[TG3]: Add tagged status support.
[linux-2.6/verdex.git] / drivers / net / sk98lin / skge.c
blob05b827f79f54a247232dc4280bebd12930595a28
1 /******************************************************************************
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
9 ******************************************************************************/
11 /******************************************************************************
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
24 * Address all question to: linux@syskonnect.de
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
35 * The information in this file is provided "AS IS" without warranty.
37 ******************************************************************************/
39 /******************************************************************************
41 * Possible compiler options (#define xxx / -Dxxx):
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
46 ******************************************************************************/
48 /******************************************************************************
50 * Description:
52 * This is the main module of the Linux GE driver.
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
62 * Include file hierarchy:
64 * <linux/module.h>
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skcsum.h"
105 * "h/skrlmt.h"
107 ******************************************************************************/
109 #include "h/skversion.h"
111 #include <linux/module.h>
112 #include <linux/moduleparam.h>
113 #include <linux/init.h>
114 #include <linux/proc_fs.h>
116 #include "h/skdrv1st.h"
117 #include "h/skdrv2nd.h"
119 /*******************************************************************************
121 * Defines
123 ******************************************************************************/
125 /* for debuging on x86 only */
126 /* #define BREAKPOINT() asm(" int $3"); */
128 /* use the transmit hw checksum driver functionality */
129 #define USE_SK_TX_CHECKSUM
131 /* use the receive hw checksum driver functionality */
132 #define USE_SK_RX_CHECKSUM
134 /* use the scatter-gather functionality with sendfile() */
135 #define SK_ZEROCOPY
137 /* use of a transmit complete interrupt */
138 #define USE_TX_COMPLETE
141 * threshold for copying small receive frames
142 * set to 0 to avoid copying, set to 9001 to copy all frames
144 #define SK_COPY_THRESHOLD 50
146 /* number of adapters that can be configured via command line params */
147 #define SK_MAX_CARD_PARAM 16
152 * use those defines for a compile-in version of the driver instead
153 * of command line parameters
155 // #define LINK_SPEED_A {"Auto", }
156 // #define LINK_SPEED_B {"Auto", }
157 // #define AUTO_NEG_A {"Sense", }
158 // #define AUTO_NEG_B {"Sense", }
159 // #define DUP_CAP_A {"Both", }
160 // #define DUP_CAP_B {"Both", }
161 // #define FLOW_CTRL_A {"SymOrRem", }
162 // #define FLOW_CTRL_B {"SymOrRem", }
163 // #define ROLE_A {"Auto", }
164 // #define ROLE_B {"Auto", }
165 // #define PREF_PORT {"A", }
166 // #define CON_TYPE {"Auto", }
167 // #define RLMT_MODE {"CheckLinkState", }
169 #define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
170 #define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
171 #define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
174 /* Set blink mode*/
175 #define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
176 SK_DUP_LED_NORMAL | \
177 SK_LED_LINK100_ON)
180 /* Isr return value */
181 #define SkIsrRetVar irqreturn_t
182 #define SkIsrRetNone IRQ_NONE
183 #define SkIsrRetHandled IRQ_HANDLED
186 /*******************************************************************************
188 * Local Function Prototypes
190 ******************************************************************************/
192 static void FreeResources(struct SK_NET_DEVICE *dev);
193 static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
194 static SK_BOOL BoardAllocMem(SK_AC *pAC);
195 static void BoardFreeMem(SK_AC *pAC);
196 static void BoardInitMem(SK_AC *pAC);
197 static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
198 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
199 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
200 static int SkGeOpen(struct SK_NET_DEVICE *dev);
201 static int SkGeClose(struct SK_NET_DEVICE *dev);
202 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
203 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
204 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
205 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
206 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
207 static void GetConfiguration(SK_AC*);
208 static void ProductStr(SK_AC*);
209 static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
210 static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
211 static void FillRxRing(SK_AC*, RX_PORT*);
212 static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
213 static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
214 static void ClearAndStartRx(SK_AC*, int);
215 static void ClearTxIrq(SK_AC*, int, int);
216 static void ClearRxRing(SK_AC*, RX_PORT*);
217 static void ClearTxRing(SK_AC*, TX_PORT*);
218 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
219 static void PortReInitBmu(SK_AC*, int);
220 static int SkGeIocMib(DEV_NET*, unsigned int, int);
221 static int SkGeInitPCI(SK_AC *pAC);
222 static void StartDrvCleanupTimer(SK_AC *pAC);
223 static void StopDrvCleanupTimer(SK_AC *pAC);
224 static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
226 #ifdef SK_DIAG_SUPPORT
227 static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
228 static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
229 static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
230 #endif
232 /*******************************************************************************
234 * Extern Function Prototypes
236 ******************************************************************************/
237 static const char SKRootName[] = "sk98lin";
238 static struct proc_dir_entry *pSkRootDir;
239 extern struct file_operations sk_proc_fops;
241 static inline void SkGeProcCreate(struct net_device *dev)
243 struct proc_dir_entry *pe;
245 if (pSkRootDir &&
246 (pe = create_proc_entry(dev->name, S_IRUGO, pSkRootDir))) {
247 pe->proc_fops = &sk_proc_fops;
248 pe->data = dev;
249 pe->owner = THIS_MODULE;
253 static inline void SkGeProcRemove(struct net_device *dev)
255 if (pSkRootDir)
256 remove_proc_entry(dev->name, pSkRootDir);
259 extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
260 extern void SkDimDisplayModerationSettings(SK_AC *pAC);
261 extern void SkDimStartModerationTimer(SK_AC *pAC);
262 extern void SkDimModerate(SK_AC *pAC);
263 extern void SkGeBlinkTimer(unsigned long data);
265 #ifdef DEBUG
266 static void DumpMsg(struct sk_buff*, char*);
267 static void DumpData(char*, int);
268 static void DumpLong(char*, int);
269 #endif
271 /* global variables *********************************************************/
272 static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
273 extern struct ethtool_ops SkGeEthtoolOps;
275 /* local variables **********************************************************/
276 static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
277 static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
279 /*****************************************************************************
281 * SkGeInitPCI - Init the PCI resources
283 * Description:
284 * This function initialize the PCI resources and IO
286 * Returns: N/A
289 int SkGeInitPCI(SK_AC *pAC)
291 struct SK_NET_DEVICE *dev = pAC->dev[0];
292 struct pci_dev *pdev = pAC->PciDev;
293 int retval;
295 if (pci_enable_device(pdev) != 0) {
296 return 1;
299 dev->mem_start = pci_resource_start (pdev, 0);
300 pci_set_master(pdev);
302 if (pci_request_regions(pdev, pAC->Name) != 0) {
303 retval = 2;
304 goto out_disable;
307 #ifdef SK_BIG_ENDIAN
309 * On big endian machines, we use the adapter's aibility of
310 * reading the descriptors as big endian.
313 SK_U32 our2;
314 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
315 our2 |= PCI_REV_DESC;
316 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
318 #endif
321 * Remap the regs into kernel space.
323 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
325 if (!pAC->IoBase){
326 retval = 3;
327 goto out_release;
330 return 0;
332 out_release:
333 pci_release_regions(pdev);
334 out_disable:
335 pci_disable_device(pdev);
336 return retval;
340 /*****************************************************************************
342 * FreeResources - release resources allocated for adapter
344 * Description:
345 * This function releases the IRQ, unmaps the IO and
346 * frees the desriptor ring.
348 * Returns: N/A
351 static void FreeResources(struct SK_NET_DEVICE *dev)
353 SK_U32 AllocFlag;
354 DEV_NET *pNet;
355 SK_AC *pAC;
357 pNet = netdev_priv(dev);
358 pAC = pNet->pAC;
359 AllocFlag = pAC->AllocFlag;
360 if (pAC->PciDev) {
361 pci_release_regions(pAC->PciDev);
363 if (AllocFlag & SK_ALLOC_IRQ) {
364 free_irq(dev->irq, dev);
366 if (pAC->IoBase) {
367 iounmap(pAC->IoBase);
369 if (pAC->pDescrMem) {
370 BoardFreeMem(pAC);
373 } /* FreeResources */
375 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
376 MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
377 MODULE_LICENSE("GPL");
379 #ifdef LINK_SPEED_A
380 static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
381 #else
382 static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
383 #endif
385 #ifdef LINK_SPEED_B
386 static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
387 #else
388 static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
389 #endif
391 #ifdef AUTO_NEG_A
392 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
393 #else
394 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
395 #endif
397 #ifdef DUP_CAP_A
398 static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
399 #else
400 static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
401 #endif
403 #ifdef FLOW_CTRL_A
404 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
405 #else
406 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
407 #endif
409 #ifdef ROLE_A
410 static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
411 #else
412 static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
413 #endif
415 #ifdef AUTO_NEG_B
416 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
417 #else
418 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
419 #endif
421 #ifdef DUP_CAP_B
422 static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
423 #else
424 static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
425 #endif
427 #ifdef FLOW_CTRL_B
428 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
429 #else
430 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
431 #endif
433 #ifdef ROLE_B
434 static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
435 #else
436 static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
437 #endif
439 #ifdef CON_TYPE
440 static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
441 #else
442 static char *ConType[SK_MAX_CARD_PARAM] = {"", };
443 #endif
445 #ifdef PREF_PORT
446 static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
447 #else
448 static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
449 #endif
451 #ifdef RLMT_MODE
452 static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
453 #else
454 static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
455 #endif
457 static int IntsPerSec[SK_MAX_CARD_PARAM];
458 static char *Moderation[SK_MAX_CARD_PARAM];
459 static char *ModerationMask[SK_MAX_CARD_PARAM];
460 static char *AutoSizing[SK_MAX_CARD_PARAM];
461 static char *Stats[SK_MAX_CARD_PARAM];
463 module_param_array(Speed_A, charp, NULL, 0);
464 module_param_array(Speed_B, charp, NULL, 0);
465 module_param_array(AutoNeg_A, charp, NULL, 0);
466 module_param_array(AutoNeg_B, charp, NULL, 0);
467 module_param_array(DupCap_A, charp, NULL, 0);
468 module_param_array(DupCap_B, charp, NULL, 0);
469 module_param_array(FlowCtrl_A, charp, NULL, 0);
470 module_param_array(FlowCtrl_B, charp, NULL, 0);
471 module_param_array(Role_A, charp, NULL, 0);
472 module_param_array(Role_B, charp, NULL, 0);
473 module_param_array(ConType, charp, NULL, 0);
474 module_param_array(PrefPort, charp, NULL, 0);
475 module_param_array(RlmtMode, charp, NULL, 0);
476 /* used for interrupt moderation */
477 module_param_array(IntsPerSec, int, NULL, 0);
478 module_param_array(Moderation, charp, NULL, 0);
479 module_param_array(Stats, charp, NULL, 0);
480 module_param_array(ModerationMask, charp, NULL, 0);
481 module_param_array(AutoSizing, charp, NULL, 0);
483 /*****************************************************************************
485 * SkGeBoardInit - do level 0 and 1 initialization
487 * Description:
488 * This function prepares the board hardware for running. The desriptor
489 * ring is set up, the IRQ is allocated and the configuration settings
490 * are examined.
492 * Returns:
493 * 0, if everything is ok
494 * !=0, on error
496 static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
498 short i;
499 unsigned long Flags;
500 char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
501 char *VerStr = VER_STRING;
502 int Ret; /* return code of request_irq */
503 SK_BOOL DualNet;
505 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
506 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
507 for (i=0; i<SK_MAX_MACS; i++) {
508 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
509 pAC->TxPort[i][0].PortIndex = i;
510 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
511 pAC->RxPort[i].PortIndex = i;
514 /* Initialize the mutexes */
515 for (i=0; i<SK_MAX_MACS; i++) {
516 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
517 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
519 spin_lock_init(&pAC->SlowPathLock);
521 /* setup phy_id blink timer */
522 pAC->BlinkTimer.function = SkGeBlinkTimer;
523 pAC->BlinkTimer.data = (unsigned long) dev;
524 init_timer(&pAC->BlinkTimer);
526 /* level 0 init common modules here */
528 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
529 /* Does a RESET on board ...*/
530 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
531 printk("HWInit (0) failed.\n");
532 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
533 return(-EAGAIN);
535 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
536 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
537 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
538 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
539 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
540 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
542 pAC->BoardLevel = SK_INIT_DATA;
543 pAC->RxBufSize = ETH_BUF_SIZE;
545 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
546 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
548 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
550 /* level 1 init common modules here (HW init) */
551 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
552 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
553 printk("sk98lin: HWInit (1) failed.\n");
554 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
555 return(-EAGAIN);
557 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
558 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
559 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
560 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
561 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
562 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
564 /* Set chipset type support */
565 pAC->ChipsetType = 0;
566 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
567 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
568 pAC->ChipsetType = 1;
571 GetConfiguration(pAC);
572 if (pAC->RlmtNets == 2) {
573 pAC->GIni.GIPortUsage = SK_MUL_LINK;
576 pAC->BoardLevel = SK_INIT_IO;
577 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
579 if (pAC->GIni.GIMacsFound == 2) {
580 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
581 } else if (pAC->GIni.GIMacsFound == 1) {
582 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
583 pAC->Name, dev);
584 } else {
585 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
586 pAC->GIni.GIMacsFound);
587 return -EAGAIN;
590 if (Ret) {
591 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
592 dev->irq);
593 return -EAGAIN;
595 pAC->AllocFlag |= SK_ALLOC_IRQ;
597 /* Alloc memory for this board (Mem for RxD/TxD) : */
598 if(!BoardAllocMem(pAC)) {
599 printk("No memory for descriptor rings.\n");
600 return(-EAGAIN);
603 SkCsSetReceiveFlags(pAC,
604 SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
605 &pAC->CsOfs1, &pAC->CsOfs2, 0);
606 pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
608 BoardInitMem(pAC);
609 /* tschilling: New common function with minimum size check. */
610 DualNet = SK_FALSE;
611 if (pAC->RlmtNets == 2) {
612 DualNet = SK_TRUE;
615 if (SkGeInitAssignRamToQueues(
616 pAC,
617 pAC->ActivePort,
618 DualNet)) {
619 BoardFreeMem(pAC);
620 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
621 return(-EAGAIN);
624 return (0);
625 } /* SkGeBoardInit */
628 /*****************************************************************************
630 * BoardAllocMem - allocate the memory for the descriptor rings
632 * Description:
633 * This function allocates the memory for all descriptor rings.
634 * Each ring is aligned for the desriptor alignment and no ring
635 * has a 4 GByte boundary in it (because the upper 32 bit must
636 * be constant for all descriptiors in one rings).
638 * Returns:
639 * SK_TRUE, if all memory could be allocated
640 * SK_FALSE, if not
642 static SK_BOOL BoardAllocMem(
643 SK_AC *pAC)
645 caddr_t pDescrMem; /* pointer to descriptor memory area */
646 size_t AllocLength; /* length of complete descriptor area */
647 int i; /* loop counter */
648 unsigned long BusAddr;
651 /* rings plus one for alignment (do not cross 4 GB boundary) */
652 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
653 #if (BITS_PER_LONG == 32)
654 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
655 #else
656 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
657 + RX_RING_SIZE + 8;
658 #endif
660 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
661 &pAC->pDescrMemDMA);
663 if (pDescrMem == NULL) {
664 return (SK_FALSE);
666 pAC->pDescrMem = pDescrMem;
667 BusAddr = (unsigned long) pAC->pDescrMemDMA;
669 /* Descriptors need 8 byte alignment, and this is ensured
670 * by pci_alloc_consistent.
672 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
673 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
674 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
675 i, (unsigned long) pDescrMem,
676 BusAddr));
677 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
678 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
679 pDescrMem += TX_RING_SIZE;
680 BusAddr += TX_RING_SIZE;
682 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
683 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
684 i, (unsigned long) pDescrMem,
685 (unsigned long)BusAddr));
686 pAC->RxPort[i].pRxDescrRing = pDescrMem;
687 pAC->RxPort[i].VRxDescrRing = BusAddr;
688 pDescrMem += RX_RING_SIZE;
689 BusAddr += RX_RING_SIZE;
690 } /* for */
692 return (SK_TRUE);
693 } /* BoardAllocMem */
696 /****************************************************************************
698 * BoardFreeMem - reverse of BoardAllocMem
700 * Description:
701 * Free all memory allocated in BoardAllocMem: adapter context,
702 * descriptor rings, locks.
704 * Returns: N/A
706 static void BoardFreeMem(
707 SK_AC *pAC)
709 size_t AllocLength; /* length of complete descriptor area */
711 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
712 ("BoardFreeMem\n"));
713 #if (BITS_PER_LONG == 32)
714 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
715 #else
716 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
717 + RX_RING_SIZE + 8;
718 #endif
720 pci_free_consistent(pAC->PciDev, AllocLength,
721 pAC->pDescrMem, pAC->pDescrMemDMA);
722 pAC->pDescrMem = NULL;
723 } /* BoardFreeMem */
726 /*****************************************************************************
728 * BoardInitMem - initiate the descriptor rings
730 * Description:
731 * This function sets the descriptor rings up in memory.
732 * The adapter is initialized with the descriptor start addresses.
734 * Returns: N/A
736 static void BoardInitMem(
737 SK_AC *pAC) /* pointer to adapter context */
739 int i; /* loop counter */
740 int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
741 int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
743 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
744 ("BoardInitMem\n"));
746 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
747 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
748 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
749 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
751 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
752 SetupRing(
753 pAC,
754 pAC->TxPort[i][0].pTxDescrRing,
755 pAC->TxPort[i][0].VTxDescrRing,
756 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
757 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
758 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
759 &pAC->TxPort[i][0].TxdRingFree,
760 SK_TRUE);
761 SetupRing(
762 pAC,
763 pAC->RxPort[i].pRxDescrRing,
764 pAC->RxPort[i].VRxDescrRing,
765 &pAC->RxPort[i].pRxdRingHead,
766 &pAC->RxPort[i].pRxdRingTail,
767 &pAC->RxPort[i].pRxdRingPrev,
768 &pAC->RxPort[i].RxdRingFree,
769 SK_FALSE);
771 } /* BoardInitMem */
774 /*****************************************************************************
776 * SetupRing - create one descriptor ring
778 * Description:
779 * This function creates one descriptor ring in the given memory area.
780 * The head, tail and number of free descriptors in the ring are set.
782 * Returns:
783 * none
785 static void SetupRing(
786 SK_AC *pAC,
787 void *pMemArea, /* a pointer to the memory area for the ring */
788 uintptr_t VMemArea, /* the virtual bus address of the memory area */
789 RXD **ppRingHead, /* address where the head should be written */
790 RXD **ppRingTail, /* address where the tail should be written */
791 RXD **ppRingPrev, /* address where the tail should be written */
792 int *pRingFree, /* address where the # of free descr. goes */
793 SK_BOOL IsTx) /* flag: is this a tx ring */
795 int i; /* loop counter */
796 int DescrSize; /* the size of a descriptor rounded up to alignment*/
797 int DescrNum; /* number of descriptors per ring */
798 RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
799 RXD *pNextDescr; /* pointer to the next descriptor */
800 RXD *pPrevDescr; /* pointer to the previous descriptor */
801 uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
803 if (IsTx == SK_TRUE) {
804 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
805 DESCR_ALIGN;
806 DescrNum = TX_RING_SIZE / DescrSize;
807 } else {
808 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
809 DESCR_ALIGN;
810 DescrNum = RX_RING_SIZE / DescrSize;
813 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
814 ("Descriptor size: %d Descriptor Number: %d\n",
815 DescrSize,DescrNum));
817 pDescr = (RXD*) pMemArea;
818 pPrevDescr = NULL;
819 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
820 VNextDescr = VMemArea + DescrSize;
821 for(i=0; i<DescrNum; i++) {
822 /* set the pointers right */
823 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
824 pDescr->pNextRxd = pNextDescr;
825 pDescr->TcpSumStarts = pAC->CsOfs;
827 /* advance one step */
828 pPrevDescr = pDescr;
829 pDescr = pNextDescr;
830 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
831 VNextDescr += DescrSize;
833 pPrevDescr->pNextRxd = (RXD*) pMemArea;
834 pPrevDescr->VNextRxd = VMemArea;
835 pDescr = (RXD*) pMemArea;
836 *ppRingHead = (RXD*) pMemArea;
837 *ppRingTail = *ppRingHead;
838 *ppRingPrev = pPrevDescr;
839 *pRingFree = DescrNum;
840 } /* SetupRing */
843 /*****************************************************************************
845 * PortReInitBmu - re-initiate the descriptor rings for one port
847 * Description:
848 * This function reinitializes the descriptor rings of one port
849 * in memory. The port must be stopped before.
850 * The HW is initialized with the descriptor start addresses.
852 * Returns:
853 * none
855 static void PortReInitBmu(
856 SK_AC *pAC, /* pointer to adapter context */
857 int PortIndex) /* index of the port for which to re-init */
859 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
860 ("PortReInitBmu "));
862 /* set address of first descriptor of ring in BMU */
863 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
864 (uint32_t)(((caddr_t)
865 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
866 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
867 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
868 0xFFFFFFFF));
869 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
870 (uint32_t)(((caddr_t)
871 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
872 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
873 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
874 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
875 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
876 pAC->RxPort[PortIndex].pRxDescrRing +
877 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
878 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
879 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
880 pAC->RxPort[PortIndex].pRxDescrRing +
881 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
882 } /* PortReInitBmu */
885 /****************************************************************************
887 * SkGeIsr - handle adapter interrupts
889 * Description:
890 * The interrupt routine is called when the network adapter
891 * generates an interrupt. It may also be called if another device
892 * shares this interrupt vector with the driver.
894 * Returns: N/A
897 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
899 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
900 DEV_NET *pNet;
901 SK_AC *pAC;
902 SK_U32 IntSrc; /* interrupts source register contents */
904 pNet = netdev_priv(dev);
905 pAC = pNet->pAC;
908 * Check and process if its our interrupt
910 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
911 if (IntSrc == 0) {
912 return SkIsrRetNone;
915 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
916 #if 0 /* software irq currently not used */
917 if (IntSrc & IS_IRQ_SW) {
918 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
919 SK_DBGCAT_DRV_INT_SRC,
920 ("Software IRQ\n"));
922 #endif
923 if (IntSrc & IS_R1_F) {
924 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
925 SK_DBGCAT_DRV_INT_SRC,
926 ("EOF RX1 IRQ\n"));
927 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
928 SK_PNMI_CNT_RX_INTR(pAC, 0);
930 if (IntSrc & IS_R2_F) {
931 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
932 SK_DBGCAT_DRV_INT_SRC,
933 ("EOF RX2 IRQ\n"));
934 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
935 SK_PNMI_CNT_RX_INTR(pAC, 1);
937 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
938 if (IntSrc & IS_XA1_F) {
939 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
940 SK_DBGCAT_DRV_INT_SRC,
941 ("EOF AS TX1 IRQ\n"));
942 SK_PNMI_CNT_TX_INTR(pAC, 0);
943 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
944 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
945 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
947 if (IntSrc & IS_XA2_F) {
948 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
949 SK_DBGCAT_DRV_INT_SRC,
950 ("EOF AS TX2 IRQ\n"));
951 SK_PNMI_CNT_TX_INTR(pAC, 1);
952 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
953 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
954 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
956 #if 0 /* only if sync. queues used */
957 if (IntSrc & IS_XS1_F) {
958 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
959 SK_DBGCAT_DRV_INT_SRC,
960 ("EOF SY TX1 IRQ\n"));
961 SK_PNMI_CNT_TX_INTR(pAC, 1);
962 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
963 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
964 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
965 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
967 if (IntSrc & IS_XS2_F) {
968 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
969 SK_DBGCAT_DRV_INT_SRC,
970 ("EOF SY TX2 IRQ\n"));
971 SK_PNMI_CNT_TX_INTR(pAC, 1);
972 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
973 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
974 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
975 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
977 #endif
978 #endif
980 /* do all IO at once */
981 if (IntSrc & IS_R1_F)
982 ClearAndStartRx(pAC, 0);
983 if (IntSrc & IS_R2_F)
984 ClearAndStartRx(pAC, 1);
985 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
986 if (IntSrc & IS_XA1_F)
987 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
988 if (IntSrc & IS_XA2_F)
989 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
990 #endif
991 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
992 } /* while (IntSrc & IRQ_MASK != 0) */
994 IntSrc &= pAC->GIni.GIValIrqMask;
995 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
996 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
997 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
998 pAC->CheckQueue = SK_FALSE;
999 spin_lock(&pAC->SlowPathLock);
1000 if (IntSrc & SPECIAL_IRQS)
1001 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1003 SkEventDispatcher(pAC, pAC->IoBase);
1004 spin_unlock(&pAC->SlowPathLock);
1007 * do it all again is case we cleared an interrupt that
1008 * came in after handling the ring (OUTs may be delayed
1009 * in hardware buffers, but are through after IN)
1011 * rroesler: has been commented out and shifted to
1012 * SkGeDrvEvent(), because it is timer
1013 * guarded now
1015 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1016 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1019 if (pAC->CheckQueue) {
1020 pAC->CheckQueue = SK_FALSE;
1021 spin_lock(&pAC->SlowPathLock);
1022 SkEventDispatcher(pAC, pAC->IoBase);
1023 spin_unlock(&pAC->SlowPathLock);
1026 /* IRQ is processed - Enable IRQs again*/
1027 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1029 return SkIsrRetHandled;
1030 } /* SkGeIsr */
1033 /****************************************************************************
1035 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1037 * Description:
1038 * The interrupt routine is called when the network adapter
1039 * generates an interrupt. It may also be called if another device
1040 * shares this interrupt vector with the driver.
1041 * This is the same as above, but handles only one port.
1043 * Returns: N/A
1046 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1048 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1049 DEV_NET *pNet;
1050 SK_AC *pAC;
1051 SK_U32 IntSrc; /* interrupts source register contents */
1053 pNet = netdev_priv(dev);
1054 pAC = pNet->pAC;
1057 * Check and process if its our interrupt
1059 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1060 if (IntSrc == 0) {
1061 return SkIsrRetNone;
1064 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1065 #if 0 /* software irq currently not used */
1066 if (IntSrc & IS_IRQ_SW) {
1067 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1068 SK_DBGCAT_DRV_INT_SRC,
1069 ("Software IRQ\n"));
1071 #endif
1072 if (IntSrc & IS_R1_F) {
1073 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1074 SK_DBGCAT_DRV_INT_SRC,
1075 ("EOF RX1 IRQ\n"));
1076 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1077 SK_PNMI_CNT_RX_INTR(pAC, 0);
1079 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1080 if (IntSrc & IS_XA1_F) {
1081 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1082 SK_DBGCAT_DRV_INT_SRC,
1083 ("EOF AS TX1 IRQ\n"));
1084 SK_PNMI_CNT_TX_INTR(pAC, 0);
1085 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1086 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1087 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1089 #if 0 /* only if sync. queues used */
1090 if (IntSrc & IS_XS1_F) {
1091 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1092 SK_DBGCAT_DRV_INT_SRC,
1093 ("EOF SY TX1 IRQ\n"));
1094 SK_PNMI_CNT_TX_INTR(pAC, 0);
1095 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1096 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1097 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1098 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1100 #endif
1101 #endif
1103 /* do all IO at once */
1104 if (IntSrc & IS_R1_F)
1105 ClearAndStartRx(pAC, 0);
1106 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1107 if (IntSrc & IS_XA1_F)
1108 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1109 #endif
1110 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1111 } /* while (IntSrc & IRQ_MASK != 0) */
1113 IntSrc &= pAC->GIni.GIValIrqMask;
1114 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1115 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1116 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1117 pAC->CheckQueue = SK_FALSE;
1118 spin_lock(&pAC->SlowPathLock);
1119 if (IntSrc & SPECIAL_IRQS)
1120 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1122 SkEventDispatcher(pAC, pAC->IoBase);
1123 spin_unlock(&pAC->SlowPathLock);
1126 * do it all again is case we cleared an interrupt that
1127 * came in after handling the ring (OUTs may be delayed
1128 * in hardware buffers, but are through after IN)
1130 * rroesler: has been commented out and shifted to
1131 * SkGeDrvEvent(), because it is timer
1132 * guarded now
1134 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1137 /* IRQ is processed - Enable IRQs again*/
1138 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1140 return SkIsrRetHandled;
1141 } /* SkGeIsrOnePort */
1143 #ifdef CONFIG_NET_POLL_CONTROLLER
1144 /****************************************************************************
1146 * SkGePollController - polling receive, for netconsole
1148 * Description:
1149 * Polling receive - used by netconsole and other diagnostic tools
1150 * to allow network i/o with interrupts disabled.
1152 * Returns: N/A
1154 static void SkGePollController(struct net_device *dev)
1156 disable_irq(dev->irq);
1157 SkGeIsr(dev->irq, dev, NULL);
1158 enable_irq(dev->irq);
1160 #endif
1162 /****************************************************************************
1164 * SkGeOpen - handle start of initialized adapter
1166 * Description:
1167 * This function starts the initialized adapter.
1168 * The board level variable is set and the adapter is
1169 * brought to full functionality.
1170 * The device flags are set for operation.
1171 * Do all necessary level 2 initialization, enable interrupts and
1172 * give start command to RLMT.
1174 * Returns:
1175 * 0 on success
1176 * != 0 on error
1178 static int SkGeOpen(
1179 struct SK_NET_DEVICE *dev)
1181 DEV_NET *pNet;
1182 SK_AC *pAC;
1183 unsigned long Flags; /* for spin lock */
1184 int i;
1185 SK_EVPARA EvPara; /* an event parameter union */
1187 pNet = netdev_priv(dev);
1188 pAC = pNet->pAC;
1190 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1191 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1193 #ifdef SK_DIAG_SUPPORT
1194 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1195 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1196 return (-1); /* still in use by diag; deny actions */
1199 #endif
1201 /* Set blink mode */
1202 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1203 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1205 if (pAC->BoardLevel == SK_INIT_DATA) {
1206 /* level 1 init common modules here */
1207 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1208 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1209 return (-1);
1211 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1212 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1213 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1214 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1215 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1216 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1217 pAC->BoardLevel = SK_INIT_IO;
1220 if (pAC->BoardLevel != SK_INIT_RUN) {
1221 /* tschilling: Level 2 init modules here, check return value. */
1222 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1223 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1224 return (-1);
1226 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1227 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1228 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1229 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1230 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1231 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1232 pAC->BoardLevel = SK_INIT_RUN;
1235 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1236 /* Enable transmit descriptor polling. */
1237 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1238 FillRxRing(pAC, &pAC->RxPort[i]);
1240 SkGeYellowLED(pAC, pAC->IoBase, 1);
1242 StartDrvCleanupTimer(pAC);
1243 SkDimEnableModerationIfNeeded(pAC);
1244 SkDimDisplayModerationSettings(pAC);
1246 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1248 /* enable Interrupts */
1249 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1250 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1252 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1254 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1255 EvPara.Para32[0] = pAC->RlmtNets;
1256 EvPara.Para32[1] = -1;
1257 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1258 EvPara);
1259 EvPara.Para32[0] = pAC->RlmtMode;
1260 EvPara.Para32[1] = 0;
1261 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1262 EvPara);
1265 EvPara.Para32[0] = pNet->NetNr;
1266 EvPara.Para32[1] = -1;
1267 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1268 SkEventDispatcher(pAC, pAC->IoBase);
1269 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1271 pAC->MaxPorts++;
1272 pNet->Up = 1;
1275 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1276 ("SkGeOpen suceeded\n"));
1278 return (0);
1279 } /* SkGeOpen */
1282 /****************************************************************************
1284 * SkGeClose - Stop initialized adapter
1286 * Description:
1287 * Close initialized adapter.
1289 * Returns:
1290 * 0 - on success
1291 * error code - on error
1293 static int SkGeClose(
1294 struct SK_NET_DEVICE *dev)
1296 DEV_NET *pNet;
1297 DEV_NET *newPtrNet;
1298 SK_AC *pAC;
1300 unsigned long Flags; /* for spin lock */
1301 int i;
1302 int PortIdx;
1303 SK_EVPARA EvPara;
1305 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1306 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1308 pNet = netdev_priv(dev);
1309 pAC = pNet->pAC;
1311 #ifdef SK_DIAG_SUPPORT
1312 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1313 if (pAC->DiagFlowCtrl == SK_FALSE) {
1315 ** notify that the interface which has been closed
1316 ** by operator interaction must not be started up
1317 ** again when the DIAG has finished.
1319 newPtrNet = netdev_priv(pAC->dev[0]);
1320 if (newPtrNet == pNet) {
1321 pAC->WasIfUp[0] = SK_FALSE;
1322 } else {
1323 pAC->WasIfUp[1] = SK_FALSE;
1325 return 0; /* return to system everything is fine... */
1326 } else {
1327 pAC->DiagFlowCtrl = SK_FALSE;
1330 #endif
1332 netif_stop_queue(dev);
1334 if (pAC->RlmtNets == 1)
1335 PortIdx = pAC->ActivePort;
1336 else
1337 PortIdx = pNet->NetNr;
1339 StopDrvCleanupTimer(pAC);
1342 * Clear multicast table, promiscuous mode ....
1344 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1345 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1346 SK_PROM_MODE_NONE);
1348 if (pAC->MaxPorts == 1) {
1349 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1350 /* disable interrupts */
1351 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1352 EvPara.Para32[0] = pNet->NetNr;
1353 EvPara.Para32[1] = -1;
1354 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1355 SkEventDispatcher(pAC, pAC->IoBase);
1356 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1357 /* stop the hardware */
1358 SkGeDeInit(pAC, pAC->IoBase);
1359 pAC->BoardLevel = SK_INIT_DATA;
1360 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1361 } else {
1363 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1364 EvPara.Para32[0] = pNet->NetNr;
1365 EvPara.Para32[1] = -1;
1366 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1367 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1368 SkEventDispatcher(pAC, pAC->IoBase);
1369 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1371 /* Stop port */
1372 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1373 [TX_PRIO_LOW].TxDesRingLock, Flags);
1374 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1375 SK_STOP_ALL, SK_HARD_RST);
1376 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1377 [TX_PRIO_LOW].TxDesRingLock, Flags);
1380 if (pAC->RlmtNets == 1) {
1381 /* clear all descriptor rings */
1382 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1383 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1384 ClearRxRing(pAC, &pAC->RxPort[i]);
1385 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1387 } else {
1388 /* clear port descriptor rings */
1389 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1390 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1391 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1394 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1395 ("SkGeClose: done "));
1397 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1398 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1399 sizeof(SK_PNMI_STRUCT_DATA));
1401 pAC->MaxPorts--;
1402 pNet->Up = 0;
1404 return (0);
1405 } /* SkGeClose */
1408 /*****************************************************************************
1410 * SkGeXmit - Linux frame transmit function
1412 * Description:
1413 * The system calls this function to send frames onto the wire.
1414 * It puts the frame in the tx descriptor ring. If the ring is
1415 * full then, the 'tbusy' flag is set.
1417 * Returns:
1418 * 0, if everything is ok
1419 * !=0, on error
1420 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1421 * allocated skb's) !!!
1423 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1425 DEV_NET *pNet;
1426 SK_AC *pAC;
1427 int Rc; /* return code of XmitFrame */
1429 pNet = netdev_priv(dev);
1430 pAC = pNet->pAC;
1432 if ((!skb_shinfo(skb)->nr_frags) ||
1433 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1434 /* Don't activate scatter-gather and hardware checksum */
1436 if (pAC->RlmtNets == 2)
1437 Rc = XmitFrame(
1438 pAC,
1439 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1440 skb);
1441 else
1442 Rc = XmitFrame(
1443 pAC,
1444 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1445 skb);
1446 } else {
1447 /* scatter-gather and hardware TCP checksumming anabled*/
1448 if (pAC->RlmtNets == 2)
1449 Rc = XmitFrameSG(
1450 pAC,
1451 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1452 skb);
1453 else
1454 Rc = XmitFrameSG(
1455 pAC,
1456 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1457 skb);
1460 /* Transmitter out of resources? */
1461 if (Rc <= 0) {
1462 netif_stop_queue(dev);
1465 /* If not taken, give buffer ownership back to the
1466 * queueing layer.
1468 if (Rc < 0)
1469 return (1);
1471 dev->trans_start = jiffies;
1472 return (0);
1473 } /* SkGeXmit */
1476 /*****************************************************************************
1478 * XmitFrame - fill one socket buffer into the transmit ring
1480 * Description:
1481 * This function puts a message into the transmit descriptor ring
1482 * if there is a descriptors left.
1483 * Linux skb's consist of only one continuous buffer.
1484 * The first step locks the ring. It is held locked
1485 * all time to avoid problems with SWITCH_../PORT_RESET.
1486 * Then the descriptoris allocated.
1487 * The second part is linking the buffer to the descriptor.
1488 * At the very last, the Control field of the descriptor
1489 * is made valid for the BMU and a start TX command is given
1490 * if necessary.
1492 * Returns:
1493 * > 0 - on succes: the number of bytes in the message
1494 * = 0 - on resource shortage: this frame sent or dropped, now
1495 * the ring is full ( -> set tbusy)
1496 * < 0 - on failure: other problems ( -> return failure to upper layers)
1498 static int XmitFrame(
1499 SK_AC *pAC, /* pointer to adapter context */
1500 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1501 struct sk_buff *pMessage) /* pointer to send-message */
1503 TXD *pTxd; /* the rxd to fill */
1504 TXD *pOldTxd;
1505 unsigned long Flags;
1506 SK_U64 PhysAddr;
1507 int Protocol;
1508 int IpHeaderLength;
1509 int BytesSend = pMessage->len;
1511 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1513 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1514 #ifndef USE_TX_COMPLETE
1515 FreeTxDescriptors(pAC, pTxPort);
1516 #endif
1517 if (pTxPort->TxdRingFree == 0) {
1519 ** no enough free descriptors in ring at the moment.
1520 ** Maybe free'ing some old one help?
1522 FreeTxDescriptors(pAC, pTxPort);
1523 if (pTxPort->TxdRingFree == 0) {
1524 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1525 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1526 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1527 SK_DBGCAT_DRV_TX_PROGRESS,
1528 ("XmitFrame failed\n"));
1530 ** the desired message can not be sent
1531 ** Because tbusy seems to be set, the message
1532 ** should not be freed here. It will be used
1533 ** by the scheduler of the ethernet handler
1535 return (-1);
1540 ** If the passed socket buffer is of smaller MTU-size than 60,
1541 ** copy everything into new buffer and fill all bytes between
1542 ** the original packet end and the new packet end of 60 with 0x00.
1543 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1545 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1546 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1547 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1548 return 0;
1550 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1554 ** advance head counter behind descriptor needed for this frame,
1555 ** so that needed descriptor is reserved from that on. The next
1556 ** action will be to add the passed buffer to the TX-descriptor
1558 pTxd = pTxPort->pTxdRingHead;
1559 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1560 pTxPort->TxdRingFree--;
1562 #ifdef SK_DUMP_TX
1563 DumpMsg(pMessage, "XmitFrame");
1564 #endif
1567 ** First step is to map the data to be sent via the adapter onto
1568 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1569 ** and 2.6 need to use pci_map_page() for that mapping.
1571 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1572 virt_to_page(pMessage->data),
1573 ((unsigned long) pMessage->data & ~PAGE_MASK),
1574 pMessage->len,
1575 PCI_DMA_TODEVICE);
1576 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1577 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1578 pTxd->pMBuf = pMessage;
1580 if (pMessage->ip_summed == CHECKSUM_HW) {
1581 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1582 if ((Protocol == C_PROTO_ID_UDP) &&
1583 (pAC->GIni.GIChipRev == 0) &&
1584 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1585 pTxd->TBControl = BMU_TCP_CHECK;
1586 } else {
1587 pTxd->TBControl = BMU_UDP_CHECK;
1590 IpHeaderLength = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
1591 IpHeaderLength = (IpHeaderLength & 0xf) * 4;
1592 pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
1593 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1594 (Protocol == C_PROTO_ID_UDP ?
1595 C_OFFSET_UDPHEADER_UDPCS :
1596 C_OFFSET_TCPHEADER_TCPCS);
1597 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1599 pTxd->TBControl |= BMU_OWN | BMU_STF |
1600 BMU_SW | BMU_EOF |
1601 #ifdef USE_TX_COMPLETE
1602 BMU_IRQ_EOF |
1603 #endif
1604 pMessage->len;
1605 } else {
1606 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1607 BMU_SW | BMU_EOF |
1608 #ifdef USE_TX_COMPLETE
1609 BMU_IRQ_EOF |
1610 #endif
1611 pMessage->len;
1615 ** If previous descriptor already done, give TX start cmd
1617 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1618 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1619 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1623 ** after releasing the lock, the skb may immediately be free'd
1625 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1626 if (pTxPort->TxdRingFree != 0) {
1627 return (BytesSend);
1628 } else {
1629 return (0);
1632 } /* XmitFrame */
1634 /*****************************************************************************
1636 * XmitFrameSG - fill one socket buffer into the transmit ring
1637 * (use SG and TCP/UDP hardware checksumming)
1639 * Description:
1640 * This function puts a message into the transmit descriptor ring
1641 * if there is a descriptors left.
1643 * Returns:
1644 * > 0 - on succes: the number of bytes in the message
1645 * = 0 - on resource shortage: this frame sent or dropped, now
1646 * the ring is full ( -> set tbusy)
1647 * < 0 - on failure: other problems ( -> return failure to upper layers)
1649 static int XmitFrameSG(
1650 SK_AC *pAC, /* pointer to adapter context */
1651 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1652 struct sk_buff *pMessage) /* pointer to send-message */
1655 TXD *pTxd;
1656 TXD *pTxdFst;
1657 TXD *pTxdLst;
1658 int CurrFrag;
1659 int BytesSend;
1660 int IpHeaderLength;
1661 int Protocol;
1662 skb_frag_t *sk_frag;
1663 SK_U64 PhysAddr;
1664 unsigned long Flags;
1666 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1667 #ifndef USE_TX_COMPLETE
1668 FreeTxDescriptors(pAC, pTxPort);
1669 #endif
1670 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1671 FreeTxDescriptors(pAC, pTxPort);
1672 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1673 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1674 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1675 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1676 SK_DBGCAT_DRV_TX_PROGRESS,
1677 ("XmitFrameSG failed - Ring full\n"));
1678 /* this message can not be sent now */
1679 return(-1);
1683 pTxd = pTxPort->pTxdRingHead;
1684 pTxdFst = pTxd;
1685 pTxdLst = pTxd;
1686 BytesSend = 0;
1687 Protocol = 0;
1690 ** Map the first fragment (header) into the DMA-space
1692 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1693 virt_to_page(pMessage->data),
1694 ((unsigned long) pMessage->data & ~PAGE_MASK),
1695 skb_headlen(pMessage),
1696 PCI_DMA_TODEVICE);
1698 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1699 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1702 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1704 if (pMessage->ip_summed == CHECKSUM_HW) {
1705 pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
1707 ** We have to use the opcode for tcp here, because the
1708 ** opcode for udp is not working in the hardware yet
1709 ** (Revision 2.0)
1711 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1712 if ((Protocol == C_PROTO_ID_UDP) &&
1713 (pAC->GIni.GIChipRev == 0) &&
1714 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1715 pTxd->TBControl |= BMU_TCP_CHECK;
1716 } else {
1717 pTxd->TBControl |= BMU_UDP_CHECK;
1720 IpHeaderLength = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
1721 pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
1722 pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1723 (Protocol == C_PROTO_ID_UDP ?
1724 C_OFFSET_UDPHEADER_UDPCS :
1725 C_OFFSET_TCPHEADER_TCPCS);
1726 pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1727 } else {
1728 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
1729 skb_headlen(pMessage);
1732 pTxd = pTxd->pNextTxd;
1733 pTxPort->TxdRingFree--;
1734 BytesSend += skb_headlen(pMessage);
1737 ** Browse over all SG fragments and map each of them into the DMA space
1739 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1740 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1742 ** we already have the proper value in entry
1744 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1745 sk_frag->page,
1746 sk_frag->page_offset,
1747 sk_frag->size,
1748 PCI_DMA_TODEVICE);
1750 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1751 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1752 pTxd->pMBuf = pMessage;
1755 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1757 if (pMessage->ip_summed == CHECKSUM_HW) {
1758 pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
1760 ** We have to use the opcode for tcp here because the
1761 ** opcode for udp is not working in the hardware yet
1762 ** (revision 2.0)
1764 if ((Protocol == C_PROTO_ID_UDP) &&
1765 (pAC->GIni.GIChipRev == 0) &&
1766 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1767 pTxd->TBControl |= BMU_TCP_CHECK;
1768 } else {
1769 pTxd->TBControl |= BMU_UDP_CHECK;
1771 } else {
1772 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
1776 ** Do we have the last fragment?
1778 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1779 #ifdef USE_TX_COMPLETE
1780 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
1781 #else
1782 pTxd->TBControl |= BMU_EOF | sk_frag->size;
1783 #endif
1784 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1786 } else {
1787 pTxd->TBControl |= sk_frag->size;
1789 pTxdLst = pTxd;
1790 pTxd = pTxd->pNextTxd;
1791 pTxPort->TxdRingFree--;
1792 BytesSend += sk_frag->size;
1796 ** If previous descriptor already done, give TX start cmd
1798 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1799 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1802 pTxPort->pTxdRingPrev = pTxdLst;
1803 pTxPort->pTxdRingHead = pTxd;
1805 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1807 if (pTxPort->TxdRingFree > 0) {
1808 return (BytesSend);
1809 } else {
1810 return (0);
1814 /*****************************************************************************
1816 * FreeTxDescriptors - release descriptors from the descriptor ring
1818 * Description:
1819 * This function releases descriptors from a transmit ring if they
1820 * have been sent by the BMU.
1821 * If a descriptors is sent, it can be freed and the message can
1822 * be freed, too.
1823 * The SOFTWARE controllable bit is used to prevent running around a
1824 * completely free ring for ever. If this bit is no set in the
1825 * frame (by XmitFrame), this frame has never been sent or is
1826 * already freed.
1827 * The Tx descriptor ring lock must be held while calling this function !!!
1829 * Returns:
1830 * none
1832 static void FreeTxDescriptors(
1833 SK_AC *pAC, /* pointer to the adapter context */
1834 TX_PORT *pTxPort) /* pointer to destination port structure */
1836 TXD *pTxd; /* pointer to the checked descriptor */
1837 TXD *pNewTail; /* pointer to 'end' of the ring */
1838 SK_U32 Control; /* TBControl field of descriptor */
1839 SK_U64 PhysAddr; /* address of DMA mapping */
1841 pNewTail = pTxPort->pTxdRingTail;
1842 pTxd = pNewTail;
1844 ** loop forever; exits if BMU_SW bit not set in start frame
1845 ** or BMU_OWN bit set in any frame
1847 while (1) {
1848 Control = pTxd->TBControl;
1849 if ((Control & BMU_SW) == 0) {
1851 ** software controllable bit is set in first
1852 ** fragment when given to BMU. Not set means that
1853 ** this fragment was never sent or is already
1854 ** freed ( -> ring completely free now).
1856 pTxPort->pTxdRingTail = pTxd;
1857 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1858 return;
1860 if (Control & BMU_OWN) {
1861 pTxPort->pTxdRingTail = pTxd;
1862 if (pTxPort->TxdRingFree > 0) {
1863 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1865 return;
1869 ** release the DMA mapping, because until not unmapped
1870 ** this buffer is considered being under control of the
1871 ** adapter card!
1873 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1874 PhysAddr |= (SK_U64) pTxd->VDataLow;
1875 pci_unmap_page(pAC->PciDev, PhysAddr,
1876 pTxd->pMBuf->len,
1877 PCI_DMA_TODEVICE);
1879 if (Control & BMU_EOF)
1880 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1882 pTxPort->TxdRingFree++;
1883 pTxd->TBControl &= ~BMU_SW;
1884 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1885 } /* while(forever) */
1886 } /* FreeTxDescriptors */
1888 /*****************************************************************************
1890 * FillRxRing - fill the receive ring with valid descriptors
1892 * Description:
1893 * This function fills the receive ring descriptors with data
1894 * segments and makes them valid for the BMU.
1895 * The active ring is filled completely, if possible.
1896 * The non-active ring is filled only partial to save memory.
1898 * Description of rx ring structure:
1899 * head - points to the descriptor which will be used next by the BMU
1900 * tail - points to the next descriptor to give to the BMU
1902 * Returns: N/A
1904 static void FillRxRing(
1905 SK_AC *pAC, /* pointer to the adapter context */
1906 RX_PORT *pRxPort) /* ptr to port struct for which the ring
1907 should be filled */
1909 unsigned long Flags;
1911 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1912 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1913 if(!FillRxDescriptor(pAC, pRxPort))
1914 break;
1916 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1917 } /* FillRxRing */
1920 /*****************************************************************************
1922 * FillRxDescriptor - fill one buffer into the receive ring
1924 * Description:
1925 * The function allocates a new receive buffer and
1926 * puts it into the next descriptor.
1928 * Returns:
1929 * SK_TRUE - a buffer was added to the ring
1930 * SK_FALSE - a buffer could not be added
1932 static SK_BOOL FillRxDescriptor(
1933 SK_AC *pAC, /* pointer to the adapter context struct */
1934 RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1936 struct sk_buff *pMsgBlock; /* pointer to a new message block */
1937 RXD *pRxd; /* the rxd to fill */
1938 SK_U16 Length; /* data fragment length */
1939 SK_U64 PhysAddr; /* physical address of a rx buffer */
1941 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1942 if (pMsgBlock == NULL) {
1943 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1944 SK_DBGCAT_DRV_ENTRY,
1945 ("%s: Allocation of rx buffer failed !\n",
1946 pAC->dev[pRxPort->PortIndex]->name));
1947 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1948 return(SK_FALSE);
1950 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1951 /* skb allocated ok, so add buffer */
1952 pRxd = pRxPort->pRxdRingTail;
1953 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1954 pRxPort->RxdRingFree--;
1955 Length = pAC->RxBufSize;
1956 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1957 virt_to_page(pMsgBlock->data),
1958 ((unsigned long) pMsgBlock->data &
1959 ~PAGE_MASK),
1960 pAC->RxBufSize - 2,
1961 PCI_DMA_FROMDEVICE);
1963 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1964 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1965 pRxd->pMBuf = pMsgBlock;
1966 pRxd->RBControl = BMU_OWN |
1967 BMU_STF |
1968 BMU_IRQ_EOF |
1969 BMU_TCP_CHECK |
1970 Length;
1971 return (SK_TRUE);
1973 } /* FillRxDescriptor */
1976 /*****************************************************************************
1978 * ReQueueRxBuffer - fill one buffer back into the receive ring
1980 * Description:
1981 * Fill a given buffer back into the rx ring. The buffer
1982 * has been previously allocated and aligned, and its phys.
1983 * address calculated, so this is no more necessary.
1985 * Returns: N/A
1987 static void ReQueueRxBuffer(
1988 SK_AC *pAC, /* pointer to the adapter context struct */
1989 RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1990 struct sk_buff *pMsg, /* pointer to the buffer */
1991 SK_U32 PhysHigh, /* phys address high dword */
1992 SK_U32 PhysLow) /* phys address low dword */
1994 RXD *pRxd; /* the rxd to fill */
1995 SK_U16 Length; /* data fragment length */
1997 pRxd = pRxPort->pRxdRingTail;
1998 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1999 pRxPort->RxdRingFree--;
2000 Length = pAC->RxBufSize;
2002 pRxd->VDataLow = PhysLow;
2003 pRxd->VDataHigh = PhysHigh;
2004 pRxd->pMBuf = pMsg;
2005 pRxd->RBControl = BMU_OWN |
2006 BMU_STF |
2007 BMU_IRQ_EOF |
2008 BMU_TCP_CHECK |
2009 Length;
2010 return;
2011 } /* ReQueueRxBuffer */
2013 /*****************************************************************************
2015 * ReceiveIrq - handle a receive IRQ
2017 * Description:
2018 * This function is called when a receive IRQ is set.
2019 * It walks the receive descriptor ring and sends up all
2020 * frames that are complete.
2022 * Returns: N/A
2024 static void ReceiveIrq(
2025 SK_AC *pAC, /* pointer to adapter context */
2026 RX_PORT *pRxPort, /* pointer to receive port struct */
2027 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
2029 RXD *pRxd; /* pointer to receive descriptors */
2030 SK_U32 Control; /* control field of descriptor */
2031 struct sk_buff *pMsg; /* pointer to message holding frame */
2032 struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
2033 int FrameLength; /* total length of received frame */
2034 int IpFrameLength;
2035 SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
2036 SK_EVPARA EvPara; /* an event parameter union */
2037 unsigned long Flags; /* for spin lock */
2038 int PortIndex = pRxPort->PortIndex;
2039 unsigned int Offset;
2040 unsigned int NumBytes;
2041 unsigned int ForRlmt;
2042 SK_BOOL IsBc;
2043 SK_BOOL IsMc;
2044 SK_BOOL IsBadFrame; /* Bad frame */
2046 SK_U32 FrameStat;
2047 unsigned short Csum1;
2048 unsigned short Csum2;
2049 unsigned short Type;
2050 int Result;
2051 SK_U64 PhysAddr;
2053 rx_start:
2054 /* do forever; exit if BMU_OWN found */
2055 for ( pRxd = pRxPort->pRxdRingHead ;
2056 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2057 pRxd = pRxd->pNextRxd,
2058 pRxPort->pRxdRingHead = pRxd,
2059 pRxPort->RxdRingFree ++) {
2062 * For a better understanding of this loop
2063 * Go through every descriptor beginning at the head
2064 * Please note: the ring might be completely received so the OWN bit
2065 * set is not a good crirteria to leave that loop.
2066 * Therefore the RingFree counter is used.
2067 * On entry of this loop pRxd is a pointer to the Rxd that needs
2068 * to be checked next.
2071 Control = pRxd->RBControl;
2073 /* check if this descriptor is ready */
2074 if ((Control & BMU_OWN) != 0) {
2075 /* this descriptor is not yet ready */
2076 /* This is the usual end of the loop */
2077 /* We don't need to start the ring again */
2078 FillRxRing(pAC, pRxPort);
2079 return;
2081 pAC->DynIrqModInfo.NbrProcessedDescr++;
2083 /* get length of frame and check it */
2084 FrameLength = Control & BMU_BBC;
2085 if (FrameLength > pAC->RxBufSize) {
2086 goto rx_failed;
2089 /* check for STF and EOF */
2090 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2091 goto rx_failed;
2094 /* here we have a complete frame in the ring */
2095 pMsg = pRxd->pMBuf;
2097 FrameStat = pRxd->FrameStat;
2099 /* check for frame length mismatch */
2100 #define XMR_FS_LEN_SHIFT 18
2101 #define GMR_FS_LEN_SHIFT 16
2102 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2103 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2104 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2105 SK_DBGCAT_DRV_RX_PROGRESS,
2106 ("skge: Frame length mismatch (%u/%u).\n",
2107 FrameLength,
2108 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2109 goto rx_failed;
2112 else {
2113 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2114 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2115 SK_DBGCAT_DRV_RX_PROGRESS,
2116 ("skge: Frame length mismatch (%u/%u).\n",
2117 FrameLength,
2118 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2119 goto rx_failed;
2123 /* Set Rx Status */
2124 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2125 IsBc = (FrameStat & XMR_FS_BC) != 0;
2126 IsMc = (FrameStat & XMR_FS_MC) != 0;
2127 IsBadFrame = (FrameStat &
2128 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2129 } else {
2130 IsBc = (FrameStat & GMR_FS_BC) != 0;
2131 IsMc = (FrameStat & GMR_FS_MC) != 0;
2132 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2133 ((FrameStat & GMR_FS_RX_OK) == 0));
2136 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2137 ("Received frame of length %d on port %d\n",
2138 FrameLength, PortIndex));
2139 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2140 ("Number of free rx descriptors: %d\n",
2141 pRxPort->RxdRingFree));
2142 /* DumpMsg(pMsg, "Rx"); */
2144 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2145 #if 0
2146 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2147 #endif
2148 /* there is a receive error in this frame */
2149 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2150 SK_DBGCAT_DRV_RX_PROGRESS,
2151 ("skge: Error in received frame, dropped!\n"
2152 "Control: %x\nRxStat: %x\n",
2153 Control, FrameStat));
2155 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2156 pRxd->VDataHigh, pRxd->VDataLow);
2158 continue;
2162 * if short frame then copy data to reduce memory waste
2164 if ((FrameLength < SK_COPY_THRESHOLD) &&
2165 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2167 * Short frame detected and allocation successfull
2169 /* use new skb and copy data */
2170 skb_reserve(pNewMsg, 2);
2171 skb_put(pNewMsg, FrameLength);
2172 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2173 PhysAddr |= (SK_U64) pRxd->VDataLow;
2175 pci_dma_sync_single_for_cpu(pAC->PciDev,
2176 (dma_addr_t) PhysAddr,
2177 FrameLength,
2178 PCI_DMA_FROMDEVICE);
2179 eth_copy_and_sum(pNewMsg, pMsg->data,
2180 FrameLength, 0);
2181 pci_dma_sync_single_for_device(pAC->PciDev,
2182 (dma_addr_t) PhysAddr,
2183 FrameLength,
2184 PCI_DMA_FROMDEVICE);
2185 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2186 pRxd->VDataHigh, pRxd->VDataLow);
2188 pMsg = pNewMsg;
2191 else {
2193 * if large frame, or SKB allocation failed, pass
2194 * the SKB directly to the networking
2197 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2198 PhysAddr |= (SK_U64) pRxd->VDataLow;
2200 /* release the DMA mapping */
2201 pci_unmap_single(pAC->PciDev,
2202 PhysAddr,
2203 pAC->RxBufSize - 2,
2204 PCI_DMA_FROMDEVICE);
2206 /* set length in message */
2207 skb_put(pMsg, FrameLength);
2208 /* hardware checksum */
2209 Type = ntohs(*((short*)&pMsg->data[12]));
2211 #ifdef USE_SK_RX_CHECKSUM
2212 if (Type == 0x800) {
2213 Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
2214 Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
2215 IpFrameLength = (int) ntohs((unsigned short)
2216 ((unsigned short *) pMsg->data)[8]);
2219 * Test: If frame is padded, a check is not possible!
2220 * Frame not padded? Length difference must be 14 (0xe)!
2222 if ((FrameLength - IpFrameLength) != 0xe) {
2223 /* Frame padded => TCP offload not possible! */
2224 pMsg->ip_summed = CHECKSUM_NONE;
2225 } else {
2226 /* Frame not padded => TCP offload! */
2227 if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
2228 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
2229 (pAC->ChipsetType)) {
2230 Result = SkCsGetReceiveInfo(pAC,
2231 &pMsg->data[14],
2232 Csum1, Csum2, pRxPort->PortIndex);
2233 if (Result ==
2234 SKCS_STATUS_IP_FRAGMENT ||
2235 Result ==
2236 SKCS_STATUS_IP_CSUM_OK ||
2237 Result ==
2238 SKCS_STATUS_TCP_CSUM_OK ||
2239 Result ==
2240 SKCS_STATUS_UDP_CSUM_OK) {
2241 pMsg->ip_summed =
2242 CHECKSUM_UNNECESSARY;
2244 else if (Result ==
2245 SKCS_STATUS_TCP_CSUM_ERROR ||
2246 Result ==
2247 SKCS_STATUS_UDP_CSUM_ERROR ||
2248 Result ==
2249 SKCS_STATUS_IP_CSUM_ERROR_UDP ||
2250 Result ==
2251 SKCS_STATUS_IP_CSUM_ERROR_TCP ||
2252 Result ==
2253 SKCS_STATUS_IP_CSUM_ERROR ) {
2254 /* HW Checksum error */
2255 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2256 SK_DBGCAT_DRV_RX_PROGRESS,
2257 ("skge: CRC error. Frame dropped!\n"));
2258 goto rx_failed;
2259 } else {
2260 pMsg->ip_summed =
2261 CHECKSUM_NONE;
2263 }/* checksumControl calculation valid */
2264 } /* Frame length check */
2265 } /* IP frame */
2266 #else
2267 pMsg->ip_summed = CHECKSUM_NONE;
2268 #endif
2269 } /* frame > SK_COPY_TRESHOLD */
2271 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2272 ForRlmt = SK_RLMT_RX_PROTOCOL;
2273 #if 0
2274 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2275 #endif
2276 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2277 IsBc, &Offset, &NumBytes);
2278 if (NumBytes != 0) {
2279 #if 0
2280 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2281 #endif
2282 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2283 &pMsg->data[Offset],
2284 IsBc, IsMc, &ForRlmt);
2286 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2287 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2288 /* send up only frames from active port */
2289 if ((PortIndex == pAC->ActivePort) ||
2290 (pAC->RlmtNets == 2)) {
2291 /* frame for upper layer */
2292 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2293 #ifdef xDEBUG
2294 DumpMsg(pMsg, "Rx");
2295 #endif
2296 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2297 FrameLength, pRxPort->PortIndex);
2299 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2300 pMsg->protocol = eth_type_trans(pMsg,
2301 pAC->dev[pRxPort->PortIndex]);
2302 netif_rx(pMsg);
2303 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2305 else {
2306 /* drop frame */
2307 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2308 SK_DBGCAT_DRV_RX_PROGRESS,
2309 ("D"));
2310 DEV_KFREE_SKB(pMsg);
2313 } /* if not for rlmt */
2314 else {
2315 /* packet for rlmt */
2316 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2317 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2318 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2319 pAC->IoBase, FrameLength);
2320 if (pRlmtMbuf != NULL) {
2321 pRlmtMbuf->pNext = NULL;
2322 pRlmtMbuf->Length = FrameLength;
2323 pRlmtMbuf->PortIdx = PortIndex;
2324 EvPara.pParaPtr = pRlmtMbuf;
2325 memcpy((char*)(pRlmtMbuf->pData),
2326 (char*)(pMsg->data),
2327 FrameLength);
2329 /* SlowPathLock needed? */
2330 if (SlowPathLock == SK_TRUE) {
2331 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2332 SkEventQueue(pAC, SKGE_RLMT,
2333 SK_RLMT_PACKET_RECEIVED,
2334 EvPara);
2335 pAC->CheckQueue = SK_TRUE;
2336 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2337 } else {
2338 SkEventQueue(pAC, SKGE_RLMT,
2339 SK_RLMT_PACKET_RECEIVED,
2340 EvPara);
2341 pAC->CheckQueue = SK_TRUE;
2344 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2345 SK_DBGCAT_DRV_RX_PROGRESS,
2346 ("Q"));
2348 if ((pAC->dev[pRxPort->PortIndex]->flags &
2349 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2350 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2351 SK_RLMT_RX_PROTOCOL) {
2352 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2353 pMsg->protocol = eth_type_trans(pMsg,
2354 pAC->dev[pRxPort->PortIndex]);
2355 netif_rx(pMsg);
2356 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2358 else {
2359 DEV_KFREE_SKB(pMsg);
2362 } /* if packet for rlmt */
2363 } /* for ... scanning the RXD ring */
2365 /* RXD ring is empty -> fill and restart */
2366 FillRxRing(pAC, pRxPort);
2367 /* do not start if called from Close */
2368 if (pAC->BoardLevel > SK_INIT_DATA) {
2369 ClearAndStartRx(pAC, PortIndex);
2371 return;
2373 rx_failed:
2374 /* remove error frame */
2375 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2376 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2378 /* release the DMA mapping */
2380 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2381 PhysAddr |= (SK_U64) pRxd->VDataLow;
2382 pci_unmap_page(pAC->PciDev,
2383 PhysAddr,
2384 pAC->RxBufSize - 2,
2385 PCI_DMA_FROMDEVICE);
2386 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2387 pRxd->pMBuf = NULL;
2388 pRxPort->RxdRingFree++;
2389 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2390 goto rx_start;
2392 } /* ReceiveIrq */
2395 /*****************************************************************************
2397 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2399 * Description:
2400 * This function sends a start command and a clear interrupt
2401 * command for one receive queue to the BMU.
2403 * Returns: N/A
2404 * none
2406 static void ClearAndStartRx(
2407 SK_AC *pAC, /* pointer to the adapter context */
2408 int PortIndex) /* index of the receive port (XMAC) */
2410 SK_OUT8(pAC->IoBase,
2411 RxQueueAddr[PortIndex]+Q_CSR,
2412 CSR_START | CSR_IRQ_CL_F);
2413 } /* ClearAndStartRx */
2416 /*****************************************************************************
2418 * ClearTxIrq - give a clear transmit IRQ command to BMU
2420 * Description:
2421 * This function sends a clear tx IRQ command for one
2422 * transmit queue to the BMU.
2424 * Returns: N/A
2426 static void ClearTxIrq(
2427 SK_AC *pAC, /* pointer to the adapter context */
2428 int PortIndex, /* index of the transmit port (XMAC) */
2429 int Prio) /* priority or normal queue */
2431 SK_OUT8(pAC->IoBase,
2432 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2433 CSR_IRQ_CL_F);
2434 } /* ClearTxIrq */
2437 /*****************************************************************************
2439 * ClearRxRing - remove all buffers from the receive ring
2441 * Description:
2442 * This function removes all receive buffers from the ring.
2443 * The receive BMU must be stopped before calling this function.
2445 * Returns: N/A
2447 static void ClearRxRing(
2448 SK_AC *pAC, /* pointer to adapter context */
2449 RX_PORT *pRxPort) /* pointer to rx port struct */
2451 RXD *pRxd; /* pointer to the current descriptor */
2452 unsigned long Flags;
2453 SK_U64 PhysAddr;
2455 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2456 return;
2458 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2459 pRxd = pRxPort->pRxdRingHead;
2460 do {
2461 if (pRxd->pMBuf != NULL) {
2463 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2464 PhysAddr |= (SK_U64) pRxd->VDataLow;
2465 pci_unmap_page(pAC->PciDev,
2466 PhysAddr,
2467 pAC->RxBufSize - 2,
2468 PCI_DMA_FROMDEVICE);
2469 DEV_KFREE_SKB(pRxd->pMBuf);
2470 pRxd->pMBuf = NULL;
2472 pRxd->RBControl &= BMU_OWN;
2473 pRxd = pRxd->pNextRxd;
2474 pRxPort->RxdRingFree++;
2475 } while (pRxd != pRxPort->pRxdRingTail);
2476 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2477 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2478 } /* ClearRxRing */
2480 /*****************************************************************************
2482 * ClearTxRing - remove all buffers from the transmit ring
2484 * Description:
2485 * This function removes all transmit buffers from the ring.
2486 * The transmit BMU must be stopped before calling this function
2487 * and transmitting at the upper level must be disabled.
2488 * The BMU own bit of all descriptors is cleared, the rest is
2489 * done by calling FreeTxDescriptors.
2491 * Returns: N/A
2493 static void ClearTxRing(
2494 SK_AC *pAC, /* pointer to adapter context */
2495 TX_PORT *pTxPort) /* pointer to tx prt struct */
2497 TXD *pTxd; /* pointer to the current descriptor */
2498 int i;
2499 unsigned long Flags;
2501 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2502 pTxd = pTxPort->pTxdRingHead;
2503 for (i=0; i<pAC->TxDescrPerRing; i++) {
2504 pTxd->TBControl &= ~BMU_OWN;
2505 pTxd = pTxd->pNextTxd;
2507 FreeTxDescriptors(pAC, pTxPort);
2508 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2509 } /* ClearTxRing */
2511 /*****************************************************************************
2513 * SkGeSetMacAddr - Set the hardware MAC address
2515 * Description:
2516 * This function sets the MAC address used by the adapter.
2518 * Returns:
2519 * 0, if everything is ok
2520 * !=0, on error
2522 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2525 DEV_NET *pNet = netdev_priv(dev);
2526 SK_AC *pAC = pNet->pAC;
2528 struct sockaddr *addr = p;
2529 unsigned long Flags;
2531 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2532 ("SkGeSetMacAddr starts now...\n"));
2533 if(netif_running(dev))
2534 return -EBUSY;
2536 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2538 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2540 if (pAC->RlmtNets == 2)
2541 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2542 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2543 else
2544 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2545 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2549 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2550 return 0;
2551 } /* SkGeSetMacAddr */
2554 /*****************************************************************************
2556 * SkGeSetRxMode - set receive mode
2558 * Description:
2559 * This function sets the receive mode of an adapter. The adapter
2560 * supports promiscuous mode, allmulticast mode and a number of
2561 * multicast addresses. If more multicast addresses the available
2562 * are selected, a hash function in the hardware is used.
2564 * Returns:
2565 * 0, if everything is ok
2566 * !=0, on error
2568 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2571 DEV_NET *pNet;
2572 SK_AC *pAC;
2574 struct dev_mc_list *pMcList;
2575 int i;
2576 int PortIdx;
2577 unsigned long Flags;
2579 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2580 ("SkGeSetRxMode starts now... "));
2582 pNet = netdev_priv(dev);
2583 pAC = pNet->pAC;
2584 if (pAC->RlmtNets == 1)
2585 PortIdx = pAC->ActivePort;
2586 else
2587 PortIdx = pNet->NetNr;
2589 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2590 if (dev->flags & IFF_PROMISC) {
2591 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2592 ("PROMISCUOUS mode\n"));
2593 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2594 SK_PROM_MODE_LLC);
2595 } else if (dev->flags & IFF_ALLMULTI) {
2596 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2597 ("ALLMULTI mode\n"));
2598 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2599 SK_PROM_MODE_ALL_MC);
2600 } else {
2601 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2602 SK_PROM_MODE_NONE);
2603 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2605 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2606 ("Number of MC entries: %d ", dev->mc_count));
2608 pMcList = dev->mc_list;
2609 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2610 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2611 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2612 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2613 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2614 pMcList->dmi_addr[0],
2615 pMcList->dmi_addr[1],
2616 pMcList->dmi_addr[2],
2617 pMcList->dmi_addr[3],
2618 pMcList->dmi_addr[4],
2619 pMcList->dmi_addr[5]));
2621 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2623 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2625 return;
2626 } /* SkGeSetRxMode */
2629 /*****************************************************************************
2631 * SkGeChangeMtu - set the MTU to another value
2633 * Description:
2634 * This function sets is called whenever the MTU size is changed
2635 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2636 * ethernet MTU size, long frame support is activated.
2638 * Returns:
2639 * 0, if everything is ok
2640 * !=0, on error
2642 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2644 DEV_NET *pNet;
2645 DEV_NET *pOtherNet;
2646 SK_AC *pAC;
2647 unsigned long Flags;
2648 int i;
2649 SK_EVPARA EvPara;
2651 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2652 ("SkGeChangeMtu starts now...\n"));
2654 pNet = netdev_priv(dev);
2655 pAC = pNet->pAC;
2657 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2658 return -EINVAL;
2661 if(pAC->BoardLevel != SK_INIT_RUN) {
2662 return -EINVAL;
2665 #ifdef SK_DIAG_SUPPORT
2666 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2667 if (pAC->DiagFlowCtrl == SK_FALSE) {
2668 return -1; /* still in use, deny any actions of MTU */
2669 } else {
2670 pAC->DiagFlowCtrl = SK_FALSE;
2673 #endif
2675 pNet->Mtu = NewMtu;
2676 pOtherNet = netdev_priv(pAC->dev[1 - pNet->NetNr]);
2677 if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
2678 return(0);
2681 pAC->RxBufSize = NewMtu + 32;
2682 dev->mtu = NewMtu;
2684 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2685 ("New MTU: %d\n", NewMtu));
2688 ** Prevent any reconfiguration while changing the MTU
2689 ** by disabling any interrupts
2691 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2692 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2695 ** Notify RLMT that any ports are to be stopped
2697 EvPara.Para32[0] = 0;
2698 EvPara.Para32[1] = -1;
2699 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2700 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2701 EvPara.Para32[0] = 1;
2702 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2703 } else {
2704 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2708 ** After calling the SkEventDispatcher(), RLMT is aware about
2709 ** the stopped ports -> configuration can take place!
2711 SkEventDispatcher(pAC, pAC->IoBase);
2713 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2714 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2715 netif_stop_queue(pAC->dev[i]);
2720 ** Depending on the desired MTU size change, a different number of
2721 ** RX buffers need to be allocated
2723 if (NewMtu > 1500) {
2725 ** Use less rx buffers
2727 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2728 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2729 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2730 (pAC->RxDescrPerRing / 4);
2731 } else {
2732 if (i == pAC->ActivePort) {
2733 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2734 (pAC->RxDescrPerRing / 4);
2735 } else {
2736 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2737 (pAC->RxDescrPerRing / 10);
2741 } else {
2743 ** Use the normal amount of rx buffers
2745 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2746 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2747 pAC->RxPort[i].RxFillLimit = 1;
2748 } else {
2749 if (i == pAC->ActivePort) {
2750 pAC->RxPort[i].RxFillLimit = 1;
2751 } else {
2752 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2753 (pAC->RxDescrPerRing / 4);
2759 SkGeDeInit(pAC, pAC->IoBase);
2762 ** enable/disable hardware support for long frames
2764 if (NewMtu > 1500) {
2765 // pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2766 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2767 } else {
2768 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2769 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2770 } else {
2771 pAC->GIni.GIPortUsage = SK_RED_LINK;
2775 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2776 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2777 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2778 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2779 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2780 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2781 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2784 ** tschilling:
2785 ** Speed and others are set back to default in level 1 init!
2787 GetConfiguration(pAC);
2789 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2790 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2791 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2792 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2793 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2794 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2795 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2798 ** clear and reinit the rx rings here
2800 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2801 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2802 ClearRxRing(pAC, &pAC->RxPort[i]);
2803 FillRxRing(pAC, &pAC->RxPort[i]);
2806 ** Enable transmit descriptor polling
2808 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2809 FillRxRing(pAC, &pAC->RxPort[i]);
2812 SkGeYellowLED(pAC, pAC->IoBase, 1);
2813 SkDimEnableModerationIfNeeded(pAC);
2814 SkDimDisplayModerationSettings(pAC);
2816 netif_start_queue(pAC->dev[pNet->PortNr]);
2817 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2818 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2822 ** Enable Interrupts again
2824 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2825 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2827 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2828 SkEventDispatcher(pAC, pAC->IoBase);
2831 ** Notify RLMT about the changing and restarting one (or more) ports
2833 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2834 EvPara.Para32[0] = pAC->RlmtNets;
2835 EvPara.Para32[1] = -1;
2836 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2837 EvPara.Para32[0] = pNet->PortNr;
2838 EvPara.Para32[1] = -1;
2839 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2841 if (pOtherNet->Up) {
2842 EvPara.Para32[0] = pOtherNet->PortNr;
2843 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2845 } else {
2846 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2849 SkEventDispatcher(pAC, pAC->IoBase);
2850 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2853 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2854 ** seems as if upper layers have a problem to handle a successful
2855 ** return value of '0'. If such a zero is returned, the complete
2856 ** system hangs for several minutes (!), which is in acceptable.
2858 ** Currently it is not clear, what the exact reason for this problem
2859 ** is. The implemented workaround for 2.5 is to return the desired
2860 ** new MTU size if all needed changes for the new MTU size where
2861 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2862 ** which indicates the successful change of the mtu-size.
2864 return NewMtu;
2866 } /* SkGeChangeMtu */
2869 /*****************************************************************************
2871 * SkGeStats - return ethernet device statistics
2873 * Description:
2874 * This function return statistic data about the ethernet device
2875 * to the operating system.
2877 * Returns:
2878 * pointer to the statistic structure.
2880 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2882 DEV_NET *pNet = netdev_priv(dev);
2883 SK_AC *pAC = pNet->pAC;
2884 SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2885 SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2886 SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2887 unsigned int Size; /* size of pnmi struct */
2888 unsigned long Flags; /* for spin lock */
2890 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2891 ("SkGeStats starts now...\n"));
2892 pPnmiStruct = &pAC->PnmiStruct;
2894 #ifdef SK_DIAG_SUPPORT
2895 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2896 (pAC->BoardLevel == SK_INIT_RUN)) {
2897 #endif
2898 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2899 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2900 Size = SK_PNMI_STRUCT_SIZE;
2901 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2902 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2903 #ifdef SK_DIAG_SUPPORT
2905 #endif
2907 pPnmiStat = &pPnmiStruct->Stat[0];
2908 pPnmiConf = &pPnmiStruct->Conf[0];
2910 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2911 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2912 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2913 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2915 if (pNet->Mtu <= 1500) {
2916 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2917 } else {
2918 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2919 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2923 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2924 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2926 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2927 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2928 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2929 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2930 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2932 /* detailed rx_errors: */
2933 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2934 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2935 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2936 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2937 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2938 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2940 /* detailed tx_errors */
2941 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2942 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2943 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2944 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2945 pAC->stats.tx_window_errors = (SK_U32) 0;
2947 return(&pAC->stats);
2948 } /* SkGeStats */
2951 /*****************************************************************************
2953 * SkGeIoctl - IO-control function
2955 * Description:
2956 * This function is called if an ioctl is issued on the device.
2957 * There are three subfunction for reading, writing and test-writing
2958 * the private MIB data structure (usefull for SysKonnect-internal tools).
2960 * Returns:
2961 * 0, if everything is ok
2962 * !=0, on error
2964 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2966 DEV_NET *pNet;
2967 SK_AC *pAC;
2968 void *pMemBuf;
2969 struct pci_dev *pdev = NULL;
2970 SK_GE_IOCTL Ioctl;
2971 unsigned int Err = 0;
2972 int Size = 0;
2973 int Ret = 0;
2974 unsigned int Length = 0;
2975 int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2977 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2978 ("SkGeIoctl starts now...\n"));
2980 pNet = netdev_priv(dev);
2981 pAC = pNet->pAC;
2983 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2984 return -EFAULT;
2987 switch(cmd) {
2988 case SK_IOCTL_SETMIB:
2989 case SK_IOCTL_PRESETMIB:
2990 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2991 case SK_IOCTL_GETMIB:
2992 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2993 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2994 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2995 return -EFAULT;
2997 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2998 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2999 Ioctl.Len<Size? Ioctl.Len : Size)) {
3000 return -EFAULT;
3002 Ioctl.Len = Size;
3003 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3004 return -EFAULT;
3006 break;
3007 case SK_IOCTL_GEN:
3008 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3009 Length = Ioctl.Len;
3010 } else {
3011 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3013 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3014 return -ENOMEM;
3016 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3017 Err = -EFAULT;
3018 goto fault_gen;
3020 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
3021 Err = -EFAULT;
3022 goto fault_gen;
3024 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3025 Err = -EFAULT;
3026 goto fault_gen;
3028 Ioctl.Len = Length;
3029 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3030 Err = -EFAULT;
3031 goto fault_gen;
3033 fault_gen:
3034 kfree(pMemBuf); /* cleanup everything */
3035 break;
3036 #ifdef SK_DIAG_SUPPORT
3037 case SK_IOCTL_DIAG:
3038 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3039 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3040 Length = Ioctl.Len;
3041 } else {
3042 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3044 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3045 return -ENOMEM;
3047 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3048 Err = -EFAULT;
3049 goto fault_diag;
3051 pdev = pAC->PciDev;
3052 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
3054 ** While coding this new IOCTL interface, only a few lines of code
3055 ** are to to be added. Therefore no dedicated function has been
3056 ** added. If more functionality is added, a separate function
3057 ** should be used...
3059 * ((SK_U32 *)pMemBuf) = 0;
3060 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3061 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
3062 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3063 Err = -EFAULT;
3064 goto fault_diag;
3066 Ioctl.Len = Length;
3067 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3068 Err = -EFAULT;
3069 goto fault_diag;
3071 fault_diag:
3072 kfree(pMemBuf); /* cleanup everything */
3073 break;
3074 #endif
3075 default:
3076 Err = -EOPNOTSUPP;
3079 return(Err);
3081 } /* SkGeIoctl */
3084 /*****************************************************************************
3086 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3088 * Description:
3089 * This function reads/writes the MIB data using PNMI (Private Network
3090 * Management Interface).
3091 * The destination for the data must be provided with the
3092 * ioctl call and is given to the driver in the form of
3093 * a user space address.
3094 * Copying from the user-provided data area into kernel messages
3095 * and back is done by copy_from_user and copy_to_user calls in
3096 * SkGeIoctl.
3098 * Returns:
3099 * returned size from PNMI call
3101 static int SkGeIocMib(
3102 DEV_NET *pNet, /* pointer to the adapter context */
3103 unsigned int Size, /* length of ioctl data */
3104 int mode) /* flag for set/preset */
3106 unsigned long Flags; /* for spin lock */
3107 SK_AC *pAC;
3109 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3110 ("SkGeIocMib starts now...\n"));
3111 pAC = pNet->pAC;
3112 /* access MIB */
3113 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3114 switch(mode) {
3115 case SK_IOCTL_GETMIB:
3116 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3117 pNet->NetNr);
3118 break;
3119 case SK_IOCTL_PRESETMIB:
3120 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3121 pNet->NetNr);
3122 break;
3123 case SK_IOCTL_SETMIB:
3124 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3125 pNet->NetNr);
3126 break;
3127 default:
3128 break;
3130 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3131 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3132 ("MIB data access succeeded\n"));
3133 return (Size);
3134 } /* SkGeIocMib */
3137 /*****************************************************************************
3139 * GetConfiguration - read configuration information
3141 * Description:
3142 * This function reads per-adapter configuration information from
3143 * the options provided on the command line.
3145 * Returns:
3146 * none
3148 static void GetConfiguration(
3149 SK_AC *pAC) /* pointer to the adapter context structure */
3151 SK_I32 Port; /* preferred port */
3152 SK_BOOL AutoSet;
3153 SK_BOOL DupSet;
3154 int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3155 int AutoNeg = 1; /* autoneg off (0) or on (1) */
3156 int DuplexCap = 0; /* 0=both,1=full,2=half */
3157 int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3158 int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3160 SK_BOOL IsConTypeDefined = SK_TRUE;
3161 SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3162 SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3163 SK_BOOL IsRoleDefined = SK_TRUE;
3164 SK_BOOL IsModeDefined = SK_TRUE;
3166 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3167 * parameter. The mapping is described by this table:
3168 * DuplexCap -> | both | full | half |
3169 * AutoNeg | | | |
3170 * -----------------------------------------------------------------
3171 * Off | illegal | Full | Half |
3172 * -----------------------------------------------------------------
3173 * On | AutoBoth | AutoFull | AutoHalf |
3174 * -----------------------------------------------------------------
3175 * Sense | AutoSense | AutoSense | AutoSense |
3177 int Capabilities[3][3] =
3178 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3179 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3180 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3182 #define DC_BOTH 0
3183 #define DC_FULL 1
3184 #define DC_HALF 2
3185 #define AN_OFF 0
3186 #define AN_ON 1
3187 #define AN_SENS 2
3188 #define M_CurrPort pAC->GIni.GP[Port]
3192 ** Set the default values first for both ports!
3194 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3195 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3196 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3197 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3198 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3202 ** Check merged parameter ConType. If it has not been used,
3203 ** verify any other parameter (e.g. AutoNeg) and use default values.
3205 ** Stating both ConType and other lowlevel link parameters is also
3206 ** possible. If this is the case, the passed ConType-parameter is
3207 ** overwritten by the lowlevel link parameter.
3209 ** The following settings are used for a merged ConType-parameter:
3211 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3212 ** ------- ------ ------- -------- ---------- -----
3213 ** Auto Both On SymOrRem Auto Auto
3214 ** 100FD Full Off None <ignored> 100
3215 ** 100HD Half Off None <ignored> 100
3216 ** 10FD Full Off None <ignored> 10
3217 ** 10HD Half Off None <ignored> 10
3219 ** This ConType parameter is used for all ports of the adapter!
3221 if ( (ConType != NULL) &&
3222 (pAC->Index < SK_MAX_CARD_PARAM) &&
3223 (ConType[pAC->Index] != NULL) ) {
3225 /* Check chipset family */
3226 if ((!pAC->ChipsetType) &&
3227 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3228 (strcmp(ConType[pAC->Index],"")!=0)) {
3229 /* Set the speed parameter back */
3230 printk("sk98lin: Illegal value \"%s\" "
3231 "for ConType."
3232 " Using Auto.\n",
3233 ConType[pAC->Index]);
3235 sprintf(ConType[pAC->Index], "Auto");
3238 if (strcmp(ConType[pAC->Index],"")==0) {
3239 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3240 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3241 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3242 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3243 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3244 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3245 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3247 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3248 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3249 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3250 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3251 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3252 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3254 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3255 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3256 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3257 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3258 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3259 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3261 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3262 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3263 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3264 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3265 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3266 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3268 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3269 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3270 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3271 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3272 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3273 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3275 } else {
3276 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3277 ConType[pAC->Index]);
3278 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3280 } else {
3281 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3285 ** Parse any parameter settings for port A:
3286 ** a) any LinkSpeed stated?
3288 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3289 Speed_A[pAC->Index] != NULL) {
3290 if (strcmp(Speed_A[pAC->Index],"")==0) {
3291 IsLinkSpeedDefined = SK_FALSE;
3292 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3293 LinkSpeed = SK_LSPEED_AUTO;
3294 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3295 LinkSpeed = SK_LSPEED_10MBPS;
3296 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3297 LinkSpeed = SK_LSPEED_100MBPS;
3298 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3299 LinkSpeed = SK_LSPEED_1000MBPS;
3300 } else {
3301 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3302 Speed_A[pAC->Index]);
3303 IsLinkSpeedDefined = SK_FALSE;
3305 } else {
3306 IsLinkSpeedDefined = SK_FALSE;
3310 ** Check speed parameter:
3311 ** Only copper type adapter and GE V2 cards
3313 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3314 ((LinkSpeed != SK_LSPEED_AUTO) &&
3315 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3316 printk("sk98lin: Illegal value for Speed_A. "
3317 "Not a copper card or GE V2 card\n Using "
3318 "speed 1000\n");
3319 LinkSpeed = SK_LSPEED_1000MBPS;
3323 ** Decide whether to set new config value if somethig valid has
3324 ** been received.
3326 if (IsLinkSpeedDefined) {
3327 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3331 ** b) Any Autonegotiation and DuplexCapabilities set?
3332 ** Please note that both belong together...
3334 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3335 AutoSet = SK_FALSE;
3336 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3337 AutoNeg_A[pAC->Index] != NULL) {
3338 AutoSet = SK_TRUE;
3339 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3340 AutoSet = SK_FALSE;
3341 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3342 AutoNeg = AN_ON;
3343 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3344 AutoNeg = AN_OFF;
3345 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3346 AutoNeg = AN_SENS;
3347 } else {
3348 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3349 AutoNeg_A[pAC->Index]);
3353 DuplexCap = DC_BOTH;
3354 DupSet = SK_FALSE;
3355 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3356 DupCap_A[pAC->Index] != NULL) {
3357 DupSet = SK_TRUE;
3358 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3359 DupSet = SK_FALSE;
3360 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3361 DuplexCap = DC_BOTH;
3362 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3363 DuplexCap = DC_FULL;
3364 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3365 DuplexCap = DC_HALF;
3366 } else {
3367 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3368 DupCap_A[pAC->Index]);
3373 ** Check for illegal combinations
3375 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3376 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3377 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3378 (pAC->ChipsetType)) {
3379 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3380 " Using Full Duplex.\n");
3381 DuplexCap = DC_FULL;
3384 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3385 printk("sk98lin, Port A: DuplexCapabilities"
3386 " ignored using Sense mode\n");
3389 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3390 printk("sk98lin: Port A: Illegal combination"
3391 " of values AutoNeg. and DuplexCap.\n Using "
3392 "Full Duplex\n");
3393 DuplexCap = DC_FULL;
3396 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3397 DuplexCap = DC_FULL;
3400 if (!AutoSet && DupSet) {
3401 printk("sk98lin: Port A: Duplex setting not"
3402 " possible in\n default AutoNegotiation mode"
3403 " (Sense).\n Using AutoNegotiation On\n");
3404 AutoNeg = AN_ON;
3408 ** set the desired mode
3410 if (AutoSet || DupSet) {
3411 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3415 ** c) Any Flowcontrol-parameter set?
3417 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3418 FlowCtrl_A[pAC->Index] != NULL) {
3419 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3420 IsFlowCtrlDefined = SK_FALSE;
3421 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3422 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3423 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3424 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3425 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3426 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3427 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3428 FlowCtrl = SK_FLOW_MODE_NONE;
3429 } else {
3430 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3431 FlowCtrl_A[pAC->Index]);
3432 IsFlowCtrlDefined = SK_FALSE;
3434 } else {
3435 IsFlowCtrlDefined = SK_FALSE;
3438 if (IsFlowCtrlDefined) {
3439 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3440 printk("sk98lin: Port A: FlowControl"
3441 " impossible without AutoNegotiation,"
3442 " disabled\n");
3443 FlowCtrl = SK_FLOW_MODE_NONE;
3445 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3449 ** d) What is with the RoleParameter?
3451 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3452 Role_A[pAC->Index] != NULL) {
3453 if (strcmp(Role_A[pAC->Index],"")==0) {
3454 IsRoleDefined = SK_FALSE;
3455 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3456 MSMode = SK_MS_MODE_AUTO;
3457 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3458 MSMode = SK_MS_MODE_MASTER;
3459 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3460 MSMode = SK_MS_MODE_SLAVE;
3461 } else {
3462 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3463 Role_A[pAC->Index]);
3464 IsRoleDefined = SK_FALSE;
3466 } else {
3467 IsRoleDefined = SK_FALSE;
3470 if (IsRoleDefined == SK_TRUE) {
3471 pAC->GIni.GP[0].PMSMode = MSMode;
3477 ** Parse any parameter settings for port B:
3478 ** a) any LinkSpeed stated?
3480 IsConTypeDefined = SK_TRUE;
3481 IsLinkSpeedDefined = SK_TRUE;
3482 IsFlowCtrlDefined = SK_TRUE;
3483 IsModeDefined = SK_TRUE;
3485 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3486 Speed_B[pAC->Index] != NULL) {
3487 if (strcmp(Speed_B[pAC->Index],"")==0) {
3488 IsLinkSpeedDefined = SK_FALSE;
3489 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3490 LinkSpeed = SK_LSPEED_AUTO;
3491 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3492 LinkSpeed = SK_LSPEED_10MBPS;
3493 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3494 LinkSpeed = SK_LSPEED_100MBPS;
3495 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3496 LinkSpeed = SK_LSPEED_1000MBPS;
3497 } else {
3498 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3499 Speed_B[pAC->Index]);
3500 IsLinkSpeedDefined = SK_FALSE;
3502 } else {
3503 IsLinkSpeedDefined = SK_FALSE;
3507 ** Check speed parameter:
3508 ** Only copper type adapter and GE V2 cards
3510 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3511 ((LinkSpeed != SK_LSPEED_AUTO) &&
3512 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3513 printk("sk98lin: Illegal value for Speed_B. "
3514 "Not a copper card or GE V2 card\n Using "
3515 "speed 1000\n");
3516 LinkSpeed = SK_LSPEED_1000MBPS;
3520 ** Decide whether to set new config value if somethig valid has
3521 ** been received.
3523 if (IsLinkSpeedDefined) {
3524 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3528 ** b) Any Autonegotiation and DuplexCapabilities set?
3529 ** Please note that both belong together...
3531 AutoNeg = AN_SENS; /* default: do auto Sense */
3532 AutoSet = SK_FALSE;
3533 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3534 AutoNeg_B[pAC->Index] != NULL) {
3535 AutoSet = SK_TRUE;
3536 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3537 AutoSet = SK_FALSE;
3538 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3539 AutoNeg = AN_ON;
3540 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3541 AutoNeg = AN_OFF;
3542 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3543 AutoNeg = AN_SENS;
3544 } else {
3545 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3546 AutoNeg_B[pAC->Index]);
3550 DuplexCap = DC_BOTH;
3551 DupSet = SK_FALSE;
3552 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3553 DupCap_B[pAC->Index] != NULL) {
3554 DupSet = SK_TRUE;
3555 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3556 DupSet = SK_FALSE;
3557 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3558 DuplexCap = DC_BOTH;
3559 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3560 DuplexCap = DC_FULL;
3561 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3562 DuplexCap = DC_HALF;
3563 } else {
3564 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3565 DupCap_B[pAC->Index]);
3571 ** Check for illegal combinations
3573 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3574 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3575 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3576 (pAC->ChipsetType)) {
3577 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3578 " Using Full Duplex.\n");
3579 DuplexCap = DC_FULL;
3582 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3583 printk("sk98lin, Port B: DuplexCapabilities"
3584 " ignored using Sense mode\n");
3587 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3588 printk("sk98lin: Port B: Illegal combination"
3589 " of values AutoNeg. and DuplexCap.\n Using "
3590 "Full Duplex\n");
3591 DuplexCap = DC_FULL;
3594 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3595 DuplexCap = DC_FULL;
3598 if (!AutoSet && DupSet) {
3599 printk("sk98lin: Port B: Duplex setting not"
3600 " possible in\n default AutoNegotiation mode"
3601 " (Sense).\n Using AutoNegotiation On\n");
3602 AutoNeg = AN_ON;
3606 ** set the desired mode
3608 if (AutoSet || DupSet) {
3609 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3613 ** c) Any FlowCtrl parameter set?
3615 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3616 FlowCtrl_B[pAC->Index] != NULL) {
3617 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3618 IsFlowCtrlDefined = SK_FALSE;
3619 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3620 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3621 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3622 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3623 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3624 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3625 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3626 FlowCtrl = SK_FLOW_MODE_NONE;
3627 } else {
3628 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3629 FlowCtrl_B[pAC->Index]);
3630 IsFlowCtrlDefined = SK_FALSE;
3632 } else {
3633 IsFlowCtrlDefined = SK_FALSE;
3636 if (IsFlowCtrlDefined) {
3637 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3638 printk("sk98lin: Port B: FlowControl"
3639 " impossible without AutoNegotiation,"
3640 " disabled\n");
3641 FlowCtrl = SK_FLOW_MODE_NONE;
3643 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3647 ** d) What is the RoleParameter?
3649 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3650 Role_B[pAC->Index] != NULL) {
3651 if (strcmp(Role_B[pAC->Index],"")==0) {
3652 IsRoleDefined = SK_FALSE;
3653 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3654 MSMode = SK_MS_MODE_AUTO;
3655 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3656 MSMode = SK_MS_MODE_MASTER;
3657 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3658 MSMode = SK_MS_MODE_SLAVE;
3659 } else {
3660 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3661 Role_B[pAC->Index]);
3662 IsRoleDefined = SK_FALSE;
3664 } else {
3665 IsRoleDefined = SK_FALSE;
3668 if (IsRoleDefined) {
3669 pAC->GIni.GP[1].PMSMode = MSMode;
3673 ** Evaluate settings for both ports
3675 pAC->ActivePort = 0;
3676 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3677 PrefPort[pAC->Index] != NULL) {
3678 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3679 pAC->ActivePort = 0;
3680 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3681 pAC->Rlmt.Net[0].PrefPort = 0;
3682 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3684 ** do not set ActivePort here, thus a port
3685 ** switch is issued after net up.
3687 Port = 0;
3688 pAC->Rlmt.Net[0].Preference = Port;
3689 pAC->Rlmt.Net[0].PrefPort = Port;
3690 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3692 ** do not set ActivePort here, thus a port
3693 ** switch is issued after net up.
3695 if (pAC->GIni.GIMacsFound == 1) {
3696 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3697 " Port B not available on single port adapters.\n");
3699 pAC->ActivePort = 0;
3700 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3701 pAC->Rlmt.Net[0].PrefPort = 0;
3702 } else {
3703 Port = 1;
3704 pAC->Rlmt.Net[0].Preference = Port;
3705 pAC->Rlmt.Net[0].PrefPort = Port;
3707 } else {
3708 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3709 PrefPort[pAC->Index]);
3713 pAC->RlmtNets = 1;
3715 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3716 RlmtMode[pAC->Index] != NULL) {
3717 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3718 pAC->RlmtMode = 0;
3719 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3720 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3721 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3722 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3723 SK_RLMT_CHECK_LOC_LINK;
3724 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3725 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3726 SK_RLMT_CHECK_LOC_LINK |
3727 SK_RLMT_CHECK_SEG;
3728 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3729 (pAC->GIni.GIMacsFound == 2)) {
3730 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3731 pAC->RlmtNets = 2;
3732 } else {
3733 printk("sk98lin: Illegal value \"%s\" for"
3734 " RlmtMode, using default\n",
3735 RlmtMode[pAC->Index]);
3736 pAC->RlmtMode = 0;
3738 } else {
3739 pAC->RlmtMode = 0;
3743 ** Check the interrupt moderation parameters
3745 if (Moderation[pAC->Index] != NULL) {
3746 if (strcmp(Moderation[pAC->Index], "") == 0) {
3747 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3748 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3749 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3750 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3751 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3752 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3753 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3754 } else {
3755 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3756 " Disable interrupt moderation.\n",
3757 Moderation[pAC->Index]);
3758 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3760 } else {
3761 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3764 if (Stats[pAC->Index] != NULL) {
3765 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3766 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3767 } else {
3768 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3770 } else {
3771 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3774 if (ModerationMask[pAC->Index] != NULL) {
3775 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3776 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3777 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3778 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3779 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3780 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3781 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3782 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3783 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3784 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3785 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3786 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3787 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3788 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3789 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3790 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3791 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3792 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3793 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3794 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3795 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3796 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3797 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3798 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3799 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3800 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3801 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3802 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3803 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3804 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3805 } else { /* some rubbish */
3806 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3808 } else { /* operator has stated nothing */
3809 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3812 if (AutoSizing[pAC->Index] != NULL) {
3813 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3814 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3815 } else {
3816 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3818 } else { /* operator has stated nothing */
3819 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3822 if (IntsPerSec[pAC->Index] != 0) {
3823 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3824 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3825 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3826 " Using default value of %i.\n",
3827 IntsPerSec[pAC->Index],
3828 C_INT_MOD_IPS_LOWER_RANGE,
3829 C_INT_MOD_IPS_UPPER_RANGE,
3830 C_INTS_PER_SEC_DEFAULT);
3831 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3832 } else {
3833 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3835 } else {
3836 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3840 ** Evaluate upper and lower moderation threshold
3842 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3843 pAC->DynIrqModInfo.MaxModIntsPerSec +
3844 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3846 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3847 pAC->DynIrqModInfo.MaxModIntsPerSec -
3848 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3850 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3853 } /* GetConfiguration */
3856 /*****************************************************************************
3858 * ProductStr - return a adapter identification string from vpd
3860 * Description:
3861 * This function reads the product name string from the vpd area
3862 * and puts it the field pAC->DeviceString.
3864 * Returns: N/A
3866 static void ProductStr(
3867 SK_AC *pAC /* pointer to adapter context */
3870 int StrLen = 80; /* length of the string, defined in SK_AC */
3871 char Keyword[] = VPD_NAME; /* vpd productname identifier */
3872 int ReturnCode; /* return code from vpd_read */
3873 unsigned long Flags;
3875 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3876 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
3877 &StrLen);
3878 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3879 if (ReturnCode != 0) {
3880 /* there was an error reading the vpd data */
3881 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
3882 ("Error reading VPD data: %d\n", ReturnCode));
3883 pAC->DeviceStr[0] = '\0';
3885 } /* ProductStr */
3887 /*****************************************************************************
3889 * StartDrvCleanupTimer - Start timer to check for descriptors which
3890 * might be placed in descriptor ring, but
3891 * havent been handled up to now
3893 * Description:
3894 * This function requests a HW-timer fo the Yukon card. The actions to
3895 * perform when this timer expires, are located in the SkDrvEvent().
3897 * Returns: N/A
3899 static void
3900 StartDrvCleanupTimer(SK_AC *pAC) {
3901 SK_EVPARA EventParam; /* Event struct for timer event */
3903 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3904 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3905 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3906 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3907 SKGE_DRV, SK_DRV_TIMER, EventParam);
3910 /*****************************************************************************
3912 * StopDrvCleanupTimer - Stop timer to check for descriptors
3914 * Description:
3915 * This function requests a HW-timer fo the Yukon card. The actions to
3916 * perform when this timer expires, are located in the SkDrvEvent().
3918 * Returns: N/A
3920 static void
3921 StopDrvCleanupTimer(SK_AC *pAC) {
3922 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3923 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3926 /****************************************************************************/
3927 /* functions for common modules *********************************************/
3928 /****************************************************************************/
3931 /*****************************************************************************
3933 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3935 * Description:
3936 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3937 * is embedded into a socket buff data area.
3939 * Context:
3940 * runtime
3942 * Returns:
3943 * NULL or pointer to Mbuf.
3945 SK_MBUF *SkDrvAllocRlmtMbuf(
3946 SK_AC *pAC, /* pointer to adapter context */
3947 SK_IOC IoC, /* the IO-context */
3948 unsigned BufferSize) /* size of the requested buffer */
3950 SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3951 struct sk_buff *pMsgBlock; /* pointer to a new message block */
3953 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3954 if (pMsgBlock == NULL) {
3955 return (NULL);
3957 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3958 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3959 pRlmtMbuf->pNext = NULL;
3960 pRlmtMbuf->pOs = pMsgBlock;
3961 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3962 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3963 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3964 return (pRlmtMbuf);
3966 } /* SkDrvAllocRlmtMbuf */
3969 /*****************************************************************************
3971 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3973 * Description:
3974 * This routine frees one or more RLMT mbuf(s).
3976 * Context:
3977 * runtime
3979 * Returns:
3980 * Nothing
3982 void SkDrvFreeRlmtMbuf(
3983 SK_AC *pAC, /* pointer to adapter context */
3984 SK_IOC IoC, /* the IO-context */
3985 SK_MBUF *pMbuf) /* size of the requested buffer */
3987 SK_MBUF *pFreeMbuf;
3988 SK_MBUF *pNextMbuf;
3990 pFreeMbuf = pMbuf;
3991 do {
3992 pNextMbuf = pFreeMbuf->pNext;
3993 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3994 pFreeMbuf = pNextMbuf;
3995 } while ( pFreeMbuf != NULL );
3996 } /* SkDrvFreeRlmtMbuf */
3999 /*****************************************************************************
4001 * SkOsGetTime - provide a time value
4003 * Description:
4004 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
4005 * It is not used for absolute time, but only for time differences.
4008 * Returns:
4009 * Time value
4011 SK_U64 SkOsGetTime(SK_AC *pAC)
4013 SK_U64 PrivateJiffies;
4014 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
4015 return PrivateJiffies;
4016 } /* SkOsGetTime */
4019 /*****************************************************************************
4021 * SkPciReadCfgDWord - read a 32 bit value from pci config space
4023 * Description:
4024 * This routine reads a 32 bit value from the pci configuration
4025 * space.
4027 * Returns:
4028 * 0 - indicate everything worked ok.
4029 * != 0 - error indication
4031 int SkPciReadCfgDWord(
4032 SK_AC *pAC, /* Adapter Control structure pointer */
4033 int PciAddr, /* PCI register address */
4034 SK_U32 *pVal) /* pointer to store the read value */
4036 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
4037 return(0);
4038 } /* SkPciReadCfgDWord */
4041 /*****************************************************************************
4043 * SkPciReadCfgWord - read a 16 bit value from pci config space
4045 * Description:
4046 * This routine reads a 16 bit value from the pci configuration
4047 * space.
4049 * Returns:
4050 * 0 - indicate everything worked ok.
4051 * != 0 - error indication
4053 int SkPciReadCfgWord(
4054 SK_AC *pAC, /* Adapter Control structure pointer */
4055 int PciAddr, /* PCI register address */
4056 SK_U16 *pVal) /* pointer to store the read value */
4058 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4059 return(0);
4060 } /* SkPciReadCfgWord */
4063 /*****************************************************************************
4065 * SkPciReadCfgByte - read a 8 bit value from pci config space
4067 * Description:
4068 * This routine reads a 8 bit value from the pci configuration
4069 * space.
4071 * Returns:
4072 * 0 - indicate everything worked ok.
4073 * != 0 - error indication
4075 int SkPciReadCfgByte(
4076 SK_AC *pAC, /* Adapter Control structure pointer */
4077 int PciAddr, /* PCI register address */
4078 SK_U8 *pVal) /* pointer to store the read value */
4080 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4081 return(0);
4082 } /* SkPciReadCfgByte */
4085 /*****************************************************************************
4087 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
4089 * Description:
4090 * This routine writes a 32 bit value to the pci configuration
4091 * space.
4093 * Returns:
4094 * 0 - indicate everything worked ok.
4095 * != 0 - error indication
4097 int SkPciWriteCfgDWord(
4098 SK_AC *pAC, /* Adapter Control structure pointer */
4099 int PciAddr, /* PCI register address */
4100 SK_U32 Val) /* pointer to store the read value */
4102 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
4103 return(0);
4104 } /* SkPciWriteCfgDWord */
4107 /*****************************************************************************
4109 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4111 * Description:
4112 * This routine writes a 16 bit value to the pci configuration
4113 * space. The flag PciConfigUp indicates whether the config space
4114 * is accesible or must be set up first.
4116 * Returns:
4117 * 0 - indicate everything worked ok.
4118 * != 0 - error indication
4120 int SkPciWriteCfgWord(
4121 SK_AC *pAC, /* Adapter Control structure pointer */
4122 int PciAddr, /* PCI register address */
4123 SK_U16 Val) /* pointer to store the read value */
4125 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4126 return(0);
4127 } /* SkPciWriteCfgWord */
4130 /*****************************************************************************
4132 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4134 * Description:
4135 * This routine writes a 8 bit value to the pci configuration
4136 * space. The flag PciConfigUp indicates whether the config space
4137 * is accesible or must be set up first.
4139 * Returns:
4140 * 0 - indicate everything worked ok.
4141 * != 0 - error indication
4143 int SkPciWriteCfgByte(
4144 SK_AC *pAC, /* Adapter Control structure pointer */
4145 int PciAddr, /* PCI register address */
4146 SK_U8 Val) /* pointer to store the read value */
4148 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4149 return(0);
4150 } /* SkPciWriteCfgByte */
4153 /*****************************************************************************
4155 * SkDrvEvent - handle driver events
4157 * Description:
4158 * This function handles events from all modules directed to the driver
4160 * Context:
4161 * Is called under protection of slow path lock.
4163 * Returns:
4164 * 0 if everything ok
4165 * < 0 on error
4168 int SkDrvEvent(
4169 SK_AC *pAC, /* pointer to adapter context */
4170 SK_IOC IoC, /* io-context */
4171 SK_U32 Event, /* event-id */
4172 SK_EVPARA Param) /* event-parameter */
4174 SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4175 struct sk_buff *pMsg; /* pointer to a message block */
4176 int FromPort; /* the port from which we switch away */
4177 int ToPort; /* the port we switch to */
4178 SK_EVPARA NewPara; /* parameter for further events */
4179 int Stat;
4180 unsigned long Flags;
4181 SK_BOOL DualNet;
4183 switch (Event) {
4184 case SK_DRV_ADAP_FAIL:
4185 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4186 ("ADAPTER FAIL EVENT\n"));
4187 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4188 /* disable interrupts */
4189 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4190 /* cgoos */
4191 break;
4192 case SK_DRV_PORT_FAIL:
4193 FromPort = Param.Para32[0];
4194 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4195 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4196 if (FromPort == 0) {
4197 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4198 } else {
4199 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4201 /* cgoos */
4202 break;
4203 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4204 /* action list 4 */
4205 FromPort = Param.Para32[0];
4206 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4207 ("PORT RESET EVENT, Port: %d ", FromPort));
4208 NewPara.Para64 = FromPort;
4209 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4210 spin_lock_irqsave(
4211 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4212 Flags);
4214 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4215 pAC->dev[Param.Para32[0]]->flags &= ~IFF_RUNNING;
4216 spin_unlock_irqrestore(
4217 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4218 Flags);
4220 /* clear rx ring from received frames */
4221 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4223 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4224 spin_lock_irqsave(
4225 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4226 Flags);
4228 /* tschilling: Handling of return value inserted. */
4229 if (SkGeInitPort(pAC, IoC, FromPort)) {
4230 if (FromPort == 0) {
4231 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4232 } else {
4233 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4236 SkAddrMcUpdate(pAC,IoC, FromPort);
4237 PortReInitBmu(pAC, FromPort);
4238 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4239 ClearAndStartRx(pAC, FromPort);
4240 spin_unlock_irqrestore(
4241 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4242 Flags);
4243 break;
4244 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4245 /* action list 5 */
4246 FromPort = Param.Para32[0];
4247 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4248 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4249 /* Mac update */
4250 SkAddrMcUpdate(pAC,IoC, FromPort);
4252 if (DoPrintInterfaceChange) {
4253 printk("%s: network connection up using"
4254 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4256 /* tschilling: Values changed according to LinkSpeedUsed. */
4257 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4258 if (Stat == SK_LSPEED_STAT_10MBPS) {
4259 printk(" speed: 10\n");
4260 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4261 printk(" speed: 100\n");
4262 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4263 printk(" speed: 1000\n");
4264 } else {
4265 printk(" speed: unknown\n");
4269 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4270 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4271 Stat == SK_LMODE_STAT_AUTOFULL) {
4272 printk(" autonegotiation: yes\n");
4274 else {
4275 printk(" autonegotiation: no\n");
4277 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4278 Stat == SK_LMODE_STAT_HALF) {
4279 printk(" duplex mode: half\n");
4281 else {
4282 printk(" duplex mode: full\n");
4284 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4285 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4286 printk(" flowctrl: remote send\n");
4288 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4289 printk(" flowctrl: local send\n");
4291 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4292 printk(" flowctrl: symmetric\n");
4294 else {
4295 printk(" flowctrl: none\n");
4298 /* tschilling: Check against CopperType now. */
4299 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4300 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4301 SK_LSPEED_STAT_1000MBPS)) {
4302 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4303 if (Stat == SK_MS_STAT_MASTER ) {
4304 printk(" role: master\n");
4306 else if (Stat == SK_MS_STAT_SLAVE ) {
4307 printk(" role: slave\n");
4309 else {
4310 printk(" role: ???\n");
4315 Display dim (dynamic interrupt moderation)
4316 informations
4318 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4319 printk(" irq moderation: static (%d ints/sec)\n",
4320 pAC->DynIrqModInfo.MaxModIntsPerSec);
4321 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4322 printk(" irq moderation: dynamic (%d ints/sec)\n",
4323 pAC->DynIrqModInfo.MaxModIntsPerSec);
4324 else
4325 printk(" irq moderation: disabled\n");
4328 #ifdef SK_ZEROCOPY
4329 if (pAC->ChipsetType)
4330 #ifdef USE_SK_TX_CHECKSUM
4331 printk(" scatter-gather: enabled\n");
4332 #else
4333 printk(" tx-checksum: disabled\n");
4334 #endif
4335 else
4336 printk(" scatter-gather: disabled\n");
4337 #else
4338 printk(" scatter-gather: disabled\n");
4339 #endif
4341 #ifndef USE_SK_RX_CHECKSUM
4342 printk(" rx-checksum: disabled\n");
4343 #endif
4345 } else {
4346 DoPrintInterfaceChange = SK_TRUE;
4349 if ((Param.Para32[0] != pAC->ActivePort) &&
4350 (pAC->RlmtNets == 1)) {
4351 NewPara.Para32[0] = pAC->ActivePort;
4352 NewPara.Para32[1] = Param.Para32[0];
4353 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4354 NewPara);
4357 /* Inform the world that link protocol is up. */
4358 pAC->dev[Param.Para32[0]]->flags |= IFF_RUNNING;
4360 break;
4361 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4362 /* action list 7 */
4363 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4364 ("NET DOWN EVENT "));
4365 if (DoPrintInterfaceChange) {
4366 printk("%s: network connection down\n",
4367 pAC->dev[Param.Para32[1]]->name);
4368 } else {
4369 DoPrintInterfaceChange = SK_TRUE;
4371 pAC->dev[Param.Para32[1]]->flags &= ~IFF_RUNNING;
4372 break;
4373 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4374 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4375 ("PORT SWITCH HARD "));
4376 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4377 /* action list 6 */
4378 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4379 'A'+Param.Para32[1]);
4380 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4381 FromPort = Param.Para32[0];
4382 ToPort = Param.Para32[1];
4383 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4384 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4385 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4386 NewPara.Para64 = FromPort;
4387 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4388 NewPara.Para64 = ToPort;
4389 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4390 spin_lock_irqsave(
4391 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4392 Flags);
4393 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4394 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4395 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4396 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4397 spin_unlock_irqrestore(
4398 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4399 Flags);
4401 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4402 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4404 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4405 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4406 spin_lock_irqsave(
4407 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4408 Flags);
4409 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4410 pAC->ActivePort = ToPort;
4411 #if 0
4412 SetQueueSizes(pAC);
4413 #else
4414 /* tschilling: New common function with minimum size check. */
4415 DualNet = SK_FALSE;
4416 if (pAC->RlmtNets == 2) {
4417 DualNet = SK_TRUE;
4420 if (SkGeInitAssignRamToQueues(
4421 pAC,
4422 pAC->ActivePort,
4423 DualNet)) {
4424 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4425 spin_unlock_irqrestore(
4426 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4427 Flags);
4428 printk("SkGeInitAssignRamToQueues failed.\n");
4429 break;
4431 #endif
4432 /* tschilling: Handling of return values inserted. */
4433 if (SkGeInitPort(pAC, IoC, FromPort) ||
4434 SkGeInitPort(pAC, IoC, ToPort)) {
4435 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4437 if (Event == SK_DRV_SWITCH_SOFT) {
4438 SkMacRxTxEnable(pAC, IoC, FromPort);
4440 SkMacRxTxEnable(pAC, IoC, ToPort);
4441 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4442 SkAddrMcUpdate(pAC, IoC, FromPort);
4443 SkAddrMcUpdate(pAC, IoC, ToPort);
4444 PortReInitBmu(pAC, FromPort);
4445 PortReInitBmu(pAC, ToPort);
4446 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4447 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4448 ClearAndStartRx(pAC, FromPort);
4449 ClearAndStartRx(pAC, ToPort);
4450 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4451 spin_unlock_irqrestore(
4452 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4453 Flags);
4454 break;
4455 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4456 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4457 ("RLS "));
4458 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4459 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4460 skb_put(pMsg, pRlmtMbuf->Length);
4461 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4462 pMsg) < 0)
4464 DEV_KFREE_SKB_ANY(pMsg);
4465 break;
4466 case SK_DRV_TIMER:
4467 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4469 ** expiration of the moderation timer implies that
4470 ** dynamic moderation is to be applied
4472 SkDimStartModerationTimer(pAC);
4473 SkDimModerate(pAC);
4474 if (pAC->DynIrqModInfo.DisplayStats) {
4475 SkDimDisplayModerationSettings(pAC);
4477 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4479 ** check if we need to check for descriptors which
4480 ** haven't been handled the last millisecs
4482 StartDrvCleanupTimer(pAC);
4483 if (pAC->GIni.GIMacsFound == 2) {
4484 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4486 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4487 } else {
4488 printk("Expiration of unknown timer\n");
4490 break;
4491 default:
4492 break;
4494 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4495 ("END EVENT "));
4497 return (0);
4498 } /* SkDrvEvent */
4501 /*****************************************************************************
4503 * SkErrorLog - log errors
4505 * Description:
4506 * This function logs errors to the system buffer and to the console
4508 * Returns:
4509 * 0 if everything ok
4510 * < 0 on error
4513 void SkErrorLog(
4514 SK_AC *pAC,
4515 int ErrClass,
4516 int ErrNum,
4517 char *pErrorMsg)
4519 char ClassStr[80];
4521 switch (ErrClass) {
4522 case SK_ERRCL_OTHER:
4523 strcpy(ClassStr, "Other error");
4524 break;
4525 case SK_ERRCL_CONFIG:
4526 strcpy(ClassStr, "Configuration error");
4527 break;
4528 case SK_ERRCL_INIT:
4529 strcpy(ClassStr, "Initialization error");
4530 break;
4531 case SK_ERRCL_NORES:
4532 strcpy(ClassStr, "Out of resources error");
4533 break;
4534 case SK_ERRCL_SW:
4535 strcpy(ClassStr, "internal Software error");
4536 break;
4537 case SK_ERRCL_HW:
4538 strcpy(ClassStr, "Hardware failure");
4539 break;
4540 case SK_ERRCL_COMM:
4541 strcpy(ClassStr, "Communication error");
4542 break;
4544 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4545 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4546 ClassStr, ErrNum, pErrorMsg);
4548 } /* SkErrorLog */
4550 #ifdef SK_DIAG_SUPPORT
4552 /*****************************************************************************
4554 * SkDrvEnterDiagMode - handles DIAG attach request
4556 * Description:
4557 * Notify the kernel to NOT access the card any longer due to DIAG
4558 * Deinitialize the Card
4560 * Returns:
4561 * int
4563 int SkDrvEnterDiagMode(
4564 SK_AC *pAc) /* pointer to adapter context */
4566 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4567 SK_AC *pAC = pNet->pAC;
4569 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4570 sizeof(SK_PNMI_STRUCT_DATA));
4572 pAC->DiagModeActive = DIAG_ACTIVE;
4573 if (pAC->BoardLevel > SK_INIT_DATA) {
4574 if (pNet->Up) {
4575 pAC->WasIfUp[0] = SK_TRUE;
4576 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4577 DoPrintInterfaceChange = SK_FALSE;
4578 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4579 } else {
4580 pAC->WasIfUp[0] = SK_FALSE;
4582 if (pNet != netdev_priv(pAC->dev[1])) {
4583 pNet = netdev_priv(pAC->dev[1]);
4584 if (pNet->Up) {
4585 pAC->WasIfUp[1] = SK_TRUE;
4586 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4587 DoPrintInterfaceChange = SK_FALSE;
4588 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4589 } else {
4590 pAC->WasIfUp[1] = SK_FALSE;
4593 pAC->BoardLevel = SK_INIT_DATA;
4595 return(0);
4598 /*****************************************************************************
4600 * SkDrvLeaveDiagMode - handles DIAG detach request
4602 * Description:
4603 * Notify the kernel to may access the card again after use by DIAG
4604 * Initialize the Card
4606 * Returns:
4607 * int
4609 int SkDrvLeaveDiagMode(
4610 SK_AC *pAc) /* pointer to adapter control context */
4612 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4613 sizeof(SK_PNMI_STRUCT_DATA));
4614 pAc->DiagModeActive = DIAG_NOTACTIVE;
4615 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4616 if (pAc->WasIfUp[0] == SK_TRUE) {
4617 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4618 DoPrintInterfaceChange = SK_FALSE;
4619 SkDrvInitAdapter(pAc, 0); /* first device */
4621 if (pAc->WasIfUp[1] == SK_TRUE) {
4622 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4623 DoPrintInterfaceChange = SK_FALSE;
4624 SkDrvInitAdapter(pAc, 1); /* second device */
4626 return(0);
4629 /*****************************************************************************
4631 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4633 * Description:
4634 * This function parses the PCI slot name information string and will
4635 * retrieve the devcie number out of it. The slot_name maintianed by
4636 * linux is in the form of '02:0a.0', whereas the first two characters
4637 * represent the bus number in hex (in the sample above this is
4638 * pci bus 0x02) and the next two characters the device number (0x0a).
4640 * Returns:
4641 * SK_U32: The device number from the PCI slot name
4644 static SK_U32 ParseDeviceNbrFromSlotName(
4645 const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4647 char *CurrCharPos = (char *) SlotName;
4648 int FirstNibble = -1;
4649 int SecondNibble = -1;
4650 SK_U32 Result = 0;
4652 while (*CurrCharPos != '\0') {
4653 if (*CurrCharPos == ':') {
4654 while (*CurrCharPos != '.') {
4655 CurrCharPos++;
4656 if ( (*CurrCharPos >= '0') &&
4657 (*CurrCharPos <= '9')) {
4658 if (FirstNibble == -1) {
4659 /* dec. value for '0' */
4660 FirstNibble = *CurrCharPos - 48;
4661 } else {
4662 SecondNibble = *CurrCharPos - 48;
4664 } else if ( (*CurrCharPos >= 'a') &&
4665 (*CurrCharPos <= 'f') ) {
4666 if (FirstNibble == -1) {
4667 FirstNibble = *CurrCharPos - 87;
4668 } else {
4669 SecondNibble = *CurrCharPos - 87;
4671 } else {
4672 Result = 0;
4676 Result = FirstNibble;
4677 Result = Result << 4; /* first nibble is higher one */
4678 Result = Result | SecondNibble;
4680 CurrCharPos++; /* next character */
4682 return (Result);
4685 /****************************************************************************
4687 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4688 * called if Diag attaches to that card)
4690 * Description:
4691 * Close initialized adapter.
4693 * Returns:
4694 * 0 - on success
4695 * error code - on error
4697 static int SkDrvDeInitAdapter(
4698 SK_AC *pAC, /* pointer to adapter context */
4699 int devNbr) /* what device is to be handled */
4701 struct SK_NET_DEVICE *dev;
4703 dev = pAC->dev[devNbr];
4705 /* On Linux 2.6 the network driver does NOT mess with reference
4706 ** counts. The driver MUST be able to be unloaded at any time
4707 ** due to the possibility of hotplug.
4709 if (SkGeClose(dev) != 0) {
4710 return (-1);
4712 return (0);
4714 } /* SkDrvDeInitAdapter() */
4716 /****************************************************************************
4718 * SkDrvInitAdapter - Initialize adapter (this function is only
4719 * called if Diag deattaches from that card)
4721 * Description:
4722 * Close initialized adapter.
4724 * Returns:
4725 * 0 - on success
4726 * error code - on error
4728 static int SkDrvInitAdapter(
4729 SK_AC *pAC, /* pointer to adapter context */
4730 int devNbr) /* what device is to be handled */
4732 struct SK_NET_DEVICE *dev;
4734 dev = pAC->dev[devNbr];
4736 if (SkGeOpen(dev) != 0) {
4737 return (-1);
4741 ** Use correct MTU size and indicate to kernel TX queue can be started
4743 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4744 return (-1);
4746 return (0);
4748 } /* SkDrvInitAdapter */
4750 #endif
4752 #ifdef DEBUG
4753 /****************************************************************************/
4754 /* "debug only" section *****************************************************/
4755 /****************************************************************************/
4758 /*****************************************************************************
4760 * DumpMsg - print a frame
4762 * Description:
4763 * This function prints frames to the system logfile/to the console.
4765 * Returns: N/A
4768 static void DumpMsg(struct sk_buff *skb, char *str)
4770 int msglen;
4772 if (skb == NULL) {
4773 printk("DumpMsg(): NULL-Message\n");
4774 return;
4777 if (skb->data == NULL) {
4778 printk("DumpMsg(): Message empty\n");
4779 return;
4782 msglen = skb->len;
4783 if (msglen > 64)
4784 msglen = 64;
4786 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4788 DumpData((char *)skb->data, msglen);
4790 printk("------- End of message ---------\n");
4791 } /* DumpMsg */
4795 /*****************************************************************************
4797 * DumpData - print a data area
4799 * Description:
4800 * This function prints a area of data to the system logfile/to the
4801 * console.
4803 * Returns: N/A
4806 static void DumpData(char *p, int size)
4808 register int i;
4809 int haddr, addr;
4810 char hex_buffer[180];
4811 char asc_buffer[180];
4812 char HEXCHAR[] = "0123456789ABCDEF";
4814 addr = 0;
4815 haddr = 0;
4816 hex_buffer[0] = 0;
4817 asc_buffer[0] = 0;
4818 for (i=0; i < size; ) {
4819 if (*p >= '0' && *p <='z')
4820 asc_buffer[addr] = *p;
4821 else
4822 asc_buffer[addr] = '.';
4823 addr++;
4824 asc_buffer[addr] = 0;
4825 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4826 haddr++;
4827 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4828 haddr++;
4829 hex_buffer[haddr] = ' ';
4830 haddr++;
4831 hex_buffer[haddr] = 0;
4832 p++;
4833 i++;
4834 if (i%16 == 0) {
4835 printk("%s %s\n", hex_buffer, asc_buffer);
4836 addr = 0;
4837 haddr = 0;
4840 } /* DumpData */
4843 /*****************************************************************************
4845 * DumpLong - print a data area as long values
4847 * Description:
4848 * This function prints a area of data to the system logfile/to the
4849 * console.
4851 * Returns: N/A
4854 static void DumpLong(char *pc, int size)
4856 register int i;
4857 int haddr, addr;
4858 char hex_buffer[180];
4859 char asc_buffer[180];
4860 char HEXCHAR[] = "0123456789ABCDEF";
4861 long *p;
4862 int l;
4864 addr = 0;
4865 haddr = 0;
4866 hex_buffer[0] = 0;
4867 asc_buffer[0] = 0;
4868 p = (long*) pc;
4869 for (i=0; i < size; ) {
4870 l = (long) *p;
4871 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4872 haddr++;
4873 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4874 haddr++;
4875 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4876 haddr++;
4877 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4878 haddr++;
4879 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4880 haddr++;
4881 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4882 haddr++;
4883 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4884 haddr++;
4885 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4886 haddr++;
4887 hex_buffer[haddr] = ' ';
4888 haddr++;
4889 hex_buffer[haddr] = 0;
4890 p++;
4891 i++;
4892 if (i%8 == 0) {
4893 printk("%4x %s\n", (i-8)*4, hex_buffer);
4894 haddr = 0;
4897 printk("------------------------\n");
4898 } /* DumpLong */
4900 #endif
4902 static int __devinit skge_probe_one(struct pci_dev *pdev,
4903 const struct pci_device_id *ent)
4905 SK_AC *pAC;
4906 DEV_NET *pNet = NULL;
4907 struct net_device *dev = NULL;
4908 static int boards_found = 0;
4909 int error = -ENODEV;
4911 if (pci_enable_device(pdev))
4912 goto out;
4914 /* Configure DMA attributes. */
4915 if (pci_set_dma_mask(pdev, (u64) 0xffffffffffffffffULL) &&
4916 pci_set_dma_mask(pdev, (u64) 0xffffffff))
4917 goto out_disable_device;
4920 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
4921 printk(KERN_ERR "Unable to allocate etherdev "
4922 "structure!\n");
4923 goto out_disable_device;
4926 pNet = netdev_priv(dev);
4927 pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
4928 if (!pNet->pAC) {
4929 printk(KERN_ERR "Unable to allocate adapter "
4930 "structure!\n");
4931 goto out_free_netdev;
4934 memset(pNet->pAC, 0, sizeof(SK_AC));
4935 pAC = pNet->pAC;
4936 pAC->PciDev = pdev;
4937 pAC->PciDevId = pdev->device;
4938 pAC->dev[0] = dev;
4939 pAC->dev[1] = dev;
4940 sprintf(pAC->Name, "SysKonnect SK-98xx");
4941 pAC->CheckQueue = SK_FALSE;
4943 pNet->Mtu = 1500;
4944 pNet->Up = 0;
4945 dev->irq = pdev->irq;
4946 error = SkGeInitPCI(pAC);
4947 if (error) {
4948 printk("SKGE: PCI setup failed: %i\n", error);
4949 goto out_free_netdev;
4952 SET_MODULE_OWNER(dev);
4953 dev->open = &SkGeOpen;
4954 dev->stop = &SkGeClose;
4955 dev->hard_start_xmit = &SkGeXmit;
4956 dev->get_stats = &SkGeStats;
4957 dev->set_multicast_list = &SkGeSetRxMode;
4958 dev->set_mac_address = &SkGeSetMacAddr;
4959 dev->do_ioctl = &SkGeIoctl;
4960 dev->change_mtu = &SkGeChangeMtu;
4961 #ifdef CONFIG_NET_POLL_CONTROLLER
4962 dev->poll_controller = &SkGePollController;
4963 #endif
4964 dev->flags &= ~IFF_RUNNING;
4965 SET_NETDEV_DEV(dev, &pdev->dev);
4966 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4968 #ifdef SK_ZEROCOPY
4969 #ifdef USE_SK_TX_CHECKSUM
4970 if (pAC->ChipsetType) {
4971 /* Use only if yukon hardware */
4972 /* SK and ZEROCOPY - fly baby... */
4973 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4975 #endif
4976 #endif
4978 pAC->Index = boards_found++;
4980 if (SkGeBoardInit(dev, pAC))
4981 goto out_free_netdev;
4983 /* Register net device */
4984 if (register_netdev(dev)) {
4985 printk(KERN_ERR "SKGE: Could not register device.\n");
4986 goto out_free_resources;
4989 /* Print adapter specific string from vpd */
4990 ProductStr(pAC);
4991 printk("%s: %s\n", dev->name, pAC->DeviceStr);
4993 /* Print configuration settings */
4994 printk(" PrefPort:%c RlmtMode:%s\n",
4995 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4996 (pAC->RlmtMode==0) ? "Check Link State" :
4997 ((pAC->RlmtMode==1) ? "Check Link State" :
4998 ((pAC->RlmtMode==3) ? "Check Local Port" :
4999 ((pAC->RlmtMode==7) ? "Check Segmentation" :
5000 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
5002 SkGeYellowLED(pAC, pAC->IoBase, 1);
5005 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
5007 SkGeProcCreate(dev);
5009 pNet->PortNr = 0;
5010 pNet->NetNr = 0;
5012 boards_found++;
5014 /* More then one port found */
5015 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
5016 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
5017 printk(KERN_ERR "Unable to allocate etherdev "
5018 "structure!\n");
5019 goto out;
5022 pAC->dev[1] = dev;
5023 pNet = netdev_priv(dev);
5024 pNet->PortNr = 1;
5025 pNet->NetNr = 1;
5026 pNet->pAC = pAC;
5027 pNet->Mtu = 1500;
5028 pNet->Up = 0;
5030 dev->open = &SkGeOpen;
5031 dev->stop = &SkGeClose;
5032 dev->hard_start_xmit = &SkGeXmit;
5033 dev->get_stats = &SkGeStats;
5034 dev->set_multicast_list = &SkGeSetRxMode;
5035 dev->set_mac_address = &SkGeSetMacAddr;
5036 dev->do_ioctl = &SkGeIoctl;
5037 dev->change_mtu = &SkGeChangeMtu;
5038 dev->flags &= ~IFF_RUNNING;
5039 SET_NETDEV_DEV(dev, &pdev->dev);
5040 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
5042 #ifdef SK_ZEROCOPY
5043 #ifdef USE_SK_TX_CHECKSUM
5044 if (pAC->ChipsetType) {
5045 /* SG and ZEROCOPY - fly baby... */
5046 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
5048 #endif
5049 #endif
5051 if (register_netdev(dev)) {
5052 printk(KERN_ERR "SKGE: Could not register device.\n");
5053 free_netdev(dev);
5054 pAC->dev[1] = pAC->dev[0];
5055 } else {
5056 SkGeProcCreate(dev);
5057 memcpy(&dev->dev_addr,
5058 &pAC->Addr.Net[1].CurrentMacAddress, 6);
5060 printk("%s: %s\n", dev->name, pAC->DeviceStr);
5061 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
5065 /* Save the hardware revision */
5066 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
5067 (pAC->GIni.GIPciHwRev & 0x0F);
5069 /* Set driver globals */
5070 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
5071 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
5073 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
5074 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
5076 pci_set_drvdata(pdev, dev);
5077 return 0;
5079 out_free_resources:
5080 FreeResources(dev);
5081 out_free_netdev:
5082 free_netdev(dev);
5083 out_disable_device:
5084 pci_disable_device(pdev);
5085 out:
5086 return error;
5089 static void __devexit skge_remove_one(struct pci_dev *pdev)
5091 struct net_device *dev = pci_get_drvdata(pdev);
5092 DEV_NET *pNet = netdev_priv(dev);
5093 SK_AC *pAC = pNet->pAC;
5094 struct net_device *otherdev = pAC->dev[1];
5096 SkGeProcRemove(dev);
5097 unregister_netdev(dev);
5098 if (otherdev != dev)
5099 SkGeProcRemove(otherdev);
5101 SkGeYellowLED(pAC, pAC->IoBase, 0);
5103 if (pAC->BoardLevel == SK_INIT_RUN) {
5104 SK_EVPARA EvPara;
5105 unsigned long Flags;
5107 /* board is still alive */
5108 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5109 EvPara.Para32[0] = 0;
5110 EvPara.Para32[1] = -1;
5111 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5112 EvPara.Para32[0] = 1;
5113 EvPara.Para32[1] = -1;
5114 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5115 SkEventDispatcher(pAC, pAC->IoBase);
5116 /* disable interrupts */
5117 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5118 SkGeDeInit(pAC, pAC->IoBase);
5119 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5120 pAC->BoardLevel = SK_INIT_DATA;
5121 /* We do NOT check here, if IRQ was pending, of course*/
5124 if (pAC->BoardLevel == SK_INIT_IO) {
5125 /* board is still alive */
5126 SkGeDeInit(pAC, pAC->IoBase);
5127 pAC->BoardLevel = SK_INIT_DATA;
5130 FreeResources(dev);
5131 free_netdev(dev);
5132 if (otherdev != dev)
5133 free_netdev(otherdev);
5134 kfree(pAC);
5137 static struct pci_device_id skge_pci_tbl[] = {
5138 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5139 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5140 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5141 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5142 { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5143 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5144 #if 0 /* don't handle Yukon2 cards at the moment -- mlindner@syskonnect.de */
5145 { PCI_VENDOR_ID_MARVELL, 0x4360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5146 { PCI_VENDOR_ID_MARVELL, 0x4361, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5147 #endif
5148 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5149 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5150 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5151 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5152 { 0, }
5155 MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5157 static struct pci_driver skge_driver = {
5158 .name = "sk98lin",
5159 .id_table = skge_pci_tbl,
5160 .probe = skge_probe_one,
5161 .remove = __devexit_p(skge_remove_one),
5164 static int __init skge_init(void)
5166 int error;
5168 pSkRootDir = proc_mkdir(SKRootName, proc_net);
5169 if (pSkRootDir)
5170 pSkRootDir->owner = THIS_MODULE;
5172 error = pci_register_driver(&skge_driver);
5173 if (error)
5174 proc_net_remove(SKRootName);
5175 return error;
5178 static void __exit skge_exit(void)
5180 pci_unregister_driver(&skge_driver);
5181 proc_net_remove(SKRootName);
5185 module_init(skge_init);
5186 module_exit(skge_exit);