2 * linux/drivers/block/as-iosched.c
4 * Anticipatory & deadline i/o scheduler.
6 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
7 * Nick Piggin <piggin@cyberone.com.au>
10 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/bio.h>
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/compiler.h>
20 #include <linux/hash.h>
21 #include <linux/rbtree.h>
22 #include <linux/interrupt.h>
28 * See Documentation/block/as-iosched.txt
32 * max time before a read is submitted.
34 #define default_read_expire (HZ / 8)
37 * ditto for writes, these limits are not hard, even
38 * if the disk is capable of satisfying them.
40 #define default_write_expire (HZ / 4)
43 * read_batch_expire describes how long we will allow a stream of reads to
44 * persist before looking to see whether it is time to switch over to writes.
46 #define default_read_batch_expire (HZ / 2)
49 * write_batch_expire describes how long we want a stream of writes to run for.
50 * This is not a hard limit, but a target we set for the auto-tuning thingy.
51 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
52 * a short amount of time...
54 #define default_write_batch_expire (HZ / 8)
57 * max time we may wait to anticipate a read (default around 6ms)
59 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
62 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
63 * however huge values tend to interfere and not decay fast enough. A program
64 * might be in a non-io phase of operation. Waiting on user input for example,
65 * or doing a lengthy computation. A small penalty can be justified there, and
66 * will still catch out those processes that constantly have large thinktimes.
68 #define MAX_THINKTIME (HZ/50UL)
70 /* Bits in as_io_context.state */
72 AS_TASK_RUNNING
=0, /* Process has not exitted */
73 AS_TASK_IOSTARTED
, /* Process has started some IO */
74 AS_TASK_IORUNNING
, /* Process has completed some IO */
77 enum anticipation_status
{
78 ANTIC_OFF
=0, /* Not anticipating (normal operation) */
79 ANTIC_WAIT_REQ
, /* The last read has not yet completed */
80 ANTIC_WAIT_NEXT
, /* Currently anticipating a request vs
81 last read (which has completed) */
82 ANTIC_FINISHED
, /* Anticipating but have found a candidate
91 struct request_queue
*q
; /* the "owner" queue */
94 * requests (as_rq s) are present on both sort_list and fifo_list
96 struct rb_root sort_list
[2];
97 struct list_head fifo_list
[2];
99 struct as_rq
*next_arq
[2]; /* next in sort order */
100 sector_t last_sector
[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
101 struct list_head
*dispatch
; /* driver dispatch queue */
102 struct list_head
*hash
; /* request hash */
104 unsigned long exit_prob
; /* probability a task will exit while
106 unsigned long new_ttime_total
; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean
;
108 u64 new_seek_total
; /* mean seek on new proc */
109 sector_t new_seek_mean
;
111 unsigned long current_batch_expires
;
112 unsigned long last_check_fifo
[2];
113 int changed_batch
; /* 1: waiting for old batch to end */
114 int new_batch
; /* 1: waiting on first read complete */
115 int batch_data_dir
; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count
; /* max # of reqs in a write batch */
117 int current_write_count
; /* how many requests left this batch */
118 int write_batch_idled
; /* has the write batch gone idle? */
121 enum anticipation_status antic_status
;
122 unsigned long antic_start
; /* jiffies: when it started */
123 struct timer_list antic_timer
; /* anticipatory scheduling timer */
124 struct work_struct antic_work
; /* Deferred unplugging */
125 struct io_context
*io_context
; /* Identify the expected process */
126 int ioc_finished
; /* IO associated with io_context is finished */
130 * settings that change how the i/o scheduler behaves
132 unsigned long fifo_expire
[2];
133 unsigned long batch_expire
[2];
134 unsigned long antic_expire
;
137 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
143 AS_RQ_NEW
=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED
, /* In the request queue. It belongs to the
146 AS_RQ_DISPATCHED
, /* On the dispatch list. It belongs to the
148 AS_RQ_PRESCHED
, /* Debug poisoning for requests being used */
151 AS_RQ_POSTSCHED
, /* when they shouldn't be */
156 * rbtree index, key is the starting offset
158 struct rb_node rb_node
;
161 struct request
*request
;
163 struct io_context
*io_context
; /* The submitting task */
166 * request hash, key is the ending offset (for back merge lookup)
168 struct list_head hash
;
169 unsigned int on_hash
;
174 struct list_head fifo
;
175 unsigned long expires
;
177 unsigned int is_sync
;
178 enum arq_state state
;
181 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
183 static kmem_cache_t
*arq_pool
;
186 * IO Context helper functions
189 /* Called to deallocate the as_io_context */
190 static void free_as_io_context(struct as_io_context
*aic
)
195 /* Called when the task exits */
196 static void exit_as_io_context(struct as_io_context
*aic
)
198 WARN_ON(!test_bit(AS_TASK_RUNNING
, &aic
->state
));
199 clear_bit(AS_TASK_RUNNING
, &aic
->state
);
202 static struct as_io_context
*alloc_as_io_context(void)
204 struct as_io_context
*ret
;
206 ret
= kmalloc(sizeof(*ret
), GFP_ATOMIC
);
208 ret
->dtor
= free_as_io_context
;
209 ret
->exit
= exit_as_io_context
;
210 ret
->state
= 1 << AS_TASK_RUNNING
;
211 atomic_set(&ret
->nr_queued
, 0);
212 atomic_set(&ret
->nr_dispatched
, 0);
213 spin_lock_init(&ret
->lock
);
214 ret
->ttime_total
= 0;
215 ret
->ttime_samples
= 0;
218 ret
->seek_samples
= 0;
226 * If the current task has no AS IO context then create one and initialise it.
227 * Then take a ref on the task's io context and return it.
229 static struct io_context
*as_get_io_context(void)
231 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
);
232 if (ioc
&& !ioc
->aic
) {
233 ioc
->aic
= alloc_as_io_context();
243 * the back merge hash support functions
245 static const int as_hash_shift
= 6;
246 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
247 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
248 #define AS_HASH_ENTRIES (1 << as_hash_shift)
249 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
250 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
252 static inline void __as_del_arq_hash(struct as_rq
*arq
)
255 list_del_init(&arq
->hash
);
258 static inline void as_del_arq_hash(struct as_rq
*arq
)
261 __as_del_arq_hash(arq
);
264 static void as_remove_merge_hints(request_queue_t
*q
, struct as_rq
*arq
)
266 as_del_arq_hash(arq
);
268 if (q
->last_merge
== arq
->request
)
269 q
->last_merge
= NULL
;
272 static void as_add_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
274 struct request
*rq
= arq
->request
;
276 BUG_ON(arq
->on_hash
);
279 list_add(&arq
->hash
, &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))]);
283 * move hot entry to front of chain
285 static inline void as_hot_arq_hash(struct as_data
*ad
, struct as_rq
*arq
)
287 struct request
*rq
= arq
->request
;
288 struct list_head
*head
= &ad
->hash
[AS_HASH_FN(rq_hash_key(rq
))];
295 if (arq
->hash
.prev
!= head
) {
296 list_del(&arq
->hash
);
297 list_add(&arq
->hash
, head
);
301 static struct request
*as_find_arq_hash(struct as_data
*ad
, sector_t offset
)
303 struct list_head
*hash_list
= &ad
->hash
[AS_HASH_FN(offset
)];
304 struct list_head
*entry
, *next
= hash_list
->next
;
306 while ((entry
= next
) != hash_list
) {
307 struct as_rq
*arq
= list_entry_hash(entry
);
308 struct request
*__rq
= arq
->request
;
312 BUG_ON(!arq
->on_hash
);
314 if (!rq_mergeable(__rq
)) {
315 as_remove_merge_hints(ad
->q
, arq
);
319 if (rq_hash_key(__rq
) == offset
)
327 * rb tree support functions
330 #define RB_EMPTY(root) ((root)->rb_node == NULL)
331 #define ON_RB(node) ((node)->rb_color != RB_NONE)
332 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
333 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
334 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
335 #define rq_rb_key(rq) (rq)->sector
338 * as_find_first_arq finds the first (lowest sector numbered) request
339 * for the specified data_dir. Used to sweep back to the start of the disk
340 * (1-way elevator) after we process the last (highest sector) request.
342 static struct as_rq
*as_find_first_arq(struct as_data
*ad
, int data_dir
)
344 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
350 if (n
->rb_left
== NULL
)
351 return rb_entry_arq(n
);
358 * Add the request to the rb tree if it is unique. If there is an alias (an
359 * existing request against the same sector), which can happen when using
360 * direct IO, then return the alias.
362 static struct as_rq
*as_add_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
364 struct rb_node
**p
= &ARQ_RB_ROOT(ad
, arq
)->rb_node
;
365 struct rb_node
*parent
= NULL
;
367 struct request
*rq
= arq
->request
;
369 arq
->rb_key
= rq_rb_key(rq
);
373 __arq
= rb_entry_arq(parent
);
375 if (arq
->rb_key
< __arq
->rb_key
)
377 else if (arq
->rb_key
> __arq
->rb_key
)
383 rb_link_node(&arq
->rb_node
, parent
, p
);
384 rb_insert_color(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
389 static inline void as_del_arq_rb(struct as_data
*ad
, struct as_rq
*arq
)
391 if (!ON_RB(&arq
->rb_node
)) {
396 rb_erase(&arq
->rb_node
, ARQ_RB_ROOT(ad
, arq
));
397 RB_CLEAR(&arq
->rb_node
);
400 static struct request
*
401 as_find_arq_rb(struct as_data
*ad
, sector_t sector
, int data_dir
)
403 struct rb_node
*n
= ad
->sort_list
[data_dir
].rb_node
;
407 arq
= rb_entry_arq(n
);
409 if (sector
< arq
->rb_key
)
411 else if (sector
> arq
->rb_key
)
421 * IO Scheduler proper
424 #define MAXBACK (1024 * 1024) /*
425 * Maximum distance the disk will go backward
429 #define BACK_PENALTY 2
432 * as_choose_req selects the preferred one of two requests of the same data_dir
433 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
435 static struct as_rq
*
436 as_choose_req(struct as_data
*ad
, struct as_rq
*arq1
, struct as_rq
*arq2
)
439 sector_t last
, s1
, s2
, d1
, d2
;
440 int r1_wrap
=0, r2_wrap
=0; /* requests are behind the disk head */
441 const sector_t maxback
= MAXBACK
;
443 if (arq1
== NULL
|| arq1
== arq2
)
448 data_dir
= arq1
->is_sync
;
450 last
= ad
->last_sector
[data_dir
];
451 s1
= arq1
->request
->sector
;
452 s2
= arq2
->request
->sector
;
454 BUG_ON(data_dir
!= arq2
->is_sync
);
457 * Strict one way elevator _except_ in the case where we allow
458 * short backward seeks which are biased as twice the cost of a
459 * similar forward seek.
463 else if (s1
+maxback
>= last
)
464 d1
= (last
- s1
)*BACK_PENALTY
;
467 d1
= 0; /* shut up, gcc */
472 else if (s2
+maxback
>= last
)
473 d2
= (last
- s2
)*BACK_PENALTY
;
479 /* Found required data */
480 if (!r1_wrap
&& r2_wrap
)
482 else if (!r2_wrap
&& r1_wrap
)
484 else if (r1_wrap
&& r2_wrap
) {
485 /* both behind the head */
492 /* Both requests in front of the head */
506 * as_find_next_arq finds the next request after @prev in elevator order.
507 * this with as_choose_req form the basis for how the scheduler chooses
508 * what request to process next. Anticipation works on top of this.
510 static struct as_rq
*as_find_next_arq(struct as_data
*ad
, struct as_rq
*last
)
512 const int data_dir
= last
->is_sync
;
514 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
515 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
516 struct as_rq
*arq_next
, *arq_prev
;
518 BUG_ON(!ON_RB(&last
->rb_node
));
521 arq_prev
= rb_entry_arq(rbprev
);
526 arq_next
= rb_entry_arq(rbnext
);
528 arq_next
= as_find_first_arq(ad
, data_dir
);
529 if (arq_next
== last
)
533 ret
= as_choose_req(ad
, arq_next
, arq_prev
);
539 * anticipatory scheduling functions follow
543 * as_antic_expired tells us when we have anticipated too long.
544 * The funny "absolute difference" math on the elapsed time is to handle
545 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
547 static int as_antic_expired(struct as_data
*ad
)
551 delta_jif
= jiffies
- ad
->antic_start
;
552 if (unlikely(delta_jif
< 0))
553 delta_jif
= -delta_jif
;
554 if (delta_jif
< ad
->antic_expire
)
561 * as_antic_waitnext starts anticipating that a nice request will soon be
562 * submitted. See also as_antic_waitreq
564 static void as_antic_waitnext(struct as_data
*ad
)
566 unsigned long timeout
;
568 BUG_ON(ad
->antic_status
!= ANTIC_OFF
569 && ad
->antic_status
!= ANTIC_WAIT_REQ
);
571 timeout
= ad
->antic_start
+ ad
->antic_expire
;
573 mod_timer(&ad
->antic_timer
, timeout
);
575 ad
->antic_status
= ANTIC_WAIT_NEXT
;
579 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
580 * until the request that we're anticipating on has finished. This means we
581 * are timing from when the candidate process wakes up hopefully.
583 static void as_antic_waitreq(struct as_data
*ad
)
585 BUG_ON(ad
->antic_status
== ANTIC_FINISHED
);
586 if (ad
->antic_status
== ANTIC_OFF
) {
587 if (!ad
->io_context
|| ad
->ioc_finished
)
588 as_antic_waitnext(ad
);
590 ad
->antic_status
= ANTIC_WAIT_REQ
;
595 * This is called directly by the functions in this file to stop anticipation.
596 * We kill the timer and schedule a call to the request_fn asap.
598 static void as_antic_stop(struct as_data
*ad
)
600 int status
= ad
->antic_status
;
602 if (status
== ANTIC_WAIT_REQ
|| status
== ANTIC_WAIT_NEXT
) {
603 if (status
== ANTIC_WAIT_NEXT
)
604 del_timer(&ad
->antic_timer
);
605 ad
->antic_status
= ANTIC_FINISHED
;
606 /* see as_work_handler */
607 kblockd_schedule_work(&ad
->antic_work
);
612 * as_antic_timeout is the timer function set by as_antic_waitnext.
614 static void as_antic_timeout(unsigned long data
)
616 struct request_queue
*q
= (struct request_queue
*)data
;
617 struct as_data
*ad
= q
->elevator
->elevator_data
;
620 spin_lock_irqsave(q
->queue_lock
, flags
);
621 if (ad
->antic_status
== ANTIC_WAIT_REQ
622 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
623 struct as_io_context
*aic
= ad
->io_context
->aic
;
625 ad
->antic_status
= ANTIC_FINISHED
;
626 kblockd_schedule_work(&ad
->antic_work
);
628 if (aic
->ttime_samples
== 0) {
629 /* process anticipated on has exitted or timed out*/
630 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
633 spin_unlock_irqrestore(q
->queue_lock
, flags
);
637 * as_close_req decides if one request is considered "close" to the
638 * previous one issued.
640 static int as_close_req(struct as_data
*ad
, struct as_rq
*arq
)
642 unsigned long delay
; /* milliseconds */
643 sector_t last
= ad
->last_sector
[ad
->batch_data_dir
];
644 sector_t next
= arq
->request
->sector
;
645 sector_t delta
; /* acceptable close offset (in sectors) */
647 if (ad
->antic_status
== ANTIC_OFF
|| !ad
->ioc_finished
)
650 delay
= ((jiffies
- ad
->antic_start
) * 1000) / HZ
;
654 else if (delay
<= 20 && delay
<= ad
->antic_expire
)
655 delta
= 64 << (delay
-1);
659 return (last
- (delta
>>1) <= next
) && (next
<= last
+ delta
);
663 * as_can_break_anticipation returns true if we have been anticipating this
666 * It also returns true if the process against which we are anticipating
667 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
668 * dispatch it ASAP, because we know that application will not be submitting
671 * If the task which has submitted the request has exitted, break anticipation.
673 * If this task has queued some other IO, do not enter enticipation.
675 static int as_can_break_anticipation(struct as_data
*ad
, struct as_rq
*arq
)
677 struct io_context
*ioc
;
678 struct as_io_context
*aic
;
681 ioc
= ad
->io_context
;
684 if (arq
&& ioc
== arq
->io_context
) {
685 /* request from same process */
689 if (ad
->ioc_finished
&& as_antic_expired(ad
)) {
691 * In this situation status should really be FINISHED,
692 * however the timer hasn't had the chance to run yet.
701 if (!test_bit(AS_TASK_RUNNING
, &aic
->state
)) {
702 /* process anticipated on has exitted */
703 if (aic
->ttime_samples
== 0)
704 ad
->exit_prob
= (7*ad
->exit_prob
+ 256)/8;
708 if (atomic_read(&aic
->nr_queued
) > 0) {
709 /* process has more requests queued */
713 if (atomic_read(&aic
->nr_dispatched
) > 0) {
714 /* process has more requests dispatched */
718 if (arq
&& arq
->is_sync
== REQ_SYNC
&& as_close_req(ad
, arq
)) {
720 * Found a close request that is not one of ours.
722 * This makes close requests from another process reset
723 * our thinktime delay. Is generally useful when there are
724 * two or more cooperating processes working in the same
727 spin_lock(&aic
->lock
);
728 aic
->last_end_request
= jiffies
;
729 spin_unlock(&aic
->lock
);
734 if (aic
->ttime_samples
== 0) {
735 if (ad
->new_ttime_mean
> ad
->antic_expire
)
737 if (ad
->exit_prob
> 128)
739 } else if (aic
->ttime_mean
> ad
->antic_expire
) {
740 /* the process thinks too much between requests */
747 if (ad
->last_sector
[REQ_SYNC
] < arq
->request
->sector
)
748 s
= arq
->request
->sector
- ad
->last_sector
[REQ_SYNC
];
750 s
= ad
->last_sector
[REQ_SYNC
] - arq
->request
->sector
;
752 if (aic
->seek_samples
== 0) {
754 * Process has just started IO. Use past statistics to
755 * guage success possibility
757 if (ad
->new_seek_mean
> s
) {
758 /* this request is better than what we're expecting */
763 if (aic
->seek_mean
> s
) {
764 /* this request is better than what we're expecting */
773 * as_can_anticipate indicates weather we should either run arq
774 * or keep anticipating a better request.
776 static int as_can_anticipate(struct as_data
*ad
, struct as_rq
*arq
)
780 * Last request submitted was a write
784 if (ad
->antic_status
== ANTIC_FINISHED
)
786 * Don't restart if we have just finished. Run the next request
790 if (as_can_break_anticipation(ad
, arq
))
792 * This request is a good candidate. Don't keep anticipating,
798 * OK from here, we haven't finished, and don't have a decent request!
799 * Status is either ANTIC_OFF so start waiting,
800 * ANTIC_WAIT_REQ so continue waiting for request to finish
801 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
808 static void as_update_thinktime(struct as_data
*ad
, struct as_io_context
*aic
, unsigned long ttime
)
810 /* fixed point: 1.0 == 1<<8 */
811 if (aic
->ttime_samples
== 0) {
812 ad
->new_ttime_total
= (7*ad
->new_ttime_total
+ 256*ttime
) / 8;
813 ad
->new_ttime_mean
= ad
->new_ttime_total
/ 256;
815 ad
->exit_prob
= (7*ad
->exit_prob
)/8;
817 aic
->ttime_samples
= (7*aic
->ttime_samples
+ 256) / 8;
818 aic
->ttime_total
= (7*aic
->ttime_total
+ 256*ttime
) / 8;
819 aic
->ttime_mean
= (aic
->ttime_total
+ 128) / aic
->ttime_samples
;
822 static void as_update_seekdist(struct as_data
*ad
, struct as_io_context
*aic
, sector_t sdist
)
826 if (aic
->seek_samples
== 0) {
827 ad
->new_seek_total
= (7*ad
->new_seek_total
+ 256*(u64
)sdist
)/8;
828 ad
->new_seek_mean
= ad
->new_seek_total
/ 256;
832 * Don't allow the seek distance to get too large from the
833 * odd fragment, pagein, etc
835 if (aic
->seek_samples
<= 60) /* second&third seek */
836 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*1024);
838 sdist
= min(sdist
, (aic
->seek_mean
* 4) + 2*1024*64);
840 aic
->seek_samples
= (7*aic
->seek_samples
+ 256) / 8;
841 aic
->seek_total
= (7*aic
->seek_total
+ (u64
)256*sdist
) / 8;
842 total
= aic
->seek_total
+ (aic
->seek_samples
/2);
843 do_div(total
, aic
->seek_samples
);
844 aic
->seek_mean
= (sector_t
)total
;
848 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
849 * updates @aic->ttime_mean based on that. It is called when a new
852 static void as_update_iohist(struct as_data
*ad
, struct as_io_context
*aic
, struct request
*rq
)
854 struct as_rq
*arq
= RQ_DATA(rq
);
855 int data_dir
= arq
->is_sync
;
856 unsigned long thinktime
;
862 if (data_dir
== REQ_SYNC
) {
863 unsigned long in_flight
= atomic_read(&aic
->nr_queued
)
864 + atomic_read(&aic
->nr_dispatched
);
865 spin_lock(&aic
->lock
);
866 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
) ||
867 test_bit(AS_TASK_IOSTARTED
, &aic
->state
)) {
868 /* Calculate read -> read thinktime */
869 if (test_bit(AS_TASK_IORUNNING
, &aic
->state
)
871 thinktime
= jiffies
- aic
->last_end_request
;
872 thinktime
= min(thinktime
, MAX_THINKTIME
-1);
875 as_update_thinktime(ad
, aic
, thinktime
);
877 /* Calculate read -> read seek distance */
878 if (aic
->last_request_pos
< rq
->sector
)
879 seek_dist
= rq
->sector
- aic
->last_request_pos
;
881 seek_dist
= aic
->last_request_pos
- rq
->sector
;
882 as_update_seekdist(ad
, aic
, seek_dist
);
884 aic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
885 set_bit(AS_TASK_IOSTARTED
, &aic
->state
);
886 spin_unlock(&aic
->lock
);
891 * as_update_arq must be called whenever a request (arq) is added to
892 * the sort_list. This function keeps caches up to date, and checks if the
893 * request might be one we are "anticipating"
895 static void as_update_arq(struct as_data
*ad
, struct as_rq
*arq
)
897 const int data_dir
= arq
->is_sync
;
899 /* keep the next_arq cache up to date */
900 ad
->next_arq
[data_dir
] = as_choose_req(ad
, arq
, ad
->next_arq
[data_dir
]);
903 * have we been anticipating this request?
904 * or does it come from the same process as the one we are anticipating
907 if (ad
->antic_status
== ANTIC_WAIT_REQ
908 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
909 if (as_can_break_anticipation(ad
, arq
))
915 * Gathers timings and resizes the write batch automatically
917 static void update_write_batch(struct as_data
*ad
)
919 unsigned long batch
= ad
->batch_expire
[REQ_ASYNC
];
922 write_time
= (jiffies
- ad
->current_batch_expires
) + batch
;
926 if (write_time
> batch
&& !ad
->write_batch_idled
) {
927 if (write_time
> batch
* 3)
928 ad
->write_batch_count
/= 2;
930 ad
->write_batch_count
--;
931 } else if (write_time
< batch
&& ad
->current_write_count
== 0) {
932 if (batch
> write_time
* 3)
933 ad
->write_batch_count
*= 2;
935 ad
->write_batch_count
++;
938 if (ad
->write_batch_count
< 1)
939 ad
->write_batch_count
= 1;
943 * as_completed_request is to be called when a request has completed and
944 * returned something to the requesting process, be it an error or data.
946 static void as_completed_request(request_queue_t
*q
, struct request
*rq
)
948 struct as_data
*ad
= q
->elevator
->elevator_data
;
949 struct as_rq
*arq
= RQ_DATA(rq
);
951 WARN_ON(!list_empty(&rq
->queuelist
));
953 if (arq
->state
== AS_RQ_PRESCHED
) {
954 WARN_ON(arq
->io_context
);
958 if (arq
->state
== AS_RQ_MERGED
)
961 if (arq
->state
!= AS_RQ_REMOVED
) {
962 printk("arq->state %d\n", arq
->state
);
967 if (!blk_fs_request(rq
))
970 if (ad
->changed_batch
&& ad
->nr_dispatched
== 1) {
971 kblockd_schedule_work(&ad
->antic_work
);
972 ad
->changed_batch
= 0;
974 if (ad
->batch_data_dir
== REQ_SYNC
)
977 WARN_ON(ad
->nr_dispatched
== 0);
981 * Start counting the batch from when a request of that direction is
982 * actually serviced. This should help devices with big TCQ windows
983 * and writeback caches
985 if (ad
->new_batch
&& ad
->batch_data_dir
== arq
->is_sync
) {
986 update_write_batch(ad
);
987 ad
->current_batch_expires
= jiffies
+
988 ad
->batch_expire
[REQ_SYNC
];
992 if (ad
->io_context
== arq
->io_context
&& ad
->io_context
) {
993 ad
->antic_start
= jiffies
;
994 ad
->ioc_finished
= 1;
995 if (ad
->antic_status
== ANTIC_WAIT_REQ
) {
997 * We were waiting on this request, now anticipate
1000 as_antic_waitnext(ad
);
1005 if (!arq
->io_context
)
1008 if (arq
->is_sync
== REQ_SYNC
) {
1009 struct as_io_context
*aic
= arq
->io_context
->aic
;
1011 spin_lock(&aic
->lock
);
1012 set_bit(AS_TASK_IORUNNING
, &aic
->state
);
1013 aic
->last_end_request
= jiffies
;
1014 spin_unlock(&aic
->lock
);
1018 put_io_context(arq
->io_context
);
1020 arq
->state
= AS_RQ_POSTSCHED
;
1024 * as_remove_queued_request removes a request from the pre dispatch queue
1025 * without updating refcounts. It is expected the caller will drop the
1026 * reference unless it replaces the request at somepart of the elevator
1027 * (ie. the dispatch queue)
1029 static void as_remove_queued_request(request_queue_t
*q
, struct request
*rq
)
1031 struct as_rq
*arq
= RQ_DATA(rq
);
1032 const int data_dir
= arq
->is_sync
;
1033 struct as_data
*ad
= q
->elevator
->elevator_data
;
1035 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1037 if (arq
->io_context
&& arq
->io_context
->aic
) {
1038 BUG_ON(!atomic_read(&arq
->io_context
->aic
->nr_queued
));
1039 atomic_dec(&arq
->io_context
->aic
->nr_queued
);
1043 * Update the "next_arq" cache if we are about to remove its
1046 if (ad
->next_arq
[data_dir
] == arq
)
1047 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1049 list_del_init(&arq
->fifo
);
1050 as_remove_merge_hints(q
, arq
);
1051 as_del_arq_rb(ad
, arq
);
1055 * as_remove_dispatched_request is called to remove a request which has gone
1056 * to the dispatch list.
1058 static void as_remove_dispatched_request(request_queue_t
*q
, struct request
*rq
)
1060 struct as_rq
*arq
= RQ_DATA(rq
);
1061 struct as_io_context
*aic
;
1068 WARN_ON(arq
->state
!= AS_RQ_DISPATCHED
);
1069 WARN_ON(ON_RB(&arq
->rb_node
));
1070 if (arq
->io_context
&& arq
->io_context
->aic
) {
1071 aic
= arq
->io_context
->aic
;
1073 WARN_ON(!atomic_read(&aic
->nr_dispatched
));
1074 atomic_dec(&aic
->nr_dispatched
);
1080 * as_remove_request is called when a driver has finished with a request.
1081 * This should be only called for dispatched requests, but for some reason
1082 * a POWER4 box running hwscan it does not.
1084 static void as_remove_request(request_queue_t
*q
, struct request
*rq
)
1086 struct as_rq
*arq
= RQ_DATA(rq
);
1088 if (unlikely(arq
->state
== AS_RQ_NEW
))
1091 if (ON_RB(&arq
->rb_node
)) {
1092 if (arq
->state
!= AS_RQ_QUEUED
) {
1093 printk("arq->state %d\n", arq
->state
);
1098 * We'll lose the aliased request(s) here. I don't think this
1099 * will ever happen, but if it does, hopefully someone will
1102 WARN_ON(!list_empty(&rq
->queuelist
));
1103 as_remove_queued_request(q
, rq
);
1105 if (arq
->state
!= AS_RQ_DISPATCHED
) {
1106 printk("arq->state %d\n", arq
->state
);
1110 as_remove_dispatched_request(q
, rq
);
1113 arq
->state
= AS_RQ_REMOVED
;
1117 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1118 * 1 otherwise. It is ratelimited so that we only perform the check once per
1119 * `fifo_expire' interval. Otherwise a large number of expired requests
1120 * would create a hopeless seekstorm.
1122 * See as_antic_expired comment.
1124 static int as_fifo_expired(struct as_data
*ad
, int adir
)
1129 delta_jif
= jiffies
- ad
->last_check_fifo
[adir
];
1130 if (unlikely(delta_jif
< 0))
1131 delta_jif
= -delta_jif
;
1132 if (delta_jif
< ad
->fifo_expire
[adir
])
1135 ad
->last_check_fifo
[adir
] = jiffies
;
1137 if (list_empty(&ad
->fifo_list
[adir
]))
1140 arq
= list_entry_fifo(ad
->fifo_list
[adir
].next
);
1142 return time_after(jiffies
, arq
->expires
);
1146 * as_batch_expired returns true if the current batch has expired. A batch
1147 * is a set of reads or a set of writes.
1149 static inline int as_batch_expired(struct as_data
*ad
)
1151 if (ad
->changed_batch
|| ad
->new_batch
)
1154 if (ad
->batch_data_dir
== REQ_SYNC
)
1155 /* TODO! add a check so a complete fifo gets written? */
1156 return time_after(jiffies
, ad
->current_batch_expires
);
1158 return time_after(jiffies
, ad
->current_batch_expires
)
1159 || ad
->current_write_count
== 0;
1163 * move an entry to dispatch queue
1165 static void as_move_to_dispatch(struct as_data
*ad
, struct as_rq
*arq
)
1167 struct request
*rq
= arq
->request
;
1168 struct list_head
*insert
;
1169 const int data_dir
= arq
->is_sync
;
1171 BUG_ON(!ON_RB(&arq
->rb_node
));
1174 ad
->antic_status
= ANTIC_OFF
;
1177 * This has to be set in order to be correctly updated by
1180 ad
->last_sector
[data_dir
] = rq
->sector
+ rq
->nr_sectors
;
1182 if (data_dir
== REQ_SYNC
) {
1183 /* In case we have to anticipate after this */
1184 copy_io_context(&ad
->io_context
, &arq
->io_context
);
1186 if (ad
->io_context
) {
1187 put_io_context(ad
->io_context
);
1188 ad
->io_context
= NULL
;
1191 if (ad
->current_write_count
!= 0)
1192 ad
->current_write_count
--;
1194 ad
->ioc_finished
= 0;
1196 ad
->next_arq
[data_dir
] = as_find_next_arq(ad
, arq
);
1199 * take it off the sort and fifo list, add to dispatch queue
1201 insert
= ad
->dispatch
->prev
;
1203 while (!list_empty(&rq
->queuelist
)) {
1204 struct request
*__rq
= list_entry_rq(rq
->queuelist
.next
);
1205 struct as_rq
*__arq
= RQ_DATA(__rq
);
1207 list_move_tail(&__rq
->queuelist
, ad
->dispatch
);
1209 if (__arq
->io_context
&& __arq
->io_context
->aic
)
1210 atomic_inc(&__arq
->io_context
->aic
->nr_dispatched
);
1212 WARN_ON(__arq
->state
!= AS_RQ_QUEUED
);
1213 __arq
->state
= AS_RQ_DISPATCHED
;
1215 ad
->nr_dispatched
++;
1218 as_remove_queued_request(ad
->q
, rq
);
1219 WARN_ON(arq
->state
!= AS_RQ_QUEUED
);
1221 list_add(&rq
->queuelist
, insert
);
1222 arq
->state
= AS_RQ_DISPATCHED
;
1223 if (arq
->io_context
&& arq
->io_context
->aic
)
1224 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1225 ad
->nr_dispatched
++;
1229 * as_dispatch_request selects the best request according to
1230 * read/write expire, batch expire, etc, and moves it to the dispatch
1231 * queue. Returns 1 if a request was found, 0 otherwise.
1233 static int as_dispatch_request(struct as_data
*ad
)
1236 const int reads
= !list_empty(&ad
->fifo_list
[REQ_SYNC
]);
1237 const int writes
= !list_empty(&ad
->fifo_list
[REQ_ASYNC
]);
1239 /* Signal that the write batch was uncontended, so we can't time it */
1240 if (ad
->batch_data_dir
== REQ_ASYNC
&& !reads
) {
1241 if (ad
->current_write_count
== 0 || !writes
)
1242 ad
->write_batch_idled
= 1;
1245 if (!(reads
|| writes
)
1246 || ad
->antic_status
== ANTIC_WAIT_REQ
1247 || ad
->antic_status
== ANTIC_WAIT_NEXT
1248 || ad
->changed_batch
)
1251 if (!(reads
&& writes
&& as_batch_expired(ad
)) ) {
1253 * batch is still running or no reads or no writes
1255 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1257 if (ad
->batch_data_dir
== REQ_SYNC
&& ad
->antic_expire
) {
1258 if (as_fifo_expired(ad
, REQ_SYNC
))
1261 if (as_can_anticipate(ad
, arq
)) {
1262 as_antic_waitreq(ad
);
1268 /* we have a "next request" */
1269 if (reads
&& !writes
)
1270 ad
->current_batch_expires
=
1271 jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1272 goto dispatch_request
;
1277 * at this point we are not running a batch. select the appropriate
1278 * data direction (read / write)
1282 BUG_ON(RB_EMPTY(&ad
->sort_list
[REQ_SYNC
]));
1284 if (writes
&& ad
->batch_data_dir
== REQ_SYNC
)
1286 * Last batch was a read, switch to writes
1288 goto dispatch_writes
;
1290 if (ad
->batch_data_dir
== REQ_ASYNC
) {
1291 WARN_ON(ad
->new_batch
);
1292 ad
->changed_batch
= 1;
1294 ad
->batch_data_dir
= REQ_SYNC
;
1295 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1296 ad
->last_check_fifo
[ad
->batch_data_dir
] = jiffies
;
1297 goto dispatch_request
;
1301 * the last batch was a read
1306 BUG_ON(RB_EMPTY(&ad
->sort_list
[REQ_ASYNC
]));
1308 if (ad
->batch_data_dir
== REQ_SYNC
) {
1309 ad
->changed_batch
= 1;
1312 * new_batch might be 1 when the queue runs out of
1313 * reads. A subsequent submission of a write might
1314 * cause a change of batch before the read is finished.
1318 ad
->batch_data_dir
= REQ_ASYNC
;
1319 ad
->current_write_count
= ad
->write_batch_count
;
1320 ad
->write_batch_idled
= 0;
1321 arq
= ad
->next_arq
[ad
->batch_data_dir
];
1322 goto dispatch_request
;
1330 * If a request has expired, service it.
1333 if (as_fifo_expired(ad
, ad
->batch_data_dir
)) {
1335 arq
= list_entry_fifo(ad
->fifo_list
[ad
->batch_data_dir
].next
);
1336 BUG_ON(arq
== NULL
);
1339 if (ad
->changed_batch
) {
1340 WARN_ON(ad
->new_batch
);
1342 if (ad
->nr_dispatched
)
1345 if (ad
->batch_data_dir
== REQ_ASYNC
)
1346 ad
->current_batch_expires
= jiffies
+
1347 ad
->batch_expire
[REQ_ASYNC
];
1351 ad
->changed_batch
= 0;
1355 * arq is the selected appropriate request.
1357 as_move_to_dispatch(ad
, arq
);
1362 static struct request
*as_next_request(request_queue_t
*q
)
1364 struct as_data
*ad
= q
->elevator
->elevator_data
;
1365 struct request
*rq
= NULL
;
1368 * if there are still requests on the dispatch queue, grab the first
1370 if (!list_empty(ad
->dispatch
) || as_dispatch_request(ad
))
1371 rq
= list_entry_rq(ad
->dispatch
->next
);
1377 * Add arq to a list behind alias
1380 as_add_aliased_request(struct as_data
*ad
, struct as_rq
*arq
, struct as_rq
*alias
)
1382 struct request
*req
= arq
->request
;
1383 struct list_head
*insert
= alias
->request
->queuelist
.prev
;
1386 * Transfer list of aliases
1388 while (!list_empty(&req
->queuelist
)) {
1389 struct request
*__rq
= list_entry_rq(req
->queuelist
.next
);
1390 struct as_rq
*__arq
= RQ_DATA(__rq
);
1392 list_move_tail(&__rq
->queuelist
, &alias
->request
->queuelist
);
1394 WARN_ON(__arq
->state
!= AS_RQ_QUEUED
);
1398 * Another request with the same start sector on the rbtree.
1399 * Link this request to that sector. They are untangled in
1400 * as_move_to_dispatch
1402 list_add(&arq
->request
->queuelist
, insert
);
1405 * Don't want to have to handle merges.
1407 as_remove_merge_hints(ad
->q
, arq
);
1411 * add arq to rbtree and fifo
1413 static void as_add_request(struct as_data
*ad
, struct as_rq
*arq
)
1415 struct as_rq
*alias
;
1418 if (rq_data_dir(arq
->request
) == READ
1419 || current
->flags
&PF_SYNCWRITE
)
1423 data_dir
= arq
->is_sync
;
1425 arq
->io_context
= as_get_io_context();
1427 if (arq
->io_context
) {
1428 as_update_iohist(ad
, arq
->io_context
->aic
, arq
->request
);
1429 atomic_inc(&arq
->io_context
->aic
->nr_queued
);
1432 alias
= as_add_arq_rb(ad
, arq
);
1435 * set expire time (only used for reads) and add to fifo list
1437 arq
->expires
= jiffies
+ ad
->fifo_expire
[data_dir
];
1438 list_add_tail(&arq
->fifo
, &ad
->fifo_list
[data_dir
]);
1440 if (rq_mergeable(arq
->request
)) {
1441 as_add_arq_hash(ad
, arq
);
1443 if (!ad
->q
->last_merge
)
1444 ad
->q
->last_merge
= arq
->request
;
1446 as_update_arq(ad
, arq
); /* keep state machine up to date */
1449 as_add_aliased_request(ad
, arq
, alias
);
1452 * have we been anticipating this request?
1453 * or does it come from the same process as the one we are
1456 if (ad
->antic_status
== ANTIC_WAIT_REQ
1457 || ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1458 if (as_can_break_anticipation(ad
, arq
))
1463 arq
->state
= AS_RQ_QUEUED
;
1466 static void as_deactivate_request(request_queue_t
*q
, struct request
*rq
)
1468 struct as_data
*ad
= q
->elevator
->elevator_data
;
1469 struct as_rq
*arq
= RQ_DATA(rq
);
1472 if (arq
->state
== AS_RQ_REMOVED
) {
1473 arq
->state
= AS_RQ_DISPATCHED
;
1474 if (arq
->io_context
&& arq
->io_context
->aic
)
1475 atomic_inc(&arq
->io_context
->aic
->nr_dispatched
);
1478 WARN_ON(blk_fs_request(rq
)
1479 && (!(rq
->flags
& (REQ_HARDBARRIER
|REQ_SOFTBARRIER
))) );
1481 /* Stop anticipating - let this request get through */
1486 * requeue the request. The request has not been completed, nor is it a
1487 * new request, so don't touch accounting.
1489 static void as_requeue_request(request_queue_t
*q
, struct request
*rq
)
1491 as_deactivate_request(q
, rq
);
1492 list_add(&rq
->queuelist
, &q
->queue_head
);
1496 * Account a request that is inserted directly onto the dispatch queue.
1497 * arq->io_context->aic->nr_dispatched should not need to be incremented
1498 * because only new requests should come through here: requeues go through
1499 * our explicit requeue handler.
1501 static void as_account_queued_request(struct as_data
*ad
, struct request
*rq
)
1503 if (blk_fs_request(rq
)) {
1504 struct as_rq
*arq
= RQ_DATA(rq
);
1505 arq
->state
= AS_RQ_DISPATCHED
;
1506 ad
->nr_dispatched
++;
1511 as_insert_request(request_queue_t
*q
, struct request
*rq
, int where
)
1513 struct as_data
*ad
= q
->elevator
->elevator_data
;
1514 struct as_rq
*arq
= RQ_DATA(rq
);
1517 if (arq
->state
!= AS_RQ_PRESCHED
) {
1518 printk("arq->state: %d\n", arq
->state
);
1521 arq
->state
= AS_RQ_NEW
;
1524 /* barriers must flush the reorder queue */
1525 if (unlikely(rq
->flags
& (REQ_SOFTBARRIER
| REQ_HARDBARRIER
)
1526 && where
== ELEVATOR_INSERT_SORT
)) {
1528 where
= ELEVATOR_INSERT_BACK
;
1532 case ELEVATOR_INSERT_BACK
:
1533 while (ad
->next_arq
[REQ_SYNC
])
1534 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_SYNC
]);
1536 while (ad
->next_arq
[REQ_ASYNC
])
1537 as_move_to_dispatch(ad
, ad
->next_arq
[REQ_ASYNC
]);
1539 list_add_tail(&rq
->queuelist
, ad
->dispatch
);
1540 as_account_queued_request(ad
, rq
);
1543 case ELEVATOR_INSERT_FRONT
:
1544 list_add(&rq
->queuelist
, ad
->dispatch
);
1545 as_account_queued_request(ad
, rq
);
1548 case ELEVATOR_INSERT_SORT
:
1549 BUG_ON(!blk_fs_request(rq
));
1550 as_add_request(ad
, arq
);
1559 * as_queue_empty tells us if there are requests left in the device. It may
1560 * not be the case that a driver can get the next request even if the queue
1561 * is not empty - it is used in the block layer to check for plugging and
1562 * merging opportunities
1564 static int as_queue_empty(request_queue_t
*q
)
1566 struct as_data
*ad
= q
->elevator
->elevator_data
;
1568 if (!list_empty(&ad
->fifo_list
[REQ_ASYNC
])
1569 || !list_empty(&ad
->fifo_list
[REQ_SYNC
])
1570 || !list_empty(ad
->dispatch
))
1576 static struct request
*
1577 as_former_request(request_queue_t
*q
, struct request
*rq
)
1579 struct as_rq
*arq
= RQ_DATA(rq
);
1580 struct rb_node
*rbprev
= rb_prev(&arq
->rb_node
);
1581 struct request
*ret
= NULL
;
1584 ret
= rb_entry_arq(rbprev
)->request
;
1589 static struct request
*
1590 as_latter_request(request_queue_t
*q
, struct request
*rq
)
1592 struct as_rq
*arq
= RQ_DATA(rq
);
1593 struct rb_node
*rbnext
= rb_next(&arq
->rb_node
);
1594 struct request
*ret
= NULL
;
1597 ret
= rb_entry_arq(rbnext
)->request
;
1603 as_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
1605 struct as_data
*ad
= q
->elevator
->elevator_data
;
1606 sector_t rb_key
= bio
->bi_sector
+ bio_sectors(bio
);
1607 struct request
*__rq
;
1611 * try last_merge to avoid going to hash
1613 ret
= elv_try_last_merge(q
, bio
);
1614 if (ret
!= ELEVATOR_NO_MERGE
) {
1615 __rq
= q
->last_merge
;
1620 * see if the merge hash can satisfy a back merge
1622 __rq
= as_find_arq_hash(ad
, bio
->bi_sector
);
1624 BUG_ON(__rq
->sector
+ __rq
->nr_sectors
!= bio
->bi_sector
);
1626 if (elv_rq_merge_ok(__rq
, bio
)) {
1627 ret
= ELEVATOR_BACK_MERGE
;
1633 * check for front merge
1635 __rq
= as_find_arq_rb(ad
, rb_key
, bio_data_dir(bio
));
1637 BUG_ON(rb_key
!= rq_rb_key(__rq
));
1639 if (elv_rq_merge_ok(__rq
, bio
)) {
1640 ret
= ELEVATOR_FRONT_MERGE
;
1645 return ELEVATOR_NO_MERGE
;
1647 if (rq_mergeable(__rq
))
1648 q
->last_merge
= __rq
;
1651 if (rq_mergeable(__rq
))
1652 as_hot_arq_hash(ad
, RQ_DATA(__rq
));
1658 static void as_merged_request(request_queue_t
*q
, struct request
*req
)
1660 struct as_data
*ad
= q
->elevator
->elevator_data
;
1661 struct as_rq
*arq
= RQ_DATA(req
);
1664 * hash always needs to be repositioned, key is end sector
1666 as_del_arq_hash(arq
);
1667 as_add_arq_hash(ad
, arq
);
1670 * if the merge was a front merge, we need to reposition request
1672 if (rq_rb_key(req
) != arq
->rb_key
) {
1673 struct as_rq
*alias
, *next_arq
= NULL
;
1675 if (ad
->next_arq
[arq
->is_sync
] == arq
)
1676 next_arq
= as_find_next_arq(ad
, arq
);
1679 * Note! We should really be moving any old aliased requests
1680 * off this request and try to insert them into the rbtree. We
1681 * currently don't bother. Ditto the next function.
1683 as_del_arq_rb(ad
, arq
);
1684 if ((alias
= as_add_arq_rb(ad
, arq
)) ) {
1685 list_del_init(&arq
->fifo
);
1686 as_add_aliased_request(ad
, arq
, alias
);
1688 ad
->next_arq
[arq
->is_sync
] = next_arq
;
1691 * Note! At this stage of this and the next function, our next
1692 * request may not be optimal - eg the request may have "grown"
1693 * behind the disk head. We currently don't bother adjusting.
1698 q
->last_merge
= req
;
1702 as_merged_requests(request_queue_t
*q
, struct request
*req
,
1703 struct request
*next
)
1705 struct as_data
*ad
= q
->elevator
->elevator_data
;
1706 struct as_rq
*arq
= RQ_DATA(req
);
1707 struct as_rq
*anext
= RQ_DATA(next
);
1713 * reposition arq (this is the merged request) in hash, and in rbtree
1714 * in case of a front merge
1716 as_del_arq_hash(arq
);
1717 as_add_arq_hash(ad
, arq
);
1719 if (rq_rb_key(req
) != arq
->rb_key
) {
1720 struct as_rq
*alias
, *next_arq
= NULL
;
1722 if (ad
->next_arq
[arq
->is_sync
] == arq
)
1723 next_arq
= as_find_next_arq(ad
, arq
);
1725 as_del_arq_rb(ad
, arq
);
1726 if ((alias
= as_add_arq_rb(ad
, arq
)) ) {
1727 list_del_init(&arq
->fifo
);
1728 as_add_aliased_request(ad
, arq
, alias
);
1730 ad
->next_arq
[arq
->is_sync
] = next_arq
;
1735 * if anext expires before arq, assign its expire time to arq
1736 * and move into anext position (anext will be deleted) in fifo
1738 if (!list_empty(&arq
->fifo
) && !list_empty(&anext
->fifo
)) {
1739 if (time_before(anext
->expires
, arq
->expires
)) {
1740 list_move(&arq
->fifo
, &anext
->fifo
);
1741 arq
->expires
= anext
->expires
;
1743 * Don't copy here but swap, because when anext is
1744 * removed below, it must contain the unused context
1746 swap_io_context(&arq
->io_context
, &anext
->io_context
);
1751 * Transfer list of aliases
1753 while (!list_empty(&next
->queuelist
)) {
1754 struct request
*__rq
= list_entry_rq(next
->queuelist
.next
);
1755 struct as_rq
*__arq
= RQ_DATA(__rq
);
1757 list_move_tail(&__rq
->queuelist
, &req
->queuelist
);
1759 WARN_ON(__arq
->state
!= AS_RQ_QUEUED
);
1763 * kill knowledge of next, this one is a goner
1765 as_remove_queued_request(q
, next
);
1767 anext
->state
= AS_RQ_MERGED
;
1771 * This is executed in a "deferred" process context, by kblockd. It calls the
1772 * driver's request_fn so the driver can submit that request.
1774 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1775 * state before calling, and don't rely on any state over calls.
1777 * FIXME! dispatch queue is not a queue at all!
1779 static void as_work_handler(void *data
)
1781 struct request_queue
*q
= data
;
1782 unsigned long flags
;
1784 spin_lock_irqsave(q
->queue_lock
, flags
);
1785 if (as_next_request(q
))
1787 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1790 static void as_put_request(request_queue_t
*q
, struct request
*rq
)
1792 struct as_data
*ad
= q
->elevator
->elevator_data
;
1793 struct as_rq
*arq
= RQ_DATA(rq
);
1800 if (arq
->state
!= AS_RQ_POSTSCHED
&& arq
->state
!= AS_RQ_PRESCHED
) {
1801 printk("arq->state %d\n", arq
->state
);
1805 mempool_free(arq
, ad
->arq_pool
);
1806 rq
->elevator_private
= NULL
;
1809 static int as_set_request(request_queue_t
*q
, struct request
*rq
, int gfp_mask
)
1811 struct as_data
*ad
= q
->elevator
->elevator_data
;
1812 struct as_rq
*arq
= mempool_alloc(ad
->arq_pool
, gfp_mask
);
1815 memset(arq
, 0, sizeof(*arq
));
1816 RB_CLEAR(&arq
->rb_node
);
1818 arq
->state
= AS_RQ_PRESCHED
;
1819 arq
->io_context
= NULL
;
1820 INIT_LIST_HEAD(&arq
->hash
);
1822 INIT_LIST_HEAD(&arq
->fifo
);
1823 rq
->elevator_private
= arq
;
1830 static int as_may_queue(request_queue_t
*q
, int rw
)
1832 int ret
= ELV_MQUEUE_MAY
;
1833 struct as_data
*ad
= q
->elevator
->elevator_data
;
1834 struct io_context
*ioc
;
1835 if (ad
->antic_status
== ANTIC_WAIT_REQ
||
1836 ad
->antic_status
== ANTIC_WAIT_NEXT
) {
1837 ioc
= as_get_io_context();
1838 if (ad
->io_context
== ioc
)
1839 ret
= ELV_MQUEUE_MUST
;
1840 put_io_context(ioc
);
1846 static void as_exit_queue(elevator_t
*e
)
1848 struct as_data
*ad
= e
->elevator_data
;
1850 del_timer_sync(&ad
->antic_timer
);
1853 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_SYNC
]));
1854 BUG_ON(!list_empty(&ad
->fifo_list
[REQ_ASYNC
]));
1856 mempool_destroy(ad
->arq_pool
);
1857 put_io_context(ad
->io_context
);
1863 * initialize elevator private data (as_data), and alloc a arq for
1864 * each request on the free lists
1866 static int as_init_queue(request_queue_t
*q
, elevator_t
*e
)
1874 ad
= kmalloc(sizeof(*ad
), GFP_KERNEL
);
1877 memset(ad
, 0, sizeof(*ad
));
1879 ad
->q
= q
; /* Identify what queue the data belongs to */
1881 ad
->hash
= kmalloc(sizeof(struct list_head
)*AS_HASH_ENTRIES
,GFP_KERNEL
);
1887 ad
->arq_pool
= mempool_create(BLKDEV_MIN_RQ
, mempool_alloc_slab
, mempool_free_slab
, arq_pool
);
1888 if (!ad
->arq_pool
) {
1894 /* anticipatory scheduling helpers */
1895 ad
->antic_timer
.function
= as_antic_timeout
;
1896 ad
->antic_timer
.data
= (unsigned long)q
;
1897 init_timer(&ad
->antic_timer
);
1898 INIT_WORK(&ad
->antic_work
, as_work_handler
, q
);
1900 for (i
= 0; i
< AS_HASH_ENTRIES
; i
++)
1901 INIT_LIST_HEAD(&ad
->hash
[i
]);
1903 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_SYNC
]);
1904 INIT_LIST_HEAD(&ad
->fifo_list
[REQ_ASYNC
]);
1905 ad
->sort_list
[REQ_SYNC
] = RB_ROOT
;
1906 ad
->sort_list
[REQ_ASYNC
] = RB_ROOT
;
1907 ad
->dispatch
= &q
->queue_head
;
1908 ad
->fifo_expire
[REQ_SYNC
] = default_read_expire
;
1909 ad
->fifo_expire
[REQ_ASYNC
] = default_write_expire
;
1910 ad
->antic_expire
= default_antic_expire
;
1911 ad
->batch_expire
[REQ_SYNC
] = default_read_batch_expire
;
1912 ad
->batch_expire
[REQ_ASYNC
] = default_write_batch_expire
;
1913 e
->elevator_data
= ad
;
1915 ad
->current_batch_expires
= jiffies
+ ad
->batch_expire
[REQ_SYNC
];
1916 ad
->write_batch_count
= ad
->batch_expire
[REQ_ASYNC
] / 10;
1917 if (ad
->write_batch_count
< 2)
1918 ad
->write_batch_count
= 2;
1926 struct as_fs_entry
{
1927 struct attribute attr
;
1928 ssize_t (*show
)(struct as_data
*, char *);
1929 ssize_t (*store
)(struct as_data
*, const char *, size_t);
1933 as_var_show(unsigned int var
, char *page
)
1935 var
= (var
* 1000) / HZ
;
1936 return sprintf(page
, "%d\n", var
);
1940 as_var_store(unsigned long *var
, const char *page
, size_t count
)
1943 char *p
= (char *) page
;
1945 tmp
= simple_strtoul(p
, &p
, 10);
1947 tmp
= (tmp
* HZ
) / 1000;
1955 static ssize_t
as_est_show(struct as_data
*ad
, char *page
)
1959 pos
+= sprintf(page
+pos
, "%lu %% exit probability\n", 100*ad
->exit_prob
/256);
1960 pos
+= sprintf(page
+pos
, "%lu ms new thinktime\n", ad
->new_ttime_mean
);
1961 pos
+= sprintf(page
+pos
, "%llu sectors new seek distance\n", (unsigned long long)ad
->new_seek_mean
);
1966 #define SHOW_FUNCTION(__FUNC, __VAR) \
1967 static ssize_t __FUNC(struct as_data *ad, char *page) \
1969 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1971 SHOW_FUNCTION(as_readexpire_show
, ad
->fifo_expire
[REQ_SYNC
]);
1972 SHOW_FUNCTION(as_writeexpire_show
, ad
->fifo_expire
[REQ_ASYNC
]);
1973 SHOW_FUNCTION(as_anticexpire_show
, ad
->antic_expire
);
1974 SHOW_FUNCTION(as_read_batchexpire_show
, ad
->batch_expire
[REQ_SYNC
]);
1975 SHOW_FUNCTION(as_write_batchexpire_show
, ad
->batch_expire
[REQ_ASYNC
]);
1976 #undef SHOW_FUNCTION
1978 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1979 static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \
1981 int ret = as_var_store(__PTR, (page), count); \
1982 if (*(__PTR) < (MIN)) \
1984 else if (*(__PTR) > (MAX)) \
1986 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1989 STORE_FUNCTION(as_readexpire_store
, &ad
->fifo_expire
[REQ_SYNC
], 0, INT_MAX
);
1990 STORE_FUNCTION(as_writeexpire_store
, &ad
->fifo_expire
[REQ_ASYNC
], 0, INT_MAX
);
1991 STORE_FUNCTION(as_anticexpire_store
, &ad
->antic_expire
, 0, INT_MAX
);
1992 STORE_FUNCTION(as_read_batchexpire_store
,
1993 &ad
->batch_expire
[REQ_SYNC
], 0, INT_MAX
);
1994 STORE_FUNCTION(as_write_batchexpire_store
,
1995 &ad
->batch_expire
[REQ_ASYNC
], 0, INT_MAX
);
1996 #undef STORE_FUNCTION
1998 static struct as_fs_entry as_est_entry
= {
1999 .attr
= {.name
= "est_time", .mode
= S_IRUGO
},
2000 .show
= as_est_show
,
2002 static struct as_fs_entry as_readexpire_entry
= {
2003 .attr
= {.name
= "read_expire", .mode
= S_IRUGO
| S_IWUSR
},
2004 .show
= as_readexpire_show
,
2005 .store
= as_readexpire_store
,
2007 static struct as_fs_entry as_writeexpire_entry
= {
2008 .attr
= {.name
= "write_expire", .mode
= S_IRUGO
| S_IWUSR
},
2009 .show
= as_writeexpire_show
,
2010 .store
= as_writeexpire_store
,
2012 static struct as_fs_entry as_anticexpire_entry
= {
2013 .attr
= {.name
= "antic_expire", .mode
= S_IRUGO
| S_IWUSR
},
2014 .show
= as_anticexpire_show
,
2015 .store
= as_anticexpire_store
,
2017 static struct as_fs_entry as_read_batchexpire_entry
= {
2018 .attr
= {.name
= "read_batch_expire", .mode
= S_IRUGO
| S_IWUSR
},
2019 .show
= as_read_batchexpire_show
,
2020 .store
= as_read_batchexpire_store
,
2022 static struct as_fs_entry as_write_batchexpire_entry
= {
2023 .attr
= {.name
= "write_batch_expire", .mode
= S_IRUGO
| S_IWUSR
},
2024 .show
= as_write_batchexpire_show
,
2025 .store
= as_write_batchexpire_store
,
2028 static struct attribute
*default_attrs
[] = {
2030 &as_readexpire_entry
.attr
,
2031 &as_writeexpire_entry
.attr
,
2032 &as_anticexpire_entry
.attr
,
2033 &as_read_batchexpire_entry
.attr
,
2034 &as_write_batchexpire_entry
.attr
,
2038 #define to_as(atr) container_of((atr), struct as_fs_entry, attr)
2041 as_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
2043 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
2044 struct as_fs_entry
*entry
= to_as(attr
);
2049 return entry
->show(e
->elevator_data
, page
);
2053 as_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
2054 const char *page
, size_t length
)
2056 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
2057 struct as_fs_entry
*entry
= to_as(attr
);
2062 return entry
->store(e
->elevator_data
, page
, length
);
2065 static struct sysfs_ops as_sysfs_ops
= {
2066 .show
= as_attr_show
,
2067 .store
= as_attr_store
,
2070 static struct kobj_type as_ktype
= {
2071 .sysfs_ops
= &as_sysfs_ops
,
2072 .default_attrs
= default_attrs
,
2075 static struct elevator_type iosched_as
= {
2077 .elevator_merge_fn
= as_merge
,
2078 .elevator_merged_fn
= as_merged_request
,
2079 .elevator_merge_req_fn
= as_merged_requests
,
2080 .elevator_next_req_fn
= as_next_request
,
2081 .elevator_add_req_fn
= as_insert_request
,
2082 .elevator_remove_req_fn
= as_remove_request
,
2083 .elevator_requeue_req_fn
= as_requeue_request
,
2084 .elevator_deactivate_req_fn
= as_deactivate_request
,
2085 .elevator_queue_empty_fn
= as_queue_empty
,
2086 .elevator_completed_req_fn
= as_completed_request
,
2087 .elevator_former_req_fn
= as_former_request
,
2088 .elevator_latter_req_fn
= as_latter_request
,
2089 .elevator_set_req_fn
= as_set_request
,
2090 .elevator_put_req_fn
= as_put_request
,
2091 .elevator_may_queue_fn
= as_may_queue
,
2092 .elevator_init_fn
= as_init_queue
,
2093 .elevator_exit_fn
= as_exit_queue
,
2096 .elevator_ktype
= &as_ktype
,
2097 .elevator_name
= "anticipatory",
2098 .elevator_owner
= THIS_MODULE
,
2101 static int __init
as_init(void)
2105 arq_pool
= kmem_cache_create("as_arq", sizeof(struct as_rq
),
2110 ret
= elv_register(&iosched_as
);
2113 * don't allow AS to get unregistered, since we would have
2114 * to browse all tasks in the system and release their
2115 * as_io_context first
2117 __module_get(THIS_MODULE
);
2121 kmem_cache_destroy(arq_pool
);
2125 static void __exit
as_exit(void)
2127 kmem_cache_destroy(arq_pool
);
2128 elv_unregister(&iosched_as
);
2131 module_init(as_init
);
2132 module_exit(as_exit
);
2134 MODULE_AUTHOR("Nick Piggin");
2135 MODULE_LICENSE("GPL");
2136 MODULE_DESCRIPTION("anticipatory IO scheduler");