1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <asm/oplib.h>
13 #define __KERNEL_SYSCALLS__
15 #include <asm/unistd.h>
22 /* WARNING: Making changes to this driver is very dangerous.
23 * If you misprogram the sensor chips they can
24 * cut the power on you instantly.
27 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
28 * Both are implemented using max1617 i2c devices. Each max1617
29 * monitors 2 temperatures, one for one of the cpu dies and the other
30 * for the ambient temperature.
32 * The max1617 is capable of being programmed with power-off
33 * temperature values, one low limit and one high limit. These
34 * can be controlled independently for the cpu or ambient temperature.
35 * If a limit is violated, the power is simply shut off. The frequency
36 * with which the max1617 does temperature sampling can be controlled
39 * Three fans exist inside the machine, all three are controlled with
40 * an i2c digital to analog converter. There is a fan directed at the
41 * two processor slots, another for the rest of the enclosure, and the
42 * third is for the power supply. The first two fans may be speed
43 * controlled by changing the voltage fed to them. The third fan may
44 * only be completely off or on. The third fan is meant to only be
45 * disabled/enabled when entering/exiting the lowest power-saving
46 * mode of the machine.
48 * An environmental control kernel thread periodically monitors all
49 * temperature sensors. Based upon the samples it will adjust the
50 * fan speeds to try and keep the system within a certain temperature
51 * range (the goal being to make the fans as quiet as possible without
52 * allowing the system to get too hot).
54 * If the temperature begins to rise/fall outside of the acceptable
55 * operating range, a periodic warning will be sent to the kernel log.
56 * The fans will be put on full blast to attempt to deal with this
57 * situation. After exceeding the acceptable operating range by a
58 * certain threshold, the kernel thread will shut down the system.
59 * Here, the thread is attempting to shut the machine down cleanly
60 * before the hardware based power-off event is triggered.
63 /* These settings are in Celsius. We use these defaults only
64 * if we cannot interrogate the cpu-fru SEEPROM.
67 s8 high_pwroff
, high_shutdown
, high_warn
;
68 s8 low_warn
, low_shutdown
, low_pwroff
;
71 static struct temp_limits cpu_temp_limits
[2] = {
72 { 100, 85, 80, 5, -5, -10 },
73 { 100, 85, 80, 5, -5, -10 },
76 static struct temp_limits amb_temp_limits
[2] = {
77 { 65, 55, 40, 5, -5, -10 },
78 { 65, 55, 40, 5, -5, -10 },
81 enum fan_action
{ FAN_SLOWER
, FAN_SAME
, FAN_FASTER
, FAN_FULLBLAST
, FAN_STATE_MAX
};
83 struct bbc_cpu_temperature
{
84 struct bbc_cpu_temperature
*next
;
86 struct bbc_i2c_client
*client
;
89 /* Current readings, and history. */
99 enum fan_action fan_todo
[2];
100 #define FAN_AMBIENT 0
104 struct bbc_cpu_temperature
*all_bbc_temps
;
106 struct bbc_fan_control
{
107 struct bbc_fan_control
*next
;
109 struct bbc_i2c_client
*client
;
114 int system_fan_speed
;
117 struct bbc_fan_control
*all_bbc_fans
;
119 #define CPU_FAN_REG 0xf0
120 #define SYS_FAN_REG 0xf2
121 #define PSUPPLY_FAN_REG 0xf4
123 #define FAN_SPEED_MIN 0x0c
124 #define FAN_SPEED_MAX 0x3f
126 #define PSUPPLY_FAN_ON 0x1f
127 #define PSUPPLY_FAN_OFF 0x00
129 static void set_fan_speeds(struct bbc_fan_control
*fp
)
131 /* Put temperatures into range so we don't mis-program
134 if (fp
->cpu_fan_speed
< FAN_SPEED_MIN
)
135 fp
->cpu_fan_speed
= FAN_SPEED_MIN
;
136 if (fp
->cpu_fan_speed
> FAN_SPEED_MAX
)
137 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
138 if (fp
->system_fan_speed
< FAN_SPEED_MIN
)
139 fp
->system_fan_speed
= FAN_SPEED_MIN
;
140 if (fp
->system_fan_speed
> FAN_SPEED_MAX
)
141 fp
->system_fan_speed
= FAN_SPEED_MAX
;
143 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
145 fp
->cpu_fan_speed
, fp
->system_fan_speed
);
148 bbc_i2c_writeb(fp
->client
, fp
->cpu_fan_speed
, CPU_FAN_REG
);
149 bbc_i2c_writeb(fp
->client
, fp
->system_fan_speed
, SYS_FAN_REG
);
150 bbc_i2c_writeb(fp
->client
,
151 (fp
->psupply_fan_on
?
152 PSUPPLY_FAN_ON
: PSUPPLY_FAN_OFF
),
156 static void get_current_temps(struct bbc_cpu_temperature
*tp
)
158 tp
->prev_amb_temp
= tp
->curr_amb_temp
;
159 bbc_i2c_readb(tp
->client
,
160 (unsigned char *) &tp
->curr_amb_temp
,
162 tp
->prev_cpu_temp
= tp
->curr_cpu_temp
;
163 bbc_i2c_readb(tp
->client
,
164 (unsigned char *) &tp
->curr_cpu_temp
,
167 printk("temp%d: cpu(%d C) amb(%d C)\n",
169 (int) tp
->curr_cpu_temp
, (int) tp
->curr_amb_temp
);
174 static void do_envctrl_shutdown(struct bbc_cpu_temperature
*tp
)
176 static int shutting_down
= 0;
177 static char *envp
[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL
};
178 char *argv
[] = { "/sbin/shutdown", "-h", "now", NULL
};
182 if (shutting_down
!= 0)
185 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
186 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
188 val
= tp
->curr_amb_temp
;
189 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
190 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
192 val
= tp
->curr_cpu_temp
;
195 printk(KERN_CRIT
"temp%d: Outside of safe %s "
196 "operating temperature, %d C.\n",
197 tp
->index
, type
, val
);
199 printk(KERN_CRIT
"kenvctrld: Shutting down the system now.\n");
202 if (execve("/sbin/shutdown", argv
, envp
) < 0)
203 printk(KERN_CRIT
"envctrl: shutdown execution failed\n");
206 #define WARN_INTERVAL (30 * HZ)
208 static void analyze_ambient_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
212 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
213 if (tp
->curr_amb_temp
>=
214 amb_temp_limits
[tp
->index
].high_warn
) {
215 printk(KERN_WARNING
"temp%d: "
216 "Above safe ambient operating temperature, %d C.\n",
217 tp
->index
, (int) tp
->curr_amb_temp
);
219 } else if (tp
->curr_amb_temp
<
220 amb_temp_limits
[tp
->index
].low_warn
) {
221 printk(KERN_WARNING
"temp%d: "
222 "Below safe ambient operating temperature, %d C.\n",
223 tp
->index
, (int) tp
->curr_amb_temp
);
227 *last_warn
= jiffies
;
228 } else if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_warn
||
229 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_warn
)
232 /* Now check the shutdown limits. */
233 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
234 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
235 do_envctrl_shutdown(tp
);
240 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FULLBLAST
;
241 } else if ((tick
& (8 - 1)) == 0) {
242 s8 amb_goal_hi
= amb_temp_limits
[tp
->index
].high_warn
- 10;
245 amb_goal_lo
= amb_goal_hi
- 3;
247 /* We do not try to avoid 'too cold' events. Basically we
248 * only try to deal with over-heating and fan noise reduction.
250 if (tp
->avg_amb_temp
< amb_goal_hi
) {
251 if (tp
->avg_amb_temp
>= amb_goal_lo
)
252 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
254 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SLOWER
;
256 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FASTER
;
259 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
263 static void analyze_cpu_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
267 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
268 if (tp
->curr_cpu_temp
>=
269 cpu_temp_limits
[tp
->index
].high_warn
) {
270 printk(KERN_WARNING
"temp%d: "
271 "Above safe CPU operating temperature, %d C.\n",
272 tp
->index
, (int) tp
->curr_cpu_temp
);
274 } else if (tp
->curr_cpu_temp
<
275 cpu_temp_limits
[tp
->index
].low_warn
) {
276 printk(KERN_WARNING
"temp%d: "
277 "Below safe CPU operating temperature, %d C.\n",
278 tp
->index
, (int) tp
->curr_cpu_temp
);
282 *last_warn
= jiffies
;
283 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_warn
||
284 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_warn
)
287 /* Now check the shutdown limits. */
288 if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
289 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
290 do_envctrl_shutdown(tp
);
295 tp
->fan_todo
[FAN_CPU
] = FAN_FULLBLAST
;
296 } else if ((tick
& (8 - 1)) == 0) {
297 s8 cpu_goal_hi
= cpu_temp_limits
[tp
->index
].high_warn
- 10;
300 cpu_goal_lo
= cpu_goal_hi
- 3;
302 /* We do not try to avoid 'too cold' events. Basically we
303 * only try to deal with over-heating and fan noise reduction.
305 if (tp
->avg_cpu_temp
< cpu_goal_hi
) {
306 if (tp
->avg_cpu_temp
>= cpu_goal_lo
)
307 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
309 tp
->fan_todo
[FAN_CPU
] = FAN_SLOWER
;
311 tp
->fan_todo
[FAN_CPU
] = FAN_FASTER
;
314 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
318 static void analyze_temps(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
)
320 tp
->avg_amb_temp
= (s8
)((int)((int)tp
->avg_amb_temp
+ (int)tp
->curr_amb_temp
) / 2);
321 tp
->avg_cpu_temp
= (s8
)((int)((int)tp
->avg_cpu_temp
+ (int)tp
->curr_cpu_temp
) / 2);
323 analyze_ambient_temp(tp
, last_warn
, tp
->sample_tick
);
324 analyze_cpu_temp(tp
, last_warn
, tp
->sample_tick
);
329 static enum fan_action
prioritize_fan_action(int which_fan
)
331 struct bbc_cpu_temperature
*tp
;
332 enum fan_action decision
= FAN_STATE_MAX
;
334 /* Basically, prioritize what the temperature sensors
335 * recommend we do, and perform that action on all the
338 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
339 if (tp
->fan_todo
[which_fan
] == FAN_FULLBLAST
) {
340 decision
= FAN_FULLBLAST
;
343 if (tp
->fan_todo
[which_fan
] == FAN_SAME
&&
344 decision
!= FAN_FASTER
)
346 else if (tp
->fan_todo
[which_fan
] == FAN_FASTER
)
347 decision
= FAN_FASTER
;
348 else if (decision
!= FAN_FASTER
&&
349 decision
!= FAN_SAME
&&
350 tp
->fan_todo
[which_fan
] == FAN_SLOWER
)
351 decision
= FAN_SLOWER
;
353 if (decision
== FAN_STATE_MAX
)
359 static int maybe_new_ambient_fan_speed(struct bbc_fan_control
*fp
)
361 enum fan_action decision
= prioritize_fan_action(FAN_AMBIENT
);
364 if (decision
== FAN_SAME
)
368 if (decision
== FAN_FULLBLAST
) {
369 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
372 fp
->system_fan_speed
= FAN_SPEED_MAX
;
374 if (decision
== FAN_FASTER
) {
375 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
378 fp
->system_fan_speed
+= 2;
380 int orig_speed
= fp
->system_fan_speed
;
382 if (orig_speed
<= FAN_SPEED_MIN
||
383 orig_speed
<= (fp
->cpu_fan_speed
- 3))
386 fp
->system_fan_speed
-= 1;
393 static int maybe_new_cpu_fan_speed(struct bbc_fan_control
*fp
)
395 enum fan_action decision
= prioritize_fan_action(FAN_CPU
);
398 if (decision
== FAN_SAME
)
402 if (decision
== FAN_FULLBLAST
) {
403 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
406 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
408 if (decision
== FAN_FASTER
) {
409 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
412 fp
->cpu_fan_speed
+= 2;
413 if (fp
->system_fan_speed
<
414 (fp
->cpu_fan_speed
- 3))
415 fp
->system_fan_speed
=
416 fp
->cpu_fan_speed
- 3;
419 if (fp
->cpu_fan_speed
<= FAN_SPEED_MIN
)
422 fp
->cpu_fan_speed
-= 1;
429 static void maybe_new_fan_speeds(struct bbc_fan_control
*fp
)
433 new = maybe_new_ambient_fan_speed(fp
);
434 new |= maybe_new_cpu_fan_speed(fp
);
440 static void fans_full_blast(void)
442 struct bbc_fan_control
*fp
;
444 /* Since we will not be monitoring things anymore, put
445 * the fans on full blast.
447 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
) {
448 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
449 fp
->system_fan_speed
= FAN_SPEED_MAX
;
450 fp
->psupply_fan_on
= 1;
455 #define POLL_INTERVAL (5 * 1000)
456 static unsigned long last_warning_jiffies
;
457 static struct task_struct
*kenvctrld_task
;
459 static int kenvctrld(void *__unused
)
461 daemonize("kenvctrld");
462 allow_signal(SIGKILL
);
463 kenvctrld_task
= current
;
465 printk(KERN_INFO
"bbc_envctrl: kenvctrld starting...\n");
466 last_warning_jiffies
= jiffies
- WARN_INTERVAL
;
468 struct bbc_cpu_temperature
*tp
;
469 struct bbc_fan_control
*fp
;
471 msleep_interruptible(POLL_INTERVAL
);
472 if (signal_pending(current
))
475 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
476 get_current_temps(tp
);
477 analyze_temps(tp
, &last_warning_jiffies
);
479 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
)
480 maybe_new_fan_speeds(fp
);
482 printk(KERN_INFO
"bbc_envctrl: kenvctrld exiting...\n");
489 static void attach_one_temp(struct linux_ebus_child
*echild
, int temp_idx
)
491 struct bbc_cpu_temperature
*tp
= kmalloc(sizeof(*tp
), GFP_KERNEL
);
495 memset(tp
, 0, sizeof(*tp
));
496 tp
->client
= bbc_i2c_attach(echild
);
502 tp
->index
= temp_idx
;
504 struct bbc_cpu_temperature
**tpp
= &all_bbc_temps
;
506 tpp
= &((*tpp
)->next
);
511 /* Tell it to convert once every 5 seconds, clear all cfg
514 bbc_i2c_writeb(tp
->client
, 0x00, MAX1617_WR_CFG_BYTE
);
515 bbc_i2c_writeb(tp
->client
, 0x02, MAX1617_WR_CVRATE_BYTE
);
517 /* Program the hard temperature limits into the chip. */
518 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].high_pwroff
,
519 MAX1617_WR_AMB_HIGHLIM
);
520 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].low_pwroff
,
521 MAX1617_WR_AMB_LOWLIM
);
522 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].high_pwroff
,
523 MAX1617_WR_CPU_HIGHLIM
);
524 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].low_pwroff
,
525 MAX1617_WR_CPU_LOWLIM
);
527 get_current_temps(tp
);
528 tp
->prev_cpu_temp
= tp
->avg_cpu_temp
= tp
->curr_cpu_temp
;
529 tp
->prev_amb_temp
= tp
->avg_amb_temp
= tp
->curr_amb_temp
;
531 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
532 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
535 static void attach_one_fan(struct linux_ebus_child
*echild
, int fan_idx
)
537 struct bbc_fan_control
*fp
= kmalloc(sizeof(*fp
), GFP_KERNEL
);
541 memset(fp
, 0, sizeof(*fp
));
542 fp
->client
= bbc_i2c_attach(echild
);
551 struct bbc_fan_control
**fpp
= &all_bbc_fans
;
553 fpp
= &((*fpp
)->next
);
558 /* The i2c device controlling the fans is write-only.
559 * So the only way to keep track of the current power
560 * level fed to the fans is via software. Choose half
561 * power for cpu/system and 'on' fo the powersupply fan
564 fp
->psupply_fan_on
= 1;
565 fp
->cpu_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
566 fp
->cpu_fan_speed
+= FAN_SPEED_MIN
;
567 fp
->system_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
568 fp
->system_fan_speed
+= FAN_SPEED_MIN
;
573 int bbc_envctrl_init(void)
575 struct linux_ebus_child
*echild
;
581 while ((echild
= bbc_i2c_getdev(devidx
++)) != NULL
) {
582 if (!strcmp(echild
->prom_name
, "temperature"))
583 attach_one_temp(echild
, temp_index
++);
584 if (!strcmp(echild
->prom_name
, "fan-control"))
585 attach_one_fan(echild
, fan_index
++);
587 if (temp_index
!= 0 && fan_index
!= 0)
588 err
= kernel_thread(kenvctrld
, NULL
, CLONE_FS
| CLONE_FILES
);
592 static void destroy_one_temp(struct bbc_cpu_temperature
*tp
)
594 bbc_i2c_detach(tp
->client
);
598 static void destroy_one_fan(struct bbc_fan_control
*fp
)
600 bbc_i2c_detach(fp
->client
);
604 void bbc_envctrl_cleanup(void)
606 struct bbc_cpu_temperature
*tp
;
607 struct bbc_fan_control
*fp
;
609 if (kenvctrld_task
!= NULL
) {
610 force_sig(SIGKILL
, kenvctrld_task
);
612 struct task_struct
*p
;
615 read_lock(&tasklist_lock
);
616 for_each_process(p
) {
617 if (p
== kenvctrld_task
) {
622 read_unlock(&tasklist_lock
);
627 kenvctrld_task
= NULL
;
632 struct bbc_cpu_temperature
*next
= tp
->next
;
633 destroy_one_temp(tp
);
636 all_bbc_temps
= NULL
;
640 struct bbc_fan_control
*next
= fp
->next
;