[TG3]: Add tagged status support.
[linux-2.6/verdex.git] / include / asm-ppc64 / pgtable.h
blob264c4f7993be3557a6b5932bf8dcf943b7c8fd8e
1 #ifndef _PPC64_PGTABLE_H
2 #define _PPC64_PGTABLE_H
4 /*
5 * This file contains the functions and defines necessary to modify and use
6 * the ppc64 hashed page table.
7 */
9 #ifndef __ASSEMBLY__
10 #include <linux/config.h>
11 #include <linux/stddef.h>
12 #include <asm/processor.h> /* For TASK_SIZE */
13 #include <asm/mmu.h>
14 #include <asm/page.h>
15 #include <asm/tlbflush.h>
16 #endif /* __ASSEMBLY__ */
18 #include <asm-generic/pgtable-nopud.h>
21 * Entries per page directory level. The PTE level must use a 64b record
22 * for each page table entry. The PMD and PGD level use a 32b record for
23 * each entry by assuming that each entry is page aligned.
25 #define PTE_INDEX_SIZE 9
26 #define PMD_INDEX_SIZE 10
27 #define PGD_INDEX_SIZE 10
29 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
30 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
31 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
33 /* PMD_SHIFT determines what a second-level page table entry can map */
34 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
35 #define PMD_SIZE (1UL << PMD_SHIFT)
36 #define PMD_MASK (~(PMD_SIZE-1))
38 /* PGDIR_SHIFT determines what a third-level page table entry can map */
39 #define PGDIR_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
40 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
41 #define PGDIR_MASK (~(PGDIR_SIZE-1))
43 #define FIRST_USER_ADDRESS 0
46 * Size of EA range mapped by our pagetables.
48 #define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
49 PGD_INDEX_SIZE + PAGE_SHIFT)
50 #define EADDR_MASK ((1UL << EADDR_SIZE) - 1)
53 * Define the address range of the vmalloc VM area.
55 #define VMALLOC_START (0xD000000000000000ul)
56 #define VMALLOC_END (VMALLOC_START + EADDR_MASK)
59 * Bits in a linux-style PTE. These match the bits in the
60 * (hardware-defined) PowerPC PTE as closely as possible.
62 #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
63 #define _PAGE_USER 0x0002 /* matches one of the PP bits */
64 #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
65 #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
66 #define _PAGE_GUARDED 0x0008
67 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
68 #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
69 #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
70 #define _PAGE_DIRTY 0x0080 /* C: page changed */
71 #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
72 #define _PAGE_RW 0x0200 /* software: user write access allowed */
73 #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
74 #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
75 #define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */
76 #define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */
77 #define _PAGE_HUGE 0x10000 /* 16MB page */
78 /* Bits 0x7000 identify the index within an HPT Group */
79 #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX)
80 /* PAGE_MASK gives the right answer below, but only by accident */
81 /* It should be preserving the high 48 bits and then specifically */
82 /* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */
83 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS)
85 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
87 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
89 /* __pgprot defined in asm-ppc64/page.h */
90 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
92 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
93 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
94 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
95 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
96 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
97 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
98 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
99 #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
100 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
101 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
103 #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
104 #define HAVE_PAGE_AGP
107 * This bit in a hardware PTE indicates that the page is *not* executable.
109 #define HW_NO_EXEC _PAGE_EXEC
112 * POWER4 and newer have per page execute protection, older chips can only
113 * do this on a segment (256MB) basis.
115 * Also, write permissions imply read permissions.
116 * This is the closest we can get..
118 * Note due to the way vm flags are laid out, the bits are XWR
120 #define __P000 PAGE_NONE
121 #define __P001 PAGE_READONLY
122 #define __P010 PAGE_COPY
123 #define __P011 PAGE_COPY
124 #define __P100 PAGE_READONLY_X
125 #define __P101 PAGE_READONLY_X
126 #define __P110 PAGE_COPY_X
127 #define __P111 PAGE_COPY_X
129 #define __S000 PAGE_NONE
130 #define __S001 PAGE_READONLY
131 #define __S010 PAGE_SHARED
132 #define __S011 PAGE_SHARED
133 #define __S100 PAGE_READONLY_X
134 #define __S101 PAGE_READONLY_X
135 #define __S110 PAGE_SHARED_X
136 #define __S111 PAGE_SHARED_X
138 #ifndef __ASSEMBLY__
141 * ZERO_PAGE is a global shared page that is always zero: used
142 * for zero-mapped memory areas etc..
144 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
145 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
146 #endif /* __ASSEMBLY__ */
148 /* shift to put page number into pte */
149 #define PTE_SHIFT (17)
151 #ifdef CONFIG_HUGETLB_PAGE
153 #ifndef __ASSEMBLY__
154 int hash_huge_page(struct mm_struct *mm, unsigned long access,
155 unsigned long ea, unsigned long vsid, int local);
157 void hugetlb_mm_free_pgd(struct mm_struct *mm);
158 #endif /* __ASSEMBLY__ */
160 #define HAVE_ARCH_UNMAPPED_AREA
161 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
162 #else
164 #define hash_huge_page(mm,a,ea,vsid,local) -1
165 #define hugetlb_mm_free_pgd(mm) do {} while (0)
167 #endif
169 #ifndef __ASSEMBLY__
172 * Conversion functions: convert a page and protection to a page entry,
173 * and a page entry and page directory to the page they refer to.
175 * mk_pte takes a (struct page *) as input
177 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
179 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
181 pte_t pte;
184 pte_val(pte) = (pfn << PTE_SHIFT) | pgprot_val(pgprot);
185 return pte;
188 #define pte_modify(_pte, newprot) \
189 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
191 #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
192 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
194 /* pte_clear moved to later in this file */
196 #define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT)))
197 #define pte_page(x) pfn_to_page(pte_pfn(x))
199 #define pmd_set(pmdp, ptep) \
200 (pmd_val(*(pmdp)) = __ba_to_bpn(ptep))
201 #define pmd_none(pmd) (!pmd_val(pmd))
202 #define pmd_bad(pmd) (pmd_val(pmd) == 0)
203 #define pmd_present(pmd) (pmd_val(pmd) != 0)
204 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
205 #define pmd_page_kernel(pmd) (__bpn_to_ba(pmd_val(pmd)))
206 #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
208 #define pud_set(pudp, pmdp) (pud_val(*(pudp)) = (__ba_to_bpn(pmdp)))
209 #define pud_none(pud) (!pud_val(pud))
210 #define pud_bad(pud) ((pud_val(pud)) == 0UL)
211 #define pud_present(pud) (pud_val(pud) != 0UL)
212 #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
213 #define pud_page(pud) (__bpn_to_ba(pud_val(pud)))
216 * Find an entry in a page-table-directory. We combine the address region
217 * (the high order N bits) and the pgd portion of the address.
219 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
220 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x7ff)
222 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
224 /* Find an entry in the second-level page table.. */
225 #define pmd_offset(pudp,addr) \
226 ((pmd_t *) pud_page(*(pudp)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
228 /* Find an entry in the third-level page table.. */
229 #define pte_offset_kernel(dir,addr) \
230 ((pte_t *) pmd_page_kernel(*(dir)) \
231 + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
233 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
234 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
235 #define pte_unmap(pte) do { } while(0)
236 #define pte_unmap_nested(pte) do { } while(0)
238 /* to find an entry in a kernel page-table-directory */
239 /* This now only contains the vmalloc pages */
240 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
242 /* to find an entry in the ioremap page-table-directory */
243 #define pgd_offset_i(address) (ioremap_pgd + pgd_index(address))
246 * The following only work if pte_present() is true.
247 * Undefined behaviour if not..
249 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
250 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
251 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
252 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
253 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
254 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
255 static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;}
257 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
258 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
260 static inline pte_t pte_rdprotect(pte_t pte) {
261 pte_val(pte) &= ~_PAGE_USER; return pte; }
262 static inline pte_t pte_exprotect(pte_t pte) {
263 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
264 static inline pte_t pte_wrprotect(pte_t pte) {
265 pte_val(pte) &= ~(_PAGE_RW); return pte; }
266 static inline pte_t pte_mkclean(pte_t pte) {
267 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
268 static inline pte_t pte_mkold(pte_t pte) {
269 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
271 static inline pte_t pte_mkread(pte_t pte) {
272 pte_val(pte) |= _PAGE_USER; return pte; }
273 static inline pte_t pte_mkexec(pte_t pte) {
274 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
275 static inline pte_t pte_mkwrite(pte_t pte) {
276 pte_val(pte) |= _PAGE_RW; return pte; }
277 static inline pte_t pte_mkdirty(pte_t pte) {
278 pte_val(pte) |= _PAGE_DIRTY; return pte; }
279 static inline pte_t pte_mkyoung(pte_t pte) {
280 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
281 static inline pte_t pte_mkhuge(pte_t pte) {
282 pte_val(pte) |= _PAGE_HUGE; return pte; }
284 /* Atomic PTE updates */
285 static inline unsigned long pte_update(pte_t *p, unsigned long clr)
287 unsigned long old, tmp;
289 __asm__ __volatile__(
290 "1: ldarx %0,0,%3 # pte_update\n\
291 andi. %1,%0,%6\n\
292 bne- 1b \n\
293 andc %1,%0,%4 \n\
294 stdcx. %1,0,%3 \n\
295 bne- 1b"
296 : "=&r" (old), "=&r" (tmp), "=m" (*p)
297 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
298 : "cc" );
299 return old;
302 /* PTE updating functions, this function puts the PTE in the
303 * batch, doesn't actually triggers the hash flush immediately,
304 * you need to call flush_tlb_pending() to do that.
306 extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte,
307 int wrprot);
309 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
311 unsigned long old;
313 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
314 return 0;
315 old = pte_update(ptep, _PAGE_ACCESSED);
316 if (old & _PAGE_HASHPTE) {
317 hpte_update(mm, addr, old, 0);
318 flush_tlb_pending();
320 return (old & _PAGE_ACCESSED) != 0;
322 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
323 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
324 ({ \
325 int __r; \
326 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
327 __r; \
331 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
332 * moment we always flush but we need to fix hpte_update and test if the
333 * optimisation is worth it.
335 static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
337 unsigned long old;
339 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
340 return 0;
341 old = pte_update(ptep, _PAGE_DIRTY);
342 if (old & _PAGE_HASHPTE)
343 hpte_update(mm, addr, old, 0);
344 return (old & _PAGE_DIRTY) != 0;
346 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
347 #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
348 ({ \
349 int __r; \
350 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
351 __r; \
354 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
355 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
357 unsigned long old;
359 if ((pte_val(*ptep) & _PAGE_RW) == 0)
360 return;
361 old = pte_update(ptep, _PAGE_RW);
362 if (old & _PAGE_HASHPTE)
363 hpte_update(mm, addr, old, 0);
367 * We currently remove entries from the hashtable regardless of whether
368 * the entry was young or dirty. The generic routines only flush if the
369 * entry was young or dirty which is not good enough.
371 * We should be more intelligent about this but for the moment we override
372 * these functions and force a tlb flush unconditionally
374 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
375 #define ptep_clear_flush_young(__vma, __address, __ptep) \
376 ({ \
377 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
378 __ptep); \
379 __young; \
382 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
383 #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
384 ({ \
385 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
386 __ptep); \
387 flush_tlb_page(__vma, __address); \
388 __dirty; \
391 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
392 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
394 unsigned long old = pte_update(ptep, ~0UL);
396 if (old & _PAGE_HASHPTE)
397 hpte_update(mm, addr, old, 0);
398 return __pte(old);
401 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep)
403 unsigned long old = pte_update(ptep, ~0UL);
405 if (old & _PAGE_HASHPTE)
406 hpte_update(mm, addr, old, 0);
410 * set_pte stores a linux PTE into the linux page table.
412 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
413 pte_t *ptep, pte_t pte)
415 if (pte_present(*ptep)) {
416 pte_clear(mm, addr, ptep);
417 flush_tlb_pending();
419 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
422 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
423 * function doesn't need to flush the hash entry
425 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
426 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
428 unsigned long bits = pte_val(entry) &
429 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
430 unsigned long old, tmp;
432 __asm__ __volatile__(
433 "1: ldarx %0,0,%4\n\
434 andi. %1,%0,%6\n\
435 bne- 1b \n\
436 or %0,%3,%0\n\
437 stdcx. %0,0,%4\n\
438 bne- 1b"
439 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
440 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
441 :"cc");
443 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
444 do { \
445 __ptep_set_access_flags(__ptep, __entry, __dirty); \
446 flush_tlb_page_nohash(__vma, __address); \
447 } while(0)
450 * Macro to mark a page protection value as "uncacheable".
452 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
454 struct file;
455 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
456 unsigned long size, pgprot_t vma_prot);
457 #define __HAVE_PHYS_MEM_ACCESS_PROT
459 #define __HAVE_ARCH_PTE_SAME
460 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
462 extern unsigned long ioremap_bot, ioremap_base;
464 #define pmd_ERROR(e) \
465 printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e))
466 #define pgd_ERROR(e) \
467 printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e))
469 extern pgd_t swapper_pg_dir[];
470 extern pgd_t ioremap_dir[];
472 extern void paging_init(void);
475 * Because the huge pgtables are only 2 level, they can take
476 * at most around 4M, much less than one hugepage which the
477 * process is presumably entitled to use. So we don't bother
478 * freeing up the pagetables on unmap, and wait until
479 * destroy_context() to clean up the lot.
481 #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
482 do { } while (0)
485 * This gets called at the end of handling a page fault, when
486 * the kernel has put a new PTE into the page table for the process.
487 * We use it to put a corresponding HPTE into the hash table
488 * ahead of time, instead of waiting for the inevitable extra
489 * hash-table miss exception.
491 struct vm_area_struct;
492 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
494 /* Encode and de-code a swap entry */
495 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
496 #define __swp_offset(entry) ((entry).val >> 8)
497 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
498 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT })
499 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT })
500 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
501 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE})
502 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
505 * kern_addr_valid is intended to indicate whether an address is a valid
506 * kernel address. Most 32-bit archs define it as always true (like this)
507 * but most 64-bit archs actually perform a test. What should we do here?
508 * The only use is in fs/ncpfs/dir.c
510 #define kern_addr_valid(addr) (1)
512 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
513 remap_pfn_range(vma, vaddr, pfn, size, prot)
515 void pgtable_cache_init(void);
518 * find_linux_pte returns the address of a linux pte for a given
519 * effective address and directory. If not found, it returns zero.
521 static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
523 pgd_t *pg;
524 pud_t *pu;
525 pmd_t *pm;
526 pte_t *pt = NULL;
527 pte_t pte;
529 pg = pgdir + pgd_index(ea);
530 if (!pgd_none(*pg)) {
531 pu = pud_offset(pg, ea);
532 if (!pud_none(*pu)) {
533 pm = pmd_offset(pu, ea);
534 if (pmd_present(*pm)) {
535 pt = pte_offset_kernel(pm, ea);
536 pte = *pt;
537 if (!pte_present(pte))
538 pt = NULL;
543 return pt;
546 #include <asm-generic/pgtable.h>
548 #endif /* __ASSEMBLY__ */
550 #endif /* _PPC64_PGTABLE_H */