2 * Interface for the 93C66/56/46/26/06 serial eeprom parts.
4 * Copyright (c) 1995, 1996 Daniel M. Eischen
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * $Id: //depot/aic7xxx/aic7xxx/aic7xxx_93cx6.c#17 $
37 * The instruction set of the 93C66/56/46/26/06 chips are as follows:
40 * Function Bit Code Address** Data Description
41 * -------------------------------------------------------------------
42 * READ 1 10 A5 - A0 Reads data stored in memory,
43 * starting at specified address
44 * EWEN 1 00 11XXXX Write enable must precede
45 * all programming modes
46 * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
47 * WRITE 1 01 A5 - A0 D15 - D0 Writes register
48 * ERAL 1 00 10XXXX Erase all registers
49 * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
50 * EWDS 1 00 00XXXX Disables all programming
52 * *Note: A value of X for address is a don't care condition.
53 * **Note: There are 8 address bits for the 93C56/66 chips unlike
54 * the 93C46/26/06 chips which have 6 address bits.
56 * The 93C46 has a four wire interface: clock, chip select, data in, and
57 * data out. In order to perform one of the above functions, you need
58 * to enable the chip select for a clock period (typically a minimum of
59 * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
60 * respectively). While the chip select remains high, you can clock in
61 * the instructions (above) starting with the start bit, followed by the
62 * OP code, Address, and Data (if needed). For the READ instruction, the
63 * requested 16-bit register contents is read from the data out line but
64 * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
65 * first). The clock cycling from low to high initiates the next data
66 * bit to be sent from the chip.
71 #include "aic7xxx_osm.h"
72 #include "aic7xxx_inline.h"
73 #include "aic7xxx_93cx6.h"
75 #include <dev/aic7xxx/aic7xxx_osm.h>
76 #include <dev/aic7xxx/aic7xxx_inline.h>
77 #include <dev/aic7xxx/aic7xxx_93cx6.h>
81 * Right now, we only have to read the SEEPROM. But we make it easier to
82 * add other 93Cx6 functions.
84 static struct seeprom_cmd
{
87 } seeprom_read
= {3, {1, 1, 0}};
89 static struct seeprom_cmd seeprom_ewen
= {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
90 static struct seeprom_cmd seeprom_ewds
= {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
91 static struct seeprom_cmd seeprom_write
= {3, {1, 0, 1}};
94 * Wait for the SEERDY to go high; about 800 ns.
96 #define CLOCK_PULSE(sd, rdy) \
97 while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) { \
100 (void)SEEPROM_INB(sd); /* Clear clock */
103 * Send a START condition and the given command
106 send_seeprom_cmd(struct seeprom_descriptor
*sd
, struct seeprom_cmd
*cmd
)
111 /* Send chip select for one clock cycle. */
112 temp
= sd
->sd_MS
^ sd
->sd_CS
;
113 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
114 CLOCK_PULSE(sd
, sd
->sd_RDY
);
116 for (i
= 0; i
< cmd
->len
; i
++) {
117 if (cmd
->bits
[i
] != 0)
119 SEEPROM_OUTB(sd
, temp
);
120 CLOCK_PULSE(sd
, sd
->sd_RDY
);
121 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
122 CLOCK_PULSE(sd
, sd
->sd_RDY
);
123 if (cmd
->bits
[i
] != 0)
129 * Clear CS put the chip in the reset state, where it can wait for new commands.
132 reset_seeprom(struct seeprom_descriptor
*sd
)
137 SEEPROM_OUTB(sd
, temp
);
138 CLOCK_PULSE(sd
, sd
->sd_RDY
);
139 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
140 CLOCK_PULSE(sd
, sd
->sd_RDY
);
141 SEEPROM_OUTB(sd
, temp
);
142 CLOCK_PULSE(sd
, sd
->sd_RDY
);
146 * Read the serial EEPROM and returns 1 if successful and 0 if
150 ahc_read_seeprom(struct seeprom_descriptor
*sd
, uint16_t *buf
,
151 u_int start_addr
, u_int count
)
159 * Read the requested registers of the seeprom. The loop
160 * will range from 0 to count-1.
162 for (k
= start_addr
; k
< count
+ start_addr
; k
++) {
164 * Now we're ready to send the read command followed by the
165 * address of the 16-bit register we want to read.
167 send_seeprom_cmd(sd
, &seeprom_read
);
169 /* Send the 6 or 8 bit address (MSB first, LSB last). */
170 temp
= sd
->sd_MS
^ sd
->sd_CS
;
171 for (i
= (sd
->sd_chip
- 1); i
>= 0; i
--) {
172 if ((k
& (1 << i
)) != 0)
174 SEEPROM_OUTB(sd
, temp
);
175 CLOCK_PULSE(sd
, sd
->sd_RDY
);
176 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
177 CLOCK_PULSE(sd
, sd
->sd_RDY
);
178 if ((k
& (1 << i
)) != 0)
183 * Now read the 16 bit register. An initial 0 precedes the
184 * register contents which begins with bit 15 (MSB) and ends
185 * with bit 0 (LSB). The initial 0 will be shifted off the
186 * top of our word as we let the loop run from 0 to 16.
189 for (i
= 16; i
>= 0; i
--) {
190 SEEPROM_OUTB(sd
, temp
);
191 CLOCK_PULSE(sd
, sd
->sd_RDY
);
193 if (SEEPROM_DATA_INB(sd
) & sd
->sd_DI
)
195 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
196 CLOCK_PULSE(sd
, sd
->sd_RDY
);
199 buf
[k
- start_addr
] = v
;
201 /* Reset the chip select for the next command cycle. */
204 #ifdef AHC_DUMP_EEPROM
205 printf("\nSerial EEPROM:\n\t");
206 for (k
= 0; k
< count
; k
= k
+ 1) {
207 if (((k
% 8) == 0) && (k
!= 0)) {
210 printf (" 0x%x", buf
[k
]);
218 * Write the serial EEPROM and return 1 if successful and 0 if
222 ahc_write_seeprom(struct seeprom_descriptor
*sd
, uint16_t *buf
,
223 u_int start_addr
, u_int count
)
229 /* Place the chip into write-enable mode */
230 send_seeprom_cmd(sd
, &seeprom_ewen
);
233 /* Write all requested data out to the seeprom. */
234 temp
= sd
->sd_MS
^ sd
->sd_CS
;
235 for (k
= start_addr
; k
< count
+ start_addr
; k
++) {
236 /* Send the write command */
237 send_seeprom_cmd(sd
, &seeprom_write
);
239 /* Send the 6 or 8 bit address (MSB first). */
240 for (i
= (sd
->sd_chip
- 1); i
>= 0; i
--) {
241 if ((k
& (1 << i
)) != 0)
243 SEEPROM_OUTB(sd
, temp
);
244 CLOCK_PULSE(sd
, sd
->sd_RDY
);
245 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
246 CLOCK_PULSE(sd
, sd
->sd_RDY
);
247 if ((k
& (1 << i
)) != 0)
251 /* Write the 16 bit value, MSB first */
252 v
= buf
[k
- start_addr
];
253 for (i
= 15; i
>= 0; i
--) {
254 if ((v
& (1 << i
)) != 0)
256 SEEPROM_OUTB(sd
, temp
);
257 CLOCK_PULSE(sd
, sd
->sd_RDY
);
258 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
259 CLOCK_PULSE(sd
, sd
->sd_RDY
);
260 if ((v
& (1 << i
)) != 0)
264 /* Wait for the chip to complete the write */
266 SEEPROM_OUTB(sd
, temp
);
267 CLOCK_PULSE(sd
, sd
->sd_RDY
);
268 temp
= sd
->sd_MS
^ sd
->sd_CS
;
270 SEEPROM_OUTB(sd
, temp
);
271 CLOCK_PULSE(sd
, sd
->sd_RDY
);
272 SEEPROM_OUTB(sd
, temp
^ sd
->sd_CK
);
273 CLOCK_PULSE(sd
, sd
->sd_RDY
);
274 } while ((SEEPROM_DATA_INB(sd
) & sd
->sd_DI
) == 0);
279 /* Put the chip back into write-protect mode */
280 send_seeprom_cmd(sd
, &seeprom_ewds
);
287 ahc_verify_cksum(struct seeprom_config
*sc
)
294 maxaddr
= (sizeof(*sc
)/2) - 1;
296 scarray
= (uint16_t *)sc
;
298 for (i
= 0; i
< maxaddr
; i
++)
299 checksum
= checksum
+ scarray
[i
];
301 || (checksum
& 0xFFFF) != sc
->checksum
) {