4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t
*p
)
173 if (p
->static_prio
< NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
176 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
182 * These are the runqueue data structures:
185 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
187 typedef struct runqueue runqueue_t
;
190 unsigned int nr_active
;
191 unsigned long bitmap
[BITMAP_SIZE
];
192 struct list_head queue
[MAX_PRIO
];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running
;
211 unsigned long cpu_load
[3];
213 unsigned long long nr_switches
;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible
;
223 unsigned long expired_timestamp
;
224 unsigned long long timestamp_last_tick
;
226 struct mm_struct
*prev_mm
;
227 prio_array_t
*active
, *expired
, arrays
[2];
228 int best_expired_prio
;
232 struct sched_domain
*sd
;
234 /* For active balancing */
238 task_t
*migration_thread
;
239 struct list_head migration_queue
;
242 #ifdef CONFIG_SCHEDSTATS
244 struct sched_info rq_sched_info
;
246 /* sys_sched_yield() stats */
247 unsigned long yld_exp_empty
;
248 unsigned long yld_act_empty
;
249 unsigned long yld_both_empty
;
250 unsigned long yld_cnt
;
252 /* schedule() stats */
253 unsigned long sched_switch
;
254 unsigned long sched_cnt
;
255 unsigned long sched_goidle
;
257 /* try_to_wake_up() stats */
258 unsigned long ttwu_cnt
;
259 unsigned long ttwu_local
;
263 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
266 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
267 * See detach_destroy_domains: synchronize_sched for details.
269 * The domain tree of any CPU may only be accessed from within
270 * preempt-disabled sections.
272 #define for_each_domain(cpu, domain) \
273 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
275 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
276 #define this_rq() (&__get_cpu_var(runqueues))
277 #define task_rq(p) cpu_rq(task_cpu(p))
278 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
280 #ifndef prepare_arch_switch
281 # define prepare_arch_switch(next) do { } while (0)
283 #ifndef finish_arch_switch
284 # define finish_arch_switch(prev) do { } while (0)
287 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
288 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
290 return rq
->curr
== p
;
293 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
297 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
299 #ifdef CONFIG_DEBUG_SPINLOCK
300 /* this is a valid case when another task releases the spinlock */
301 rq
->lock
.owner
= current
;
303 spin_unlock_irq(&rq
->lock
);
306 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
307 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
312 return rq
->curr
== p
;
316 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
320 * We can optimise this out completely for !SMP, because the
321 * SMP rebalancing from interrupt is the only thing that cares
326 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
327 spin_unlock_irq(&rq
->lock
);
329 spin_unlock(&rq
->lock
);
333 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
337 * After ->oncpu is cleared, the task can be moved to a different CPU.
338 * We must ensure this doesn't happen until the switch is completely
344 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
351 * task_rq_lock - lock the runqueue a given task resides on and disable
352 * interrupts. Note the ordering: we can safely lookup the task_rq without
353 * explicitly disabling preemption.
355 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
361 local_irq_save(*flags
);
363 spin_lock(&rq
->lock
);
364 if (unlikely(rq
!= task_rq(p
))) {
365 spin_unlock_irqrestore(&rq
->lock
, *flags
);
366 goto repeat_lock_task
;
371 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
374 spin_unlock_irqrestore(&rq
->lock
, *flags
);
377 #ifdef CONFIG_SCHEDSTATS
379 * bump this up when changing the output format or the meaning of an existing
380 * format, so that tools can adapt (or abort)
382 #define SCHEDSTAT_VERSION 12
384 static int show_schedstat(struct seq_file
*seq
, void *v
)
388 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
389 seq_printf(seq
, "timestamp %lu\n", jiffies
);
390 for_each_online_cpu(cpu
) {
391 runqueue_t
*rq
= cpu_rq(cpu
);
393 struct sched_domain
*sd
;
397 /* runqueue-specific stats */
399 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
400 cpu
, rq
->yld_both_empty
,
401 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
402 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
403 rq
->ttwu_cnt
, rq
->ttwu_local
,
404 rq
->rq_sched_info
.cpu_time
,
405 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
407 seq_printf(seq
, "\n");
410 /* domain-specific stats */
412 for_each_domain(cpu
, sd
) {
413 enum idle_type itype
;
414 char mask_str
[NR_CPUS
];
416 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
417 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
418 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
420 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
422 sd
->lb_balanced
[itype
],
423 sd
->lb_failed
[itype
],
424 sd
->lb_imbalance
[itype
],
425 sd
->lb_gained
[itype
],
426 sd
->lb_hot_gained
[itype
],
427 sd
->lb_nobusyq
[itype
],
428 sd
->lb_nobusyg
[itype
]);
430 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
431 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
432 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
433 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
434 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
442 static int schedstat_open(struct inode
*inode
, struct file
*file
)
444 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
445 char *buf
= kmalloc(size
, GFP_KERNEL
);
451 res
= single_open(file
, show_schedstat
, NULL
);
453 m
= file
->private_data
;
461 struct file_operations proc_schedstat_operations
= {
462 .open
= schedstat_open
,
465 .release
= single_release
,
468 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
469 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
470 #else /* !CONFIG_SCHEDSTATS */
471 # define schedstat_inc(rq, field) do { } while (0)
472 # define schedstat_add(rq, field, amt) do { } while (0)
476 * rq_lock - lock a given runqueue and disable interrupts.
478 static inline runqueue_t
*this_rq_lock(void)
485 spin_lock(&rq
->lock
);
490 #ifdef CONFIG_SCHEDSTATS
492 * Called when a process is dequeued from the active array and given
493 * the cpu. We should note that with the exception of interactive
494 * tasks, the expired queue will become the active queue after the active
495 * queue is empty, without explicitly dequeuing and requeuing tasks in the
496 * expired queue. (Interactive tasks may be requeued directly to the
497 * active queue, thus delaying tasks in the expired queue from running;
498 * see scheduler_tick()).
500 * This function is only called from sched_info_arrive(), rather than
501 * dequeue_task(). Even though a task may be queued and dequeued multiple
502 * times as it is shuffled about, we're really interested in knowing how
503 * long it was from the *first* time it was queued to the time that it
506 static inline void sched_info_dequeued(task_t
*t
)
508 t
->sched_info
.last_queued
= 0;
512 * Called when a task finally hits the cpu. We can now calculate how
513 * long it was waiting to run. We also note when it began so that we
514 * can keep stats on how long its timeslice is.
516 static void sched_info_arrive(task_t
*t
)
518 unsigned long now
= jiffies
, diff
= 0;
519 struct runqueue
*rq
= task_rq(t
);
521 if (t
->sched_info
.last_queued
)
522 diff
= now
- t
->sched_info
.last_queued
;
523 sched_info_dequeued(t
);
524 t
->sched_info
.run_delay
+= diff
;
525 t
->sched_info
.last_arrival
= now
;
526 t
->sched_info
.pcnt
++;
531 rq
->rq_sched_info
.run_delay
+= diff
;
532 rq
->rq_sched_info
.pcnt
++;
536 * Called when a process is queued into either the active or expired
537 * array. The time is noted and later used to determine how long we
538 * had to wait for us to reach the cpu. Since the expired queue will
539 * become the active queue after active queue is empty, without dequeuing
540 * and requeuing any tasks, we are interested in queuing to either. It
541 * is unusual but not impossible for tasks to be dequeued and immediately
542 * requeued in the same or another array: this can happen in sched_yield(),
543 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
546 * This function is only called from enqueue_task(), but also only updates
547 * the timestamp if it is already not set. It's assumed that
548 * sched_info_dequeued() will clear that stamp when appropriate.
550 static inline void sched_info_queued(task_t
*t
)
552 if (!t
->sched_info
.last_queued
)
553 t
->sched_info
.last_queued
= jiffies
;
557 * Called when a process ceases being the active-running process, either
558 * voluntarily or involuntarily. Now we can calculate how long we ran.
560 static inline void sched_info_depart(task_t
*t
)
562 struct runqueue
*rq
= task_rq(t
);
563 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
565 t
->sched_info
.cpu_time
+= diff
;
568 rq
->rq_sched_info
.cpu_time
+= diff
;
572 * Called when tasks are switched involuntarily due, typically, to expiring
573 * their time slice. (This may also be called when switching to or from
574 * the idle task.) We are only called when prev != next.
576 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
578 struct runqueue
*rq
= task_rq(prev
);
581 * prev now departs the cpu. It's not interesting to record
582 * stats about how efficient we were at scheduling the idle
585 if (prev
!= rq
->idle
)
586 sched_info_depart(prev
);
588 if (next
!= rq
->idle
)
589 sched_info_arrive(next
);
592 #define sched_info_queued(t) do { } while (0)
593 #define sched_info_switch(t, next) do { } while (0)
594 #endif /* CONFIG_SCHEDSTATS */
597 * Adding/removing a task to/from a priority array:
599 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
602 list_del(&p
->run_list
);
603 if (list_empty(array
->queue
+ p
->prio
))
604 __clear_bit(p
->prio
, array
->bitmap
);
607 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
609 sched_info_queued(p
);
610 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
611 __set_bit(p
->prio
, array
->bitmap
);
617 * Put task to the end of the run list without the overhead of dequeue
618 * followed by enqueue.
620 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
622 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
625 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
627 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
628 __set_bit(p
->prio
, array
->bitmap
);
634 * effective_prio - return the priority that is based on the static
635 * priority but is modified by bonuses/penalties.
637 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
638 * into the -5 ... 0 ... +5 bonus/penalty range.
640 * We use 25% of the full 0...39 priority range so that:
642 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
643 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
645 * Both properties are important to certain workloads.
647 static int effective_prio(task_t
*p
)
654 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
656 prio
= p
->static_prio
- bonus
;
657 if (prio
< MAX_RT_PRIO
)
659 if (prio
> MAX_PRIO
-1)
665 * __activate_task - move a task to the runqueue.
667 static inline void __activate_task(task_t
*p
, runqueue_t
*rq
)
669 enqueue_task(p
, rq
->active
);
674 * __activate_idle_task - move idle task to the _front_ of runqueue.
676 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
678 enqueue_task_head(p
, rq
->active
);
682 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
684 /* Caller must always ensure 'now >= p->timestamp' */
685 unsigned long long __sleep_time
= now
- p
->timestamp
;
686 unsigned long sleep_time
;
688 if (unlikely(p
->policy
== SCHED_BATCH
))
691 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
692 sleep_time
= NS_MAX_SLEEP_AVG
;
694 sleep_time
= (unsigned long)__sleep_time
;
697 if (likely(sleep_time
> 0)) {
699 * User tasks that sleep a long time are categorised as
700 * idle and will get just interactive status to stay active &
701 * prevent them suddenly becoming cpu hogs and starving
704 if (p
->mm
&& p
->activated
!= -1 &&
705 sleep_time
> INTERACTIVE_SLEEP(p
)) {
706 p
->sleep_avg
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
710 * The lower the sleep avg a task has the more
711 * rapidly it will rise with sleep time.
713 sleep_time
*= (MAX_BONUS
- CURRENT_BONUS(p
)) ? : 1;
716 * Tasks waking from uninterruptible sleep are
717 * limited in their sleep_avg rise as they
718 * are likely to be waiting on I/O
720 if (p
->activated
== -1 && p
->mm
) {
721 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
723 else if (p
->sleep_avg
+ sleep_time
>=
724 INTERACTIVE_SLEEP(p
)) {
725 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
731 * This code gives a bonus to interactive tasks.
733 * The boost works by updating the 'average sleep time'
734 * value here, based on ->timestamp. The more time a
735 * task spends sleeping, the higher the average gets -
736 * and the higher the priority boost gets as well.
738 p
->sleep_avg
+= sleep_time
;
740 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
741 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
745 return effective_prio(p
);
749 * activate_task - move a task to the runqueue and do priority recalculation
751 * Update all the scheduling statistics stuff. (sleep average
752 * calculation, priority modifiers, etc.)
754 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
756 unsigned long long now
;
761 /* Compensate for drifting sched_clock */
762 runqueue_t
*this_rq
= this_rq();
763 now
= (now
- this_rq
->timestamp_last_tick
)
764 + rq
->timestamp_last_tick
;
769 p
->prio
= recalc_task_prio(p
, now
);
772 * This checks to make sure it's not an uninterruptible task
773 * that is now waking up.
777 * Tasks which were woken up by interrupts (ie. hw events)
778 * are most likely of interactive nature. So we give them
779 * the credit of extending their sleep time to the period
780 * of time they spend on the runqueue, waiting for execution
781 * on a CPU, first time around:
787 * Normal first-time wakeups get a credit too for
788 * on-runqueue time, but it will be weighted down:
795 __activate_task(p
, rq
);
799 * deactivate_task - remove a task from the runqueue.
801 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
804 dequeue_task(p
, p
->array
);
809 * resched_task - mark a task 'to be rescheduled now'.
811 * On UP this means the setting of the need_resched flag, on SMP it
812 * might also involve a cross-CPU call to trigger the scheduler on
816 static void resched_task(task_t
*p
)
820 assert_spin_locked(&task_rq(p
)->lock
);
822 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
825 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
828 if (cpu
== smp_processor_id())
831 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
833 if (!test_tsk_thread_flag(p
, TIF_POLLING_NRFLAG
))
834 smp_send_reschedule(cpu
);
837 static inline void resched_task(task_t
*p
)
839 assert_spin_locked(&task_rq(p
)->lock
);
840 set_tsk_need_resched(p
);
845 * task_curr - is this task currently executing on a CPU?
846 * @p: the task in question.
848 inline int task_curr(const task_t
*p
)
850 return cpu_curr(task_cpu(p
)) == p
;
855 struct list_head list
;
860 struct completion done
;
864 * The task's runqueue lock must be held.
865 * Returns true if you have to wait for migration thread.
867 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
869 runqueue_t
*rq
= task_rq(p
);
872 * If the task is not on a runqueue (and not running), then
873 * it is sufficient to simply update the task's cpu field.
875 if (!p
->array
&& !task_running(rq
, p
)) {
876 set_task_cpu(p
, dest_cpu
);
880 init_completion(&req
->done
);
882 req
->dest_cpu
= dest_cpu
;
883 list_add(&req
->list
, &rq
->migration_queue
);
888 * wait_task_inactive - wait for a thread to unschedule.
890 * The caller must ensure that the task *will* unschedule sometime soon,
891 * else this function might spin for a *long* time. This function can't
892 * be called with interrupts off, or it may introduce deadlock with
893 * smp_call_function() if an IPI is sent by the same process we are
894 * waiting to become inactive.
896 void wait_task_inactive(task_t
*p
)
903 rq
= task_rq_lock(p
, &flags
);
904 /* Must be off runqueue entirely, not preempted. */
905 if (unlikely(p
->array
|| task_running(rq
, p
))) {
906 /* If it's preempted, we yield. It could be a while. */
907 preempted
= !task_running(rq
, p
);
908 task_rq_unlock(rq
, &flags
);
914 task_rq_unlock(rq
, &flags
);
918 * kick_process - kick a running thread to enter/exit the kernel
919 * @p: the to-be-kicked thread
921 * Cause a process which is running on another CPU to enter
922 * kernel-mode, without any delay. (to get signals handled.)
924 * NOTE: this function doesnt have to take the runqueue lock,
925 * because all it wants to ensure is that the remote task enters
926 * the kernel. If the IPI races and the task has been migrated
927 * to another CPU then no harm is done and the purpose has been
930 void kick_process(task_t
*p
)
936 if ((cpu
!= smp_processor_id()) && task_curr(p
))
937 smp_send_reschedule(cpu
);
942 * Return a low guess at the load of a migration-source cpu.
944 * We want to under-estimate the load of migration sources, to
945 * balance conservatively.
947 static inline unsigned long source_load(int cpu
, int type
)
949 runqueue_t
*rq
= cpu_rq(cpu
);
950 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
954 return min(rq
->cpu_load
[type
-1], load_now
);
958 * Return a high guess at the load of a migration-target cpu
960 static inline unsigned long target_load(int cpu
, int type
)
962 runqueue_t
*rq
= cpu_rq(cpu
);
963 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
967 return max(rq
->cpu_load
[type
-1], load_now
);
971 * find_idlest_group finds and returns the least busy CPU group within the
974 static struct sched_group
*
975 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
977 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
978 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
979 int load_idx
= sd
->forkexec_idx
;
980 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
983 unsigned long load
, avg_load
;
987 /* Skip over this group if it has no CPUs allowed */
988 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
991 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
993 /* Tally up the load of all CPUs in the group */
996 for_each_cpu_mask(i
, group
->cpumask
) {
997 /* Bias balancing toward cpus of our domain */
999 load
= source_load(i
, load_idx
);
1001 load
= target_load(i
, load_idx
);
1006 /* Adjust by relative CPU power of the group */
1007 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1010 this_load
= avg_load
;
1012 } else if (avg_load
< min_load
) {
1013 min_load
= avg_load
;
1017 group
= group
->next
;
1018 } while (group
!= sd
->groups
);
1020 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1026 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1029 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1032 unsigned long load
, min_load
= ULONG_MAX
;
1036 /* Traverse only the allowed CPUs */
1037 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1039 for_each_cpu_mask(i
, tmp
) {
1040 load
= source_load(i
, 0);
1042 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1052 * sched_balance_self: balance the current task (running on cpu) in domains
1053 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1056 * Balance, ie. select the least loaded group.
1058 * Returns the target CPU number, or the same CPU if no balancing is needed.
1060 * preempt must be disabled.
1062 static int sched_balance_self(int cpu
, int flag
)
1064 struct task_struct
*t
= current
;
1065 struct sched_domain
*tmp
, *sd
= NULL
;
1067 for_each_domain(cpu
, tmp
)
1068 if (tmp
->flags
& flag
)
1073 struct sched_group
*group
;
1078 group
= find_idlest_group(sd
, t
, cpu
);
1082 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1083 if (new_cpu
== -1 || new_cpu
== cpu
)
1086 /* Now try balancing at a lower domain level */
1090 weight
= cpus_weight(span
);
1091 for_each_domain(cpu
, tmp
) {
1092 if (weight
<= cpus_weight(tmp
->span
))
1094 if (tmp
->flags
& flag
)
1097 /* while loop will break here if sd == NULL */
1103 #endif /* CONFIG_SMP */
1106 * wake_idle() will wake a task on an idle cpu if task->cpu is
1107 * not idle and an idle cpu is available. The span of cpus to
1108 * search starts with cpus closest then further out as needed,
1109 * so we always favor a closer, idle cpu.
1111 * Returns the CPU we should wake onto.
1113 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1114 static int wake_idle(int cpu
, task_t
*p
)
1117 struct sched_domain
*sd
;
1123 for_each_domain(cpu
, sd
) {
1124 if (sd
->flags
& SD_WAKE_IDLE
) {
1125 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1126 for_each_cpu_mask(i
, tmp
) {
1137 static inline int wake_idle(int cpu
, task_t
*p
)
1144 * try_to_wake_up - wake up a thread
1145 * @p: the to-be-woken-up thread
1146 * @state: the mask of task states that can be woken
1147 * @sync: do a synchronous wakeup?
1149 * Put it on the run-queue if it's not already there. The "current"
1150 * thread is always on the run-queue (except when the actual
1151 * re-schedule is in progress), and as such you're allowed to do
1152 * the simpler "current->state = TASK_RUNNING" to mark yourself
1153 * runnable without the overhead of this.
1155 * returns failure only if the task is already active.
1157 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1159 int cpu
, this_cpu
, success
= 0;
1160 unsigned long flags
;
1164 unsigned long load
, this_load
;
1165 struct sched_domain
*sd
, *this_sd
= NULL
;
1169 rq
= task_rq_lock(p
, &flags
);
1170 old_state
= p
->state
;
1171 if (!(old_state
& state
))
1178 this_cpu
= smp_processor_id();
1181 if (unlikely(task_running(rq
, p
)))
1186 schedstat_inc(rq
, ttwu_cnt
);
1187 if (cpu
== this_cpu
) {
1188 schedstat_inc(rq
, ttwu_local
);
1192 for_each_domain(this_cpu
, sd
) {
1193 if (cpu_isset(cpu
, sd
->span
)) {
1194 schedstat_inc(sd
, ttwu_wake_remote
);
1200 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1204 * Check for affine wakeup and passive balancing possibilities.
1207 int idx
= this_sd
->wake_idx
;
1208 unsigned int imbalance
;
1210 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1212 load
= source_load(cpu
, idx
);
1213 this_load
= target_load(this_cpu
, idx
);
1215 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1217 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1218 unsigned long tl
= this_load
;
1220 * If sync wakeup then subtract the (maximum possible)
1221 * effect of the currently running task from the load
1222 * of the current CPU:
1225 tl
-= SCHED_LOAD_SCALE
;
1228 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1229 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1231 * This domain has SD_WAKE_AFFINE and
1232 * p is cache cold in this domain, and
1233 * there is no bad imbalance.
1235 schedstat_inc(this_sd
, ttwu_move_affine
);
1241 * Start passive balancing when half the imbalance_pct
1244 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1245 if (imbalance
*this_load
<= 100*load
) {
1246 schedstat_inc(this_sd
, ttwu_move_balance
);
1252 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1254 new_cpu
= wake_idle(new_cpu
, p
);
1255 if (new_cpu
!= cpu
) {
1256 set_task_cpu(p
, new_cpu
);
1257 task_rq_unlock(rq
, &flags
);
1258 /* might preempt at this point */
1259 rq
= task_rq_lock(p
, &flags
);
1260 old_state
= p
->state
;
1261 if (!(old_state
& state
))
1266 this_cpu
= smp_processor_id();
1271 #endif /* CONFIG_SMP */
1272 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1273 rq
->nr_uninterruptible
--;
1275 * Tasks on involuntary sleep don't earn
1276 * sleep_avg beyond just interactive state.
1282 * Tasks that have marked their sleep as noninteractive get
1283 * woken up without updating their sleep average. (i.e. their
1284 * sleep is handled in a priority-neutral manner, no priority
1285 * boost and no penalty.)
1287 if (old_state
& TASK_NONINTERACTIVE
)
1288 __activate_task(p
, rq
);
1290 activate_task(p
, rq
, cpu
== this_cpu
);
1292 * Sync wakeups (i.e. those types of wakeups where the waker
1293 * has indicated that it will leave the CPU in short order)
1294 * don't trigger a preemption, if the woken up task will run on
1295 * this cpu. (in this case the 'I will reschedule' promise of
1296 * the waker guarantees that the freshly woken up task is going
1297 * to be considered on this CPU.)
1299 if (!sync
|| cpu
!= this_cpu
) {
1300 if (TASK_PREEMPTS_CURR(p
, rq
))
1301 resched_task(rq
->curr
);
1306 p
->state
= TASK_RUNNING
;
1308 task_rq_unlock(rq
, &flags
);
1313 int fastcall
wake_up_process(task_t
*p
)
1315 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1316 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1319 EXPORT_SYMBOL(wake_up_process
);
1321 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1323 return try_to_wake_up(p
, state
, 0);
1327 * Perform scheduler related setup for a newly forked process p.
1328 * p is forked by current.
1330 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1332 int cpu
= get_cpu();
1335 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1337 set_task_cpu(p
, cpu
);
1340 * We mark the process as running here, but have not actually
1341 * inserted it onto the runqueue yet. This guarantees that
1342 * nobody will actually run it, and a signal or other external
1343 * event cannot wake it up and insert it on the runqueue either.
1345 p
->state
= TASK_RUNNING
;
1346 INIT_LIST_HEAD(&p
->run_list
);
1348 #ifdef CONFIG_SCHEDSTATS
1349 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1351 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1354 #ifdef CONFIG_PREEMPT
1355 /* Want to start with kernel preemption disabled. */
1356 task_thread_info(p
)->preempt_count
= 1;
1359 * Share the timeslice between parent and child, thus the
1360 * total amount of pending timeslices in the system doesn't change,
1361 * resulting in more scheduling fairness.
1363 local_irq_disable();
1364 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1366 * The remainder of the first timeslice might be recovered by
1367 * the parent if the child exits early enough.
1369 p
->first_time_slice
= 1;
1370 current
->time_slice
>>= 1;
1371 p
->timestamp
= sched_clock();
1372 if (unlikely(!current
->time_slice
)) {
1374 * This case is rare, it happens when the parent has only
1375 * a single jiffy left from its timeslice. Taking the
1376 * runqueue lock is not a problem.
1378 current
->time_slice
= 1;
1386 * wake_up_new_task - wake up a newly created task for the first time.
1388 * This function will do some initial scheduler statistics housekeeping
1389 * that must be done for every newly created context, then puts the task
1390 * on the runqueue and wakes it.
1392 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1394 unsigned long flags
;
1396 runqueue_t
*rq
, *this_rq
;
1398 rq
= task_rq_lock(p
, &flags
);
1399 BUG_ON(p
->state
!= TASK_RUNNING
);
1400 this_cpu
= smp_processor_id();
1404 * We decrease the sleep average of forking parents
1405 * and children as well, to keep max-interactive tasks
1406 * from forking tasks that are max-interactive. The parent
1407 * (current) is done further down, under its lock.
1409 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1410 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1412 p
->prio
= effective_prio(p
);
1414 if (likely(cpu
== this_cpu
)) {
1415 if (!(clone_flags
& CLONE_VM
)) {
1417 * The VM isn't cloned, so we're in a good position to
1418 * do child-runs-first in anticipation of an exec. This
1419 * usually avoids a lot of COW overhead.
1421 if (unlikely(!current
->array
))
1422 __activate_task(p
, rq
);
1424 p
->prio
= current
->prio
;
1425 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1426 p
->array
= current
->array
;
1427 p
->array
->nr_active
++;
1432 /* Run child last */
1433 __activate_task(p
, rq
);
1435 * We skip the following code due to cpu == this_cpu
1437 * task_rq_unlock(rq, &flags);
1438 * this_rq = task_rq_lock(current, &flags);
1442 this_rq
= cpu_rq(this_cpu
);
1445 * Not the local CPU - must adjust timestamp. This should
1446 * get optimised away in the !CONFIG_SMP case.
1448 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1449 + rq
->timestamp_last_tick
;
1450 __activate_task(p
, rq
);
1451 if (TASK_PREEMPTS_CURR(p
, rq
))
1452 resched_task(rq
->curr
);
1455 * Parent and child are on different CPUs, now get the
1456 * parent runqueue to update the parent's ->sleep_avg:
1458 task_rq_unlock(rq
, &flags
);
1459 this_rq
= task_rq_lock(current
, &flags
);
1461 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1462 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1463 task_rq_unlock(this_rq
, &flags
);
1467 * Potentially available exiting-child timeslices are
1468 * retrieved here - this way the parent does not get
1469 * penalized for creating too many threads.
1471 * (this cannot be used to 'generate' timeslices
1472 * artificially, because any timeslice recovered here
1473 * was given away by the parent in the first place.)
1475 void fastcall
sched_exit(task_t
*p
)
1477 unsigned long flags
;
1481 * If the child was a (relative-) CPU hog then decrease
1482 * the sleep_avg of the parent as well.
1484 rq
= task_rq_lock(p
->parent
, &flags
);
1485 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1486 p
->parent
->time_slice
+= p
->time_slice
;
1487 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1488 p
->parent
->time_slice
= task_timeslice(p
);
1490 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1491 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1492 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1494 task_rq_unlock(rq
, &flags
);
1498 * prepare_task_switch - prepare to switch tasks
1499 * @rq: the runqueue preparing to switch
1500 * @next: the task we are going to switch to.
1502 * This is called with the rq lock held and interrupts off. It must
1503 * be paired with a subsequent finish_task_switch after the context
1506 * prepare_task_switch sets up locking and calls architecture specific
1509 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1511 prepare_lock_switch(rq
, next
);
1512 prepare_arch_switch(next
);
1516 * finish_task_switch - clean up after a task-switch
1517 * @rq: runqueue associated with task-switch
1518 * @prev: the thread we just switched away from.
1520 * finish_task_switch must be called after the context switch, paired
1521 * with a prepare_task_switch call before the context switch.
1522 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1523 * and do any other architecture-specific cleanup actions.
1525 * Note that we may have delayed dropping an mm in context_switch(). If
1526 * so, we finish that here outside of the runqueue lock. (Doing it
1527 * with the lock held can cause deadlocks; see schedule() for
1530 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1531 __releases(rq
->lock
)
1533 struct mm_struct
*mm
= rq
->prev_mm
;
1534 unsigned long prev_task_flags
;
1539 * A task struct has one reference for the use as "current".
1540 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1541 * calls schedule one last time. The schedule call will never return,
1542 * and the scheduled task must drop that reference.
1543 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1544 * still held, otherwise prev could be scheduled on another cpu, die
1545 * there before we look at prev->state, and then the reference would
1547 * Manfred Spraul <manfred@colorfullife.com>
1549 prev_task_flags
= prev
->flags
;
1550 finish_arch_switch(prev
);
1551 finish_lock_switch(rq
, prev
);
1554 if (unlikely(prev_task_flags
& PF_DEAD
))
1555 put_task_struct(prev
);
1559 * schedule_tail - first thing a freshly forked thread must call.
1560 * @prev: the thread we just switched away from.
1562 asmlinkage
void schedule_tail(task_t
*prev
)
1563 __releases(rq
->lock
)
1565 runqueue_t
*rq
= this_rq();
1566 finish_task_switch(rq
, prev
);
1567 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1568 /* In this case, finish_task_switch does not reenable preemption */
1571 if (current
->set_child_tid
)
1572 put_user(current
->pid
, current
->set_child_tid
);
1576 * context_switch - switch to the new MM and the new
1577 * thread's register state.
1580 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1582 struct mm_struct
*mm
= next
->mm
;
1583 struct mm_struct
*oldmm
= prev
->active_mm
;
1585 if (unlikely(!mm
)) {
1586 next
->active_mm
= oldmm
;
1587 atomic_inc(&oldmm
->mm_count
);
1588 enter_lazy_tlb(oldmm
, next
);
1590 switch_mm(oldmm
, mm
, next
);
1592 if (unlikely(!prev
->mm
)) {
1593 prev
->active_mm
= NULL
;
1594 WARN_ON(rq
->prev_mm
);
1595 rq
->prev_mm
= oldmm
;
1598 /* Here we just switch the register state and the stack. */
1599 switch_to(prev
, next
, prev
);
1605 * nr_running, nr_uninterruptible and nr_context_switches:
1607 * externally visible scheduler statistics: current number of runnable
1608 * threads, current number of uninterruptible-sleeping threads, total
1609 * number of context switches performed since bootup.
1611 unsigned long nr_running(void)
1613 unsigned long i
, sum
= 0;
1615 for_each_online_cpu(i
)
1616 sum
+= cpu_rq(i
)->nr_running
;
1621 unsigned long nr_uninterruptible(void)
1623 unsigned long i
, sum
= 0;
1626 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1629 * Since we read the counters lockless, it might be slightly
1630 * inaccurate. Do not allow it to go below zero though:
1632 if (unlikely((long)sum
< 0))
1638 unsigned long long nr_context_switches(void)
1640 unsigned long long i
, sum
= 0;
1643 sum
+= cpu_rq(i
)->nr_switches
;
1648 unsigned long nr_iowait(void)
1650 unsigned long i
, sum
= 0;
1653 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1661 * double_rq_lock - safely lock two runqueues
1663 * Note this does not disable interrupts like task_rq_lock,
1664 * you need to do so manually before calling.
1666 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1667 __acquires(rq1
->lock
)
1668 __acquires(rq2
->lock
)
1671 spin_lock(&rq1
->lock
);
1672 __acquire(rq2
->lock
); /* Fake it out ;) */
1675 spin_lock(&rq1
->lock
);
1676 spin_lock(&rq2
->lock
);
1678 spin_lock(&rq2
->lock
);
1679 spin_lock(&rq1
->lock
);
1685 * double_rq_unlock - safely unlock two runqueues
1687 * Note this does not restore interrupts like task_rq_unlock,
1688 * you need to do so manually after calling.
1690 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1691 __releases(rq1
->lock
)
1692 __releases(rq2
->lock
)
1694 spin_unlock(&rq1
->lock
);
1696 spin_unlock(&rq2
->lock
);
1698 __release(rq2
->lock
);
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1705 __releases(this_rq
->lock
)
1706 __acquires(busiest
->lock
)
1707 __acquires(this_rq
->lock
)
1709 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1710 if (busiest
< this_rq
) {
1711 spin_unlock(&this_rq
->lock
);
1712 spin_lock(&busiest
->lock
);
1713 spin_lock(&this_rq
->lock
);
1715 spin_lock(&busiest
->lock
);
1720 * If dest_cpu is allowed for this process, migrate the task to it.
1721 * This is accomplished by forcing the cpu_allowed mask to only
1722 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1723 * the cpu_allowed mask is restored.
1725 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1727 migration_req_t req
;
1729 unsigned long flags
;
1731 rq
= task_rq_lock(p
, &flags
);
1732 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1733 || unlikely(cpu_is_offline(dest_cpu
)))
1736 /* force the process onto the specified CPU */
1737 if (migrate_task(p
, dest_cpu
, &req
)) {
1738 /* Need to wait for migration thread (might exit: take ref). */
1739 struct task_struct
*mt
= rq
->migration_thread
;
1740 get_task_struct(mt
);
1741 task_rq_unlock(rq
, &flags
);
1742 wake_up_process(mt
);
1743 put_task_struct(mt
);
1744 wait_for_completion(&req
.done
);
1748 task_rq_unlock(rq
, &flags
);
1752 * sched_exec - execve() is a valuable balancing opportunity, because at
1753 * this point the task has the smallest effective memory and cache footprint.
1755 void sched_exec(void)
1757 int new_cpu
, this_cpu
= get_cpu();
1758 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1760 if (new_cpu
!= this_cpu
)
1761 sched_migrate_task(current
, new_cpu
);
1765 * pull_task - move a task from a remote runqueue to the local runqueue.
1766 * Both runqueues must be locked.
1769 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1770 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1772 dequeue_task(p
, src_array
);
1773 src_rq
->nr_running
--;
1774 set_task_cpu(p
, this_cpu
);
1775 this_rq
->nr_running
++;
1776 enqueue_task(p
, this_array
);
1777 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1778 + this_rq
->timestamp_last_tick
;
1780 * Note that idle threads have a prio of MAX_PRIO, for this test
1781 * to be always true for them.
1783 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1784 resched_task(this_rq
->curr
);
1788 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1791 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1792 struct sched_domain
*sd
, enum idle_type idle
,
1796 * We do not migrate tasks that are:
1797 * 1) running (obviously), or
1798 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1799 * 3) are cache-hot on their current CPU.
1801 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1805 if (task_running(rq
, p
))
1809 * Aggressive migration if:
1810 * 1) task is cache cold, or
1811 * 2) too many balance attempts have failed.
1814 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1817 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1823 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1824 * as part of a balancing operation within "domain". Returns the number of
1827 * Called with both runqueues locked.
1829 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1830 unsigned long max_nr_move
, struct sched_domain
*sd
,
1831 enum idle_type idle
, int *all_pinned
)
1833 prio_array_t
*array
, *dst_array
;
1834 struct list_head
*head
, *curr
;
1835 int idx
, pulled
= 0, pinned
= 0;
1838 if (max_nr_move
== 0)
1844 * We first consider expired tasks. Those will likely not be
1845 * executed in the near future, and they are most likely to
1846 * be cache-cold, thus switching CPUs has the least effect
1849 if (busiest
->expired
->nr_active
) {
1850 array
= busiest
->expired
;
1851 dst_array
= this_rq
->expired
;
1853 array
= busiest
->active
;
1854 dst_array
= this_rq
->active
;
1858 /* Start searching at priority 0: */
1862 idx
= sched_find_first_bit(array
->bitmap
);
1864 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1865 if (idx
>= MAX_PRIO
) {
1866 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1867 array
= busiest
->active
;
1868 dst_array
= this_rq
->active
;
1874 head
= array
->queue
+ idx
;
1877 tmp
= list_entry(curr
, task_t
, run_list
);
1881 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1888 #ifdef CONFIG_SCHEDSTATS
1889 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1890 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1893 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1896 /* We only want to steal up to the prescribed number of tasks. */
1897 if (pulled
< max_nr_move
) {
1905 * Right now, this is the only place pull_task() is called,
1906 * so we can safely collect pull_task() stats here rather than
1907 * inside pull_task().
1909 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1912 *all_pinned
= pinned
;
1917 * find_busiest_group finds and returns the busiest CPU group within the
1918 * domain. It calculates and returns the number of tasks which should be
1919 * moved to restore balance via the imbalance parameter.
1921 static struct sched_group
*
1922 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
1923 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
)
1925 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1926 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
1927 unsigned long max_pull
;
1930 max_load
= this_load
= total_load
= total_pwr
= 0;
1931 if (idle
== NOT_IDLE
)
1932 load_idx
= sd
->busy_idx
;
1933 else if (idle
== NEWLY_IDLE
)
1934 load_idx
= sd
->newidle_idx
;
1936 load_idx
= sd
->idle_idx
;
1943 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1945 /* Tally up the load of all CPUs in the group */
1948 for_each_cpu_mask(i
, group
->cpumask
) {
1949 if (*sd_idle
&& !idle_cpu(i
))
1952 /* Bias balancing toward cpus of our domain */
1954 load
= target_load(i
, load_idx
);
1956 load
= source_load(i
, load_idx
);
1961 total_load
+= avg_load
;
1962 total_pwr
+= group
->cpu_power
;
1964 /* Adjust by relative CPU power of the group */
1965 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1968 this_load
= avg_load
;
1970 } else if (avg_load
> max_load
) {
1971 max_load
= avg_load
;
1974 group
= group
->next
;
1975 } while (group
!= sd
->groups
);
1977 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
1980 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
1982 if (this_load
>= avg_load
||
1983 100*max_load
<= sd
->imbalance_pct
*this_load
)
1987 * We're trying to get all the cpus to the average_load, so we don't
1988 * want to push ourselves above the average load, nor do we wish to
1989 * reduce the max loaded cpu below the average load, as either of these
1990 * actions would just result in more rebalancing later, and ping-pong
1991 * tasks around. Thus we look for the minimum possible imbalance.
1992 * Negative imbalances (*we* are more loaded than anyone else) will
1993 * be counted as no imbalance for these purposes -- we can't fix that
1994 * by pulling tasks to us. Be careful of negative numbers as they'll
1995 * appear as very large values with unsigned longs.
1998 /* Don't want to pull so many tasks that a group would go idle */
1999 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2001 /* How much load to actually move to equalise the imbalance */
2002 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2003 (avg_load
- this_load
) * this->cpu_power
)
2006 if (*imbalance
< SCHED_LOAD_SCALE
) {
2007 unsigned long pwr_now
= 0, pwr_move
= 0;
2010 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2016 * OK, we don't have enough imbalance to justify moving tasks,
2017 * however we may be able to increase total CPU power used by
2021 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2022 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2023 pwr_now
/= SCHED_LOAD_SCALE
;
2025 /* Amount of load we'd subtract */
2026 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2028 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2031 /* Amount of load we'd add */
2032 if (max_load
*busiest
->cpu_power
<
2033 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2034 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2036 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2037 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2038 pwr_move
/= SCHED_LOAD_SCALE
;
2040 /* Move if we gain throughput */
2041 if (pwr_move
<= pwr_now
)
2048 /* Get rid of the scaling factor, rounding down as we divide */
2049 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2059 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2061 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2062 enum idle_type idle
)
2064 unsigned long load
, max_load
= 0;
2065 runqueue_t
*busiest
= NULL
;
2068 for_each_cpu_mask(i
, group
->cpumask
) {
2069 load
= source_load(i
, 0);
2071 if (load
> max_load
) {
2073 busiest
= cpu_rq(i
);
2081 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2082 * so long as it is large enough.
2084 #define MAX_PINNED_INTERVAL 512
2087 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2088 * tasks if there is an imbalance.
2090 * Called with this_rq unlocked.
2092 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2093 struct sched_domain
*sd
, enum idle_type idle
)
2095 struct sched_group
*group
;
2096 runqueue_t
*busiest
;
2097 unsigned long imbalance
;
2098 int nr_moved
, all_pinned
= 0;
2099 int active_balance
= 0;
2102 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2105 schedstat_inc(sd
, lb_cnt
[idle
]);
2107 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
);
2109 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2113 busiest
= find_busiest_queue(group
, idle
);
2115 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2119 BUG_ON(busiest
== this_rq
);
2121 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2124 if (busiest
->nr_running
> 1) {
2126 * Attempt to move tasks. If find_busiest_group has found
2127 * an imbalance but busiest->nr_running <= 1, the group is
2128 * still unbalanced. nr_moved simply stays zero, so it is
2129 * correctly treated as an imbalance.
2131 double_rq_lock(this_rq
, busiest
);
2132 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2133 imbalance
, sd
, idle
, &all_pinned
);
2134 double_rq_unlock(this_rq
, busiest
);
2136 /* All tasks on this runqueue were pinned by CPU affinity */
2137 if (unlikely(all_pinned
))
2142 schedstat_inc(sd
, lb_failed
[idle
]);
2143 sd
->nr_balance_failed
++;
2145 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2147 spin_lock(&busiest
->lock
);
2149 /* don't kick the migration_thread, if the curr
2150 * task on busiest cpu can't be moved to this_cpu
2152 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2153 spin_unlock(&busiest
->lock
);
2155 goto out_one_pinned
;
2158 if (!busiest
->active_balance
) {
2159 busiest
->active_balance
= 1;
2160 busiest
->push_cpu
= this_cpu
;
2163 spin_unlock(&busiest
->lock
);
2165 wake_up_process(busiest
->migration_thread
);
2168 * We've kicked active balancing, reset the failure
2171 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2174 sd
->nr_balance_failed
= 0;
2176 if (likely(!active_balance
)) {
2177 /* We were unbalanced, so reset the balancing interval */
2178 sd
->balance_interval
= sd
->min_interval
;
2181 * If we've begun active balancing, start to back off. This
2182 * case may not be covered by the all_pinned logic if there
2183 * is only 1 task on the busy runqueue (because we don't call
2186 if (sd
->balance_interval
< sd
->max_interval
)
2187 sd
->balance_interval
*= 2;
2190 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2195 schedstat_inc(sd
, lb_balanced
[idle
]);
2197 sd
->nr_balance_failed
= 0;
2200 /* tune up the balancing interval */
2201 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2202 (sd
->balance_interval
< sd
->max_interval
))
2203 sd
->balance_interval
*= 2;
2205 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2211 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2212 * tasks if there is an imbalance.
2214 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2215 * this_rq is locked.
2217 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2218 struct sched_domain
*sd
)
2220 struct sched_group
*group
;
2221 runqueue_t
*busiest
= NULL
;
2222 unsigned long imbalance
;
2226 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2229 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2230 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
, &sd_idle
);
2232 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2236 busiest
= find_busiest_queue(group
, NEWLY_IDLE
);
2238 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2242 BUG_ON(busiest
== this_rq
);
2244 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2247 if (busiest
->nr_running
> 1) {
2248 /* Attempt to move tasks */
2249 double_lock_balance(this_rq
, busiest
);
2250 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2251 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2252 spin_unlock(&busiest
->lock
);
2256 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2257 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2260 sd
->nr_balance_failed
= 0;
2265 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2266 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2268 sd
->nr_balance_failed
= 0;
2273 * idle_balance is called by schedule() if this_cpu is about to become
2274 * idle. Attempts to pull tasks from other CPUs.
2276 static void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2278 struct sched_domain
*sd
;
2280 for_each_domain(this_cpu
, sd
) {
2281 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2282 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2283 /* We've pulled tasks over so stop searching */
2291 * active_load_balance is run by migration threads. It pushes running tasks
2292 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2293 * running on each physical CPU where possible, and avoids physical /
2294 * logical imbalances.
2296 * Called with busiest_rq locked.
2298 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2300 struct sched_domain
*sd
;
2301 runqueue_t
*target_rq
;
2302 int target_cpu
= busiest_rq
->push_cpu
;
2304 if (busiest_rq
->nr_running
<= 1)
2305 /* no task to move */
2308 target_rq
= cpu_rq(target_cpu
);
2311 * This condition is "impossible", if it occurs
2312 * we need to fix it. Originally reported by
2313 * Bjorn Helgaas on a 128-cpu setup.
2315 BUG_ON(busiest_rq
== target_rq
);
2317 /* move a task from busiest_rq to target_rq */
2318 double_lock_balance(busiest_rq
, target_rq
);
2320 /* Search for an sd spanning us and the target CPU. */
2321 for_each_domain(target_cpu
, sd
)
2322 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2323 cpu_isset(busiest_cpu
, sd
->span
))
2326 if (unlikely(sd
== NULL
))
2329 schedstat_inc(sd
, alb_cnt
);
2331 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2332 schedstat_inc(sd
, alb_pushed
);
2334 schedstat_inc(sd
, alb_failed
);
2336 spin_unlock(&target_rq
->lock
);
2340 * rebalance_tick will get called every timer tick, on every CPU.
2342 * It checks each scheduling domain to see if it is due to be balanced,
2343 * and initiates a balancing operation if so.
2345 * Balancing parameters are set up in arch_init_sched_domains.
2348 /* Don't have all balancing operations going off at once */
2349 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2351 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2352 enum idle_type idle
)
2354 unsigned long old_load
, this_load
;
2355 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2356 struct sched_domain
*sd
;
2359 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2360 /* Update our load */
2361 for (i
= 0; i
< 3; i
++) {
2362 unsigned long new_load
= this_load
;
2364 old_load
= this_rq
->cpu_load
[i
];
2366 * Round up the averaging division if load is increasing. This
2367 * prevents us from getting stuck on 9 if the load is 10, for
2370 if (new_load
> old_load
)
2371 new_load
+= scale
-1;
2372 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2375 for_each_domain(this_cpu
, sd
) {
2376 unsigned long interval
;
2378 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2381 interval
= sd
->balance_interval
;
2382 if (idle
!= SCHED_IDLE
)
2383 interval
*= sd
->busy_factor
;
2385 /* scale ms to jiffies */
2386 interval
= msecs_to_jiffies(interval
);
2387 if (unlikely(!interval
))
2390 if (j
- sd
->last_balance
>= interval
) {
2391 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2393 * We've pulled tasks over so either we're no
2394 * longer idle, or one of our SMT siblings is
2399 sd
->last_balance
+= interval
;
2405 * on UP we do not need to balance between CPUs:
2407 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2410 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2415 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2418 #ifdef CONFIG_SCHED_SMT
2419 spin_lock(&rq
->lock
);
2421 * If an SMT sibling task has been put to sleep for priority
2422 * reasons reschedule the idle task to see if it can now run.
2424 if (rq
->nr_running
) {
2425 resched_task(rq
->idle
);
2428 spin_unlock(&rq
->lock
);
2433 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2435 EXPORT_PER_CPU_SYMBOL(kstat
);
2438 * This is called on clock ticks and on context switches.
2439 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2441 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2442 unsigned long long now
)
2444 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2445 p
->sched_time
+= now
- last
;
2449 * Return current->sched_time plus any more ns on the sched_clock
2450 * that have not yet been banked.
2452 unsigned long long current_sched_time(const task_t
*tsk
)
2454 unsigned long long ns
;
2455 unsigned long flags
;
2456 local_irq_save(flags
);
2457 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2458 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2459 local_irq_restore(flags
);
2464 * We place interactive tasks back into the active array, if possible.
2466 * To guarantee that this does not starve expired tasks we ignore the
2467 * interactivity of a task if the first expired task had to wait more
2468 * than a 'reasonable' amount of time. This deadline timeout is
2469 * load-dependent, as the frequency of array switched decreases with
2470 * increasing number of running tasks. We also ignore the interactivity
2471 * if a better static_prio task has expired:
2473 #define EXPIRED_STARVING(rq) \
2474 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2475 (jiffies - (rq)->expired_timestamp >= \
2476 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2477 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2480 * Account user cpu time to a process.
2481 * @p: the process that the cpu time gets accounted to
2482 * @hardirq_offset: the offset to subtract from hardirq_count()
2483 * @cputime: the cpu time spent in user space since the last update
2485 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2487 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2490 p
->utime
= cputime_add(p
->utime
, cputime
);
2492 /* Add user time to cpustat. */
2493 tmp
= cputime_to_cputime64(cputime
);
2494 if (TASK_NICE(p
) > 0)
2495 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2497 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2501 * Account system cpu time to a process.
2502 * @p: the process that the cpu time gets accounted to
2503 * @hardirq_offset: the offset to subtract from hardirq_count()
2504 * @cputime: the cpu time spent in kernel space since the last update
2506 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2509 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2510 runqueue_t
*rq
= this_rq();
2513 p
->stime
= cputime_add(p
->stime
, cputime
);
2515 /* Add system time to cpustat. */
2516 tmp
= cputime_to_cputime64(cputime
);
2517 if (hardirq_count() - hardirq_offset
)
2518 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2519 else if (softirq_count())
2520 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2521 else if (p
!= rq
->idle
)
2522 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2523 else if (atomic_read(&rq
->nr_iowait
) > 0)
2524 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2526 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2527 /* Account for system time used */
2528 acct_update_integrals(p
);
2532 * Account for involuntary wait time.
2533 * @p: the process from which the cpu time has been stolen
2534 * @steal: the cpu time spent in involuntary wait
2536 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2538 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2539 cputime64_t tmp
= cputime_to_cputime64(steal
);
2540 runqueue_t
*rq
= this_rq();
2542 if (p
== rq
->idle
) {
2543 p
->stime
= cputime_add(p
->stime
, steal
);
2544 if (atomic_read(&rq
->nr_iowait
) > 0)
2545 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2547 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2549 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2553 * This function gets called by the timer code, with HZ frequency.
2554 * We call it with interrupts disabled.
2556 * It also gets called by the fork code, when changing the parent's
2559 void scheduler_tick(void)
2561 int cpu
= smp_processor_id();
2562 runqueue_t
*rq
= this_rq();
2563 task_t
*p
= current
;
2564 unsigned long long now
= sched_clock();
2566 update_cpu_clock(p
, rq
, now
);
2568 rq
->timestamp_last_tick
= now
;
2570 if (p
== rq
->idle
) {
2571 if (wake_priority_sleeper(rq
))
2573 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2577 /* Task might have expired already, but not scheduled off yet */
2578 if (p
->array
!= rq
->active
) {
2579 set_tsk_need_resched(p
);
2582 spin_lock(&rq
->lock
);
2584 * The task was running during this tick - update the
2585 * time slice counter. Note: we do not update a thread's
2586 * priority until it either goes to sleep or uses up its
2587 * timeslice. This makes it possible for interactive tasks
2588 * to use up their timeslices at their highest priority levels.
2592 * RR tasks need a special form of timeslice management.
2593 * FIFO tasks have no timeslices.
2595 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2596 p
->time_slice
= task_timeslice(p
);
2597 p
->first_time_slice
= 0;
2598 set_tsk_need_resched(p
);
2600 /* put it at the end of the queue: */
2601 requeue_task(p
, rq
->active
);
2605 if (!--p
->time_slice
) {
2606 dequeue_task(p
, rq
->active
);
2607 set_tsk_need_resched(p
);
2608 p
->prio
= effective_prio(p
);
2609 p
->time_slice
= task_timeslice(p
);
2610 p
->first_time_slice
= 0;
2612 if (!rq
->expired_timestamp
)
2613 rq
->expired_timestamp
= jiffies
;
2614 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2615 enqueue_task(p
, rq
->expired
);
2616 if (p
->static_prio
< rq
->best_expired_prio
)
2617 rq
->best_expired_prio
= p
->static_prio
;
2619 enqueue_task(p
, rq
->active
);
2622 * Prevent a too long timeslice allowing a task to monopolize
2623 * the CPU. We do this by splitting up the timeslice into
2626 * Note: this does not mean the task's timeslices expire or
2627 * get lost in any way, they just might be preempted by
2628 * another task of equal priority. (one with higher
2629 * priority would have preempted this task already.) We
2630 * requeue this task to the end of the list on this priority
2631 * level, which is in essence a round-robin of tasks with
2634 * This only applies to tasks in the interactive
2635 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2637 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2638 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2639 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2640 (p
->array
== rq
->active
)) {
2642 requeue_task(p
, rq
->active
);
2643 set_tsk_need_resched(p
);
2647 spin_unlock(&rq
->lock
);
2649 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2652 #ifdef CONFIG_SCHED_SMT
2653 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2655 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2656 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2657 resched_task(rq
->idle
);
2660 static void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2662 struct sched_domain
*tmp
, *sd
= NULL
;
2663 cpumask_t sibling_map
;
2666 for_each_domain(this_cpu
, tmp
)
2667 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2674 * Unlock the current runqueue because we have to lock in
2675 * CPU order to avoid deadlocks. Caller knows that we might
2676 * unlock. We keep IRQs disabled.
2678 spin_unlock(&this_rq
->lock
);
2680 sibling_map
= sd
->span
;
2682 for_each_cpu_mask(i
, sibling_map
)
2683 spin_lock(&cpu_rq(i
)->lock
);
2685 * We clear this CPU from the mask. This both simplifies the
2686 * inner loop and keps this_rq locked when we exit:
2688 cpu_clear(this_cpu
, sibling_map
);
2690 for_each_cpu_mask(i
, sibling_map
) {
2691 runqueue_t
*smt_rq
= cpu_rq(i
);
2693 wakeup_busy_runqueue(smt_rq
);
2696 for_each_cpu_mask(i
, sibling_map
)
2697 spin_unlock(&cpu_rq(i
)->lock
);
2699 * We exit with this_cpu's rq still held and IRQs
2705 * number of 'lost' timeslices this task wont be able to fully
2706 * utilize, if another task runs on a sibling. This models the
2707 * slowdown effect of other tasks running on siblings:
2709 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2711 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2714 static int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2716 struct sched_domain
*tmp
, *sd
= NULL
;
2717 cpumask_t sibling_map
;
2718 prio_array_t
*array
;
2722 for_each_domain(this_cpu
, tmp
)
2723 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2730 * The same locking rules and details apply as for
2731 * wake_sleeping_dependent():
2733 spin_unlock(&this_rq
->lock
);
2734 sibling_map
= sd
->span
;
2735 for_each_cpu_mask(i
, sibling_map
)
2736 spin_lock(&cpu_rq(i
)->lock
);
2737 cpu_clear(this_cpu
, sibling_map
);
2740 * Establish next task to be run - it might have gone away because
2741 * we released the runqueue lock above:
2743 if (!this_rq
->nr_running
)
2745 array
= this_rq
->active
;
2746 if (!array
->nr_active
)
2747 array
= this_rq
->expired
;
2748 BUG_ON(!array
->nr_active
);
2750 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2753 for_each_cpu_mask(i
, sibling_map
) {
2754 runqueue_t
*smt_rq
= cpu_rq(i
);
2755 task_t
*smt_curr
= smt_rq
->curr
;
2757 /* Kernel threads do not participate in dependent sleeping */
2758 if (!p
->mm
|| !smt_curr
->mm
|| rt_task(p
))
2759 goto check_smt_task
;
2762 * If a user task with lower static priority than the
2763 * running task on the SMT sibling is trying to schedule,
2764 * delay it till there is proportionately less timeslice
2765 * left of the sibling task to prevent a lower priority
2766 * task from using an unfair proportion of the
2767 * physical cpu's resources. -ck
2769 if (rt_task(smt_curr
)) {
2771 * With real time tasks we run non-rt tasks only
2772 * per_cpu_gain% of the time.
2774 if ((jiffies
% DEF_TIMESLICE
) >
2775 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2778 if (smt_curr
->static_prio
< p
->static_prio
&&
2779 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2780 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2784 if ((!smt_curr
->mm
&& smt_curr
!= smt_rq
->idle
) ||
2788 wakeup_busy_runqueue(smt_rq
);
2793 * Reschedule a lower priority task on the SMT sibling for
2794 * it to be put to sleep, or wake it up if it has been put to
2795 * sleep for priority reasons to see if it should run now.
2798 if ((jiffies
% DEF_TIMESLICE
) >
2799 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2800 resched_task(smt_curr
);
2802 if (TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2803 smt_slice(p
, sd
) > task_timeslice(smt_curr
))
2804 resched_task(smt_curr
);
2806 wakeup_busy_runqueue(smt_rq
);
2810 for_each_cpu_mask(i
, sibling_map
)
2811 spin_unlock(&cpu_rq(i
)->lock
);
2815 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2819 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2825 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2827 void fastcall
add_preempt_count(int val
)
2832 BUG_ON((preempt_count() < 0));
2833 preempt_count() += val
;
2835 * Spinlock count overflowing soon?
2837 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2839 EXPORT_SYMBOL(add_preempt_count
);
2841 void fastcall
sub_preempt_count(int val
)
2846 BUG_ON(val
> preempt_count());
2848 * Is the spinlock portion underflowing?
2850 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2851 preempt_count() -= val
;
2853 EXPORT_SYMBOL(sub_preempt_count
);
2858 * schedule() is the main scheduler function.
2860 asmlinkage
void __sched
schedule(void)
2863 task_t
*prev
, *next
;
2865 prio_array_t
*array
;
2866 struct list_head
*queue
;
2867 unsigned long long now
;
2868 unsigned long run_time
;
2869 int cpu
, idx
, new_prio
;
2872 * Test if we are atomic. Since do_exit() needs to call into
2873 * schedule() atomically, we ignore that path for now.
2874 * Otherwise, whine if we are scheduling when we should not be.
2876 if (likely(!current
->exit_state
)) {
2877 if (unlikely(in_atomic())) {
2878 printk(KERN_ERR
"scheduling while atomic: "
2880 current
->comm
, preempt_count(), current
->pid
);
2884 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2889 release_kernel_lock(prev
);
2890 need_resched_nonpreemptible
:
2894 * The idle thread is not allowed to schedule!
2895 * Remove this check after it has been exercised a bit.
2897 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2898 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2902 schedstat_inc(rq
, sched_cnt
);
2903 now
= sched_clock();
2904 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2905 run_time
= now
- prev
->timestamp
;
2906 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2909 run_time
= NS_MAX_SLEEP_AVG
;
2912 * Tasks charged proportionately less run_time at high sleep_avg to
2913 * delay them losing their interactive status
2915 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
2917 spin_lock_irq(&rq
->lock
);
2919 if (unlikely(prev
->flags
& PF_DEAD
))
2920 prev
->state
= EXIT_DEAD
;
2922 switch_count
= &prev
->nivcsw
;
2923 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2924 switch_count
= &prev
->nvcsw
;
2925 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
2926 unlikely(signal_pending(prev
))))
2927 prev
->state
= TASK_RUNNING
;
2929 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
2930 rq
->nr_uninterruptible
++;
2931 deactivate_task(prev
, rq
);
2935 cpu
= smp_processor_id();
2936 if (unlikely(!rq
->nr_running
)) {
2938 idle_balance(cpu
, rq
);
2939 if (!rq
->nr_running
) {
2941 rq
->expired_timestamp
= 0;
2942 wake_sleeping_dependent(cpu
, rq
);
2944 * wake_sleeping_dependent() might have released
2945 * the runqueue, so break out if we got new
2948 if (!rq
->nr_running
)
2952 if (dependent_sleeper(cpu
, rq
)) {
2957 * dependent_sleeper() releases and reacquires the runqueue
2958 * lock, hence go into the idle loop if the rq went
2961 if (unlikely(!rq
->nr_running
))
2966 if (unlikely(!array
->nr_active
)) {
2968 * Switch the active and expired arrays.
2970 schedstat_inc(rq
, sched_switch
);
2971 rq
->active
= rq
->expired
;
2972 rq
->expired
= array
;
2974 rq
->expired_timestamp
= 0;
2975 rq
->best_expired_prio
= MAX_PRIO
;
2978 idx
= sched_find_first_bit(array
->bitmap
);
2979 queue
= array
->queue
+ idx
;
2980 next
= list_entry(queue
->next
, task_t
, run_list
);
2982 if (!rt_task(next
) && next
->activated
> 0) {
2983 unsigned long long delta
= now
- next
->timestamp
;
2984 if (unlikely((long long)(now
- next
->timestamp
) < 0))
2987 if (next
->activated
== 1)
2988 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
2990 array
= next
->array
;
2991 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
2993 if (unlikely(next
->prio
!= new_prio
)) {
2994 dequeue_task(next
, array
);
2995 next
->prio
= new_prio
;
2996 enqueue_task(next
, array
);
2998 requeue_task(next
, array
);
3000 next
->activated
= 0;
3002 if (next
== rq
->idle
)
3003 schedstat_inc(rq
, sched_goidle
);
3005 prefetch_stack(next
);
3006 clear_tsk_need_resched(prev
);
3007 rcu_qsctr_inc(task_cpu(prev
));
3009 update_cpu_clock(prev
, rq
, now
);
3011 prev
->sleep_avg
-= run_time
;
3012 if ((long)prev
->sleep_avg
<= 0)
3013 prev
->sleep_avg
= 0;
3014 prev
->timestamp
= prev
->last_ran
= now
;
3016 sched_info_switch(prev
, next
);
3017 if (likely(prev
!= next
)) {
3018 next
->timestamp
= now
;
3023 prepare_task_switch(rq
, next
);
3024 prev
= context_switch(rq
, prev
, next
);
3027 * this_rq must be evaluated again because prev may have moved
3028 * CPUs since it called schedule(), thus the 'rq' on its stack
3029 * frame will be invalid.
3031 finish_task_switch(this_rq(), prev
);
3033 spin_unlock_irq(&rq
->lock
);
3036 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3037 goto need_resched_nonpreemptible
;
3038 preempt_enable_no_resched();
3039 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3043 EXPORT_SYMBOL(schedule
);
3045 #ifdef CONFIG_PREEMPT
3047 * this is is the entry point to schedule() from in-kernel preemption
3048 * off of preempt_enable. Kernel preemptions off return from interrupt
3049 * occur there and call schedule directly.
3051 asmlinkage
void __sched
preempt_schedule(void)
3053 struct thread_info
*ti
= current_thread_info();
3054 #ifdef CONFIG_PREEMPT_BKL
3055 struct task_struct
*task
= current
;
3056 int saved_lock_depth
;
3059 * If there is a non-zero preempt_count or interrupts are disabled,
3060 * we do not want to preempt the current task. Just return..
3062 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3066 add_preempt_count(PREEMPT_ACTIVE
);
3068 * We keep the big kernel semaphore locked, but we
3069 * clear ->lock_depth so that schedule() doesnt
3070 * auto-release the semaphore:
3072 #ifdef CONFIG_PREEMPT_BKL
3073 saved_lock_depth
= task
->lock_depth
;
3074 task
->lock_depth
= -1;
3077 #ifdef CONFIG_PREEMPT_BKL
3078 task
->lock_depth
= saved_lock_depth
;
3080 sub_preempt_count(PREEMPT_ACTIVE
);
3082 /* we could miss a preemption opportunity between schedule and now */
3084 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3088 EXPORT_SYMBOL(preempt_schedule
);
3091 * this is is the entry point to schedule() from kernel preemption
3092 * off of irq context.
3093 * Note, that this is called and return with irqs disabled. This will
3094 * protect us against recursive calling from irq.
3096 asmlinkage
void __sched
preempt_schedule_irq(void)
3098 struct thread_info
*ti
= current_thread_info();
3099 #ifdef CONFIG_PREEMPT_BKL
3100 struct task_struct
*task
= current
;
3101 int saved_lock_depth
;
3103 /* Catch callers which need to be fixed*/
3104 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3107 add_preempt_count(PREEMPT_ACTIVE
);
3109 * We keep the big kernel semaphore locked, but we
3110 * clear ->lock_depth so that schedule() doesnt
3111 * auto-release the semaphore:
3113 #ifdef CONFIG_PREEMPT_BKL
3114 saved_lock_depth
= task
->lock_depth
;
3115 task
->lock_depth
= -1;
3119 local_irq_disable();
3120 #ifdef CONFIG_PREEMPT_BKL
3121 task
->lock_depth
= saved_lock_depth
;
3123 sub_preempt_count(PREEMPT_ACTIVE
);
3125 /* we could miss a preemption opportunity between schedule and now */
3127 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3131 #endif /* CONFIG_PREEMPT */
3133 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3136 task_t
*p
= curr
->private;
3137 return try_to_wake_up(p
, mode
, sync
);
3140 EXPORT_SYMBOL(default_wake_function
);
3143 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3144 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3145 * number) then we wake all the non-exclusive tasks and one exclusive task.
3147 * There are circumstances in which we can try to wake a task which has already
3148 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3149 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3151 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3152 int nr_exclusive
, int sync
, void *key
)
3154 struct list_head
*tmp
, *next
;
3156 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3159 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3160 flags
= curr
->flags
;
3161 if (curr
->func(curr
, mode
, sync
, key
) &&
3162 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3169 * __wake_up - wake up threads blocked on a waitqueue.
3171 * @mode: which threads
3172 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3173 * @key: is directly passed to the wakeup function
3175 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3176 int nr_exclusive
, void *key
)
3178 unsigned long flags
;
3180 spin_lock_irqsave(&q
->lock
, flags
);
3181 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3182 spin_unlock_irqrestore(&q
->lock
, flags
);
3185 EXPORT_SYMBOL(__wake_up
);
3188 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3190 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3192 __wake_up_common(q
, mode
, 1, 0, NULL
);
3196 * __wake_up_sync - wake up threads blocked on a waitqueue.
3198 * @mode: which threads
3199 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3201 * The sync wakeup differs that the waker knows that it will schedule
3202 * away soon, so while the target thread will be woken up, it will not
3203 * be migrated to another CPU - ie. the two threads are 'synchronized'
3204 * with each other. This can prevent needless bouncing between CPUs.
3206 * On UP it can prevent extra preemption.
3209 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3211 unsigned long flags
;
3217 if (unlikely(!nr_exclusive
))
3220 spin_lock_irqsave(&q
->lock
, flags
);
3221 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3222 spin_unlock_irqrestore(&q
->lock
, flags
);
3224 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3226 void fastcall
complete(struct completion
*x
)
3228 unsigned long flags
;
3230 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3232 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3234 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3236 EXPORT_SYMBOL(complete
);
3238 void fastcall
complete_all(struct completion
*x
)
3240 unsigned long flags
;
3242 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3243 x
->done
+= UINT_MAX
/2;
3244 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3246 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3248 EXPORT_SYMBOL(complete_all
);
3250 void fastcall __sched
wait_for_completion(struct completion
*x
)
3253 spin_lock_irq(&x
->wait
.lock
);
3255 DECLARE_WAITQUEUE(wait
, current
);
3257 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3258 __add_wait_queue_tail(&x
->wait
, &wait
);
3260 __set_current_state(TASK_UNINTERRUPTIBLE
);
3261 spin_unlock_irq(&x
->wait
.lock
);
3263 spin_lock_irq(&x
->wait
.lock
);
3265 __remove_wait_queue(&x
->wait
, &wait
);
3268 spin_unlock_irq(&x
->wait
.lock
);
3270 EXPORT_SYMBOL(wait_for_completion
);
3272 unsigned long fastcall __sched
3273 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3277 spin_lock_irq(&x
->wait
.lock
);
3279 DECLARE_WAITQUEUE(wait
, current
);
3281 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3282 __add_wait_queue_tail(&x
->wait
, &wait
);
3284 __set_current_state(TASK_UNINTERRUPTIBLE
);
3285 spin_unlock_irq(&x
->wait
.lock
);
3286 timeout
= schedule_timeout(timeout
);
3287 spin_lock_irq(&x
->wait
.lock
);
3289 __remove_wait_queue(&x
->wait
, &wait
);
3293 __remove_wait_queue(&x
->wait
, &wait
);
3297 spin_unlock_irq(&x
->wait
.lock
);
3300 EXPORT_SYMBOL(wait_for_completion_timeout
);
3302 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3308 spin_lock_irq(&x
->wait
.lock
);
3310 DECLARE_WAITQUEUE(wait
, current
);
3312 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3313 __add_wait_queue_tail(&x
->wait
, &wait
);
3315 if (signal_pending(current
)) {
3317 __remove_wait_queue(&x
->wait
, &wait
);
3320 __set_current_state(TASK_INTERRUPTIBLE
);
3321 spin_unlock_irq(&x
->wait
.lock
);
3323 spin_lock_irq(&x
->wait
.lock
);
3325 __remove_wait_queue(&x
->wait
, &wait
);
3329 spin_unlock_irq(&x
->wait
.lock
);
3333 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3335 unsigned long fastcall __sched
3336 wait_for_completion_interruptible_timeout(struct completion
*x
,
3337 unsigned long timeout
)
3341 spin_lock_irq(&x
->wait
.lock
);
3343 DECLARE_WAITQUEUE(wait
, current
);
3345 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3346 __add_wait_queue_tail(&x
->wait
, &wait
);
3348 if (signal_pending(current
)) {
3349 timeout
= -ERESTARTSYS
;
3350 __remove_wait_queue(&x
->wait
, &wait
);
3353 __set_current_state(TASK_INTERRUPTIBLE
);
3354 spin_unlock_irq(&x
->wait
.lock
);
3355 timeout
= schedule_timeout(timeout
);
3356 spin_lock_irq(&x
->wait
.lock
);
3358 __remove_wait_queue(&x
->wait
, &wait
);
3362 __remove_wait_queue(&x
->wait
, &wait
);
3366 spin_unlock_irq(&x
->wait
.lock
);
3369 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3372 #define SLEEP_ON_VAR \
3373 unsigned long flags; \
3374 wait_queue_t wait; \
3375 init_waitqueue_entry(&wait, current);
3377 #define SLEEP_ON_HEAD \
3378 spin_lock_irqsave(&q->lock,flags); \
3379 __add_wait_queue(q, &wait); \
3380 spin_unlock(&q->lock);
3382 #define SLEEP_ON_TAIL \
3383 spin_lock_irq(&q->lock); \
3384 __remove_wait_queue(q, &wait); \
3385 spin_unlock_irqrestore(&q->lock, flags);
3387 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3391 current
->state
= TASK_INTERRUPTIBLE
;
3398 EXPORT_SYMBOL(interruptible_sleep_on
);
3400 long fastcall __sched
3401 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3405 current
->state
= TASK_INTERRUPTIBLE
;
3408 timeout
= schedule_timeout(timeout
);
3414 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3416 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3420 current
->state
= TASK_UNINTERRUPTIBLE
;
3427 EXPORT_SYMBOL(sleep_on
);
3429 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3433 current
->state
= TASK_UNINTERRUPTIBLE
;
3436 timeout
= schedule_timeout(timeout
);
3442 EXPORT_SYMBOL(sleep_on_timeout
);
3444 void set_user_nice(task_t
*p
, long nice
)
3446 unsigned long flags
;
3447 prio_array_t
*array
;
3449 int old_prio
, new_prio
, delta
;
3451 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3454 * We have to be careful, if called from sys_setpriority(),
3455 * the task might be in the middle of scheduling on another CPU.
3457 rq
= task_rq_lock(p
, &flags
);
3459 * The RT priorities are set via sched_setscheduler(), but we still
3460 * allow the 'normal' nice value to be set - but as expected
3461 * it wont have any effect on scheduling until the task is
3462 * not SCHED_NORMAL/SCHED_BATCH:
3465 p
->static_prio
= NICE_TO_PRIO(nice
);
3470 dequeue_task(p
, array
);
3473 new_prio
= NICE_TO_PRIO(nice
);
3474 delta
= new_prio
- old_prio
;
3475 p
->static_prio
= NICE_TO_PRIO(nice
);
3479 enqueue_task(p
, array
);
3481 * If the task increased its priority or is running and
3482 * lowered its priority, then reschedule its CPU:
3484 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3485 resched_task(rq
->curr
);
3488 task_rq_unlock(rq
, &flags
);
3491 EXPORT_SYMBOL(set_user_nice
);
3494 * can_nice - check if a task can reduce its nice value
3498 int can_nice(const task_t
*p
, const int nice
)
3500 /* convert nice value [19,-20] to rlimit style value [1,40] */
3501 int nice_rlim
= 20 - nice
;
3502 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3503 capable(CAP_SYS_NICE
));
3506 #ifdef __ARCH_WANT_SYS_NICE
3509 * sys_nice - change the priority of the current process.
3510 * @increment: priority increment
3512 * sys_setpriority is a more generic, but much slower function that
3513 * does similar things.
3515 asmlinkage
long sys_nice(int increment
)
3521 * Setpriority might change our priority at the same moment.
3522 * We don't have to worry. Conceptually one call occurs first
3523 * and we have a single winner.
3525 if (increment
< -40)
3530 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3536 if (increment
< 0 && !can_nice(current
, nice
))
3539 retval
= security_task_setnice(current
, nice
);
3543 set_user_nice(current
, nice
);
3550 * task_prio - return the priority value of a given task.
3551 * @p: the task in question.
3553 * This is the priority value as seen by users in /proc.
3554 * RT tasks are offset by -200. Normal tasks are centered
3555 * around 0, value goes from -16 to +15.
3557 int task_prio(const task_t
*p
)
3559 return p
->prio
- MAX_RT_PRIO
;
3563 * task_nice - return the nice value of a given task.
3564 * @p: the task in question.
3566 int task_nice(const task_t
*p
)
3568 return TASK_NICE(p
);
3570 EXPORT_SYMBOL_GPL(task_nice
);
3573 * idle_cpu - is a given cpu idle currently?
3574 * @cpu: the processor in question.
3576 int idle_cpu(int cpu
)
3578 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3582 * idle_task - return the idle task for a given cpu.
3583 * @cpu: the processor in question.
3585 task_t
*idle_task(int cpu
)
3587 return cpu_rq(cpu
)->idle
;
3591 * find_process_by_pid - find a process with a matching PID value.
3592 * @pid: the pid in question.
3594 static inline task_t
*find_process_by_pid(pid_t pid
)
3596 return pid
? find_task_by_pid(pid
) : current
;
3599 /* Actually do priority change: must hold rq lock. */
3600 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3604 p
->rt_priority
= prio
;
3605 if (policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) {
3606 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3608 p
->prio
= p
->static_prio
;
3610 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3612 if (policy
== SCHED_BATCH
)
3618 * sched_setscheduler - change the scheduling policy and/or RT priority of
3620 * @p: the task in question.
3621 * @policy: new policy.
3622 * @param: structure containing the new RT priority.
3624 int sched_setscheduler(struct task_struct
*p
, int policy
,
3625 struct sched_param
*param
)
3628 int oldprio
, oldpolicy
= -1;
3629 prio_array_t
*array
;
3630 unsigned long flags
;
3634 /* double check policy once rq lock held */
3636 policy
= oldpolicy
= p
->policy
;
3637 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3638 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
3641 * Valid priorities for SCHED_FIFO and SCHED_RR are
3642 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3645 if (param
->sched_priority
< 0 ||
3646 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3647 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3649 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
3650 != (param
->sched_priority
== 0))
3654 * Allow unprivileged RT tasks to decrease priority:
3656 if (!capable(CAP_SYS_NICE
)) {
3658 * can't change policy, except between SCHED_NORMAL
3661 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
3662 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
3663 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3665 /* can't increase priority */
3666 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
3667 param
->sched_priority
> p
->rt_priority
&&
3668 param
->sched_priority
>
3669 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3671 /* can't change other user's priorities */
3672 if ((current
->euid
!= p
->euid
) &&
3673 (current
->euid
!= p
->uid
))
3677 retval
= security_task_setscheduler(p
, policy
, param
);
3681 * To be able to change p->policy safely, the apropriate
3682 * runqueue lock must be held.
3684 rq
= task_rq_lock(p
, &flags
);
3685 /* recheck policy now with rq lock held */
3686 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3687 policy
= oldpolicy
= -1;
3688 task_rq_unlock(rq
, &flags
);
3693 deactivate_task(p
, rq
);
3695 __setscheduler(p
, policy
, param
->sched_priority
);
3697 __activate_task(p
, rq
);
3699 * Reschedule if we are currently running on this runqueue and
3700 * our priority decreased, or if we are not currently running on
3701 * this runqueue and our priority is higher than the current's
3703 if (task_running(rq
, p
)) {
3704 if (p
->prio
> oldprio
)
3705 resched_task(rq
->curr
);
3706 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3707 resched_task(rq
->curr
);
3709 task_rq_unlock(rq
, &flags
);
3712 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3715 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3718 struct sched_param lparam
;
3719 struct task_struct
*p
;
3721 if (!param
|| pid
< 0)
3723 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3725 read_lock_irq(&tasklist_lock
);
3726 p
= find_process_by_pid(pid
);
3728 read_unlock_irq(&tasklist_lock
);
3731 retval
= sched_setscheduler(p
, policy
, &lparam
);
3732 read_unlock_irq(&tasklist_lock
);
3737 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3738 * @pid: the pid in question.
3739 * @policy: new policy.
3740 * @param: structure containing the new RT priority.
3742 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3743 struct sched_param __user
*param
)
3745 /* negative values for policy are not valid */
3749 return do_sched_setscheduler(pid
, policy
, param
);
3753 * sys_sched_setparam - set/change the RT priority of a thread
3754 * @pid: the pid in question.
3755 * @param: structure containing the new RT priority.
3757 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3759 return do_sched_setscheduler(pid
, -1, param
);
3763 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3764 * @pid: the pid in question.
3766 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3768 int retval
= -EINVAL
;
3775 read_lock(&tasklist_lock
);
3776 p
= find_process_by_pid(pid
);
3778 retval
= security_task_getscheduler(p
);
3782 read_unlock(&tasklist_lock
);
3789 * sys_sched_getscheduler - get the RT priority of a thread
3790 * @pid: the pid in question.
3791 * @param: structure containing the RT priority.
3793 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3795 struct sched_param lp
;
3796 int retval
= -EINVAL
;
3799 if (!param
|| pid
< 0)
3802 read_lock(&tasklist_lock
);
3803 p
= find_process_by_pid(pid
);
3808 retval
= security_task_getscheduler(p
);
3812 lp
.sched_priority
= p
->rt_priority
;
3813 read_unlock(&tasklist_lock
);
3816 * This one might sleep, we cannot do it with a spinlock held ...
3818 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3824 read_unlock(&tasklist_lock
);
3828 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3832 cpumask_t cpus_allowed
;
3835 read_lock(&tasklist_lock
);
3837 p
= find_process_by_pid(pid
);
3839 read_unlock(&tasklist_lock
);
3840 unlock_cpu_hotplug();
3845 * It is not safe to call set_cpus_allowed with the
3846 * tasklist_lock held. We will bump the task_struct's
3847 * usage count and then drop tasklist_lock.
3850 read_unlock(&tasklist_lock
);
3853 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3854 !capable(CAP_SYS_NICE
))
3857 cpus_allowed
= cpuset_cpus_allowed(p
);
3858 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3859 retval
= set_cpus_allowed(p
, new_mask
);
3863 unlock_cpu_hotplug();
3867 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3868 cpumask_t
*new_mask
)
3870 if (len
< sizeof(cpumask_t
)) {
3871 memset(new_mask
, 0, sizeof(cpumask_t
));
3872 } else if (len
> sizeof(cpumask_t
)) {
3873 len
= sizeof(cpumask_t
);
3875 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3879 * sys_sched_setaffinity - set the cpu affinity of a process
3880 * @pid: pid of the process
3881 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3882 * @user_mask_ptr: user-space pointer to the new cpu mask
3884 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3885 unsigned long __user
*user_mask_ptr
)
3890 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3894 return sched_setaffinity(pid
, new_mask
);
3898 * Represents all cpu's present in the system
3899 * In systems capable of hotplug, this map could dynamically grow
3900 * as new cpu's are detected in the system via any platform specific
3901 * method, such as ACPI for e.g.
3904 cpumask_t cpu_present_map __read_mostly
;
3905 EXPORT_SYMBOL(cpu_present_map
);
3908 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
3909 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
3912 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3918 read_lock(&tasklist_lock
);
3921 p
= find_process_by_pid(pid
);
3926 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
3929 read_unlock(&tasklist_lock
);
3930 unlock_cpu_hotplug();
3938 * sys_sched_getaffinity - get the cpu affinity of a process
3939 * @pid: pid of the process
3940 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3941 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3943 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
3944 unsigned long __user
*user_mask_ptr
)
3949 if (len
< sizeof(cpumask_t
))
3952 ret
= sched_getaffinity(pid
, &mask
);
3956 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
3959 return sizeof(cpumask_t
);
3963 * sys_sched_yield - yield the current processor to other threads.
3965 * this function yields the current CPU by moving the calling thread
3966 * to the expired array. If there are no other threads running on this
3967 * CPU then this function will return.
3969 asmlinkage
long sys_sched_yield(void)
3971 runqueue_t
*rq
= this_rq_lock();
3972 prio_array_t
*array
= current
->array
;
3973 prio_array_t
*target
= rq
->expired
;
3975 schedstat_inc(rq
, yld_cnt
);
3977 * We implement yielding by moving the task into the expired
3980 * (special rule: RT tasks will just roundrobin in the active
3983 if (rt_task(current
))
3984 target
= rq
->active
;
3986 if (array
->nr_active
== 1) {
3987 schedstat_inc(rq
, yld_act_empty
);
3988 if (!rq
->expired
->nr_active
)
3989 schedstat_inc(rq
, yld_both_empty
);
3990 } else if (!rq
->expired
->nr_active
)
3991 schedstat_inc(rq
, yld_exp_empty
);
3993 if (array
!= target
) {
3994 dequeue_task(current
, array
);
3995 enqueue_task(current
, target
);
3998 * requeue_task is cheaper so perform that if possible.
4000 requeue_task(current
, array
);
4003 * Since we are going to call schedule() anyway, there's
4004 * no need to preempt or enable interrupts:
4006 __release(rq
->lock
);
4007 _raw_spin_unlock(&rq
->lock
);
4008 preempt_enable_no_resched();
4015 static inline void __cond_resched(void)
4018 * The BKS might be reacquired before we have dropped
4019 * PREEMPT_ACTIVE, which could trigger a second
4020 * cond_resched() call.
4022 if (unlikely(preempt_count()))
4024 if (unlikely(system_state
!= SYSTEM_RUNNING
))
4027 add_preempt_count(PREEMPT_ACTIVE
);
4029 sub_preempt_count(PREEMPT_ACTIVE
);
4030 } while (need_resched());
4033 int __sched
cond_resched(void)
4035 if (need_resched()) {
4042 EXPORT_SYMBOL(cond_resched
);
4045 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4046 * call schedule, and on return reacquire the lock.
4048 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4049 * operations here to prevent schedule() from being called twice (once via
4050 * spin_unlock(), once by hand).
4052 int cond_resched_lock(spinlock_t
*lock
)
4056 if (need_lockbreak(lock
)) {
4062 if (need_resched()) {
4063 _raw_spin_unlock(lock
);
4064 preempt_enable_no_resched();
4072 EXPORT_SYMBOL(cond_resched_lock
);
4074 int __sched
cond_resched_softirq(void)
4076 BUG_ON(!in_softirq());
4078 if (need_resched()) {
4079 __local_bh_enable();
4087 EXPORT_SYMBOL(cond_resched_softirq
);
4091 * yield - yield the current processor to other threads.
4093 * this is a shortcut for kernel-space yielding - it marks the
4094 * thread runnable and calls sys_sched_yield().
4096 void __sched
yield(void)
4098 set_current_state(TASK_RUNNING
);
4102 EXPORT_SYMBOL(yield
);
4105 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4106 * that process accounting knows that this is a task in IO wait state.
4108 * But don't do that if it is a deliberate, throttling IO wait (this task
4109 * has set its backing_dev_info: the queue against which it should throttle)
4111 void __sched
io_schedule(void)
4113 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4115 atomic_inc(&rq
->nr_iowait
);
4117 atomic_dec(&rq
->nr_iowait
);
4120 EXPORT_SYMBOL(io_schedule
);
4122 long __sched
io_schedule_timeout(long timeout
)
4124 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
4127 atomic_inc(&rq
->nr_iowait
);
4128 ret
= schedule_timeout(timeout
);
4129 atomic_dec(&rq
->nr_iowait
);
4134 * sys_sched_get_priority_max - return maximum RT priority.
4135 * @policy: scheduling class.
4137 * this syscall returns the maximum rt_priority that can be used
4138 * by a given scheduling class.
4140 asmlinkage
long sys_sched_get_priority_max(int policy
)
4147 ret
= MAX_USER_RT_PRIO
-1;
4158 * sys_sched_get_priority_min - return minimum RT priority.
4159 * @policy: scheduling class.
4161 * this syscall returns the minimum rt_priority that can be used
4162 * by a given scheduling class.
4164 asmlinkage
long sys_sched_get_priority_min(int policy
)
4181 * sys_sched_rr_get_interval - return the default timeslice of a process.
4182 * @pid: pid of the process.
4183 * @interval: userspace pointer to the timeslice value.
4185 * this syscall writes the default timeslice value of a given process
4186 * into the user-space timespec buffer. A value of '0' means infinity.
4189 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4191 int retval
= -EINVAL
;
4199 read_lock(&tasklist_lock
);
4200 p
= find_process_by_pid(pid
);
4204 retval
= security_task_getscheduler(p
);
4208 jiffies_to_timespec(p
->policy
& SCHED_FIFO
?
4209 0 : task_timeslice(p
), &t
);
4210 read_unlock(&tasklist_lock
);
4211 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4215 read_unlock(&tasklist_lock
);
4219 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4221 if (list_empty(&p
->children
)) return NULL
;
4222 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4225 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4227 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4228 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4231 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4233 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4234 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4237 static void show_task(task_t
*p
)
4241 unsigned long free
= 0;
4242 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4244 printk("%-13.13s ", p
->comm
);
4245 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4246 if (state
< ARRAY_SIZE(stat_nam
))
4247 printk(stat_nam
[state
]);
4250 #if (BITS_PER_LONG == 32)
4251 if (state
== TASK_RUNNING
)
4252 printk(" running ");
4254 printk(" %08lX ", thread_saved_pc(p
));
4256 if (state
== TASK_RUNNING
)
4257 printk(" running task ");
4259 printk(" %016lx ", thread_saved_pc(p
));
4261 #ifdef CONFIG_DEBUG_STACK_USAGE
4263 unsigned long *n
= end_of_stack(p
);
4266 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4269 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4270 if ((relative
= eldest_child(p
)))
4271 printk("%5d ", relative
->pid
);
4274 if ((relative
= younger_sibling(p
)))
4275 printk("%7d", relative
->pid
);
4278 if ((relative
= older_sibling(p
)))
4279 printk(" %5d", relative
->pid
);
4283 printk(" (L-TLB)\n");
4285 printk(" (NOTLB)\n");
4287 if (state
!= TASK_RUNNING
)
4288 show_stack(p
, NULL
);
4291 void show_state(void)
4295 #if (BITS_PER_LONG == 32)
4298 printk(" task PC pid father child younger older\n");
4302 printk(" task PC pid father child younger older\n");
4304 read_lock(&tasklist_lock
);
4305 do_each_thread(g
, p
) {
4307 * reset the NMI-timeout, listing all files on a slow
4308 * console might take alot of time:
4310 touch_nmi_watchdog();
4312 } while_each_thread(g
, p
);
4314 read_unlock(&tasklist_lock
);
4315 mutex_debug_show_all_locks();
4319 * init_idle - set up an idle thread for a given CPU
4320 * @idle: task in question
4321 * @cpu: cpu the idle task belongs to
4323 * NOTE: this function does not set the idle thread's NEED_RESCHED
4324 * flag, to make booting more robust.
4326 void __devinit
init_idle(task_t
*idle
, int cpu
)
4328 runqueue_t
*rq
= cpu_rq(cpu
);
4329 unsigned long flags
;
4331 idle
->timestamp
= sched_clock();
4332 idle
->sleep_avg
= 0;
4334 idle
->prio
= MAX_PRIO
;
4335 idle
->state
= TASK_RUNNING
;
4336 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4337 set_task_cpu(idle
, cpu
);
4339 spin_lock_irqsave(&rq
->lock
, flags
);
4340 rq
->curr
= rq
->idle
= idle
;
4341 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4344 spin_unlock_irqrestore(&rq
->lock
, flags
);
4346 /* Set the preempt count _outside_ the spinlocks! */
4347 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4348 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4350 task_thread_info(idle
)->preempt_count
= 0;
4355 * In a system that switches off the HZ timer nohz_cpu_mask
4356 * indicates which cpus entered this state. This is used
4357 * in the rcu update to wait only for active cpus. For system
4358 * which do not switch off the HZ timer nohz_cpu_mask should
4359 * always be CPU_MASK_NONE.
4361 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4365 * This is how migration works:
4367 * 1) we queue a migration_req_t structure in the source CPU's
4368 * runqueue and wake up that CPU's migration thread.
4369 * 2) we down() the locked semaphore => thread blocks.
4370 * 3) migration thread wakes up (implicitly it forces the migrated
4371 * thread off the CPU)
4372 * 4) it gets the migration request and checks whether the migrated
4373 * task is still in the wrong runqueue.
4374 * 5) if it's in the wrong runqueue then the migration thread removes
4375 * it and puts it into the right queue.
4376 * 6) migration thread up()s the semaphore.
4377 * 7) we wake up and the migration is done.
4381 * Change a given task's CPU affinity. Migrate the thread to a
4382 * proper CPU and schedule it away if the CPU it's executing on
4383 * is removed from the allowed bitmask.
4385 * NOTE: the caller must have a valid reference to the task, the
4386 * task must not exit() & deallocate itself prematurely. The
4387 * call is not atomic; no spinlocks may be held.
4389 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4391 unsigned long flags
;
4393 migration_req_t req
;
4396 rq
= task_rq_lock(p
, &flags
);
4397 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4402 p
->cpus_allowed
= new_mask
;
4403 /* Can the task run on the task's current CPU? If so, we're done */
4404 if (cpu_isset(task_cpu(p
), new_mask
))
4407 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4408 /* Need help from migration thread: drop lock and wait. */
4409 task_rq_unlock(rq
, &flags
);
4410 wake_up_process(rq
->migration_thread
);
4411 wait_for_completion(&req
.done
);
4412 tlb_migrate_finish(p
->mm
);
4416 task_rq_unlock(rq
, &flags
);
4420 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4423 * Move (not current) task off this cpu, onto dest cpu. We're doing
4424 * this because either it can't run here any more (set_cpus_allowed()
4425 * away from this CPU, or CPU going down), or because we're
4426 * attempting to rebalance this task on exec (sched_exec).
4428 * So we race with normal scheduler movements, but that's OK, as long
4429 * as the task is no longer on this CPU.
4431 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4433 runqueue_t
*rq_dest
, *rq_src
;
4435 if (unlikely(cpu_is_offline(dest_cpu
)))
4438 rq_src
= cpu_rq(src_cpu
);
4439 rq_dest
= cpu_rq(dest_cpu
);
4441 double_rq_lock(rq_src
, rq_dest
);
4442 /* Already moved. */
4443 if (task_cpu(p
) != src_cpu
)
4445 /* Affinity changed (again). */
4446 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4449 set_task_cpu(p
, dest_cpu
);
4452 * Sync timestamp with rq_dest's before activating.
4453 * The same thing could be achieved by doing this step
4454 * afterwards, and pretending it was a local activate.
4455 * This way is cleaner and logically correct.
4457 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4458 + rq_dest
->timestamp_last_tick
;
4459 deactivate_task(p
, rq_src
);
4460 activate_task(p
, rq_dest
, 0);
4461 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4462 resched_task(rq_dest
->curr
);
4466 double_rq_unlock(rq_src
, rq_dest
);
4470 * migration_thread - this is a highprio system thread that performs
4471 * thread migration by bumping thread off CPU then 'pushing' onto
4474 static int migration_thread(void *data
)
4477 int cpu
= (long)data
;
4480 BUG_ON(rq
->migration_thread
!= current
);
4482 set_current_state(TASK_INTERRUPTIBLE
);
4483 while (!kthread_should_stop()) {
4484 struct list_head
*head
;
4485 migration_req_t
*req
;
4489 spin_lock_irq(&rq
->lock
);
4491 if (cpu_is_offline(cpu
)) {
4492 spin_unlock_irq(&rq
->lock
);
4496 if (rq
->active_balance
) {
4497 active_load_balance(rq
, cpu
);
4498 rq
->active_balance
= 0;
4501 head
= &rq
->migration_queue
;
4503 if (list_empty(head
)) {
4504 spin_unlock_irq(&rq
->lock
);
4506 set_current_state(TASK_INTERRUPTIBLE
);
4509 req
= list_entry(head
->next
, migration_req_t
, list
);
4510 list_del_init(head
->next
);
4512 spin_unlock(&rq
->lock
);
4513 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4516 complete(&req
->done
);
4518 __set_current_state(TASK_RUNNING
);
4522 /* Wait for kthread_stop */
4523 set_current_state(TASK_INTERRUPTIBLE
);
4524 while (!kthread_should_stop()) {
4526 set_current_state(TASK_INTERRUPTIBLE
);
4528 __set_current_state(TASK_RUNNING
);
4532 #ifdef CONFIG_HOTPLUG_CPU
4533 /* Figure out where task on dead CPU should go, use force if neccessary. */
4534 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4540 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4541 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4542 dest_cpu
= any_online_cpu(mask
);
4544 /* On any allowed CPU? */
4545 if (dest_cpu
== NR_CPUS
)
4546 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4548 /* No more Mr. Nice Guy. */
4549 if (dest_cpu
== NR_CPUS
) {
4550 cpus_setall(tsk
->cpus_allowed
);
4551 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4554 * Don't tell them about moving exiting tasks or
4555 * kernel threads (both mm NULL), since they never
4558 if (tsk
->mm
&& printk_ratelimit())
4559 printk(KERN_INFO
"process %d (%s) no "
4560 "longer affine to cpu%d\n",
4561 tsk
->pid
, tsk
->comm
, dead_cpu
);
4563 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4567 * While a dead CPU has no uninterruptible tasks queued at this point,
4568 * it might still have a nonzero ->nr_uninterruptible counter, because
4569 * for performance reasons the counter is not stricly tracking tasks to
4570 * their home CPUs. So we just add the counter to another CPU's counter,
4571 * to keep the global sum constant after CPU-down:
4573 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4575 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4576 unsigned long flags
;
4578 local_irq_save(flags
);
4579 double_rq_lock(rq_src
, rq_dest
);
4580 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4581 rq_src
->nr_uninterruptible
= 0;
4582 double_rq_unlock(rq_src
, rq_dest
);
4583 local_irq_restore(flags
);
4586 /* Run through task list and migrate tasks from the dead cpu. */
4587 static void migrate_live_tasks(int src_cpu
)
4589 struct task_struct
*tsk
, *t
;
4591 write_lock_irq(&tasklist_lock
);
4593 do_each_thread(t
, tsk
) {
4597 if (task_cpu(tsk
) == src_cpu
)
4598 move_task_off_dead_cpu(src_cpu
, tsk
);
4599 } while_each_thread(t
, tsk
);
4601 write_unlock_irq(&tasklist_lock
);
4604 /* Schedules idle task to be the next runnable task on current CPU.
4605 * It does so by boosting its priority to highest possible and adding it to
4606 * the _front_ of runqueue. Used by CPU offline code.
4608 void sched_idle_next(void)
4610 int cpu
= smp_processor_id();
4611 runqueue_t
*rq
= this_rq();
4612 struct task_struct
*p
= rq
->idle
;
4613 unsigned long flags
;
4615 /* cpu has to be offline */
4616 BUG_ON(cpu_online(cpu
));
4618 /* Strictly not necessary since rest of the CPUs are stopped by now
4619 * and interrupts disabled on current cpu.
4621 spin_lock_irqsave(&rq
->lock
, flags
);
4623 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4624 /* Add idle task to _front_ of it's priority queue */
4625 __activate_idle_task(p
, rq
);
4627 spin_unlock_irqrestore(&rq
->lock
, flags
);
4630 /* Ensures that the idle task is using init_mm right before its cpu goes
4633 void idle_task_exit(void)
4635 struct mm_struct
*mm
= current
->active_mm
;
4637 BUG_ON(cpu_online(smp_processor_id()));
4640 switch_mm(mm
, &init_mm
, current
);
4644 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4646 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4648 /* Must be exiting, otherwise would be on tasklist. */
4649 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4651 /* Cannot have done final schedule yet: would have vanished. */
4652 BUG_ON(tsk
->flags
& PF_DEAD
);
4654 get_task_struct(tsk
);
4657 * Drop lock around migration; if someone else moves it,
4658 * that's OK. No task can be added to this CPU, so iteration is
4661 spin_unlock_irq(&rq
->lock
);
4662 move_task_off_dead_cpu(dead_cpu
, tsk
);
4663 spin_lock_irq(&rq
->lock
);
4665 put_task_struct(tsk
);
4668 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4669 static void migrate_dead_tasks(unsigned int dead_cpu
)
4672 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4674 for (arr
= 0; arr
< 2; arr
++) {
4675 for (i
= 0; i
< MAX_PRIO
; i
++) {
4676 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4677 while (!list_empty(list
))
4678 migrate_dead(dead_cpu
,
4679 list_entry(list
->next
, task_t
,
4684 #endif /* CONFIG_HOTPLUG_CPU */
4687 * migration_call - callback that gets triggered when a CPU is added.
4688 * Here we can start up the necessary migration thread for the new CPU.
4690 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4693 int cpu
= (long)hcpu
;
4694 struct task_struct
*p
;
4695 struct runqueue
*rq
;
4696 unsigned long flags
;
4699 case CPU_UP_PREPARE
:
4700 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4703 p
->flags
|= PF_NOFREEZE
;
4704 kthread_bind(p
, cpu
);
4705 /* Must be high prio: stop_machine expects to yield to it. */
4706 rq
= task_rq_lock(p
, &flags
);
4707 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4708 task_rq_unlock(rq
, &flags
);
4709 cpu_rq(cpu
)->migration_thread
= p
;
4712 /* Strictly unneccessary, as first user will wake it. */
4713 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4715 #ifdef CONFIG_HOTPLUG_CPU
4716 case CPU_UP_CANCELED
:
4717 /* Unbind it from offline cpu so it can run. Fall thru. */
4718 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4719 any_online_cpu(cpu_online_map
));
4720 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4721 cpu_rq(cpu
)->migration_thread
= NULL
;
4724 migrate_live_tasks(cpu
);
4726 kthread_stop(rq
->migration_thread
);
4727 rq
->migration_thread
= NULL
;
4728 /* Idle task back to normal (off runqueue, low prio) */
4729 rq
= task_rq_lock(rq
->idle
, &flags
);
4730 deactivate_task(rq
->idle
, rq
);
4731 rq
->idle
->static_prio
= MAX_PRIO
;
4732 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4733 migrate_dead_tasks(cpu
);
4734 task_rq_unlock(rq
, &flags
);
4735 migrate_nr_uninterruptible(rq
);
4736 BUG_ON(rq
->nr_running
!= 0);
4738 /* No need to migrate the tasks: it was best-effort if
4739 * they didn't do lock_cpu_hotplug(). Just wake up
4740 * the requestors. */
4741 spin_lock_irq(&rq
->lock
);
4742 while (!list_empty(&rq
->migration_queue
)) {
4743 migration_req_t
*req
;
4744 req
= list_entry(rq
->migration_queue
.next
,
4745 migration_req_t
, list
);
4746 list_del_init(&req
->list
);
4747 complete(&req
->done
);
4749 spin_unlock_irq(&rq
->lock
);
4756 /* Register at highest priority so that task migration (migrate_all_tasks)
4757 * happens before everything else.
4759 static struct notifier_block __devinitdata migration_notifier
= {
4760 .notifier_call
= migration_call
,
4764 int __init
migration_init(void)
4766 void *cpu
= (void *)(long)smp_processor_id();
4767 /* Start one for boot CPU. */
4768 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4769 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4770 register_cpu_notifier(&migration_notifier
);
4776 #undef SCHED_DOMAIN_DEBUG
4777 #ifdef SCHED_DOMAIN_DEBUG
4778 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4783 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4787 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4792 struct sched_group
*group
= sd
->groups
;
4793 cpumask_t groupmask
;
4795 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4796 cpus_clear(groupmask
);
4799 for (i
= 0; i
< level
+ 1; i
++)
4801 printk("domain %d: ", level
);
4803 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4804 printk("does not load-balance\n");
4806 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4810 printk("span %s\n", str
);
4812 if (!cpu_isset(cpu
, sd
->span
))
4813 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4814 if (!cpu_isset(cpu
, group
->cpumask
))
4815 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4818 for (i
= 0; i
< level
+ 2; i
++)
4824 printk(KERN_ERR
"ERROR: group is NULL\n");
4828 if (!group
->cpu_power
) {
4830 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4833 if (!cpus_weight(group
->cpumask
)) {
4835 printk(KERN_ERR
"ERROR: empty group\n");
4838 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4840 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4843 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4845 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4848 group
= group
->next
;
4849 } while (group
!= sd
->groups
);
4852 if (!cpus_equal(sd
->span
, groupmask
))
4853 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4859 if (!cpus_subset(groupmask
, sd
->span
))
4860 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4866 #define sched_domain_debug(sd, cpu) {}
4869 static int sd_degenerate(struct sched_domain
*sd
)
4871 if (cpus_weight(sd
->span
) == 1)
4874 /* Following flags need at least 2 groups */
4875 if (sd
->flags
& (SD_LOAD_BALANCE
|
4876 SD_BALANCE_NEWIDLE
|
4879 if (sd
->groups
!= sd
->groups
->next
)
4883 /* Following flags don't use groups */
4884 if (sd
->flags
& (SD_WAKE_IDLE
|
4892 static int sd_parent_degenerate(struct sched_domain
*sd
,
4893 struct sched_domain
*parent
)
4895 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4897 if (sd_degenerate(parent
))
4900 if (!cpus_equal(sd
->span
, parent
->span
))
4903 /* Does parent contain flags not in child? */
4904 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4905 if (cflags
& SD_WAKE_AFFINE
)
4906 pflags
&= ~SD_WAKE_BALANCE
;
4907 /* Flags needing groups don't count if only 1 group in parent */
4908 if (parent
->groups
== parent
->groups
->next
) {
4909 pflags
&= ~(SD_LOAD_BALANCE
|
4910 SD_BALANCE_NEWIDLE
|
4914 if (~cflags
& pflags
)
4921 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4922 * hold the hotplug lock.
4924 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4926 runqueue_t
*rq
= cpu_rq(cpu
);
4927 struct sched_domain
*tmp
;
4929 /* Remove the sched domains which do not contribute to scheduling. */
4930 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4931 struct sched_domain
*parent
= tmp
->parent
;
4934 if (sd_parent_degenerate(tmp
, parent
))
4935 tmp
->parent
= parent
->parent
;
4938 if (sd
&& sd_degenerate(sd
))
4941 sched_domain_debug(sd
, cpu
);
4943 rcu_assign_pointer(rq
->sd
, sd
);
4946 /* cpus with isolated domains */
4947 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
4949 /* Setup the mask of cpus configured for isolated domains */
4950 static int __init
isolated_cpu_setup(char *str
)
4952 int ints
[NR_CPUS
], i
;
4954 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
4955 cpus_clear(cpu_isolated_map
);
4956 for (i
= 1; i
<= ints
[0]; i
++)
4957 if (ints
[i
] < NR_CPUS
)
4958 cpu_set(ints
[i
], cpu_isolated_map
);
4962 __setup ("isolcpus=", isolated_cpu_setup
);
4965 * init_sched_build_groups takes an array of groups, the cpumask we wish
4966 * to span, and a pointer to a function which identifies what group a CPU
4967 * belongs to. The return value of group_fn must be a valid index into the
4968 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4969 * keep track of groups covered with a cpumask_t).
4971 * init_sched_build_groups will build a circular linked list of the groups
4972 * covered by the given span, and will set each group's ->cpumask correctly,
4973 * and ->cpu_power to 0.
4975 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
4976 int (*group_fn
)(int cpu
))
4978 struct sched_group
*first
= NULL
, *last
= NULL
;
4979 cpumask_t covered
= CPU_MASK_NONE
;
4982 for_each_cpu_mask(i
, span
) {
4983 int group
= group_fn(i
);
4984 struct sched_group
*sg
= &groups
[group
];
4987 if (cpu_isset(i
, covered
))
4990 sg
->cpumask
= CPU_MASK_NONE
;
4993 for_each_cpu_mask(j
, span
) {
4994 if (group_fn(j
) != group
)
4997 cpu_set(j
, covered
);
4998 cpu_set(j
, sg
->cpumask
);
5009 #define SD_NODES_PER_DOMAIN 16
5012 * Self-tuning task migration cost measurement between source and target CPUs.
5014 * This is done by measuring the cost of manipulating buffers of varying
5015 * sizes. For a given buffer-size here are the steps that are taken:
5017 * 1) the source CPU reads+dirties a shared buffer
5018 * 2) the target CPU reads+dirties the same shared buffer
5020 * We measure how long they take, in the following 4 scenarios:
5022 * - source: CPU1, target: CPU2 | cost1
5023 * - source: CPU2, target: CPU1 | cost2
5024 * - source: CPU1, target: CPU1 | cost3
5025 * - source: CPU2, target: CPU2 | cost4
5027 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5028 * the cost of migration.
5030 * We then start off from a small buffer-size and iterate up to larger
5031 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5032 * doing a maximum search for the cost. (The maximum cost for a migration
5033 * normally occurs when the working set size is around the effective cache
5036 #define SEARCH_SCOPE 2
5037 #define MIN_CACHE_SIZE (64*1024U)
5038 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5039 #define ITERATIONS 1
5040 #define SIZE_THRESH 130
5041 #define COST_THRESH 130
5044 * The migration cost is a function of 'domain distance'. Domain
5045 * distance is the number of steps a CPU has to iterate down its
5046 * domain tree to share a domain with the other CPU. The farther
5047 * two CPUs are from each other, the larger the distance gets.
5049 * Note that we use the distance only to cache measurement results,
5050 * the distance value is not used numerically otherwise. When two
5051 * CPUs have the same distance it is assumed that the migration
5052 * cost is the same. (this is a simplification but quite practical)
5054 #define MAX_DOMAIN_DISTANCE 32
5056 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5057 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] =
5059 * Architectures may override the migration cost and thus avoid
5060 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5061 * virtualized hardware:
5063 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5064 CONFIG_DEFAULT_MIGRATION_COST
5071 * Allow override of migration cost - in units of microseconds.
5072 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5073 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5075 static int __init
migration_cost_setup(char *str
)
5077 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5079 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5081 printk("#ints: %d\n", ints
[0]);
5082 for (i
= 1; i
<= ints
[0]; i
++) {
5083 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5084 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5089 __setup ("migration_cost=", migration_cost_setup
);
5092 * Global multiplier (divisor) for migration-cutoff values,
5093 * in percentiles. E.g. use a value of 150 to get 1.5 times
5094 * longer cache-hot cutoff times.
5096 * (We scale it from 100 to 128 to long long handling easier.)
5099 #define MIGRATION_FACTOR_SCALE 128
5101 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5103 static int __init
setup_migration_factor(char *str
)
5105 get_option(&str
, &migration_factor
);
5106 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5110 __setup("migration_factor=", setup_migration_factor
);
5113 * Estimated distance of two CPUs, measured via the number of domains
5114 * we have to pass for the two CPUs to be in the same span:
5116 static unsigned long domain_distance(int cpu1
, int cpu2
)
5118 unsigned long distance
= 0;
5119 struct sched_domain
*sd
;
5121 for_each_domain(cpu1
, sd
) {
5122 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5123 if (cpu_isset(cpu2
, sd
->span
))
5127 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5129 distance
= MAX_DOMAIN_DISTANCE
-1;
5135 static unsigned int migration_debug
;
5137 static int __init
setup_migration_debug(char *str
)
5139 get_option(&str
, &migration_debug
);
5143 __setup("migration_debug=", setup_migration_debug
);
5146 * Maximum cache-size that the scheduler should try to measure.
5147 * Architectures with larger caches should tune this up during
5148 * bootup. Gets used in the domain-setup code (i.e. during SMP
5151 unsigned int max_cache_size
;
5153 static int __init
setup_max_cache_size(char *str
)
5155 get_option(&str
, &max_cache_size
);
5159 __setup("max_cache_size=", setup_max_cache_size
);
5162 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5163 * is the operation that is timed, so we try to generate unpredictable
5164 * cachemisses that still end up filling the L2 cache:
5166 static void touch_cache(void *__cache
, unsigned long __size
)
5168 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5170 unsigned long *cache
= __cache
;
5173 for (i
= 0; i
< size
/6; i
+= 8) {
5176 case 1: cache
[size
-1-i
]++;
5177 case 2: cache
[chunk1
-i
]++;
5178 case 3: cache
[chunk1
+i
]++;
5179 case 4: cache
[chunk2
-i
]++;
5180 case 5: cache
[chunk2
+i
]++;
5186 * Measure the cache-cost of one task migration. Returns in units of nsec.
5188 static unsigned long long measure_one(void *cache
, unsigned long size
,
5189 int source
, int target
)
5191 cpumask_t mask
, saved_mask
;
5192 unsigned long long t0
, t1
, t2
, t3
, cost
;
5194 saved_mask
= current
->cpus_allowed
;
5197 * Flush source caches to RAM and invalidate them:
5202 * Migrate to the source CPU:
5204 mask
= cpumask_of_cpu(source
);
5205 set_cpus_allowed(current
, mask
);
5206 WARN_ON(smp_processor_id() != source
);
5209 * Dirty the working set:
5212 touch_cache(cache
, size
);
5216 * Migrate to the target CPU, dirty the L2 cache and access
5217 * the shared buffer. (which represents the working set
5218 * of a migrated task.)
5220 mask
= cpumask_of_cpu(target
);
5221 set_cpus_allowed(current
, mask
);
5222 WARN_ON(smp_processor_id() != target
);
5225 touch_cache(cache
, size
);
5228 cost
= t1
-t0
+ t3
-t2
;
5230 if (migration_debug
>= 2)
5231 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5232 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5234 * Flush target caches to RAM and invalidate them:
5238 set_cpus_allowed(current
, saved_mask
);
5244 * Measure a series of task migrations and return the average
5245 * result. Since this code runs early during bootup the system
5246 * is 'undisturbed' and the average latency makes sense.
5248 * The algorithm in essence auto-detects the relevant cache-size,
5249 * so it will properly detect different cachesizes for different
5250 * cache-hierarchies, depending on how the CPUs are connected.
5252 * Architectures can prime the upper limit of the search range via
5253 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5255 static unsigned long long
5256 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5258 unsigned long long cost1
, cost2
;
5262 * Measure the migration cost of 'size' bytes, over an
5263 * average of 10 runs:
5265 * (We perturb the cache size by a small (0..4k)
5266 * value to compensate size/alignment related artifacts.
5267 * We also subtract the cost of the operation done on
5273 * dry run, to make sure we start off cache-cold on cpu1,
5274 * and to get any vmalloc pagefaults in advance:
5276 measure_one(cache
, size
, cpu1
, cpu2
);
5277 for (i
= 0; i
< ITERATIONS
; i
++)
5278 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5280 measure_one(cache
, size
, cpu2
, cpu1
);
5281 for (i
= 0; i
< ITERATIONS
; i
++)
5282 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5285 * (We measure the non-migrating [cached] cost on both
5286 * cpu1 and cpu2, to handle CPUs with different speeds)
5290 measure_one(cache
, size
, cpu1
, cpu1
);
5291 for (i
= 0; i
< ITERATIONS
; i
++)
5292 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5294 measure_one(cache
, size
, cpu2
, cpu2
);
5295 for (i
= 0; i
< ITERATIONS
; i
++)
5296 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5299 * Get the per-iteration migration cost:
5301 do_div(cost1
, 2*ITERATIONS
);
5302 do_div(cost2
, 2*ITERATIONS
);
5304 return cost1
- cost2
;
5307 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5309 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5310 unsigned int max_size
, size
, size_found
= 0;
5311 long long cost
= 0, prev_cost
;
5315 * Search from max_cache_size*5 down to 64K - the real relevant
5316 * cachesize has to lie somewhere inbetween.
5318 if (max_cache_size
) {
5319 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5320 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5323 * Since we have no estimation about the relevant
5326 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5327 size
= MIN_CACHE_SIZE
;
5330 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5331 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5336 * Allocate the working set:
5338 cache
= vmalloc(max_size
);
5340 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5341 return 1000000; // return 1 msec on very small boxen
5344 while (size
<= max_size
) {
5346 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5352 if (max_cost
< cost
) {
5358 * Calculate average fluctuation, we use this to prevent
5359 * noise from triggering an early break out of the loop:
5361 fluct
= abs(cost
- prev_cost
);
5362 avg_fluct
= (avg_fluct
+ fluct
)/2;
5364 if (migration_debug
)
5365 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5367 (long)cost
/ 1000000,
5368 ((long)cost
/ 100000) % 10,
5369 (long)max_cost
/ 1000000,
5370 ((long)max_cost
/ 100000) % 10,
5371 domain_distance(cpu1
, cpu2
),
5375 * If we iterated at least 20% past the previous maximum,
5376 * and the cost has dropped by more than 20% already,
5377 * (taking fluctuations into account) then we assume to
5378 * have found the maximum and break out of the loop early:
5380 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5381 if (cost
+avg_fluct
<= 0 ||
5382 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5384 if (migration_debug
)
5385 printk("-> found max.\n");
5389 * Increase the cachesize in 10% steps:
5391 size
= size
* 10 / 9;
5394 if (migration_debug
)
5395 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5396 cpu1
, cpu2
, size_found
, max_cost
);
5401 * A task is considered 'cache cold' if at least 2 times
5402 * the worst-case cost of migration has passed.
5404 * (this limit is only listened to if the load-balancing
5405 * situation is 'nice' - if there is a large imbalance we
5406 * ignore it for the sake of CPU utilization and
5407 * processing fairness.)
5409 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5412 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5414 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5415 unsigned long j0
, j1
, distance
, max_distance
= 0;
5416 struct sched_domain
*sd
;
5421 * First pass - calculate the cacheflush times:
5423 for_each_cpu_mask(cpu1
, *cpu_map
) {
5424 for_each_cpu_mask(cpu2
, *cpu_map
) {
5427 distance
= domain_distance(cpu1
, cpu2
);
5428 max_distance
= max(max_distance
, distance
);
5430 * No result cached yet?
5432 if (migration_cost
[distance
] == -1LL)
5433 migration_cost
[distance
] =
5434 measure_migration_cost(cpu1
, cpu2
);
5438 * Second pass - update the sched domain hierarchy with
5439 * the new cache-hot-time estimations:
5441 for_each_cpu_mask(cpu
, *cpu_map
) {
5443 for_each_domain(cpu
, sd
) {
5444 sd
->cache_hot_time
= migration_cost
[distance
];
5451 if (migration_debug
)
5452 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5460 if (system_state
== SYSTEM_BOOTING
) {
5461 printk("migration_cost=");
5462 for (distance
= 0; distance
<= max_distance
; distance
++) {
5465 printk("%ld", (long)migration_cost
[distance
] / 1000);
5470 if (migration_debug
)
5471 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5474 * Move back to the original CPU. NUMA-Q gets confused
5475 * if we migrate to another quad during bootup.
5477 if (raw_smp_processor_id() != orig_cpu
) {
5478 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5479 saved_mask
= current
->cpus_allowed
;
5481 set_cpus_allowed(current
, mask
);
5482 set_cpus_allowed(current
, saved_mask
);
5489 * find_next_best_node - find the next node to include in a sched_domain
5490 * @node: node whose sched_domain we're building
5491 * @used_nodes: nodes already in the sched_domain
5493 * Find the next node to include in a given scheduling domain. Simply
5494 * finds the closest node not already in the @used_nodes map.
5496 * Should use nodemask_t.
5498 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5500 int i
, n
, val
, min_val
, best_node
= 0;
5504 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5505 /* Start at @node */
5506 n
= (node
+ i
) % MAX_NUMNODES
;
5508 if (!nr_cpus_node(n
))
5511 /* Skip already used nodes */
5512 if (test_bit(n
, used_nodes
))
5515 /* Simple min distance search */
5516 val
= node_distance(node
, n
);
5518 if (val
< min_val
) {
5524 set_bit(best_node
, used_nodes
);
5529 * sched_domain_node_span - get a cpumask for a node's sched_domain
5530 * @node: node whose cpumask we're constructing
5531 * @size: number of nodes to include in this span
5533 * Given a node, construct a good cpumask for its sched_domain to span. It
5534 * should be one that prevents unnecessary balancing, but also spreads tasks
5537 static cpumask_t
sched_domain_node_span(int node
)
5540 cpumask_t span
, nodemask
;
5541 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5544 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5546 nodemask
= node_to_cpumask(node
);
5547 cpus_or(span
, span
, nodemask
);
5548 set_bit(node
, used_nodes
);
5550 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5551 int next_node
= find_next_best_node(node
, used_nodes
);
5552 nodemask
= node_to_cpumask(next_node
);
5553 cpus_or(span
, span
, nodemask
);
5561 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5562 * can switch it on easily if needed.
5564 #ifdef CONFIG_SCHED_SMT
5565 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5566 static struct sched_group sched_group_cpus
[NR_CPUS
];
5567 static int cpu_to_cpu_group(int cpu
)
5573 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5574 static struct sched_group sched_group_phys
[NR_CPUS
];
5575 static int cpu_to_phys_group(int cpu
)
5577 #ifdef CONFIG_SCHED_SMT
5578 return first_cpu(cpu_sibling_map
[cpu
]);
5586 * The init_sched_build_groups can't handle what we want to do with node
5587 * groups, so roll our own. Now each node has its own list of groups which
5588 * gets dynamically allocated.
5590 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5591 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5593 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5594 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5596 static int cpu_to_allnodes_group(int cpu
)
5598 return cpu_to_node(cpu
);
5603 * Build sched domains for a given set of cpus and attach the sched domains
5604 * to the individual cpus
5606 void build_sched_domains(const cpumask_t
*cpu_map
)
5610 struct sched_group
**sched_group_nodes
= NULL
;
5611 struct sched_group
*sched_group_allnodes
= NULL
;
5614 * Allocate the per-node list of sched groups
5616 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5618 if (!sched_group_nodes
) {
5619 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5622 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5626 * Set up domains for cpus specified by the cpu_map.
5628 for_each_cpu_mask(i
, *cpu_map
) {
5630 struct sched_domain
*sd
= NULL
, *p
;
5631 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5633 cpus_and(nodemask
, nodemask
, *cpu_map
);
5636 if (cpus_weight(*cpu_map
)
5637 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5638 if (!sched_group_allnodes
) {
5639 sched_group_allnodes
5640 = kmalloc(sizeof(struct sched_group
)
5643 if (!sched_group_allnodes
) {
5645 "Can not alloc allnodes sched group\n");
5648 sched_group_allnodes_bycpu
[i
]
5649 = sched_group_allnodes
;
5651 sd
= &per_cpu(allnodes_domains
, i
);
5652 *sd
= SD_ALLNODES_INIT
;
5653 sd
->span
= *cpu_map
;
5654 group
= cpu_to_allnodes_group(i
);
5655 sd
->groups
= &sched_group_allnodes
[group
];
5660 sd
= &per_cpu(node_domains
, i
);
5662 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5664 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5668 sd
= &per_cpu(phys_domains
, i
);
5669 group
= cpu_to_phys_group(i
);
5671 sd
->span
= nodemask
;
5673 sd
->groups
= &sched_group_phys
[group
];
5675 #ifdef CONFIG_SCHED_SMT
5677 sd
= &per_cpu(cpu_domains
, i
);
5678 group
= cpu_to_cpu_group(i
);
5679 *sd
= SD_SIBLING_INIT
;
5680 sd
->span
= cpu_sibling_map
[i
];
5681 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5683 sd
->groups
= &sched_group_cpus
[group
];
5687 #ifdef CONFIG_SCHED_SMT
5688 /* Set up CPU (sibling) groups */
5689 for_each_cpu_mask(i
, *cpu_map
) {
5690 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5691 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5692 if (i
!= first_cpu(this_sibling_map
))
5695 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5700 /* Set up physical groups */
5701 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5702 cpumask_t nodemask
= node_to_cpumask(i
);
5704 cpus_and(nodemask
, nodemask
, *cpu_map
);
5705 if (cpus_empty(nodemask
))
5708 init_sched_build_groups(sched_group_phys
, nodemask
,
5709 &cpu_to_phys_group
);
5713 /* Set up node groups */
5714 if (sched_group_allnodes
)
5715 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5716 &cpu_to_allnodes_group
);
5718 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5719 /* Set up node groups */
5720 struct sched_group
*sg
, *prev
;
5721 cpumask_t nodemask
= node_to_cpumask(i
);
5722 cpumask_t domainspan
;
5723 cpumask_t covered
= CPU_MASK_NONE
;
5726 cpus_and(nodemask
, nodemask
, *cpu_map
);
5727 if (cpus_empty(nodemask
)) {
5728 sched_group_nodes
[i
] = NULL
;
5732 domainspan
= sched_domain_node_span(i
);
5733 cpus_and(domainspan
, domainspan
, *cpu_map
);
5735 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5736 sched_group_nodes
[i
] = sg
;
5737 for_each_cpu_mask(j
, nodemask
) {
5738 struct sched_domain
*sd
;
5739 sd
= &per_cpu(node_domains
, j
);
5741 if (sd
->groups
== NULL
) {
5742 /* Turn off balancing if we have no groups */
5748 "Can not alloc domain group for node %d\n", i
);
5752 sg
->cpumask
= nodemask
;
5753 cpus_or(covered
, covered
, nodemask
);
5756 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5757 cpumask_t tmp
, notcovered
;
5758 int n
= (i
+ j
) % MAX_NUMNODES
;
5760 cpus_complement(notcovered
, covered
);
5761 cpus_and(tmp
, notcovered
, *cpu_map
);
5762 cpus_and(tmp
, tmp
, domainspan
);
5763 if (cpus_empty(tmp
))
5766 nodemask
= node_to_cpumask(n
);
5767 cpus_and(tmp
, tmp
, nodemask
);
5768 if (cpus_empty(tmp
))
5771 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5774 "Can not alloc domain group for node %d\n", j
);
5779 cpus_or(covered
, covered
, tmp
);
5783 prev
->next
= sched_group_nodes
[i
];
5787 /* Calculate CPU power for physical packages and nodes */
5788 for_each_cpu_mask(i
, *cpu_map
) {
5790 struct sched_domain
*sd
;
5791 #ifdef CONFIG_SCHED_SMT
5792 sd
= &per_cpu(cpu_domains
, i
);
5793 power
= SCHED_LOAD_SCALE
;
5794 sd
->groups
->cpu_power
= power
;
5797 sd
= &per_cpu(phys_domains
, i
);
5798 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5799 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5800 sd
->groups
->cpu_power
= power
;
5803 sd
= &per_cpu(allnodes_domains
, i
);
5805 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5806 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5807 sd
->groups
->cpu_power
= power
;
5813 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5814 struct sched_group
*sg
= sched_group_nodes
[i
];
5820 for_each_cpu_mask(j
, sg
->cpumask
) {
5821 struct sched_domain
*sd
;
5824 sd
= &per_cpu(phys_domains
, j
);
5825 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5827 * Only add "power" once for each
5832 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5833 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5835 sg
->cpu_power
+= power
;
5838 if (sg
!= sched_group_nodes
[i
])
5843 /* Attach the domains */
5844 for_each_cpu_mask(i
, *cpu_map
) {
5845 struct sched_domain
*sd
;
5846 #ifdef CONFIG_SCHED_SMT
5847 sd
= &per_cpu(cpu_domains
, i
);
5849 sd
= &per_cpu(phys_domains
, i
);
5851 cpu_attach_domain(sd
, i
);
5854 * Tune cache-hot values:
5856 calibrate_migration_costs(cpu_map
);
5859 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5861 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5863 cpumask_t cpu_default_map
;
5866 * Setup mask for cpus without special case scheduling requirements.
5867 * For now this just excludes isolated cpus, but could be used to
5868 * exclude other special cases in the future.
5870 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5872 build_sched_domains(&cpu_default_map
);
5875 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5881 for_each_cpu_mask(cpu
, *cpu_map
) {
5882 struct sched_group
*sched_group_allnodes
5883 = sched_group_allnodes_bycpu
[cpu
];
5884 struct sched_group
**sched_group_nodes
5885 = sched_group_nodes_bycpu
[cpu
];
5887 if (sched_group_allnodes
) {
5888 kfree(sched_group_allnodes
);
5889 sched_group_allnodes_bycpu
[cpu
] = NULL
;
5892 if (!sched_group_nodes
)
5895 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5896 cpumask_t nodemask
= node_to_cpumask(i
);
5897 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5899 cpus_and(nodemask
, nodemask
, *cpu_map
);
5900 if (cpus_empty(nodemask
))
5910 if (oldsg
!= sched_group_nodes
[i
])
5913 kfree(sched_group_nodes
);
5914 sched_group_nodes_bycpu
[cpu
] = NULL
;
5920 * Detach sched domains from a group of cpus specified in cpu_map
5921 * These cpus will now be attached to the NULL domain
5923 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
5927 for_each_cpu_mask(i
, *cpu_map
)
5928 cpu_attach_domain(NULL
, i
);
5929 synchronize_sched();
5930 arch_destroy_sched_domains(cpu_map
);
5934 * Partition sched domains as specified by the cpumasks below.
5935 * This attaches all cpus from the cpumasks to the NULL domain,
5936 * waits for a RCU quiescent period, recalculates sched
5937 * domain information and then attaches them back to the
5938 * correct sched domains
5939 * Call with hotplug lock held
5941 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
5943 cpumask_t change_map
;
5945 cpus_and(*partition1
, *partition1
, cpu_online_map
);
5946 cpus_and(*partition2
, *partition2
, cpu_online_map
);
5947 cpus_or(change_map
, *partition1
, *partition2
);
5949 /* Detach sched domains from all of the affected cpus */
5950 detach_destroy_domains(&change_map
);
5951 if (!cpus_empty(*partition1
))
5952 build_sched_domains(partition1
);
5953 if (!cpus_empty(*partition2
))
5954 build_sched_domains(partition2
);
5957 #ifdef CONFIG_HOTPLUG_CPU
5959 * Force a reinitialization of the sched domains hierarchy. The domains
5960 * and groups cannot be updated in place without racing with the balancing
5961 * code, so we temporarily attach all running cpus to the NULL domain
5962 * which will prevent rebalancing while the sched domains are recalculated.
5964 static int update_sched_domains(struct notifier_block
*nfb
,
5965 unsigned long action
, void *hcpu
)
5968 case CPU_UP_PREPARE
:
5969 case CPU_DOWN_PREPARE
:
5970 detach_destroy_domains(&cpu_online_map
);
5973 case CPU_UP_CANCELED
:
5974 case CPU_DOWN_FAILED
:
5978 * Fall through and re-initialise the domains.
5985 /* The hotplug lock is already held by cpu_up/cpu_down */
5986 arch_init_sched_domains(&cpu_online_map
);
5992 void __init
sched_init_smp(void)
5995 arch_init_sched_domains(&cpu_online_map
);
5996 unlock_cpu_hotplug();
5997 /* XXX: Theoretical race here - CPU may be hotplugged now */
5998 hotcpu_notifier(update_sched_domains
, 0);
6001 void __init
sched_init_smp(void)
6004 #endif /* CONFIG_SMP */
6006 int in_sched_functions(unsigned long addr
)
6008 /* Linker adds these: start and end of __sched functions */
6009 extern char __sched_text_start
[], __sched_text_end
[];
6010 return in_lock_functions(addr
) ||
6011 (addr
>= (unsigned long)__sched_text_start
6012 && addr
< (unsigned long)__sched_text_end
);
6015 void __init
sched_init(void)
6021 prio_array_t
*array
;
6024 spin_lock_init(&rq
->lock
);
6026 rq
->active
= rq
->arrays
;
6027 rq
->expired
= rq
->arrays
+ 1;
6028 rq
->best_expired_prio
= MAX_PRIO
;
6032 for (j
= 1; j
< 3; j
++)
6033 rq
->cpu_load
[j
] = 0;
6034 rq
->active_balance
= 0;
6036 rq
->migration_thread
= NULL
;
6037 INIT_LIST_HEAD(&rq
->migration_queue
);
6039 atomic_set(&rq
->nr_iowait
, 0);
6041 for (j
= 0; j
< 2; j
++) {
6042 array
= rq
->arrays
+ j
;
6043 for (k
= 0; k
< MAX_PRIO
; k
++) {
6044 INIT_LIST_HEAD(array
->queue
+ k
);
6045 __clear_bit(k
, array
->bitmap
);
6047 // delimiter for bitsearch
6048 __set_bit(MAX_PRIO
, array
->bitmap
);
6053 * The boot idle thread does lazy MMU switching as well:
6055 atomic_inc(&init_mm
.mm_count
);
6056 enter_lazy_tlb(&init_mm
, current
);
6059 * Make us the idle thread. Technically, schedule() should not be
6060 * called from this thread, however somewhere below it might be,
6061 * but because we are the idle thread, we just pick up running again
6062 * when this runqueue becomes "idle".
6064 init_idle(current
, smp_processor_id());
6067 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6068 void __might_sleep(char *file
, int line
)
6070 #if defined(in_atomic)
6071 static unsigned long prev_jiffy
; /* ratelimiting */
6073 if ((in_atomic() || irqs_disabled()) &&
6074 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6075 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6077 prev_jiffy
= jiffies
;
6078 printk(KERN_ERR
"Debug: sleeping function called from invalid"
6079 " context at %s:%d\n", file
, line
);
6080 printk("in_atomic():%d, irqs_disabled():%d\n",
6081 in_atomic(), irqs_disabled());
6086 EXPORT_SYMBOL(__might_sleep
);
6089 #ifdef CONFIG_MAGIC_SYSRQ
6090 void normalize_rt_tasks(void)
6092 struct task_struct
*p
;
6093 prio_array_t
*array
;
6094 unsigned long flags
;
6097 read_lock_irq(&tasklist_lock
);
6098 for_each_process (p
) {
6102 rq
= task_rq_lock(p
, &flags
);
6106 deactivate_task(p
, task_rq(p
));
6107 __setscheduler(p
, SCHED_NORMAL
, 0);
6109 __activate_task(p
, task_rq(p
));
6110 resched_task(rq
->curr
);
6113 task_rq_unlock(rq
, &flags
);
6115 read_unlock_irq(&tasklist_lock
);
6118 #endif /* CONFIG_MAGIC_SYSRQ */
6122 * These functions are only useful for the IA64 MCA handling.
6124 * They can only be called when the whole system has been
6125 * stopped - every CPU needs to be quiescent, and no scheduling
6126 * activity can take place. Using them for anything else would
6127 * be a serious bug, and as a result, they aren't even visible
6128 * under any other configuration.
6132 * curr_task - return the current task for a given cpu.
6133 * @cpu: the processor in question.
6135 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6137 task_t
*curr_task(int cpu
)
6139 return cpu_curr(cpu
);
6143 * set_curr_task - set the current task for a given cpu.
6144 * @cpu: the processor in question.
6145 * @p: the task pointer to set.
6147 * Description: This function must only be used when non-maskable interrupts
6148 * are serviced on a separate stack. It allows the architecture to switch the
6149 * notion of the current task on a cpu in a non-blocking manner. This function
6150 * must be called with all CPU's synchronized, and interrupts disabled, the
6151 * and caller must save the original value of the current task (see
6152 * curr_task() above) and restore that value before reenabling interrupts and
6153 * re-starting the system.
6155 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6157 void set_curr_task(int cpu
, task_t
*p
)