offset);
2222 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2224 loff_t pos = size - 1;
2225 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2226 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2228 /* prepare/commit_write can handle even if from==to==start of block. */
2229 return __generic_cont_expand(inode, size, index, offset);
2233 * For moronic filesystems that do not allow holes in file.
2234 * We may have to extend the file.
2237 int cont_prepare_write(struct page *page, unsigned offset,
2238 unsigned to, get_block_t *get_block, loff_t *bytes)
2240 struct address_space *mapping = page->mapping;
2241 struct inode *inode = mapping->host;
2242 struct page *new_page;
2243 pgoff_t pgpos;
2244 long status;
2245 unsigned zerofrom;
2246 unsigned blocksize = 1 << inode->i_blkbits;
2247 void *kaddr;
2249 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2250 status = -ENOMEM;
2251 new_page = grab_cache_page(mapping, pgpos);
2252 if (!new_page)
2253 goto out;
2254 /* we might sleep */
2255 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2256 unlock_page(new_page);
2257 page_cache_release(new_page);
2258 continue;
2260 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2261 if (zerofrom & (blocksize-1)) {
2262 *bytes |= (blocksize-1);
2263 (*bytes)++;
2265 status = __block_prepare_write(inode, new_page, zerofrom,
2266 PAGE_CACHE_SIZE, get_block);
2267 if (status)
2268 goto out_unmap;
2269 kaddr = kmap_atomic(new_page, KM_USER0);
2270 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2271 flush_dcache_page(new_page);
2272 kunmap_atomic(kaddr, KM_USER0);
2273 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2274 unlock_page(new_page);
2275 page_cache_release(new_page);
2278 if (page->index < pgpos) {
2279 /* completely inside the area */
2280 zerofrom = offset;
2281 } else {
2282 /* page covers the boundary, find the boundary offset */
2283 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2285 /* if we will expand the thing last block will be filled */
2286 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2287 *bytes |= (blocksize-1);
2288 (*bytes)++;
2291 /* starting below the boundary? Nothing to zero out */
2292 if (offset <= zerofrom)
2293 zerofrom = offset;
2295 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2296 if (status)
2297 goto out1;
2298 if (zerofrom < offset) {
2299 kaddr = kmap_atomic(page, KM_USER0);
2300 memset(kaddr+zerofrom, 0, offset-zerofrom);
2301 flush_dcache_page(page);
2302 kunmap_atomic(kaddr, KM_USER0);
2303 __block_commit_write(inode, page, zerofrom, offset);
2305 return 0;
2306 out1:
2307 ClearPageUptodate(page);
2308 return status;
2310 out_unmap:
2311 ClearPageUptodate(new_page);
2312 unlock_page(new_page);
2313 page_cache_release(new_page);
2314 out:
2315 return status;
2318 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2319 get_block_t *get_block)
2321 struct inode *inode = page->mapping->host;
2322 int err = __block_prepare_write(inode, page, from, to, get_block);
2323 if (err)
2324 ClearPageUptodate(page);
2325 return err;
2328 int block_commit_write(struct page *page, unsigned from, unsigned to)
2330 struct inode *inode = page->mapping->host;
2331 __block_commit_write(inode,page,from,to);
2332 return 0;
2335 int generic_commit_write(struct file *file, struct page *page,
2336 unsigned from, unsigned to)
2338 struct inode *inode = page->mapping->host;
2339 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2340 __block_commit_write(inode,page,from,to);
2342 * No need to use i_size_read() here, the i_size
2343 * cannot change under us because we hold i_mutex.
2345 if (pos > inode->i_size) {
2346 i_size_write(inode, pos);
2347 mark_inode_dirty(inode);
2349 return 0;
2354 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2355 * immediately, while under the page lock. So it needs a special end_io
2356 * handler which does not touch the bh after unlocking it.
2358 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2359 * a race there is benign: unlock_buffer() only use the bh's address for
2360 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2361 * itself.
2363 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2365 if (uptodate) {
2366 set_buffer_uptodate(bh);
2367 } else {
2368 /* This happens, due to failed READA attempts. */
2369 clear_buffer_uptodate(bh);
2371 unlock_buffer(bh);
2375 * On entry, the page is fully not uptodate.
2376 * On exit the page is fully uptodate in the areas outside (from,to)
2378 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2379 get_block_t *get_block)
2381 struct inode *inode = page->mapping->host;
2382 const unsigned blkbits = inode->i_blkbits;
2383 const unsigned blocksize = 1 << blkbits;
2384 struct buffer_head map_bh;
2385 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2386 unsigned block_in_page;
2387 unsigned block_start;
2388 sector_t block_in_file;
2389 char *kaddr;
2390 int nr_reads = 0;
2391 int i;
2392 int ret = 0;
2393 int is_mapped_to_disk = 1;
2394 int dirtied_it = 0;
2396 if (PageMappedToDisk(page))
2397 return 0;
2399 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2400 map_bh.b_page = page;
2403 * We loop across all blocks in the page, whether or not they are
2404 * part of the affected region. This is so we can discover if the
2405 * page is fully mapped-to-disk.
2407 for (block_start = 0, block_in_page = 0;
2408 block_start < PAGE_CACHE_SIZE;
2409 block_in_page++, block_start += blocksize) {
2410 unsigned block_end = block_start + blocksize;
2411 int create;
2413 map_bh.b_state = 0;
2414 create = 1;
2415 if (block_start >= to)
2416 create = 0;
2417 ret = get_block(inode, block_in_file + block_in_page,
2418 &map_bh, create);
2419 if (ret)
2420 goto failed;
2421 if (!buffer_mapped(&map_bh))
2422 is_mapped_to_disk = 0;
2423 if (buffer_new(&map_bh))
2424 unmap_underlying_metadata(map_bh.b_bdev,
2425 map_bh.b_blocknr);
2426 if (PageUptodate(page))
2427 continue;
2428 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2429 kaddr = kmap_atomic(page, KM_USER0);
2430 if (block_start < from) {
2431 memset(kaddr+block_start, 0, from-block_start);
2432 dirtied_it = 1;
2434 if (block_end > to) {
2435 memset(kaddr + to, 0, block_end - to);
2436 dirtied_it = 1;
2438 flush_dcache_page(page);
2439 kunmap_atomic(kaddr, KM_USER0);
2440 continue;
2442 if (buffer_uptodate(&map_bh))
2443 continue; /* reiserfs does this */
2444 if (block_start < from || block_end > to) {
2445 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2447 if (!bh) {
2448 ret = -ENOMEM;
2449 goto failed;
2451 bh->b_state = map_bh.b_state;
2452 atomic_set(&bh->b_count, 0);
2453 bh->b_this_page = NULL;
2454 bh->b_page = page;
2455 bh->b_blocknr = map_bh.b_blocknr;
2456 bh->b_size = blocksize;
2457 bh->b_data = (char *)(long)block_start;
2458 bh->b_bdev = map_bh.b_bdev;
2459 bh->b_private = NULL;
2460 read_bh[nr_reads++] = bh;
2464 if (nr_reads) {
2465 struct buffer_head *bh;
2468 * The page is locked, so these buffers are protected from
2469 * any VM or truncate activity. Hence we don't need to care
2470 * for the buffer_head refcounts.
2472 for (i = 0; i < nr_reads; i++) {
2473 bh = read_bh[i];
2474 lock_buffer(bh);
2475 bh->b_end_io = end_buffer_read_nobh;
2476 submit_bh(READ, bh);
2478 for (i = 0; i < nr_reads; i++) {
2479 bh = read_bh[i];
2480 wait_on_buffer(bh);
2481 if (!buffer_uptodate(bh))
2482 ret = -EIO;
2483 free_buffer_head(bh);
2484 read_bh[i] = NULL;
2486 if (ret)
2487 goto failed;
2490 if (is_mapped_to_disk)
2491 SetPageMappedToDisk(page);
2492 SetPageUptodate(page);
2495 * Setting the page dirty here isn't necessary for the prepare_write
2496 * function - commit_write will do that. But if/when this function is
2497 * used within the pagefault handler to ensure that all mmapped pages
2498 * have backing space in the filesystem, we will need to dirty the page
2499 * if its contents were altered.
2501 if (dirtied_it)
2502 set_page_dirty(page);
2504 return 0;
2506 failed:
2507 for (i = 0; i < nr_reads; i++) {
2508 if (read_bh[i])
2509 free_buffer_head(read_bh[i]);
2513 * Error recovery is pretty slack. Clear the page and mark it dirty
2514 * so we'll later zero out any blocks which _were_ allocated.
2516 kaddr = kmap_atomic(page, KM_USER0);
2517 memset(kaddr, 0, PAGE_CACHE_SIZE);
2518 kunmap_atomic(kaddr, KM_USER0);
2519 SetPageUptodate(page);
2520 set_page_dirty(page);
2521 return ret;
2523 EXPORT_SYMBOL(nobh_prepare_write);
2525 int nobh_commit_write(struct file *file, struct page *page,
2526 unsigned from, unsigned to)
2528 struct inode *inode = page->mapping->host;
2529 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2531 set_page_dirty(page);
2532 if (pos > inode->i_size) {
2533 i_size_write(inode, pos);
2534 mark_inode_dirty(inode);
2536 return 0;
2538 EXPORT_SYMBOL(nobh_commit_write);
2541 * nobh_writepage() - based on block_full_write_page() except
2542 * that it tries to operate without attaching bufferheads to
2543 * the page.
2545 int nobh_writepage(struct page *page, get_block_t *get_block,
2546 struct writeback_control *wbc)
2548 struct inode * const inode = page->mapping->host;
2549 loff_t i_size = i_size_read(inode);
2550 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2551 unsigned offset;
2552 void *kaddr;
2553 int ret;
2555 /* Is the page fully inside i_size? */
2556 if (page->index < end_index)
2557 goto out;
2559 /* Is the page fully outside i_size? (truncate in progress) */
2560 offset = i_size & (PAGE_CACHE_SIZE-1);
2561 if (page->index >= end_index+1 || !offset) {
2563 * The page may have dirty, unmapped buffers. For example,
2564 * they may have been added in ext3_writepage(). Make them
2565 * freeable here, so the page does not leak.
2567 #if 0
2568 /* Not really sure about this - do we need this ? */
2569 if (page->mapping->a_ops->invalidatepage)
2570 page->mapping->a_ops->invalidatepage(page, offset);
2571 #endif
2572 unlock_page(page);
2573 return 0; /* don't care */
2577 * The page straddles i_size. It must be zeroed out on each and every
2578 * writepage invocation because it may be mmapped. "A file is mapped
2579 * in multiples of the page size. For a file that is not a multiple of
2580 * the page size, the remaining memory is zeroed when mapped, and
2581 * writes to that region are not written out to the file."
2583 kaddr = kmap_atomic(page, KM_USER0);
2584 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2585 flush_dcache_page(page);
2586 kunmap_atomic(kaddr, KM_USER0);
2587 out:
2588 ret = mpage_writepage(page, get_block, wbc);
2589 if (ret == -EAGAIN)
2590 ret = __block_write_full_page(inode, page, get_block, wbc);
2591 return ret;
2593 EXPORT_SYMBOL(nobh_writepage);
2596 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2598 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2600 struct inode *inode = mapping->host;
2601 unsigned blocksize = 1 << inode->i_blkbits;
2602 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2603 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2604 unsigned to;
2605 struct page *page;
2606 struct address_space_operations *a_ops = mapping->a_ops;
2607 char *kaddr;
2608 int ret = 0;
2610 if ((offset & (blocksize - 1)) == 0)
2611 goto out;
2613 ret = -ENOMEM;
2614 page = grab_cache_page(mapping, index);
2615 if (!page)
2616 goto out;
2618 to = (offset + blocksize) & ~(blocksize - 1);
2619 ret = a_ops->prepare_write(NULL, page, offset, to);
2620 if (ret == 0) {
2621 kaddr = kmap_atomic(page, KM_USER0);
2622 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2623 flush_dcache_page(page);
2624 kunmap_atomic(kaddr, KM_USER0);
2625 set_page_dirty(page);
2627 unlock_page(page);
2628 page_cache_release(page);
2629 out:
2630 return ret;
2632 EXPORT_SYMBOL(nobh_truncate_page);
2634 int block_truncate_page(struct address_space *mapping,
2635 loff_t from, get_block_t *get_block)
2637 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2638 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2639 unsigned blocksize;
2640 sector_t iblock;
2641 unsigned length, pos;
2642 struct inode *inode = mapping->host;
2643 struct page *page;
2644 struct buffer_head *bh;
2645 void *kaddr;
2646 int err;
2648 blocksize = 1 << inode->i_blkbits;
2649 length = offset & (blocksize - 1);
2651 /* Block boundary? Nothing to do */
2652 if (!length)
2653 return 0;
2655 length = blocksize - length;
2656 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2658 page = grab_cache_page(mapping, index);
2659 err = -ENOMEM;
2660 if (!page)
2661 goto out;
2663 if (!page_has_buffers(page))
2664 create_empty_buffers(page, blocksize, 0);
2666 /* Find the buffer that contains "offset" */
2667 bh = page_buffers(page);
2668 pos = blocksize;
2669 while (offset >= pos) {
2670 bh = bh->b_this_page;
2671 iblock++;
2672 pos += blocksize;
2675 err = 0;
2676 if (!buffer_mapped(bh)) {
2677 err = get_block(inode, iblock, bh, 0);
2678 if (err)
2679 goto unlock;
2680 /* unmapped? It's a hole - nothing to do */
2681 if (!buffer_mapped(bh))
2682 goto unlock;
2685 /* Ok, it's mapped. Make sure it's up-to-date */
2686 if (PageUptodate(page))
2687 set_buffer_uptodate(bh);
2689 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2690 err = -EIO;
2691 ll_rw_block(READ, 1, &bh);
2692 wait_on_buffer(bh);
2693 /* Uhhuh. Read error. Complain and punt. */
2694 if (!buffer_uptodate(bh))
2695 goto unlock;
2698 kaddr = kmap_atomic(page, KM_USER0);
2699 memset(kaddr + offset, 0, length);
2700 flush_dcache_page(page);
2701 kunmap_atomic(kaddr, KM_USER0);
2703 mark_buffer_dirty(bh);
2704 err = 0;
2706 unlock:
2707 unlock_page(page);
2708 page_cache_release(page);
2709 out:
2710 return err;
2714 * The generic ->writepage function for buffer-backed address_spaces
2716 int block_write_full_page(struct page *page, get_block_t *get_block,
2717 struct writeback_control *wbc)
2719 struct inode * const inode = page->mapping->host;
2720 loff_t i_size = i_size_read(inode);
2721 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2722 unsigned offset;
2723 void *kaddr;
2725 /* Is the page fully inside i_size? */
2726 if (page->index < end_index)
2727 return __block_write_full_page(inode, page, get_block, wbc);
2729 /* Is the page fully outside i_size? (truncate in progress) */
2730 offset = i_size & (PAGE_CACHE_SIZE-1);
2731 if (page->index >= end_index+1 || !offset) {
2733 * The page may have dirty, unmapped buffers. For example,
2734 * they may have been added in ext3_writepage(). Make them
2735 * freeable here, so the page does not leak.
2737 do_invalidatepage(page, 0);
2738 unlock_page(page);
2739 return 0; /* don't care */
2743 * The page straddles i_size. It must be zeroed out on each and every
2744 * writepage invokation because it may be mmapped. "A file is mapped
2745 * in multiples of the page size. For a file that is not a multiple of
2746 * the page size, the remaining memory is zeroed when mapped, and
2747 * writes to that region are not written out to the file."
2749 kaddr = kmap_atomic(page, KM_USER0);
2750 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2751 flush_dcache_page(page);
2752 kunmap_atomic(kaddr, KM_USER0);
2753 return __block_write_full_page(inode, page, get_block, wbc);
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 get_block_t *get_block)
2759 struct buffer_head tmp;
2760 struct inode *inode = mapping->host;
2761 tmp.b_state = 0;
2762 tmp.b_blocknr = 0;
2763 get_block(inode, block, &tmp, 0);
2764 return tmp.b_blocknr;
2767 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2769 struct buffer_head *bh = bio->bi_private;
2771 if (bio->bi_size)
2772 return 1;
2774 if (err == -EOPNOTSUPP) {
2775 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2776 set_bit(BH_Eopnotsupp, &bh->b_state);
2779 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2780 bio_put(bio);
2781 return 0;
2784 int submit_bh(int rw, struct buffer_head * bh)
2786 struct bio *bio;
2787 int ret = 0;
2789 BUG_ON(!buffer_locked(bh));
2790 BUG_ON(!buffer_mapped(bh));
2791 BUG_ON(!bh->b_end_io);
2793 if (buffer_ordered(bh) && (rw == WRITE))
2794 rw = WRITE_BARRIER;
2797 * Only clear out a write error when rewriting, should this
2798 * include WRITE_SYNC as well?
2800 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2801 clear_buffer_write_io_error(bh);
2804 * from here on down, it's all bio -- do the initial mapping,
2805 * submit_bio -> generic_make_request may further map this bio around
2807 bio = bio_alloc(GFP_NOIO, 1);
2809 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2810 bio->bi_bdev = bh->b_bdev;
2811 bio->bi_io_vec[0].bv_page = bh->b_page;
2812 bio->bi_io_vec[0].bv_len = bh->b_size;
2813 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2815 bio->bi_vcnt = 1;
2816 bio->bi_idx = 0;
2817 bio->bi_size = bh->b_size;
2819 bio->bi_end_io = end_bio_bh_io_sync;
2820 bio->bi_private = bh;
2822 bio_get(bio);
2823 submit_bio(rw, bio);
2825 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2826 ret = -EOPNOTSUPP;
2828 bio_put(bio);
2829 return ret;
2833 * ll_rw_block: low-level access to block devices (DEPRECATED)
2834 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2835 * @nr: number of &struct buffer_heads in the array
2836 * @bhs: array of pointers to &struct buffer_head
2838 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2839 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2840 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2841 * are sent to disk. The fourth %READA option is described in the documentation
2842 * for generic_make_request() which ll_rw_block() calls.
2844 * This function drops any buffer that it cannot get a lock on (with the
2845 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2846 * clean when doing a write request, and any buffer that appears to be
2847 * up-to-date when doing read request. Further it marks as clean buffers that
2848 * are processed for writing (the buffer cache won't assume that they are
2849 * actually clean until the buffer gets unlocked).
2851 * ll_rw_block sets b_end_io to simple completion handler that marks
2852 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2853 * any waiters.
2855 * All of the buffers must be for the same device, and must also be a
2856 * multiple of the current approved size for the device.
2858 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2860 int i;
2862 for (i = 0; i < nr; i++) {
2863 struct buffer_head *bh = bhs[i];
2865 if (rw == SWRITE)
2866 lock_buffer(bh);
2867 else if (test_set_buffer_locked(bh))
2868 continue;
2870 if (rw == WRITE || rw == SWRITE) {
2871 if (test_clear_buffer_dirty(bh)) {
2872 bh->b_end_io = end_buffer_write_sync;
2873 get_bh(bh);
2874 submit_bh(WRITE, bh);
2875 continue;
2877 } else {
2878 if (!buffer_uptodate(bh)) {
2879 bh->b_end_io = end_buffer_read_sync;
2880 get_bh(bh);
2881 submit_bh(rw, bh);
2882 continue;
2885 unlock_buffer(bh);
2890 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2891 * and then start new I/O and then wait upon it. The caller must have a ref on
2892 * the buffer_head.
2894 int sync_dirty_buffer(struct buffer_head *bh)
2896 int ret = 0;
2898 WARN_ON(atomic_read(&bh->b_count) < 1);
2899 lock_buffer(bh);
2900 if (test_clear_buffer_dirty(bh)) {
2901 get_bh(bh);
2902 bh->b_end_io = end_buffer_write_sync;
2903 ret = submit_bh(WRITE, bh);
2904 wait_on_buffer(bh);
2905 if (buffer_eopnotsupp(bh)) {
2906 clear_buffer_eopnotsupp(bh);
2907 ret = -EOPNOTSUPP;
2909 if (!ret && !buffer_uptodate(bh))
2910 ret = -EIO;
2911 } else {
2912 unlock_buffer(bh);
2914 return ret;
2918 * try_to_free_buffers() checks if all the buffers on this particular page
2919 * are unused, and releases them if so.
2921 * Exclusion against try_to_free_buffers may be obtained by either
2922 * locking the page or by holding its mapping's private_lock.
2924 * If the page is dirty but all the buffers are clean then we need to
2925 * be sure to mark the page clean as well. This is because the page
2926 * may be against a block device, and a later reattachment of buffers
2927 * to a dirty page will set *all* buffers dirty. Which would corrupt
2928 * filesystem data on the same device.
2930 * The same applies to regular filesystem pages: if all the buffers are
2931 * clean then we set the page clean and proceed. To do that, we require
2932 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2933 * private_lock.
2935 * try_to_free_buffers() is non-blocking.
2937 static inline int buffer_busy(struct buffer_head *bh)
2939 return atomic_read(&bh->b_count) |
2940 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2943 static int
2944 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2946 struct buffer_head *head = page_buffers(page);
2947 struct buffer_head *bh;
2949 bh = head;
2950 do {
2951 if (buffer_write_io_error(bh) && page->mapping)
2952 set_bit(AS_EIO, &page->mapping->flags);
2953 if (buffer_busy(bh))
2954 goto failed;
2955 bh = bh->b_this_page;
2956 } while (bh != head);
2958 do {
2959 struct buffer_head *next = bh->b_this_page;
2961 if (!list_empty(&bh->b_assoc_buffers))
2962 __remove_assoc_queue(bh);
2963 bh = next;
2964 } while (bh != head);
2965 *buffers_to_free = head;
2966 __clear_page_buffers(page);
2967 return 1;
2968 failed:
2969 return 0;
2972 int try_to_free_buffers(struct page *page)
2974 struct address_space * const mapping = page->mapping;
2975 struct buffer_head *buffers_to_free = NULL;
2976 int ret = 0;
2978 BUG_ON(!PageLocked(page));
2979 if (PageWriteback(page))
2980 return 0;
2982 if (mapping == NULL) { /* can this still happen? */
2983 ret = drop_buffers(page, &buffers_to_free);
2984 goto out;
2987 spin_lock(&mapping->private_lock);
2988 ret = drop_buffers(page, &buffers_to_free);
2989 if (ret) {
2991 * If the filesystem writes its buffers by hand (eg ext3)
2992 * then we can have clean buffers against a dirty page. We
2993 * clean the page here; otherwise later reattachment of buffers
2994 * could encounter a non-uptodate page, which is unresolvable.
2995 * This only applies in the rare case where try_to_free_buffers
2996 * succeeds but the page is not freed.
2998 clear_page_dirty(page);
3000 spin_unlock(&mapping->private_lock);
3001 out:
3002 if (buffers_to_free) {
3003 struct buffer_head *bh = buffers_to_free;
3005 do {
3006 struct buffer_head *next = bh->b_this_page;
3007 free_buffer_head(bh);
3008 bh = next;
3009 } while (bh != buffers_to_free);
3011 return ret;
3013 EXPORT_SYMBOL(try_to_free_buffers);
3015 int block_sync_page(struct page *page)
3017 struct address_space *mapping;
3019 smp_mb();
3020 mapping = page_mapping(page);
3021 if (mapping)
3022 blk_run_backing_dev(mapping->backing_dev_info, page);
3023 return 0;
3027 * There are no bdflush tunables left. But distributions are
3028 * still running obsolete flush daemons, so we terminate them here.
3030 * Use of bdflush() is deprecated and will be removed in a future kernel.
3031 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3033 asmlinkage long sys_bdflush(int func, long data)
3035 static int msg_count;
3037 if (!capable(CAP_SYS_ADMIN))
3038 return -EPERM;
3040 if (msg_count < 5) {
3041 msg_count++;
3042 printk(KERN_INFO
3043 "warning: process `%s' used the obsolete bdflush"
3044 " system call\n", current->comm);
3045 printk(KERN_INFO "Fix your initscripts?\n");
3048 if (func == 1)
3049 do_exit(0);
3050 return 0;
3054 * Migration function for pages with buffers. This function can only be used
3055 * if the underlying filesystem guarantees that no other references to "page"
3056 * exist.
3058 #ifdef CONFIG_MIGRATION
3059 int buffer_migrate_page(struct page *newpage, struct page *page)
3061 struct address_space *mapping = page->mapping;
3062 struct buffer_head *bh, *head;
3063 int rc;
3065 if (!mapping)
3066 return -EAGAIN;
3068 if (!page_has_buffers(page))
3069 return migrate_page(newpage, page);
3071 head = page_buffers(page);
3073 rc = migrate_page_remove_references(newpage, page, 3);
3074 if (rc)
3075 return rc;
3077 bh = head;
3078 do {
3079 get_bh(bh);
3080 lock_buffer(bh);
3081 bh = bh->b_this_page;
3083 } while (bh != head);
3085 ClearPagePrivate(page);
3086 set_page_private(newpage, page_private(page));
3087 set_page_private(page, 0);
3088 put_page(page);
3089 get_page(newpage);
3091 bh = head;
3092 do {
3093 set_bh_page(bh, newpage, bh_offset(bh));
3094 bh = bh->b_this_page;
3096 } while (bh != head);
3098 SetPagePrivate(newpage);
3100 migrate_page_copy(newpage, page);
3102 bh = head;
3103 do {
3104 unlock_buffer(bh);
3105 put_bh(bh);
3106 bh = bh->b_this_page;
3108 } while (bh != head);
3110 return 0;
3112 EXPORT_SYMBOL(buffer_migrate_page);
3113 #endif
3116 * Buffer-head allocation
3118 static kmem_cache_t *bh_cachep;
3121 * Once the number of bh's in the machine exceeds this level, we start
3122 * stripping them in writeback.
3124 static int max_buffer_heads;
3126 int buffer_heads_over_limit;
3128 struct bh_accounting {
3129 int nr; /* Number of live bh's */
3130 int ratelimit; /* Limit cacheline bouncing */
3133 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3135 static void recalc_bh_state(void)
3137 int i;
3138 int tot = 0;
3140 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3141 return;
3142 __get_cpu_var(bh_accounting).ratelimit = 0;
3143 for_each_cpu(i)
3144 tot += per_cpu(bh_accounting, i).nr;
3145 buffer_heads_over_limit = (tot > max_buffer_heads);
3148 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3150 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3151 if (ret) {
3152 get_cpu_var(bh_accounting).nr++;
3153 recalc_bh_state();
3154 put_cpu_var(bh_accounting);
3156 return ret;
3158 EXPORT_SYMBOL(alloc_buffer_head);
3160 void free_buffer_head(struct buffer_head *bh)
3162 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3163 kmem_cache_free(bh_cachep, bh);
3164 get_cpu_var(bh_accounting).nr--;
3165 recalc_bh_state();
3166 put_cpu_var(bh_accounting);
3168 EXPORT_SYMBOL(free_buffer_head);
3170 static void
3171 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3173 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3174 SLAB_CTOR_CONSTRUCTOR) {
3175 struct buffer_head * bh = (struct buffer_head *)data;
3177 memset(bh, 0, sizeof(*bh));
3178 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3182 #ifdef CONFIG_HOTPLUG_CPU
3183 static void buffer_exit_cpu(int cpu)
3185 int i;
3186 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3188 for (i = 0; i < BH_LRU_SIZE; i++) {
3189 brelse(b->bhs[i]);
3190 b->bhs[i] = NULL;
3194 static int buffer_cpu_notify(struct notifier_block *self,
3195 unsigned long action, void *hcpu)
3197 if (action == CPU_DEAD)
3198 buffer_exit_cpu((unsigned long)hcpu);
3199 return NOTIFY_OK;
3201 #endif /* CONFIG_HOTPLUG_CPU */
3203 void __init buffer_init(void)
3205 int nrpages;
3207 bh_cachep = kmem_cache_create("buffer_head",
3208 sizeof(struct buffer_head), 0,
3209 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3212 * Limit the bh occupancy to 10% of ZONE_NORMAL
3214 nrpages = (nr_free_buffer_pages() * 10) / 100;
3215 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3216 hotcpu_notifier(buffer_cpu_notify, 0);
3219 EXPORT_SYMBOL(__bforget);
3220 EXPORT_SYMBOL(__brelse);
3221 EXPORT_SYMBOL(__wait_on_buffer);
3222 EXPORT_SYMBOL(block_commit_write);
3223 EXPORT_SYMBOL(block_prepare_write);
3224 EXPORT_SYMBOL(block_read_full_page);
3225 EXPORT_SYMBOL(block_sync_page);
3226 EXPORT_SYMBOL(block_truncate_page);
3227 EXPORT_SYMBOL(block_write_full_page);
3228 EXPORT_SYMBOL(cont_prepare_write);
3229 EXPORT_SYMBOL(end_buffer_async_write);
3230 EXPORT_SYMBOL(end_buffer_read_sync);
3231 EXPORT_SYMBOL(end_buffer_write_sync);
3232 EXPORT_SYMBOL(file_fsync);
3233 EXPORT_SYMBOL(fsync_bdev);
3234 EXPORT_SYMBOL(generic_block_bmap);
3235 EXPORT_SYMBOL(generic_commit_write);
3236 EXPORT_SYMBOL(generic_cont_expand);
3237 EXPORT_SYMBOL(generic_cont_expand_simple);
3238 EXPORT_SYMBOL(init_buffer);
3239 EXPORT_SYMBOL(invalidate_bdev);
3240 EXPORT_SYMBOL(ll_rw_block);
3241 EXPORT_SYMBOL(mark_buffer_dirty);
3242 EXPORT_SYMBOL(submit_bh);
3243 EXPORT_SYMBOL(sync_dirty_buffer);
3244 EXPORT_SYMBOL(unlock_buffer);