2 * Device tables which are exported to userspace via
3 * scripts/table2alias.c. You must keep that file in sync with this
7 #ifndef LINUX_MOD_DEVICETABLE_H
8 #define LINUX_MOD_DEVICETABLE_H
11 #include <linux/types.h>
12 typedef unsigned long kernel_ulong_t
;
15 #define PCI_ANY_ID (~0)
17 struct pci_device_id
{
18 __u32 vendor
, device
; /* Vendor and device ID or PCI_ANY_ID*/
19 __u32 subvendor
, subdevice
; /* Subsystem ID's or PCI_ANY_ID */
20 __u32
class, class_mask
; /* (class,subclass,prog-if) triplet */
21 kernel_ulong_t driver_data
; /* Data private to the driver */
25 #define IEEE1394_MATCH_VENDOR_ID 0x0001
26 #define IEEE1394_MATCH_MODEL_ID 0x0002
27 #define IEEE1394_MATCH_SPECIFIER_ID 0x0004
28 #define IEEE1394_MATCH_VERSION 0x0008
30 struct ieee1394_device_id
{
36 kernel_ulong_t driver_data
;
41 * Device table entry for "new style" table-driven USB drivers.
42 * User mode code can read these tables to choose which modules to load.
43 * Declare the table as a MODULE_DEVICE_TABLE.
45 * A probe() parameter will point to a matching entry from this table.
46 * Use the driver_info field for each match to hold information tied
47 * to that match: device quirks, etc.
49 * Terminate the driver's table with an all-zeroes entry.
50 * Use the flag values to control which fields are compared.
54 * struct usb_device_id - identifies USB devices for probing and hotplugging
55 * @match_flags: Bit mask controlling of the other fields are used to match
56 * against new devices. Any field except for driver_info may be used,
57 * although some only make sense in conjunction with other fields.
58 * This is usually set by a USB_DEVICE_*() macro, which sets all
59 * other fields in this structure except for driver_info.
60 * @idVendor: USB vendor ID for a device; numbers are assigned
61 * by the USB forum to its members.
62 * @idProduct: Vendor-assigned product ID.
63 * @bcdDevice_lo: Low end of range of vendor-assigned product version numbers.
64 * This is also used to identify individual product versions, for
65 * a range consisting of a single device.
66 * @bcdDevice_hi: High end of version number range. The range of product
67 * versions is inclusive.
68 * @bDeviceClass: Class of device; numbers are assigned
69 * by the USB forum. Products may choose to implement classes,
70 * or be vendor-specific. Device classes specify behavior of all
71 * the interfaces on a devices.
72 * @bDeviceSubClass: Subclass of device; associated with bDeviceClass.
73 * @bDeviceProtocol: Protocol of device; associated with bDeviceClass.
74 * @bInterfaceClass: Class of interface; numbers are assigned
75 * by the USB forum. Products may choose to implement classes,
76 * or be vendor-specific. Interface classes specify behavior only
77 * of a given interface; other interfaces may support other classes.
78 * @bInterfaceSubClass: Subclass of interface; associated with bInterfaceClass.
79 * @bInterfaceProtocol: Protocol of interface; associated with bInterfaceClass.
80 * @driver_info: Holds information used by the driver. Usually it holds
81 * a pointer to a descriptor understood by the driver, or perhaps
84 * In most cases, drivers will create a table of device IDs by using
85 * USB_DEVICE(), or similar macros designed for that purpose.
86 * They will then export it to userspace using MODULE_DEVICE_TABLE(),
87 * and provide it to the USB core through their usb_driver structure.
89 * See the usb_match_id() function for information about how matches are
90 * performed. Briefly, you will normally use one of several macros to help
91 * construct these entries. Each entry you provide will either identify
92 * one or more specific products, or will identify a class of products
93 * which have agreed to behave the same. You should put the more specific
94 * matches towards the beginning of your table, so that driver_info can
95 * record quirks of specific products.
97 struct usb_device_id
{
98 /* which fields to match against? */
101 /* Used for product specific matches; range is inclusive */
107 /* Used for device class matches */
109 __u8 bDeviceSubClass
;
110 __u8 bDeviceProtocol
;
112 /* Used for interface class matches */
113 __u8 bInterfaceClass
;
114 __u8 bInterfaceSubClass
;
115 __u8 bInterfaceProtocol
;
117 /* not matched against */
118 kernel_ulong_t driver_info
;
121 /* Some useful macros to use to create struct usb_device_id */
122 #define USB_DEVICE_ID_MATCH_VENDOR 0x0001
123 #define USB_DEVICE_ID_MATCH_PRODUCT 0x0002
124 #define USB_DEVICE_ID_MATCH_DEV_LO 0x0004
125 #define USB_DEVICE_ID_MATCH_DEV_HI 0x0008
126 #define USB_DEVICE_ID_MATCH_DEV_CLASS 0x0010
127 #define USB_DEVICE_ID_MATCH_DEV_SUBCLASS 0x0020
128 #define USB_DEVICE_ID_MATCH_DEV_PROTOCOL 0x0040
129 #define USB_DEVICE_ID_MATCH_INT_CLASS 0x0080
130 #define USB_DEVICE_ID_MATCH_INT_SUBCLASS 0x0100
131 #define USB_DEVICE_ID_MATCH_INT_PROTOCOL 0x0200
133 /* s390 CCW devices */
134 struct ccw_device_id
{
135 __u16 match_flags
; /* which fields to match against */
137 __u16 cu_type
; /* control unit type */
138 __u16 dev_type
; /* device type */
139 __u8 cu_model
; /* control unit model */
140 __u8 dev_model
; /* device model */
142 kernel_ulong_t driver_info
;
145 #define CCW_DEVICE_ID_MATCH_CU_TYPE 0x01
146 #define CCW_DEVICE_ID_MATCH_CU_MODEL 0x02
147 #define CCW_DEVICE_ID_MATCH_DEVICE_TYPE 0x04
148 #define CCW_DEVICE_ID_MATCH_DEVICE_MODEL 0x08
152 #define PNP_MAX_DEVICES 8
154 struct pnp_device_id
{
156 kernel_ulong_t driver_data
;
159 struct pnp_card_device_id
{
161 kernel_ulong_t driver_data
;
164 } devs
[PNP_MAX_DEVICES
];
168 #define SERIO_ANY 0xff
170 struct serio_device_id
{
178 #endif /* LINUX_MOD_DEVICETABLE_H */