2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 * Angelo Dell'Aera: TCP Westwood+ support
67 #include <linux/config.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
72 #include <net/inet_common.h>
73 #include <linux/ipsec.h>
74 #include <asm/unaligned.h>
76 int sysctl_tcp_timestamps
= 1;
77 int sysctl_tcp_window_scaling
= 1;
78 int sysctl_tcp_sack
= 1;
79 int sysctl_tcp_fack
= 1;
80 int sysctl_tcp_reordering
= TCP_FASTRETRANS_THRESH
;
82 int sysctl_tcp_dsack
= 1;
83 int sysctl_tcp_app_win
= 31;
84 int sysctl_tcp_adv_win_scale
= 2;
86 int sysctl_tcp_stdurg
;
87 int sysctl_tcp_rfc1337
;
88 int sysctl_tcp_max_orphans
= NR_FILE
;
90 int sysctl_tcp_nometrics_save
;
91 int sysctl_tcp_westwood
;
92 int sysctl_tcp_vegas_cong_avoid
;
94 int sysctl_tcp_moderate_rcvbuf
= 1;
96 /* Default values of the Vegas variables, in fixed-point representation
97 * with V_PARAM_SHIFT bits to the right of the binary point.
99 #define V_PARAM_SHIFT 1
100 int sysctl_tcp_vegas_alpha
= 1<<V_PARAM_SHIFT
;
101 int sysctl_tcp_vegas_beta
= 3<<V_PARAM_SHIFT
;
102 int sysctl_tcp_vegas_gamma
= 1<<V_PARAM_SHIFT
;
103 int sysctl_tcp_bic
= 1;
104 int sysctl_tcp_bic_fast_convergence
= 1;
105 int sysctl_tcp_bic_low_window
= 14;
106 int sysctl_tcp_bic_beta
= 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
108 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
109 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
110 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
111 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
112 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
113 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
114 #define FLAG_ECE 0x40 /* ECE in this ACK */
115 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
116 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
124 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
125 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
129 /* Adapt the MSS value used to make delayed ack decision to the
132 static inline void tcp_measure_rcv_mss(struct tcp_sock
*tp
,
135 unsigned int len
, lss
;
137 lss
= tp
->ack
.last_seg_size
;
138 tp
->ack
.last_seg_size
= 0;
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
144 if (len
>= tp
->ack
.rcv_mss
) {
145 tp
->ack
.rcv_mss
= len
;
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
150 * "len" is invariant segment length, including TCP header.
152 len
+= skb
->data
- skb
->h
.raw
;
153 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
159 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
160 !(tcp_flag_word(skb
->h
.th
)&TCP_REMNANT
))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
165 len
-= tp
->tcp_header_len
;
166 tp
->ack
.last_seg_size
= len
;
168 tp
->ack
.rcv_mss
= len
;
172 tp
->ack
.pending
|= TCP_ACK_PUSHED
;
176 static void tcp_incr_quickack(struct tcp_sock
*tp
)
178 unsigned quickacks
= tp
->rcv_wnd
/(2*tp
->ack
.rcv_mss
);
182 if (quickacks
> tp
->ack
.quick
)
183 tp
->ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
186 void tcp_enter_quickack_mode(struct tcp_sock
*tp
)
188 tcp_incr_quickack(tp
);
189 tp
->ack
.pingpong
= 0;
190 tp
->ack
.ato
= TCP_ATO_MIN
;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static __inline__
int tcp_in_quickack_mode(struct tcp_sock
*tp
)
199 return (tp
->ack
.quick
&& !tp
->ack
.pingpong
);
202 /* Buffer size and advertised window tuning.
204 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
207 static void tcp_fixup_sndbuf(struct sock
*sk
)
209 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
210 sizeof(struct sk_buff
);
212 if (sk
->sk_sndbuf
< 3 * sndmem
)
213 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
216 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
218 * All tcp_full_space() is split to two parts: "network" buffer, allocated
219 * forward and advertised in receiver window (tp->rcv_wnd) and
220 * "application buffer", required to isolate scheduling/application
221 * latencies from network.
222 * window_clamp is maximal advertised window. It can be less than
223 * tcp_full_space(), in this case tcp_full_space() - window_clamp
224 * is reserved for "application" buffer. The less window_clamp is
225 * the smoother our behaviour from viewpoint of network, but the lower
226 * throughput and the higher sensitivity of the connection to losses. 8)
228 * rcv_ssthresh is more strict window_clamp used at "slow start"
229 * phase to predict further behaviour of this connection.
230 * It is used for two goals:
231 * - to enforce header prediction at sender, even when application
232 * requires some significant "application buffer". It is check #1.
233 * - to prevent pruning of receive queue because of misprediction
234 * of receiver window. Check #2.
236 * The scheme does not work when sender sends good segments opening
237 * window and then starts to feed us spagetti. But it should work
238 * in common situations. Otherwise, we have to rely on queue collapsing.
241 /* Slow part of check#2. */
242 static int __tcp_grow_window(struct sock
*sk
, struct tcp_sock
*tp
,
246 int truesize
= tcp_win_from_space(skb
->truesize
)/2;
247 int window
= tcp_full_space(sk
)/2;
249 while (tp
->rcv_ssthresh
<= window
) {
250 if (truesize
<= skb
->len
)
251 return 2*tp
->ack
.rcv_mss
;
259 static inline void tcp_grow_window(struct sock
*sk
, struct tcp_sock
*tp
,
263 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
264 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
265 !tcp_memory_pressure
) {
268 /* Check #2. Increase window, if skb with such overhead
269 * will fit to rcvbuf in future.
271 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
274 incr
= __tcp_grow_window(sk
, tp
, skb
);
277 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
, tp
->window_clamp
);
283 /* 3. Tuning rcvbuf, when connection enters established state. */
285 static void tcp_fixup_rcvbuf(struct sock
*sk
)
287 struct tcp_sock
*tp
= tcp_sk(sk
);
288 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
290 /* Try to select rcvbuf so that 4 mss-sized segments
291 * will fit to window and correspoding skbs will fit to our rcvbuf.
292 * (was 3; 4 is minimum to allow fast retransmit to work.)
294 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
296 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
297 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
300 /* 4. Try to fixup all. It is made iimediately after connection enters
303 static void tcp_init_buffer_space(struct sock
*sk
)
305 struct tcp_sock
*tp
= tcp_sk(sk
);
308 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
309 tcp_fixup_rcvbuf(sk
);
310 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
311 tcp_fixup_sndbuf(sk
);
313 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
315 maxwin
= tcp_full_space(sk
);
317 if (tp
->window_clamp
>= maxwin
) {
318 tp
->window_clamp
= maxwin
;
320 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
321 tp
->window_clamp
= max(maxwin
-
322 (maxwin
>> sysctl_tcp_app_win
),
326 /* Force reservation of one segment. */
327 if (sysctl_tcp_app_win
&&
328 tp
->window_clamp
> 2 * tp
->advmss
&&
329 tp
->window_clamp
+ tp
->advmss
> maxwin
)
330 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
332 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
333 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
336 static void init_bictcp(struct tcp_sock
*tp
)
340 tp
->bictcp
.last_max_cwnd
= 0;
341 tp
->bictcp
.last_cwnd
= 0;
342 tp
->bictcp
.last_stamp
= 0;
345 /* 5. Recalculate window clamp after socket hit its memory bounds. */
346 static void tcp_clamp_window(struct sock
*sk
, struct tcp_sock
*tp
)
349 unsigned int app_win
= tp
->rcv_nxt
- tp
->copied_seq
;
354 skb_queue_walk(&tp
->out_of_order_queue
, skb
) {
358 /* If overcommit is due to out of order segments,
359 * do not clamp window. Try to expand rcvbuf instead.
362 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
363 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
364 !tcp_memory_pressure
&&
365 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0])
366 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
369 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
) {
371 if (atomic_read(&sk
->sk_rmem_alloc
) >= 2 * sk
->sk_rcvbuf
)
373 if (app_win
> tp
->ack
.rcv_mss
)
374 app_win
-= tp
->ack
.rcv_mss
;
375 app_win
= max(app_win
, 2U*tp
->advmss
);
378 tp
->window_clamp
= min(tp
->window_clamp
, app_win
);
379 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U*tp
->advmss
);
383 /* Receiver "autotuning" code.
385 * The algorithm for RTT estimation w/o timestamps is based on
386 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
387 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
389 * More detail on this code can be found at
390 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
391 * though this reference is out of date. A new paper
394 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
396 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
402 if (new_sample
!= 0) {
403 /* If we sample in larger samples in the non-timestamp
404 * case, we could grossly overestimate the RTT especially
405 * with chatty applications or bulk transfer apps which
406 * are stalled on filesystem I/O.
408 * Also, since we are only going for a minimum in the
409 * non-timestamp case, we do not smoothe things out
410 * else with timestamps disabled convergance takes too
414 m
-= (new_sample
>> 3);
416 } else if (m
< new_sample
)
419 /* No previous mesaure. */
423 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
424 tp
->rcv_rtt_est
.rtt
= new_sample
;
427 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
429 if (tp
->rcv_rtt_est
.time
== 0)
431 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
433 tcp_rcv_rtt_update(tp
,
434 jiffies
- tp
->rcv_rtt_est
.time
,
438 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
439 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
442 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock
*tp
, struct sk_buff
*skb
)
444 if (tp
->rx_opt
.rcv_tsecr
&&
445 (TCP_SKB_CB(skb
)->end_seq
-
446 TCP_SKB_CB(skb
)->seq
>= tp
->ack
.rcv_mss
))
447 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
451 * This function should be called every time data is copied to user space.
452 * It calculates the appropriate TCP receive buffer space.
454 void tcp_rcv_space_adjust(struct sock
*sk
)
456 struct tcp_sock
*tp
= tcp_sk(sk
);
460 if (tp
->rcvq_space
.time
== 0)
463 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
464 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) ||
465 tp
->rcv_rtt_est
.rtt
== 0)
468 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
470 space
= max(tp
->rcvq_space
.space
, space
);
472 if (tp
->rcvq_space
.space
!= space
) {
475 tp
->rcvq_space
.space
= space
;
477 if (sysctl_tcp_moderate_rcvbuf
) {
478 int new_clamp
= space
;
480 /* Receive space grows, normalize in order to
481 * take into account packet headers and sk_buff
482 * structure overhead.
487 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
488 16 + sizeof(struct sk_buff
));
489 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
492 space
= min(space
, sysctl_tcp_rmem
[2]);
493 if (space
> sk
->sk_rcvbuf
) {
494 sk
->sk_rcvbuf
= space
;
496 /* Make the window clamp follow along. */
497 tp
->window_clamp
= new_clamp
;
503 tp
->rcvq_space
.seq
= tp
->copied_seq
;
504 tp
->rcvq_space
.time
= tcp_time_stamp
;
507 /* There is something which you must keep in mind when you analyze the
508 * behavior of the tp->ato delayed ack timeout interval. When a
509 * connection starts up, we want to ack as quickly as possible. The
510 * problem is that "good" TCP's do slow start at the beginning of data
511 * transmission. The means that until we send the first few ACK's the
512 * sender will sit on his end and only queue most of his data, because
513 * he can only send snd_cwnd unacked packets at any given time. For
514 * each ACK we send, he increments snd_cwnd and transmits more of his
517 static void tcp_event_data_recv(struct sock
*sk
, struct tcp_sock
*tp
, struct sk_buff
*skb
)
521 tcp_schedule_ack(tp
);
523 tcp_measure_rcv_mss(tp
, skb
);
525 tcp_rcv_rtt_measure(tp
);
527 now
= tcp_time_stamp
;
530 /* The _first_ data packet received, initialize
531 * delayed ACK engine.
533 tcp_incr_quickack(tp
);
534 tp
->ack
.ato
= TCP_ATO_MIN
;
536 int m
= now
- tp
->ack
.lrcvtime
;
538 if (m
<= TCP_ATO_MIN
/2) {
539 /* The fastest case is the first. */
540 tp
->ack
.ato
= (tp
->ack
.ato
>>1) + TCP_ATO_MIN
/2;
541 } else if (m
< tp
->ack
.ato
) {
542 tp
->ack
.ato
= (tp
->ack
.ato
>>1) + m
;
543 if (tp
->ack
.ato
> tp
->rto
)
544 tp
->ack
.ato
= tp
->rto
;
545 } else if (m
> tp
->rto
) {
546 /* Too long gap. Apparently sender falled to
547 * restart window, so that we send ACKs quickly.
549 tcp_incr_quickack(tp
);
550 sk_stream_mem_reclaim(sk
);
553 tp
->ack
.lrcvtime
= now
;
555 TCP_ECN_check_ce(tp
, skb
);
558 tcp_grow_window(sk
, tp
, skb
);
561 /* When starting a new connection, pin down the current choice of
562 * congestion algorithm.
564 void tcp_ca_init(struct tcp_sock
*tp
)
566 if (sysctl_tcp_westwood
)
567 tp
->adv_cong
= TCP_WESTWOOD
;
568 else if (sysctl_tcp_bic
)
569 tp
->adv_cong
= TCP_BIC
;
570 else if (sysctl_tcp_vegas_cong_avoid
) {
571 tp
->adv_cong
= TCP_VEGAS
;
572 tp
->vegas
.baseRTT
= 0x7fffffff;
573 tcp_vegas_enable(tp
);
577 /* Do RTT sampling needed for Vegas.
579 * o min-filter RTT samples from within an RTT to get the current
580 * propagation delay + queuing delay (we are min-filtering to try to
581 * avoid the effects of delayed ACKs)
582 * o min-filter RTT samples from a much longer window (forever for now)
583 * to find the propagation delay (baseRTT)
585 static inline void vegas_rtt_calc(struct tcp_sock
*tp
, __u32 rtt
)
587 __u32 vrtt
= rtt
+ 1; /* Never allow zero rtt or baseRTT */
589 /* Filter to find propagation delay: */
590 if (vrtt
< tp
->vegas
.baseRTT
)
591 tp
->vegas
.baseRTT
= vrtt
;
593 /* Find the min RTT during the last RTT to find
594 * the current prop. delay + queuing delay:
596 tp
->vegas
.minRTT
= min(tp
->vegas
.minRTT
, vrtt
);
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
609 static void tcp_rtt_estimator(struct tcp_sock
*tp
, __u32 mrtt
)
611 long m
= mrtt
; /* RTT */
613 if (tcp_vegas_enabled(tp
))
614 vegas_rtt_calc(tp
, mrtt
);
616 /* The following amusing code comes from Jacobson's
617 * article in SIGCOMM '88. Note that rtt and mdev
618 * are scaled versions of rtt and mean deviation.
619 * This is designed to be as fast as possible
620 * m stands for "measurement".
622 * On a 1990 paper the rto value is changed to:
623 * RTO = rtt + 4 * mdev
625 * Funny. This algorithm seems to be very broken.
626 * These formulae increase RTO, when it should be decreased, increase
627 * too slowly, when it should be incresed fastly, decrease too fastly
628 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629 * does not matter how to _calculate_ it. Seems, it was trap
630 * that VJ failed to avoid. 8)
635 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
636 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
638 m
= -m
; /* m is now abs(error) */
639 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
640 /* This is similar to one of Eifel findings.
641 * Eifel blocks mdev updates when rtt decreases.
642 * This solution is a bit different: we use finer gain
643 * for mdev in this case (alpha*beta).
644 * Like Eifel it also prevents growth of rto,
645 * but also it limits too fast rto decreases,
646 * happening in pure Eifel.
651 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
653 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
654 if (tp
->mdev
> tp
->mdev_max
) {
655 tp
->mdev_max
= tp
->mdev
;
656 if (tp
->mdev_max
> tp
->rttvar
)
657 tp
->rttvar
= tp
->mdev_max
;
659 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
660 if (tp
->mdev_max
< tp
->rttvar
)
661 tp
->rttvar
-= (tp
->rttvar
-tp
->mdev_max
)>>2;
662 tp
->rtt_seq
= tp
->snd_nxt
;
663 tp
->mdev_max
= TCP_RTO_MIN
;
666 /* no previous measure. */
667 tp
->srtt
= m
<<3; /* take the measured time to be rtt */
668 tp
->mdev
= m
<<1; /* make sure rto = 3*rtt */
669 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
670 tp
->rtt_seq
= tp
->snd_nxt
;
673 tcp_westwood_update_rtt(tp
, tp
->srtt
>> 3);
676 /* Calculate rto without backoff. This is the second half of Van Jacobson's
677 * routine referred to above.
679 static inline void tcp_set_rto(struct tcp_sock
*tp
)
681 /* Old crap is replaced with new one. 8)
684 * 1. If rtt variance happened to be less 50msec, it is hallucination.
685 * It cannot be less due to utterly erratic ACK generation made
686 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687 * to do with delayed acks, because at cwnd>2 true delack timeout
688 * is invisible. Actually, Linux-2.4 also generates erratic
689 * ACKs in some curcumstances.
691 tp
->rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
693 /* 2. Fixups made earlier cannot be right.
694 * If we do not estimate RTO correctly without them,
695 * all the algo is pure shit and should be replaced
696 * with correct one. It is exaclty, which we pretend to do.
700 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
701 * guarantees that rto is higher.
703 static inline void tcp_bound_rto(struct tcp_sock
*tp
)
705 if (tp
->rto
> TCP_RTO_MAX
)
706 tp
->rto
= TCP_RTO_MAX
;
709 /* Save metrics learned by this TCP session.
710 This function is called only, when TCP finishes successfully
711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
713 void tcp_update_metrics(struct sock
*sk
)
715 struct tcp_sock
*tp
= tcp_sk(sk
);
716 struct dst_entry
*dst
= __sk_dst_get(sk
);
718 if (sysctl_tcp_nometrics_save
)
723 if (dst
&& (dst
->flags
&DST_HOST
)) {
726 if (tp
->backoff
|| !tp
->srtt
) {
727 /* This session failed to estimate rtt. Why?
728 * Probably, no packets returned in time.
731 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
732 dst
->metrics
[RTAX_RTT
-1] = 0;
736 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
738 /* If newly calculated rtt larger than stored one,
739 * store new one. Otherwise, use EWMA. Remember,
740 * rtt overestimation is always better than underestimation.
742 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
744 dst
->metrics
[RTAX_RTT
-1] = tp
->srtt
;
746 dst
->metrics
[RTAX_RTT
-1] -= (m
>>3);
749 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
753 /* Scale deviation to rttvar fixed point */
758 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
759 dst
->metrics
[RTAX_RTTVAR
-1] = m
;
761 dst
->metrics
[RTAX_RTTVAR
-1] -=
762 (dst
->metrics
[RTAX_RTTVAR
-1] - m
)>>2;
765 if (tp
->snd_ssthresh
>= 0xFFFF) {
766 /* Slow start still did not finish. */
767 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
768 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
769 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
770 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
771 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
772 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
773 dst
->metrics
[RTAX_CWND
-1] = tp
->snd_cwnd
;
774 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
775 tp
->ca_state
== TCP_CA_Open
) {
776 /* Cong. avoidance phase, cwnd is reliable. */
777 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
778 dst
->metrics
[RTAX_SSTHRESH
-1] =
779 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
780 if (!dst_metric_locked(dst
, RTAX_CWND
))
781 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_cwnd
) >> 1;
783 /* Else slow start did not finish, cwnd is non-sense,
784 ssthresh may be also invalid.
786 if (!dst_metric_locked(dst
, RTAX_CWND
))
787 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_ssthresh
) >> 1;
788 if (dst
->metrics
[RTAX_SSTHRESH
-1] &&
789 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
790 tp
->snd_ssthresh
> dst
->metrics
[RTAX_SSTHRESH
-1])
791 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
794 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
795 if (dst
->metrics
[RTAX_REORDERING
-1] < tp
->reordering
&&
796 tp
->reordering
!= sysctl_tcp_reordering
)
797 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
802 /* Numbers are taken from RFC2414. */
803 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
805 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
808 if (tp
->mss_cache_std
> 1460)
811 cwnd
= (tp
->mss_cache_std
> 1095) ? 3 : 4;
813 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
816 /* Initialize metrics on socket. */
818 static void tcp_init_metrics(struct sock
*sk
)
820 struct tcp_sock
*tp
= tcp_sk(sk
);
821 struct dst_entry
*dst
= __sk_dst_get(sk
);
828 if (dst_metric_locked(dst
, RTAX_CWND
))
829 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
830 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
831 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
832 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
833 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
835 if (dst_metric(dst
, RTAX_REORDERING
) &&
836 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
837 tp
->rx_opt
.sack_ok
&= ~2;
838 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
841 if (dst_metric(dst
, RTAX_RTT
) == 0)
844 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
847 /* Initial rtt is determined from SYN,SYN-ACK.
848 * The segment is small and rtt may appear much
849 * less than real one. Use per-dst memory
850 * to make it more realistic.
852 * A bit of theory. RTT is time passed after "normal" sized packet
853 * is sent until it is ACKed. In normal curcumstances sending small
854 * packets force peer to delay ACKs and calculation is correct too.
855 * The algorithm is adaptive and, provided we follow specs, it
856 * NEVER underestimate RTT. BUT! If peer tries to make some clever
857 * tricks sort of "quick acks" for time long enough to decrease RTT
858 * to low value, and then abruptly stops to do it and starts to delay
859 * ACKs, wait for troubles.
861 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
862 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
863 tp
->rtt_seq
= tp
->snd_nxt
;
865 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
866 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
867 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
871 if (tp
->rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
873 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
874 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
878 /* Play conservative. If timestamps are not
879 * supported, TCP will fail to recalculate correct
880 * rtt, if initial rto is too small. FORGET ALL AND RESET!
882 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
884 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
885 tp
->rto
= TCP_TIMEOUT_INIT
;
889 static void tcp_update_reordering(struct tcp_sock
*tp
, int metric
, int ts
)
891 if (metric
> tp
->reordering
) {
892 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
894 /* This exciting event is worth to be remembered. 8) */
896 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
898 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
900 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
902 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
903 #if FASTRETRANS_DEBUG > 1
904 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
905 tp
->rx_opt
.sack_ok
, tp
->ca_state
,
909 tp
->undo_marker
? tp
->undo_retrans
: 0);
911 /* Disable FACK yet. */
912 tp
->rx_opt
.sack_ok
&= ~2;
916 /* This procedure tags the retransmission queue when SACKs arrive.
918 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
919 * Packets in queue with these bits set are counted in variables
920 * sacked_out, retrans_out and lost_out, correspondingly.
922 * Valid combinations are:
923 * Tag InFlight Description
924 * 0 1 - orig segment is in flight.
925 * S 0 - nothing flies, orig reached receiver.
926 * L 0 - nothing flies, orig lost by net.
927 * R 2 - both orig and retransmit are in flight.
928 * L|R 1 - orig is lost, retransmit is in flight.
929 * S|R 1 - orig reached receiver, retrans is still in flight.
930 * (L|S|R is logically valid, it could occur when L|R is sacked,
931 * but it is equivalent to plain S and code short-curcuits it to S.
932 * L|S is logically invalid, it would mean -1 packet in flight 8))
934 * These 6 states form finite state machine, controlled by the following events:
935 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
936 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
937 * 3. Loss detection event of one of three flavors:
938 * A. Scoreboard estimator decided the packet is lost.
939 * A'. Reno "three dupacks" marks head of queue lost.
940 * A''. Its FACK modfication, head until snd.fack is lost.
941 * B. SACK arrives sacking data transmitted after never retransmitted
943 * C. SACK arrives sacking SND.NXT at the moment, when the
944 * segment was retransmitted.
945 * 4. D-SACK added new rule: D-SACK changes any tag to S.
947 * It is pleasant to note, that state diagram turns out to be commutative,
948 * so that we are allowed not to be bothered by order of our actions,
949 * when multiple events arrive simultaneously. (see the function below).
951 * Reordering detection.
952 * --------------------
953 * Reordering metric is maximal distance, which a packet can be displaced
954 * in packet stream. With SACKs we can estimate it:
956 * 1. SACK fills old hole and the corresponding segment was not
957 * ever retransmitted -> reordering. Alas, we cannot use it
958 * when segment was retransmitted.
959 * 2. The last flaw is solved with D-SACK. D-SACK arrives
960 * for retransmitted and already SACKed segment -> reordering..
961 * Both of these heuristics are not used in Loss state, when we cannot
962 * account for retransmits accurately.
965 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
, u32 prior_snd_una
)
967 struct tcp_sock
*tp
= tcp_sk(sk
);
968 unsigned char *ptr
= ack_skb
->h
.raw
+ TCP_SKB_CB(ack_skb
)->sacked
;
969 struct tcp_sack_block
*sp
= (struct tcp_sack_block
*)(ptr
+2);
970 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
)>>3;
971 int reord
= tp
->packets_out
;
973 u32 lost_retrans
= 0;
977 /* So, SACKs for already sent large segments will be lost.
978 * Not good, but alternative is to resegment the queue. */
979 if (sk
->sk_route_caps
& NETIF_F_TSO
) {
980 sk
->sk_route_caps
&= ~NETIF_F_TSO
;
981 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
982 tp
->mss_cache
= tp
->mss_cache_std
;
987 prior_fackets
= tp
->fackets_out
;
989 for (i
=0; i
<num_sacks
; i
++, sp
++) {
991 __u32 start_seq
= ntohl(sp
->start_seq
);
992 __u32 end_seq
= ntohl(sp
->end_seq
);
996 /* Check for D-SACK. */
998 u32 ack
= TCP_SKB_CB(ack_skb
)->ack_seq
;
1000 if (before(start_seq
, ack
)) {
1002 tp
->rx_opt
.sack_ok
|= 4;
1003 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
1004 } else if (num_sacks
> 1 &&
1005 !after(end_seq
, ntohl(sp
[1].end_seq
)) &&
1006 !before(start_seq
, ntohl(sp
[1].start_seq
))) {
1008 tp
->rx_opt
.sack_ok
|= 4;
1009 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
1012 /* D-SACK for already forgotten data...
1013 * Do dumb counting. */
1015 !after(end_seq
, prior_snd_una
) &&
1016 after(end_seq
, tp
->undo_marker
))
1019 /* Eliminate too old ACKs, but take into
1020 * account more or less fresh ones, they can
1021 * contain valid SACK info.
1023 if (before(ack
, prior_snd_una
- tp
->max_window
))
1027 /* Event "B" in the comment above. */
1028 if (after(end_seq
, tp
->high_seq
))
1029 flag
|= FLAG_DATA_LOST
;
1031 sk_stream_for_retrans_queue(skb
, sk
) {
1032 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1035 /* The retransmission queue is always in order, so
1036 * we can short-circuit the walk early.
1038 if(!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1041 fack_count
+= tcp_skb_pcount(skb
);
1043 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1044 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1046 /* Account D-SACK for retransmitted packet. */
1047 if ((dup_sack
&& in_sack
) &&
1048 (sacked
& TCPCB_RETRANS
) &&
1049 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1052 /* The frame is ACKed. */
1053 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
)) {
1054 if (sacked
&TCPCB_RETRANS
) {
1055 if ((dup_sack
&& in_sack
) &&
1056 (sacked
&TCPCB_SACKED_ACKED
))
1057 reord
= min(fack_count
, reord
);
1059 /* If it was in a hole, we detected reordering. */
1060 if (fack_count
< prior_fackets
&&
1061 !(sacked
&TCPCB_SACKED_ACKED
))
1062 reord
= min(fack_count
, reord
);
1065 /* Nothing to do; acked frame is about to be dropped. */
1069 if ((sacked
&TCPCB_SACKED_RETRANS
) &&
1070 after(end_seq
, TCP_SKB_CB(skb
)->ack_seq
) &&
1071 (!lost_retrans
|| after(end_seq
, lost_retrans
)))
1072 lost_retrans
= end_seq
;
1077 if (!(sacked
&TCPCB_SACKED_ACKED
)) {
1078 if (sacked
& TCPCB_SACKED_RETRANS
) {
1079 /* If the segment is not tagged as lost,
1080 * we do not clear RETRANS, believing
1081 * that retransmission is still in flight.
1083 if (sacked
& TCPCB_LOST
) {
1084 TCP_SKB_CB(skb
)->sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1085 tp
->lost_out
-= tcp_skb_pcount(skb
);
1086 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1089 /* New sack for not retransmitted frame,
1090 * which was in hole. It is reordering.
1092 if (!(sacked
& TCPCB_RETRANS
) &&
1093 fack_count
< prior_fackets
)
1094 reord
= min(fack_count
, reord
);
1096 if (sacked
& TCPCB_LOST
) {
1097 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1098 tp
->lost_out
-= tcp_skb_pcount(skb
);
1102 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1103 flag
|= FLAG_DATA_SACKED
;
1104 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1106 if (fack_count
> tp
->fackets_out
)
1107 tp
->fackets_out
= fack_count
;
1109 if (dup_sack
&& (sacked
&TCPCB_RETRANS
))
1110 reord
= min(fack_count
, reord
);
1113 /* D-SACK. We can detect redundant retransmission
1114 * in S|R and plain R frames and clear it.
1115 * undo_retrans is decreased above, L|R frames
1116 * are accounted above as well.
1119 (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
)) {
1120 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1121 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1126 /* Check for lost retransmit. This superb idea is
1127 * borrowed from "ratehalving". Event "C".
1128 * Later note: FACK people cheated me again 8),
1129 * we have to account for reordering! Ugly,
1132 if (lost_retrans
&& tp
->ca_state
== TCP_CA_Recovery
) {
1133 struct sk_buff
*skb
;
1135 sk_stream_for_retrans_queue(skb
, sk
) {
1136 if (after(TCP_SKB_CB(skb
)->seq
, lost_retrans
))
1138 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1140 if ((TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) &&
1141 after(lost_retrans
, TCP_SKB_CB(skb
)->ack_seq
) &&
1143 !before(lost_retrans
,
1144 TCP_SKB_CB(skb
)->ack_seq
+ tp
->reordering
*
1145 tp
->mss_cache_std
))) {
1146 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1147 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1149 if (!(TCP_SKB_CB(skb
)->sacked
&(TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1150 tp
->lost_out
+= tcp_skb_pcount(skb
);
1151 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1152 flag
|= FLAG_DATA_SACKED
;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1159 tp
->left_out
= tp
->sacked_out
+ tp
->lost_out
;
1161 if ((reord
< tp
->fackets_out
) && tp
->ca_state
!= TCP_CA_Loss
)
1162 tcp_update_reordering(tp
, ((tp
->fackets_out
+ 1) - reord
), 0);
1164 #if FASTRETRANS_DEBUG > 0
1165 BUG_TRAP((int)tp
->sacked_out
>= 0);
1166 BUG_TRAP((int)tp
->lost_out
>= 0);
1167 BUG_TRAP((int)tp
->retrans_out
>= 0);
1168 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1173 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1174 * segments to see from the next ACKs whether any data was really missing.
1175 * If the RTO was spurious, new ACKs should arrive.
1177 void tcp_enter_frto(struct sock
*sk
)
1179 struct tcp_sock
*tp
= tcp_sk(sk
);
1180 struct sk_buff
*skb
;
1182 tp
->frto_counter
= 1;
1184 if (tp
->ca_state
<= TCP_CA_Disorder
||
1185 tp
->snd_una
== tp
->high_seq
||
1186 (tp
->ca_state
== TCP_CA_Loss
&& !tp
->retransmits
)) {
1187 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1188 if (!tcp_westwood_ssthresh(tp
))
1189 tp
->snd_ssthresh
= tcp_recalc_ssthresh(tp
);
1192 /* Have to clear retransmission markers here to keep the bookkeeping
1193 * in shape, even though we are not yet in Loss state.
1194 * If something was really lost, it is eventually caught up
1195 * in tcp_enter_frto_loss.
1197 tp
->retrans_out
= 0;
1198 tp
->undo_marker
= tp
->snd_una
;
1199 tp
->undo_retrans
= 0;
1201 sk_stream_for_retrans_queue(skb
, sk
) {
1202 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_RETRANS
;
1204 tcp_sync_left_out(tp
);
1206 tcp_set_ca_state(tp
, TCP_CA_Open
);
1207 tp
->frto_highmark
= tp
->snd_nxt
;
1210 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1211 * which indicates that we should follow the traditional RTO recovery,
1212 * i.e. mark everything lost and do go-back-N retransmission.
1214 static void tcp_enter_frto_loss(struct sock
*sk
)
1216 struct tcp_sock
*tp
= tcp_sk(sk
);
1217 struct sk_buff
*skb
;
1222 tp
->fackets_out
= 0;
1224 sk_stream_for_retrans_queue(skb
, sk
) {
1225 cnt
+= tcp_skb_pcount(skb
);
1226 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1227 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1229 /* Do not mark those segments lost that were
1230 * forward transmitted after RTO
1232 if (!after(TCP_SKB_CB(skb
)->end_seq
,
1233 tp
->frto_highmark
)) {
1234 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1235 tp
->lost_out
+= tcp_skb_pcount(skb
);
1238 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1239 tp
->fackets_out
= cnt
;
1242 tcp_sync_left_out(tp
);
1244 tp
->snd_cwnd
= tp
->frto_counter
+ tcp_packets_in_flight(tp
)+1;
1245 tp
->snd_cwnd_cnt
= 0;
1246 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1247 tp
->undo_marker
= 0;
1248 tp
->frto_counter
= 0;
1250 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1251 sysctl_tcp_reordering
);
1252 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1253 tp
->high_seq
= tp
->frto_highmark
;
1254 TCP_ECN_queue_cwr(tp
);
1259 void tcp_clear_retrans(struct tcp_sock
*tp
)
1262 tp
->retrans_out
= 0;
1264 tp
->fackets_out
= 0;
1268 tp
->undo_marker
= 0;
1269 tp
->undo_retrans
= 0;
1272 /* Enter Loss state. If "how" is not zero, forget all SACK information
1273 * and reset tags completely, otherwise preserve SACKs. If receiver
1274 * dropped its ofo queue, we will know this due to reneging detection.
1276 void tcp_enter_loss(struct sock
*sk
, int how
)
1278 struct tcp_sock
*tp
= tcp_sk(sk
);
1279 struct sk_buff
*skb
;
1282 /* Reduce ssthresh if it has not yet been made inside this window. */
1283 if (tp
->ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1284 (tp
->ca_state
== TCP_CA_Loss
&& !tp
->retransmits
)) {
1285 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1286 tp
->snd_ssthresh
= tcp_recalc_ssthresh(tp
);
1289 tp
->snd_cwnd_cnt
= 0;
1290 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1292 tcp_clear_retrans(tp
);
1294 /* Push undo marker, if it was plain RTO and nothing
1295 * was retransmitted. */
1297 tp
->undo_marker
= tp
->snd_una
;
1299 sk_stream_for_retrans_queue(skb
, sk
) {
1300 cnt
+= tcp_skb_pcount(skb
);
1301 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1302 tp
->undo_marker
= 0;
1303 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1304 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1305 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1306 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1307 tp
->lost_out
+= tcp_skb_pcount(skb
);
1309 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1310 tp
->fackets_out
= cnt
;
1313 tcp_sync_left_out(tp
);
1315 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1316 sysctl_tcp_reordering
);
1317 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1318 tp
->high_seq
= tp
->snd_nxt
;
1319 TCP_ECN_queue_cwr(tp
);
1322 static int tcp_check_sack_reneging(struct sock
*sk
, struct tcp_sock
*tp
)
1324 struct sk_buff
*skb
;
1326 /* If ACK arrived pointing to a remembered SACK,
1327 * it means that our remembered SACKs do not reflect
1328 * real state of receiver i.e.
1329 * receiver _host_ is heavily congested (or buggy).
1330 * Do processing similar to RTO timeout.
1332 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
&&
1333 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1334 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1336 tcp_enter_loss(sk
, 1);
1338 tcp_retransmit_skb(sk
, skb_peek(&sk
->sk_write_queue
));
1339 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
1345 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
1347 return IsReno(tp
) ? tp
->sacked_out
+1 : tp
->fackets_out
;
1350 static inline int tcp_skb_timedout(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1352 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> tp
->rto
);
1355 static inline int tcp_head_timedout(struct sock
*sk
, struct tcp_sock
*tp
)
1357 return tp
->packets_out
&&
1358 tcp_skb_timedout(tp
, skb_peek(&sk
->sk_write_queue
));
1361 /* Linux NewReno/SACK/FACK/ECN state machine.
1362 * --------------------------------------
1364 * "Open" Normal state, no dubious events, fast path.
1365 * "Disorder" In all the respects it is "Open",
1366 * but requires a bit more attention. It is entered when
1367 * we see some SACKs or dupacks. It is split of "Open"
1368 * mainly to move some processing from fast path to slow one.
1369 * "CWR" CWND was reduced due to some Congestion Notification event.
1370 * It can be ECN, ICMP source quench, local device congestion.
1371 * "Recovery" CWND was reduced, we are fast-retransmitting.
1372 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1374 * tcp_fastretrans_alert() is entered:
1375 * - each incoming ACK, if state is not "Open"
1376 * - when arrived ACK is unusual, namely:
1381 * Counting packets in flight is pretty simple.
1383 * in_flight = packets_out - left_out + retrans_out
1385 * packets_out is SND.NXT-SND.UNA counted in packets.
1387 * retrans_out is number of retransmitted segments.
1389 * left_out is number of segments left network, but not ACKed yet.
1391 * left_out = sacked_out + lost_out
1393 * sacked_out: Packets, which arrived to receiver out of order
1394 * and hence not ACKed. With SACKs this number is simply
1395 * amount of SACKed data. Even without SACKs
1396 * it is easy to give pretty reliable estimate of this number,
1397 * counting duplicate ACKs.
1399 * lost_out: Packets lost by network. TCP has no explicit
1400 * "loss notification" feedback from network (for now).
1401 * It means that this number can be only _guessed_.
1402 * Actually, it is the heuristics to predict lossage that
1403 * distinguishes different algorithms.
1405 * F.e. after RTO, when all the queue is considered as lost,
1406 * lost_out = packets_out and in_flight = retrans_out.
1408 * Essentially, we have now two algorithms counting
1411 * FACK: It is the simplest heuristics. As soon as we decided
1412 * that something is lost, we decide that _all_ not SACKed
1413 * packets until the most forward SACK are lost. I.e.
1414 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1415 * It is absolutely correct estimate, if network does not reorder
1416 * packets. And it loses any connection to reality when reordering
1417 * takes place. We use FACK by default until reordering
1418 * is suspected on the path to this destination.
1420 * NewReno: when Recovery is entered, we assume that one segment
1421 * is lost (classic Reno). While we are in Recovery and
1422 * a partial ACK arrives, we assume that one more packet
1423 * is lost (NewReno). This heuristics are the same in NewReno
1426 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1427 * deflation etc. CWND is real congestion window, never inflated, changes
1428 * only according to classic VJ rules.
1430 * Really tricky (and requiring careful tuning) part of algorithm
1431 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1432 * The first determines the moment _when_ we should reduce CWND and,
1433 * hence, slow down forward transmission. In fact, it determines the moment
1434 * when we decide that hole is caused by loss, rather than by a reorder.
1436 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1437 * holes, caused by lost packets.
1439 * And the most logically complicated part of algorithm is undo
1440 * heuristics. We detect false retransmits due to both too early
1441 * fast retransmit (reordering) and underestimated RTO, analyzing
1442 * timestamps and D-SACKs. When we detect that some segments were
1443 * retransmitted by mistake and CWND reduction was wrong, we undo
1444 * window reduction and abort recovery phase. This logic is hidden
1445 * inside several functions named tcp_try_undo_<something>.
1448 /* This function decides, when we should leave Disordered state
1449 * and enter Recovery phase, reducing congestion window.
1451 * Main question: may we further continue forward transmission
1452 * with the same cwnd?
1454 static int tcp_time_to_recover(struct sock
*sk
, struct tcp_sock
*tp
)
1458 /* Trick#1: The loss is proven. */
1462 /* Not-A-Trick#2 : Classic rule... */
1463 if (tcp_fackets_out(tp
) > tp
->reordering
)
1466 /* Trick#3 : when we use RFC2988 timer restart, fast
1467 * retransmit can be triggered by timeout of queue head.
1469 if (tcp_head_timedout(sk
, tp
))
1472 /* Trick#4: It is still not OK... But will it be useful to delay
1475 packets_out
= tp
->packets_out
;
1476 if (packets_out
<= tp
->reordering
&&
1477 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
1478 !tcp_may_send_now(sk
, tp
)) {
1479 /* We have nothing to send. This connection is limited
1480 * either by receiver window or by application.
1488 /* If we receive more dupacks than we expected counting segments
1489 * in assumption of absent reordering, interpret this as reordering.
1490 * The only another reason could be bug in receiver TCP.
1492 static void tcp_check_reno_reordering(struct tcp_sock
*tp
, int addend
)
1496 holes
= max(tp
->lost_out
, 1U);
1497 holes
= min(holes
, tp
->packets_out
);
1499 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1500 tp
->sacked_out
= tp
->packets_out
- holes
;
1501 tcp_update_reordering(tp
, tp
->packets_out
+addend
, 0);
1505 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1507 static void tcp_add_reno_sack(struct tcp_sock
*tp
)
1510 tcp_check_reno_reordering(tp
, 0);
1511 tcp_sync_left_out(tp
);
1514 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1516 static void tcp_remove_reno_sacks(struct sock
*sk
, struct tcp_sock
*tp
, int acked
)
1519 /* One ACK acked hole. The rest eat duplicate ACKs. */
1520 if (acked
-1 >= tp
->sacked_out
)
1523 tp
->sacked_out
-= acked
-1;
1525 tcp_check_reno_reordering(tp
, acked
);
1526 tcp_sync_left_out(tp
);
1529 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1532 tp
->left_out
= tp
->lost_out
;
1535 /* Mark head of queue up as lost. */
1536 static void tcp_mark_head_lost(struct sock
*sk
, struct tcp_sock
*tp
,
1537 int packets
, u32 high_seq
)
1539 struct sk_buff
*skb
;
1542 BUG_TRAP(cnt
<= tp
->packets_out
);
1544 sk_stream_for_retrans_queue(skb
, sk
) {
1545 cnt
-= tcp_skb_pcount(skb
);
1546 if (cnt
< 0 || after(TCP_SKB_CB(skb
)->end_seq
, high_seq
))
1548 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1549 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1550 tp
->lost_out
+= tcp_skb_pcount(skb
);
1553 tcp_sync_left_out(tp
);
1556 /* Account newly detected lost packet(s) */
1558 static void tcp_update_scoreboard(struct sock
*sk
, struct tcp_sock
*tp
)
1561 int lost
= tp
->fackets_out
- tp
->reordering
;
1564 tcp_mark_head_lost(sk
, tp
, lost
, tp
->high_seq
);
1566 tcp_mark_head_lost(sk
, tp
, 1, tp
->high_seq
);
1569 /* New heuristics: it is possible only after we switched
1570 * to restart timer each time when something is ACKed.
1571 * Hence, we can detect timed out packets during fast
1572 * retransmit without falling to slow start.
1574 if (tcp_head_timedout(sk
, tp
)) {
1575 struct sk_buff
*skb
;
1577 sk_stream_for_retrans_queue(skb
, sk
) {
1578 if (tcp_skb_timedout(tp
, skb
) &&
1579 !(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1580 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1581 tp
->lost_out
+= tcp_skb_pcount(skb
);
1584 tcp_sync_left_out(tp
);
1588 /* CWND moderation, preventing bursts due to too big ACKs
1589 * in dubious situations.
1591 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
1593 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
1594 tcp_packets_in_flight(tp
)+tcp_max_burst(tp
));
1595 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1598 /* Decrease cwnd each second ack. */
1600 static void tcp_cwnd_down(struct tcp_sock
*tp
)
1602 int decr
= tp
->snd_cwnd_cnt
+ 1;
1607 * Here limit is evaluated as BWestimation*RTTmin (for obtaining it
1608 * in packets we use mss_cache). If sysctl_tcp_westwood is off
1609 * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
1610 * still used as usual. It prevents other strange cases in which
1611 * BWE*RTTmin could assume value 0. It should not happen but...
1614 if (!(limit
= tcp_westwood_bw_rttmin(tp
)))
1615 limit
= tp
->snd_ssthresh
/2;
1617 tp
->snd_cwnd_cnt
= decr
&1;
1620 if (decr
&& tp
->snd_cwnd
> limit
)
1621 tp
->snd_cwnd
-= decr
;
1623 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
)+1);
1624 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1627 /* Nothing was retransmitted or returned timestamp is less
1628 * than timestamp of the first retransmission.
1630 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
1632 return !tp
->retrans_stamp
||
1633 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
1634 (__s32
)(tp
->rx_opt
.rcv_tsecr
- tp
->retrans_stamp
) < 0);
1637 /* Undo procedures. */
1639 #if FASTRETRANS_DEBUG > 1
1640 static void DBGUNDO(struct sock
*sk
, struct tcp_sock
*tp
, const char *msg
)
1642 struct inet_sock
*inet
= inet_sk(sk
);
1643 printk(KERN_DEBUG
"Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1645 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
1646 tp
->snd_cwnd
, tp
->left_out
,
1647 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
1651 #define DBGUNDO(x...) do { } while (0)
1654 static void tcp_undo_cwr(struct tcp_sock
*tp
, int undo
)
1656 if (tp
->prior_ssthresh
) {
1658 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->bictcp
.last_max_cwnd
);
1660 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<<1);
1662 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
1663 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
1664 TCP_ECN_withdraw_cwr(tp
);
1667 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1669 tcp_moderate_cwnd(tp
);
1670 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1673 static inline int tcp_may_undo(struct tcp_sock
*tp
)
1675 return tp
->undo_marker
&&
1676 (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
1679 /* People celebrate: "We love our President!" */
1680 static int tcp_try_undo_recovery(struct sock
*sk
, struct tcp_sock
*tp
)
1682 if (tcp_may_undo(tp
)) {
1683 /* Happy end! We did not retransmit anything
1684 * or our original transmission succeeded.
1686 DBGUNDO(sk
, tp
, tp
->ca_state
== TCP_CA_Loss
? "loss" : "retrans");
1687 tcp_undo_cwr(tp
, 1);
1688 if (tp
->ca_state
== TCP_CA_Loss
)
1689 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1691 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
1692 tp
->undo_marker
= 0;
1694 if (tp
->snd_una
== tp
->high_seq
&& IsReno(tp
)) {
1695 /* Hold old state until something *above* high_seq
1696 * is ACKed. For Reno it is MUST to prevent false
1697 * fast retransmits (RFC2582). SACK TCP is safe. */
1698 tcp_moderate_cwnd(tp
);
1701 tcp_set_ca_state(tp
, TCP_CA_Open
);
1705 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1706 static void tcp_try_undo_dsack(struct sock
*sk
, struct tcp_sock
*tp
)
1708 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
1709 DBGUNDO(sk
, tp
, "D-SACK");
1710 tcp_undo_cwr(tp
, 1);
1711 tp
->undo_marker
= 0;
1712 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
1716 /* Undo during fast recovery after partial ACK. */
1718 static int tcp_try_undo_partial(struct sock
*sk
, struct tcp_sock
*tp
,
1721 /* Partial ACK arrived. Force Hoe's retransmit. */
1722 int failed
= IsReno(tp
) || tp
->fackets_out
>tp
->reordering
;
1724 if (tcp_may_undo(tp
)) {
1725 /* Plain luck! Hole if filled with delayed
1726 * packet, rather than with a retransmit.
1728 if (tp
->retrans_out
== 0)
1729 tp
->retrans_stamp
= 0;
1731 tcp_update_reordering(tp
, tcp_fackets_out(tp
)+acked
, 1);
1733 DBGUNDO(sk
, tp
, "Hoe");
1734 tcp_undo_cwr(tp
, 0);
1735 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
1737 /* So... Do not make Hoe's retransmit yet.
1738 * If the first packet was delayed, the rest
1739 * ones are most probably delayed as well.
1746 /* Undo during loss recovery after partial ACK. */
1747 static int tcp_try_undo_loss(struct sock
*sk
, struct tcp_sock
*tp
)
1749 if (tcp_may_undo(tp
)) {
1750 struct sk_buff
*skb
;
1751 sk_stream_for_retrans_queue(skb
, sk
) {
1752 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1754 DBGUNDO(sk
, tp
, "partial loss");
1756 tp
->left_out
= tp
->sacked_out
;
1757 tcp_undo_cwr(tp
, 1);
1758 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1759 tp
->retransmits
= 0;
1760 tp
->undo_marker
= 0;
1762 tcp_set_ca_state(tp
, TCP_CA_Open
);
1768 static inline void tcp_complete_cwr(struct tcp_sock
*tp
)
1770 if (tcp_westwood_cwnd(tp
))
1771 tp
->snd_ssthresh
= tp
->snd_cwnd
;
1773 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1774 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1777 static void tcp_try_to_open(struct sock
*sk
, struct tcp_sock
*tp
, int flag
)
1779 tp
->left_out
= tp
->sacked_out
;
1781 if (tp
->retrans_out
== 0)
1782 tp
->retrans_stamp
= 0;
1787 if (tp
->ca_state
!= TCP_CA_CWR
) {
1788 int state
= TCP_CA_Open
;
1790 if (tp
->left_out
|| tp
->retrans_out
|| tp
->undo_marker
)
1791 state
= TCP_CA_Disorder
;
1793 if (tp
->ca_state
!= state
) {
1794 tcp_set_ca_state(tp
, state
);
1795 tp
->high_seq
= tp
->snd_nxt
;
1797 tcp_moderate_cwnd(tp
);
1803 /* Process an event, which can update packets-in-flight not trivially.
1804 * Main goal of this function is to calculate new estimate for left_out,
1805 * taking into account both packets sitting in receiver's buffer and
1806 * packets lost by network.
1808 * Besides that it does CWND reduction, when packet loss is detected
1809 * and changes state of machine.
1811 * It does _not_ decide what to send, it is made in function
1812 * tcp_xmit_retransmit_queue().
1815 tcp_fastretrans_alert(struct sock
*sk
, u32 prior_snd_una
,
1816 int prior_packets
, int flag
)
1818 struct tcp_sock
*tp
= tcp_sk(sk
);
1819 int is_dupack
= (tp
->snd_una
== prior_snd_una
&& !(flag
&FLAG_NOT_DUP
));
1821 /* Some technical things:
1822 * 1. Reno does not count dupacks (sacked_out) automatically. */
1823 if (!tp
->packets_out
)
1825 /* 2. SACK counts snd_fack in packets inaccurately. */
1826 if (tp
->sacked_out
== 0)
1827 tp
->fackets_out
= 0;
1829 /* Now state machine starts.
1830 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1832 tp
->prior_ssthresh
= 0;
1834 /* B. In all the states check for reneging SACKs. */
1835 if (tp
->sacked_out
&& tcp_check_sack_reneging(sk
, tp
))
1838 /* C. Process data loss notification, provided it is valid. */
1839 if ((flag
&FLAG_DATA_LOST
) &&
1840 before(tp
->snd_una
, tp
->high_seq
) &&
1841 tp
->ca_state
!= TCP_CA_Open
&&
1842 tp
->fackets_out
> tp
->reordering
) {
1843 tcp_mark_head_lost(sk
, tp
, tp
->fackets_out
-tp
->reordering
, tp
->high_seq
);
1844 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
1847 /* D. Synchronize left_out to current state. */
1848 tcp_sync_left_out(tp
);
1850 /* E. Check state exit conditions. State can be terminated
1851 * when high_seq is ACKed. */
1852 if (tp
->ca_state
== TCP_CA_Open
) {
1853 if (!sysctl_tcp_frto
)
1854 BUG_TRAP(tp
->retrans_out
== 0);
1855 tp
->retrans_stamp
= 0;
1856 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
1857 switch (tp
->ca_state
) {
1859 tp
->retransmits
= 0;
1860 if (tcp_try_undo_recovery(sk
, tp
))
1865 /* CWR is to be held something *above* high_seq
1866 * is ACKed for CWR bit to reach receiver. */
1867 if (tp
->snd_una
!= tp
->high_seq
) {
1868 tcp_complete_cwr(tp
);
1869 tcp_set_ca_state(tp
, TCP_CA_Open
);
1873 case TCP_CA_Disorder
:
1874 tcp_try_undo_dsack(sk
, tp
);
1875 if (!tp
->undo_marker
||
1876 /* For SACK case do not Open to allow to undo
1877 * catching for all duplicate ACKs. */
1878 IsReno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
1879 tp
->undo_marker
= 0;
1880 tcp_set_ca_state(tp
, TCP_CA_Open
);
1884 case TCP_CA_Recovery
:
1886 tcp_reset_reno_sack(tp
);
1887 if (tcp_try_undo_recovery(sk
, tp
))
1889 tcp_complete_cwr(tp
);
1894 /* F. Process state. */
1895 switch (tp
->ca_state
) {
1896 case TCP_CA_Recovery
:
1897 if (prior_snd_una
== tp
->snd_una
) {
1898 if (IsReno(tp
) && is_dupack
)
1899 tcp_add_reno_sack(tp
);
1901 int acked
= prior_packets
- tp
->packets_out
;
1903 tcp_remove_reno_sacks(sk
, tp
, acked
);
1904 is_dupack
= tcp_try_undo_partial(sk
, tp
, acked
);
1908 if (flag
&FLAG_DATA_ACKED
)
1909 tp
->retransmits
= 0;
1910 if (!tcp_try_undo_loss(sk
, tp
)) {
1911 tcp_moderate_cwnd(tp
);
1912 tcp_xmit_retransmit_queue(sk
);
1915 if (tp
->ca_state
!= TCP_CA_Open
)
1917 /* Loss is undone; fall through to processing in Open state. */
1920 if (tp
->snd_una
!= prior_snd_una
)
1921 tcp_reset_reno_sack(tp
);
1923 tcp_add_reno_sack(tp
);
1926 if (tp
->ca_state
== TCP_CA_Disorder
)
1927 tcp_try_undo_dsack(sk
, tp
);
1929 if (!tcp_time_to_recover(sk
, tp
)) {
1930 tcp_try_to_open(sk
, tp
, flag
);
1934 /* Otherwise enter Recovery state */
1937 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
1939 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
1941 tp
->high_seq
= tp
->snd_nxt
;
1942 tp
->prior_ssthresh
= 0;
1943 tp
->undo_marker
= tp
->snd_una
;
1944 tp
->undo_retrans
= tp
->retrans_out
;
1946 if (tp
->ca_state
< TCP_CA_CWR
) {
1947 if (!(flag
&FLAG_ECE
))
1948 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1949 tp
->snd_ssthresh
= tcp_recalc_ssthresh(tp
);
1950 TCP_ECN_queue_cwr(tp
);
1953 tp
->snd_cwnd_cnt
= 0;
1954 tcp_set_ca_state(tp
, TCP_CA_Recovery
);
1957 if (is_dupack
|| tcp_head_timedout(sk
, tp
))
1958 tcp_update_scoreboard(sk
, tp
);
1960 tcp_xmit_retransmit_queue(sk
);
1963 /* Read draft-ietf-tcplw-high-performance before mucking
1964 * with this code. (Superceeds RFC1323)
1966 static void tcp_ack_saw_tstamp(struct tcp_sock
*tp
, int flag
)
1970 /* RTTM Rule: A TSecr value received in a segment is used to
1971 * update the averaged RTT measurement only if the segment
1972 * acknowledges some new data, i.e., only if it advances the
1973 * left edge of the send window.
1975 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1976 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1978 * Changed: reset backoff as soon as we see the first valid sample.
1979 * If we do not, we get strongly overstimated rto. With timestamps
1980 * samples are accepted even from very old segments: f.e., when rtt=1
1981 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1982 * answer arrives rto becomes 120 seconds! If at least one of segments
1983 * in window is lost... Voila. --ANK (010210)
1985 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
1986 tcp_rtt_estimator(tp
, seq_rtt
);
1992 static void tcp_ack_no_tstamp(struct tcp_sock
*tp
, u32 seq_rtt
, int flag
)
1994 /* We don't have a timestamp. Can only use
1995 * packets that are not retransmitted to determine
1996 * rtt estimates. Also, we must not reset the
1997 * backoff for rto until we get a non-retransmitted
1998 * packet. This allows us to deal with a situation
1999 * where the network delay has increased suddenly.
2000 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2003 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2006 tcp_rtt_estimator(tp
, seq_rtt
);
2012 static inline void tcp_ack_update_rtt(struct tcp_sock
*tp
,
2013 int flag
, s32 seq_rtt
)
2015 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2016 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
2017 tcp_ack_saw_tstamp(tp
, flag
);
2018 else if (seq_rtt
>= 0)
2019 tcp_ack_no_tstamp(tp
, seq_rtt
, flag
);
2023 * Compute congestion window to use.
2025 * This is from the implementation of BICTCP in
2026 * Lison-Xu, Kahaled Harfoush, and Injog Rhee.
2027 * "Binary Increase Congestion Control for Fast, Long Distance
2028 * Networks" in InfoComm 2004
2030 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
2032 * Unless BIC is enabled and congestion window is large
2033 * this behaves the same as the original Reno.
2035 static inline __u32
bictcp_cwnd(struct tcp_sock
*tp
)
2037 /* orignal Reno behaviour */
2038 if (!tcp_is_bic(tp
))
2039 return tp
->snd_cwnd
;
2041 if (tp
->bictcp
.last_cwnd
== tp
->snd_cwnd
&&
2042 (s32
)(tcp_time_stamp
- tp
->bictcp
.last_stamp
) <= (HZ
>>5))
2043 return tp
->bictcp
.cnt
;
2045 tp
->bictcp
.last_cwnd
= tp
->snd_cwnd
;
2046 tp
->bictcp
.last_stamp
= tcp_time_stamp
;
2048 /* start off normal */
2049 if (tp
->snd_cwnd
<= sysctl_tcp_bic_low_window
)
2050 tp
->bictcp
.cnt
= tp
->snd_cwnd
;
2052 /* binary increase */
2053 else if (tp
->snd_cwnd
< tp
->bictcp
.last_max_cwnd
) {
2054 __u32 dist
= (tp
->bictcp
.last_max_cwnd
- tp
->snd_cwnd
)
2057 if (dist
> BICTCP_MAX_INCREMENT
)
2058 /* linear increase */
2059 tp
->bictcp
.cnt
= tp
->snd_cwnd
/ BICTCP_MAX_INCREMENT
;
2060 else if (dist
<= 1U)
2061 /* binary search increase */
2062 tp
->bictcp
.cnt
= tp
->snd_cwnd
* BICTCP_FUNC_OF_MIN_INCR
2065 /* binary search increase */
2066 tp
->bictcp
.cnt
= tp
->snd_cwnd
/ dist
;
2068 /* slow start amd linear increase */
2069 if (tp
->snd_cwnd
< tp
->bictcp
.last_max_cwnd
+ BICTCP_B
)
2071 tp
->bictcp
.cnt
= tp
->snd_cwnd
* BICTCP_FUNC_OF_MIN_INCR
2073 else if (tp
->snd_cwnd
< tp
->bictcp
.last_max_cwnd
2074 + BICTCP_MAX_INCREMENT
*(BICTCP_B
-1))
2076 tp
->bictcp
.cnt
= tp
->snd_cwnd
* (BICTCP_B
-1)
2077 / (tp
->snd_cwnd
-tp
->bictcp
.last_max_cwnd
);
2079 /* linear increase */
2080 tp
->bictcp
.cnt
= tp
->snd_cwnd
/ BICTCP_MAX_INCREMENT
;
2082 return tp
->bictcp
.cnt
;
2085 /* This is Jacobson's slow start and congestion avoidance.
2086 * SIGCOMM '88, p. 328.
2088 static inline void reno_cong_avoid(struct tcp_sock
*tp
)
2090 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
) {
2091 /* In "safe" area, increase. */
2092 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
2095 /* In dangerous area, increase slowly.
2096 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
2098 if (tp
->snd_cwnd_cnt
>= bictcp_cwnd(tp
)) {
2099 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
2105 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2108 /* This is based on the congestion detection/avoidance scheme described in
2109 * Lawrence S. Brakmo and Larry L. Peterson.
2110 * "TCP Vegas: End to end congestion avoidance on a global internet."
2111 * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
2112 * October 1995. Available from:
2113 * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
2115 * See http://www.cs.arizona.edu/xkernel/ for their implementation.
2116 * The main aspects that distinguish this implementation from the
2117 * Arizona Vegas implementation are:
2118 * o We do not change the loss detection or recovery mechanisms of
2119 * Linux in any way. Linux already recovers from losses quite well,
2120 * using fine-grained timers, NewReno, and FACK.
2121 * o To avoid the performance penalty imposed by increasing cwnd
2122 * only every-other RTT during slow start, we increase during
2123 * every RTT during slow start, just like Reno.
2124 * o Largely to allow continuous cwnd growth during slow start,
2125 * we use the rate at which ACKs come back as the "actual"
2126 * rate, rather than the rate at which data is sent.
2127 * o To speed convergence to the right rate, we set the cwnd
2128 * to achieve the right ("actual") rate when we exit slow start.
2129 * o To filter out the noise caused by delayed ACKs, we use the
2130 * minimum RTT sample observed during the last RTT to calculate
2132 * o When the sender re-starts from idle, it waits until it has
2133 * received ACKs for an entire flight of new data before making
2134 * a cwnd adjustment decision. The original Vegas implementation
2135 * assumed senders never went idle.
2137 static void vegas_cong_avoid(struct tcp_sock
*tp
, u32 ack
, u32 seq_rtt
)
2139 /* The key players are v_beg_snd_una and v_beg_snd_nxt.
2141 * These are so named because they represent the approximate values
2142 * of snd_una and snd_nxt at the beginning of the current RTT. More
2143 * precisely, they represent the amount of data sent during the RTT.
2144 * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
2145 * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
2146 * bytes of data have been ACKed during the course of the RTT, giving
2147 * an "actual" rate of:
2149 * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
2151 * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
2152 * because delayed ACKs can cover more than one segment, so they
2153 * don't line up nicely with the boundaries of RTTs.
2155 * Another unfortunate fact of life is that delayed ACKs delay the
2156 * advance of the left edge of our send window, so that the number
2157 * of bytes we send in an RTT is often less than our cwnd will allow.
2158 * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
2161 if (after(ack
, tp
->vegas
.beg_snd_nxt
)) {
2162 /* Do the Vegas once-per-RTT cwnd adjustment. */
2163 u32 old_wnd
, old_snd_cwnd
;
2166 /* Here old_wnd is essentially the window of data that was
2167 * sent during the previous RTT, and has all
2168 * been acknowledged in the course of the RTT that ended
2169 * with the ACK we just received. Likewise, old_snd_cwnd
2170 * is the cwnd during the previous RTT.
2172 old_wnd
= (tp
->vegas
.beg_snd_nxt
- tp
->vegas
.beg_snd_una
) /
2174 old_snd_cwnd
= tp
->vegas
.beg_snd_cwnd
;
2176 /* Save the extent of the current window so we can use this
2177 * at the end of the next RTT.
2179 tp
->vegas
.beg_snd_una
= tp
->vegas
.beg_snd_nxt
;
2180 tp
->vegas
.beg_snd_nxt
= tp
->snd_nxt
;
2181 tp
->vegas
.beg_snd_cwnd
= tp
->snd_cwnd
;
2183 /* Take into account the current RTT sample too, to
2184 * decrease the impact of delayed acks. This double counts
2185 * this sample since we count it for the next window as well,
2186 * but that's not too awful, since we're taking the min,
2187 * rather than averaging.
2189 vegas_rtt_calc(tp
, seq_rtt
);
2191 /* We do the Vegas calculations only if we got enough RTT
2192 * samples that we can be reasonably sure that we got
2193 * at least one RTT sample that wasn't from a delayed ACK.
2194 * If we only had 2 samples total,
2195 * then that means we're getting only 1 ACK per RTT, which
2196 * means they're almost certainly delayed ACKs.
2197 * If we have 3 samples, we should be OK.
2200 if (tp
->vegas
.cntRTT
<= 2) {
2201 /* We don't have enough RTT samples to do the Vegas
2202 * calculation, so we'll behave like Reno.
2204 if (tp
->snd_cwnd
> tp
->snd_ssthresh
)
2207 u32 rtt
, target_cwnd
, diff
;
2209 /* We have enough RTT samples, so, using the Vegas
2210 * algorithm, we determine if we should increase or
2211 * decrease cwnd, and by how much.
2214 /* Pluck out the RTT we are using for the Vegas
2215 * calculations. This is the min RTT seen during the
2216 * last RTT. Taking the min filters out the effects
2217 * of delayed ACKs, at the cost of noticing congestion
2220 rtt
= tp
->vegas
.minRTT
;
2222 /* Calculate the cwnd we should have, if we weren't
2226 * (actual rate in segments) * baseRTT
2227 * We keep it as a fixed point number with
2228 * V_PARAM_SHIFT bits to the right of the binary point.
2230 target_cwnd
= ((old_wnd
* tp
->vegas
.baseRTT
)
2231 << V_PARAM_SHIFT
) / rtt
;
2233 /* Calculate the difference between the window we had,
2234 * and the window we would like to have. This quantity
2235 * is the "Diff" from the Arizona Vegas papers.
2237 * Again, this is a fixed point number with
2238 * V_PARAM_SHIFT bits to the right of the binary
2241 diff
= (old_wnd
<< V_PARAM_SHIFT
) - target_cwnd
;
2243 if (tp
->snd_cwnd
< tp
->snd_ssthresh
) {
2245 if (diff
> sysctl_tcp_vegas_gamma
) {
2246 /* Going too fast. Time to slow down
2247 * and switch to congestion avoidance.
2249 tp
->snd_ssthresh
= 2;
2251 /* Set cwnd to match the actual rate
2253 * cwnd = (actual rate) * baseRTT
2254 * Then we add 1 because the integer
2255 * truncation robs us of full link
2258 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2264 /* Congestion avoidance. */
2267 /* Figure out where we would like cwnd
2270 if (diff
> sysctl_tcp_vegas_beta
) {
2271 /* The old window was too fast, so
2274 next_snd_cwnd
= old_snd_cwnd
- 1;
2275 } else if (diff
< sysctl_tcp_vegas_alpha
) {
2276 /* We don't have enough extra packets
2277 * in the network, so speed up.
2279 next_snd_cwnd
= old_snd_cwnd
+ 1;
2281 /* Sending just as fast as we
2284 next_snd_cwnd
= old_snd_cwnd
;
2287 /* Adjust cwnd upward or downward, toward the
2290 if (next_snd_cwnd
> tp
->snd_cwnd
)
2292 else if (next_snd_cwnd
< tp
->snd_cwnd
)
2297 /* Wipe the slate clean for the next RTT. */
2298 tp
->vegas
.cntRTT
= 0;
2299 tp
->vegas
.minRTT
= 0x7fffffff;
2302 /* The following code is executed for every ack we receive,
2303 * except for conditions checked in should_advance_cwnd()
2304 * before the call to tcp_cong_avoid(). Mainly this means that
2305 * we only execute this code if the ack actually acked some
2309 /* If we are in slow start, increase our cwnd in response to this ACK.
2310 * (If we are not in slow start then we are in congestion avoidance,
2311 * and adjust our congestion window only once per RTT. See the code
2314 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
)
2317 /* to keep cwnd from growing without bound */
2318 tp
->snd_cwnd
= min_t(u32
, tp
->snd_cwnd
, tp
->snd_cwnd_clamp
);
2320 /* Make sure that we are never so timid as to reduce our cwnd below
2323 * Going below 2 MSS would risk huge delayed ACKs from our receiver.
2325 tp
->snd_cwnd
= max(tp
->snd_cwnd
, 2U);
2327 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2330 static inline void tcp_cong_avoid(struct tcp_sock
*tp
, u32 ack
, u32 seq_rtt
)
2332 if (tcp_vegas_enabled(tp
))
2333 vegas_cong_avoid(tp
, ack
, seq_rtt
);
2335 reno_cong_avoid(tp
);
2338 /* Restart timer after forward progress on connection.
2339 * RFC2988 recommends to restart timer to now+rto.
2342 static inline void tcp_ack_packets_out(struct sock
*sk
, struct tcp_sock
*tp
)
2344 if (!tp
->packets_out
) {
2345 tcp_clear_xmit_timer(sk
, TCP_TIME_RETRANS
);
2347 tcp_reset_xmit_timer(sk
, TCP_TIME_RETRANS
, tp
->rto
);
2351 /* There is one downside to this scheme. Although we keep the
2352 * ACK clock ticking, adjusting packet counters and advancing
2353 * congestion window, we do not liberate socket send buffer
2356 * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
2357 * then making a write space wakeup callback is a possible
2358 * future enhancement. WARNING: it is not trivial to make.
2360 static int tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
,
2361 __u32 now
, __s32
*seq_rtt
)
2363 struct tcp_sock
*tp
= tcp_sk(sk
);
2364 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2365 __u32 seq
= tp
->snd_una
;
2366 __u32 packets_acked
;
2369 /* If we get here, the whole TSO packet has not been
2372 BUG_ON(!after(scb
->end_seq
, seq
));
2374 packets_acked
= tcp_skb_pcount(skb
);
2375 if (tcp_trim_head(sk
, skb
, seq
- scb
->seq
))
2377 packets_acked
-= tcp_skb_pcount(skb
);
2379 if (packets_acked
) {
2380 __u8 sacked
= scb
->sacked
;
2382 acked
|= FLAG_DATA_ACKED
;
2384 if (sacked
& TCPCB_RETRANS
) {
2385 if (sacked
& TCPCB_SACKED_RETRANS
)
2386 tp
->retrans_out
-= packets_acked
;
2387 acked
|= FLAG_RETRANS_DATA_ACKED
;
2389 } else if (*seq_rtt
< 0)
2390 *seq_rtt
= now
- scb
->when
;
2391 if (sacked
& TCPCB_SACKED_ACKED
)
2392 tp
->sacked_out
-= packets_acked
;
2393 if (sacked
& TCPCB_LOST
)
2394 tp
->lost_out
-= packets_acked
;
2395 if (sacked
& TCPCB_URG
) {
2397 !before(seq
, tp
->snd_up
))
2400 } else if (*seq_rtt
< 0)
2401 *seq_rtt
= now
- scb
->when
;
2403 if (tp
->fackets_out
) {
2404 __u32 dval
= min(tp
->fackets_out
, packets_acked
);
2405 tp
->fackets_out
-= dval
;
2407 tp
->packets_out
-= packets_acked
;
2409 BUG_ON(tcp_skb_pcount(skb
) == 0);
2410 BUG_ON(!before(scb
->seq
, scb
->end_seq
));
2417 /* Remove acknowledged frames from the retransmission queue. */
2418 static int tcp_clean_rtx_queue(struct sock
*sk
, __s32
*seq_rtt_p
)
2420 struct tcp_sock
*tp
= tcp_sk(sk
);
2421 struct sk_buff
*skb
;
2422 __u32 now
= tcp_time_stamp
;
2426 while ((skb
= skb_peek(&sk
->sk_write_queue
)) &&
2427 skb
!= sk
->sk_send_head
) {
2428 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2429 __u8 sacked
= scb
->sacked
;
2431 /* If our packet is before the ack sequence we can
2432 * discard it as it's confirmed to have arrived at
2435 if (after(scb
->end_seq
, tp
->snd_una
)) {
2436 if (tcp_skb_pcount(skb
) > 1)
2437 acked
|= tcp_tso_acked(sk
, skb
,
2442 /* Initial outgoing SYN's get put onto the write_queue
2443 * just like anything else we transmit. It is not
2444 * true data, and if we misinform our callers that
2445 * this ACK acks real data, we will erroneously exit
2446 * connection startup slow start one packet too
2447 * quickly. This is severely frowned upon behavior.
2449 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2450 acked
|= FLAG_DATA_ACKED
;
2452 acked
|= FLAG_SYN_ACKED
;
2453 tp
->retrans_stamp
= 0;
2457 if (sacked
& TCPCB_RETRANS
) {
2458 if(sacked
& TCPCB_SACKED_RETRANS
)
2459 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2460 acked
|= FLAG_RETRANS_DATA_ACKED
;
2462 } else if (seq_rtt
< 0)
2463 seq_rtt
= now
- scb
->when
;
2464 if (sacked
& TCPCB_SACKED_ACKED
)
2465 tp
->sacked_out
-= tcp_skb_pcount(skb
);
2466 if (sacked
& TCPCB_LOST
)
2467 tp
->lost_out
-= tcp_skb_pcount(skb
);
2468 if (sacked
& TCPCB_URG
) {
2470 !before(scb
->end_seq
, tp
->snd_up
))
2473 } else if (seq_rtt
< 0)
2474 seq_rtt
= now
- scb
->when
;
2475 tcp_dec_pcount_approx(&tp
->fackets_out
, skb
);
2476 tcp_packets_out_dec(tp
, skb
);
2477 __skb_unlink(skb
, skb
->list
);
2478 sk_stream_free_skb(sk
, skb
);
2481 if (acked
&FLAG_ACKED
) {
2482 tcp_ack_update_rtt(tp
, acked
, seq_rtt
);
2483 tcp_ack_packets_out(sk
, tp
);
2486 #if FASTRETRANS_DEBUG > 0
2487 BUG_TRAP((int)tp
->sacked_out
>= 0);
2488 BUG_TRAP((int)tp
->lost_out
>= 0);
2489 BUG_TRAP((int)tp
->retrans_out
>= 0);
2490 if (!tp
->packets_out
&& tp
->rx_opt
.sack_ok
) {
2492 printk(KERN_DEBUG
"Leak l=%u %d\n",
2493 tp
->lost_out
, tp
->ca_state
);
2496 if (tp
->sacked_out
) {
2497 printk(KERN_DEBUG
"Leak s=%u %d\n",
2498 tp
->sacked_out
, tp
->ca_state
);
2501 if (tp
->retrans_out
) {
2502 printk(KERN_DEBUG
"Leak r=%u %d\n",
2503 tp
->retrans_out
, tp
->ca_state
);
2504 tp
->retrans_out
= 0;
2508 *seq_rtt_p
= seq_rtt
;
2512 static void tcp_ack_probe(struct sock
*sk
)
2514 struct tcp_sock
*tp
= tcp_sk(sk
);
2516 /* Was it a usable window open? */
2518 if (!after(TCP_SKB_CB(sk
->sk_send_head
)->end_seq
,
2519 tp
->snd_una
+ tp
->snd_wnd
)) {
2521 tcp_clear_xmit_timer(sk
, TCP_TIME_PROBE0
);
2522 /* Socket must be waked up by subsequent tcp_data_snd_check().
2523 * This function is not for random using!
2526 tcp_reset_xmit_timer(sk
, TCP_TIME_PROBE0
,
2527 min(tp
->rto
<< tp
->backoff
, TCP_RTO_MAX
));
2531 static inline int tcp_ack_is_dubious(struct tcp_sock
*tp
, int flag
)
2533 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2534 tp
->ca_state
!= TCP_CA_Open
);
2537 static inline int tcp_may_raise_cwnd(struct tcp_sock
*tp
, int flag
)
2539 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
2540 !((1<<tp
->ca_state
)&(TCPF_CA_Recovery
|TCPF_CA_CWR
));
2543 /* Check that window update is acceptable.
2544 * The function assumes that snd_una<=ack<=snd_next.
2546 static inline int tcp_may_update_window(struct tcp_sock
*tp
, u32 ack
,
2547 u32 ack_seq
, u32 nwin
)
2549 return (after(ack
, tp
->snd_una
) ||
2550 after(ack_seq
, tp
->snd_wl1
) ||
2551 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
2554 /* Update our send window.
2556 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2557 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2559 static int tcp_ack_update_window(struct sock
*sk
, struct tcp_sock
*tp
,
2560 struct sk_buff
*skb
, u32 ack
, u32 ack_seq
)
2563 u32 nwin
= ntohs(skb
->h
.th
->window
);
2565 if (likely(!skb
->h
.th
->syn
))
2566 nwin
<<= tp
->rx_opt
.snd_wscale
;
2568 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
2569 flag
|= FLAG_WIN_UPDATE
;
2570 tcp_update_wl(tp
, ack
, ack_seq
);
2572 if (tp
->snd_wnd
!= nwin
) {
2575 /* Note, it is the only place, where
2576 * fast path is recovered for sending TCP.
2578 tcp_fast_path_check(sk
, tp
);
2580 if (nwin
> tp
->max_window
) {
2581 tp
->max_window
= nwin
;
2582 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
2592 static void tcp_process_frto(struct sock
*sk
, u32 prior_snd_una
)
2594 struct tcp_sock
*tp
= tcp_sk(sk
);
2596 tcp_sync_left_out(tp
);
2598 if (tp
->snd_una
== prior_snd_una
||
2599 !before(tp
->snd_una
, tp
->frto_highmark
)) {
2600 /* RTO was caused by loss, start retransmitting in
2601 * go-back-N slow start
2603 tcp_enter_frto_loss(sk
);
2607 if (tp
->frto_counter
== 1) {
2608 /* First ACK after RTO advances the window: allow two new
2611 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
2613 /* Also the second ACK after RTO advances the window.
2614 * The RTO was likely spurious. Reduce cwnd and continue
2615 * in congestion avoidance
2617 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2618 tcp_moderate_cwnd(tp
);
2621 /* F-RTO affects on two new ACKs following RTO.
2622 * At latest on third ACK the TCP behavor is back to normal.
2624 tp
->frto_counter
= (tp
->frto_counter
+ 1) % 3;
2633 * This function initializes fields used in TCP Westwood+. We can't
2634 * get no information about RTTmin at this time so we simply set it to
2635 * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
2636 * since in this way we're sure it will be updated in a consistent
2637 * way as soon as possible. It will reasonably happen within the first
2638 * RTT period of the connection lifetime.
2641 static void init_westwood(struct sock
*sk
)
2643 struct tcp_sock
*tp
= tcp_sk(sk
);
2645 tp
->westwood
.bw_ns_est
= 0;
2646 tp
->westwood
.bw_est
= 0;
2647 tp
->westwood
.accounted
= 0;
2648 tp
->westwood
.cumul_ack
= 0;
2649 tp
->westwood
.rtt_win_sx
= tcp_time_stamp
;
2650 tp
->westwood
.rtt
= TCP_WESTWOOD_INIT_RTT
;
2651 tp
->westwood
.rtt_min
= TCP_WESTWOOD_INIT_RTT
;
2652 tp
->westwood
.snd_una
= tp
->snd_una
;
2656 * @westwood_do_filter
2657 * Low-pass filter. Implemented using constant coeffients.
2660 static inline __u32
westwood_do_filter(__u32 a
, __u32 b
)
2662 return (((7 * a
) + b
) >> 3);
2665 static void westwood_filter(struct sock
*sk
, __u32 delta
)
2667 struct tcp_sock
*tp
= tcp_sk(sk
);
2669 tp
->westwood
.bw_ns_est
=
2670 westwood_do_filter(tp
->westwood
.bw_ns_est
,
2671 tp
->westwood
.bk
/ delta
);
2672 tp
->westwood
.bw_est
=
2673 westwood_do_filter(tp
->westwood
.bw_est
,
2674 tp
->westwood
.bw_ns_est
);
2678 * @westwood_update_rttmin
2679 * It is used to update RTTmin. In this case we MUST NOT use
2680 * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
2683 static inline __u32
westwood_update_rttmin(const struct sock
*sk
)
2685 const struct tcp_sock
*tp
= tcp_sk(sk
);
2686 __u32 rttmin
= tp
->westwood
.rtt_min
;
2688 if (tp
->westwood
.rtt
!= 0 &&
2689 (tp
->westwood
.rtt
< tp
->westwood
.rtt_min
|| !rttmin
))
2690 rttmin
= tp
->westwood
.rtt
;
2697 * Evaluate increases for dk.
2700 static inline __u32
westwood_acked(const struct sock
*sk
)
2702 const struct tcp_sock
*tp
= tcp_sk(sk
);
2704 return tp
->snd_una
- tp
->westwood
.snd_una
;
2708 * @westwood_new_window
2709 * It evaluates if we are receiving data inside the same RTT window as
2712 * It returns 0 if we are still evaluating samples in the same RTT
2713 * window, 1 if the sample has to be considered in the next window.
2716 static int westwood_new_window(const struct sock
*sk
)
2718 const struct tcp_sock
*tp
= tcp_sk(sk
);
2723 left_bound
= tp
->westwood
.rtt_win_sx
;
2724 rtt
= max(tp
->westwood
.rtt
, (u32
) TCP_WESTWOOD_RTT_MIN
);
2727 * A RTT-window has passed. Be careful since if RTT is less than
2728 * 50ms we don't filter but we continue 'building the sample'.
2729 * This minimum limit was choosen since an estimation on small
2730 * time intervals is better to avoid...
2731 * Obvioulsy on a LAN we reasonably will always have
2732 * right_bound = left_bound + WESTWOOD_RTT_MIN
2735 if ((left_bound
+ rtt
) < tcp_time_stamp
)
2742 * @westwood_update_window
2743 * It updates RTT evaluation window if it is the right moment to do
2744 * it. If so it calls filter for evaluating bandwidth.
2747 static void __westwood_update_window(struct sock
*sk
, __u32 now
)
2749 struct tcp_sock
*tp
= tcp_sk(sk
);
2750 __u32 delta
= now
- tp
->westwood
.rtt_win_sx
;
2753 if (tp
->westwood
.rtt
)
2754 westwood_filter(sk
, delta
);
2756 tp
->westwood
.bk
= 0;
2757 tp
->westwood
.rtt_win_sx
= tcp_time_stamp
;
2762 static void westwood_update_window(struct sock
*sk
, __u32 now
)
2764 if (westwood_new_window(sk
))
2765 __westwood_update_window(sk
, now
);
2769 * @__tcp_westwood_fast_bw
2770 * It is called when we are in fast path. In particular it is called when
2771 * header prediction is successfull. In such case infact update is
2772 * straight forward and doesn't need any particular care.
2775 static void __tcp_westwood_fast_bw(struct sock
*sk
, struct sk_buff
*skb
)
2777 struct tcp_sock
*tp
= tcp_sk(sk
);
2779 westwood_update_window(sk
, tcp_time_stamp
);
2781 tp
->westwood
.bk
+= westwood_acked(sk
);
2782 tp
->westwood
.snd_una
= tp
->snd_una
;
2783 tp
->westwood
.rtt_min
= westwood_update_rttmin(sk
);
2786 static inline void tcp_westwood_fast_bw(struct sock
*sk
, struct sk_buff
*skb
)
2788 if (tcp_is_westwood(tcp_sk(sk
)))
2789 __tcp_westwood_fast_bw(sk
, skb
);
2794 * @westwood_dupack_update
2795 * It updates accounted and cumul_ack when receiving a dupack.
2798 static void westwood_dupack_update(struct sock
*sk
)
2800 struct tcp_sock
*tp
= tcp_sk(sk
);
2802 tp
->westwood
.accounted
+= tp
->mss_cache_std
;
2803 tp
->westwood
.cumul_ack
= tp
->mss_cache_std
;
2806 static inline int westwood_may_change_cumul(struct tcp_sock
*tp
)
2808 return (tp
->westwood
.cumul_ack
> tp
->mss_cache_std
);
2811 static inline void westwood_partial_update(struct tcp_sock
*tp
)
2813 tp
->westwood
.accounted
-= tp
->westwood
.cumul_ack
;
2814 tp
->westwood
.cumul_ack
= tp
->mss_cache_std
;
2817 static inline void westwood_complete_update(struct tcp_sock
*tp
)
2819 tp
->westwood
.cumul_ack
-= tp
->westwood
.accounted
;
2820 tp
->westwood
.accounted
= 0;
2824 * @westwood_acked_count
2825 * This function evaluates cumul_ack for evaluating dk in case of
2826 * delayed or partial acks.
2829 static inline __u32
westwood_acked_count(struct sock
*sk
)
2831 struct tcp_sock
*tp
= tcp_sk(sk
);
2833 tp
->westwood
.cumul_ack
= westwood_acked(sk
);
2835 /* If cumul_ack is 0 this is a dupack since it's not moving
2838 if (!(tp
->westwood
.cumul_ack
))
2839 westwood_dupack_update(sk
);
2841 if (westwood_may_change_cumul(tp
)) {
2842 /* Partial or delayed ack */
2843 if (tp
->westwood
.accounted
>= tp
->westwood
.cumul_ack
)
2844 westwood_partial_update(tp
);
2846 westwood_complete_update(tp
);
2849 tp
->westwood
.snd_una
= tp
->snd_una
;
2851 return tp
->westwood
.cumul_ack
;
2856 * @__tcp_westwood_slow_bw
2857 * It is called when something is going wrong..even if there could
2858 * be no problems! Infact a simple delayed packet may trigger a
2859 * dupack. But we need to be careful in such case.
2862 static void __tcp_westwood_slow_bw(struct sock
*sk
, struct sk_buff
*skb
)
2864 struct tcp_sock
*tp
= tcp_sk(sk
);
2866 westwood_update_window(sk
, tcp_time_stamp
);
2868 tp
->westwood
.bk
+= westwood_acked_count(sk
);
2869 tp
->westwood
.rtt_min
= westwood_update_rttmin(sk
);
2872 static inline void tcp_westwood_slow_bw(struct sock
*sk
, struct sk_buff
*skb
)
2874 if (tcp_is_westwood(tcp_sk(sk
)))
2875 __tcp_westwood_slow_bw(sk
, skb
);
2878 /* This routine deals with incoming acks, but not outgoing ones. */
2879 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
2881 struct tcp_sock
*tp
= tcp_sk(sk
);
2882 u32 prior_snd_una
= tp
->snd_una
;
2883 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
2884 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2885 u32 prior_in_flight
;
2889 /* If the ack is newer than sent or older than previous acks
2890 * then we can probably ignore it.
2892 if (after(ack
, tp
->snd_nxt
))
2893 goto uninteresting_ack
;
2895 if (before(ack
, prior_snd_una
))
2898 if (!(flag
&FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
2899 /* Window is constant, pure forward advance.
2900 * No more checks are required.
2901 * Note, we use the fact that SND.UNA>=SND.WL2.
2903 tcp_update_wl(tp
, ack
, ack_seq
);
2905 tcp_westwood_fast_bw(sk
, skb
);
2906 flag
|= FLAG_WIN_UPDATE
;
2908 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
2910 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
2913 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
2915 flag
|= tcp_ack_update_window(sk
, tp
, skb
, ack
, ack_seq
);
2917 if (TCP_SKB_CB(skb
)->sacked
)
2918 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2920 if (TCP_ECN_rcv_ecn_echo(tp
, skb
->h
.th
))
2923 tcp_westwood_slow_bw(sk
,skb
);
2926 /* We passed data and got it acked, remove any soft error
2927 * log. Something worked...
2929 sk
->sk_err_soft
= 0;
2930 tp
->rcv_tstamp
= tcp_time_stamp
;
2931 prior_packets
= tp
->packets_out
;
2935 prior_in_flight
= tcp_packets_in_flight(tp
);
2937 /* See if we can take anything off of the retransmit queue. */
2938 flag
|= tcp_clean_rtx_queue(sk
, &seq_rtt
);
2940 if (tp
->frto_counter
)
2941 tcp_process_frto(sk
, prior_snd_una
);
2943 if (tcp_ack_is_dubious(tp
, flag
)) {
2944 /* Advanve CWND, if state allows this. */
2945 if ((flag
& FLAG_DATA_ACKED
) &&
2946 (tcp_vegas_enabled(tp
) || prior_in_flight
>= tp
->snd_cwnd
) &&
2947 tcp_may_raise_cwnd(tp
, flag
))
2948 tcp_cong_avoid(tp
, ack
, seq_rtt
);
2949 tcp_fastretrans_alert(sk
, prior_snd_una
, prior_packets
, flag
);
2951 if ((flag
& FLAG_DATA_ACKED
) &&
2952 (tcp_vegas_enabled(tp
) || prior_in_flight
>= tp
->snd_cwnd
))
2953 tcp_cong_avoid(tp
, ack
, seq_rtt
);
2956 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
&FLAG_NOT_DUP
))
2957 dst_confirm(sk
->sk_dst_cache
);
2964 /* If this ack opens up a zero window, clear backoff. It was
2965 * being used to time the probes, and is probably far higher than
2966 * it needs to be for normal retransmission.
2968 if (sk
->sk_send_head
)
2973 if (TCP_SKB_CB(skb
)->sacked
)
2974 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2977 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
2982 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2983 * But, this can also be called on packets in the established flow when
2984 * the fast version below fails.
2986 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
, int estab
)
2989 struct tcphdr
*th
= skb
->h
.th
;
2990 int length
=(th
->doff
*4)-sizeof(struct tcphdr
);
2992 ptr
= (unsigned char *)(th
+ 1);
2993 opt_rx
->saw_tstamp
= 0;
3002 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3007 if (opsize
< 2) /* "silly options" */
3009 if (opsize
> length
)
3010 return; /* don't parse partial options */
3013 if(opsize
==TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3014 u16 in_mss
= ntohs(get_unaligned((__u16
*)ptr
));
3016 if (opt_rx
->user_mss
&& opt_rx
->user_mss
< in_mss
)
3017 in_mss
= opt_rx
->user_mss
;
3018 opt_rx
->mss_clamp
= in_mss
;
3023 if(opsize
==TCPOLEN_WINDOW
&& th
->syn
&& !estab
)
3024 if (sysctl_tcp_window_scaling
) {
3025 __u8 snd_wscale
= *(__u8
*) ptr
;
3026 opt_rx
->wscale_ok
= 1;
3027 if (snd_wscale
> 14) {
3029 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3030 "scaling value %d >14 received.\n",
3034 opt_rx
->snd_wscale
= snd_wscale
;
3037 case TCPOPT_TIMESTAMP
:
3038 if(opsize
==TCPOLEN_TIMESTAMP
) {
3039 if ((estab
&& opt_rx
->tstamp_ok
) ||
3040 (!estab
&& sysctl_tcp_timestamps
)) {
3041 opt_rx
->saw_tstamp
= 1;
3042 opt_rx
->rcv_tsval
= ntohl(get_unaligned((__u32
*)ptr
));
3043 opt_rx
->rcv_tsecr
= ntohl(get_unaligned((__u32
*)(ptr
+4)));
3047 case TCPOPT_SACK_PERM
:
3048 if(opsize
==TCPOLEN_SACK_PERM
&& th
->syn
&& !estab
) {
3049 if (sysctl_tcp_sack
) {
3050 opt_rx
->sack_ok
= 1;
3051 tcp_sack_reset(opt_rx
);
3057 if((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3058 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3060 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3069 /* Fast parse options. This hopes to only see timestamps.
3070 * If it is wrong it falls back on tcp_parse_options().
3072 static inline int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3073 struct tcp_sock
*tp
)
3075 if (th
->doff
== sizeof(struct tcphdr
)>>2) {
3076 tp
->rx_opt
.saw_tstamp
= 0;
3078 } else if (tp
->rx_opt
.tstamp_ok
&&
3079 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3080 __u32
*ptr
= (__u32
*)(th
+ 1);
3081 if (*ptr
== ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3082 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3083 tp
->rx_opt
.saw_tstamp
= 1;
3085 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3087 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3091 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3095 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3097 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3098 tp
->rx_opt
.ts_recent_stamp
= xtime
.tv_sec
;
3101 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3103 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3104 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3105 * extra check below makes sure this can only happen
3106 * for pure ACK frames. -DaveM
3108 * Not only, also it occurs for expired timestamps.
3111 if((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
3112 xtime
.tv_sec
>= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
3113 tcp_store_ts_recent(tp
);
3117 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3119 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3120 * it can pass through stack. So, the following predicate verifies that
3121 * this segment is not used for anything but congestion avoidance or
3122 * fast retransmit. Moreover, we even are able to eliminate most of such
3123 * second order effects, if we apply some small "replay" window (~RTO)
3124 * to timestamp space.
3126 * All these measures still do not guarantee that we reject wrapped ACKs
3127 * on networks with high bandwidth, when sequence space is recycled fastly,
3128 * but it guarantees that such events will be very rare and do not affect
3129 * connection seriously. This doesn't look nice, but alas, PAWS is really
3132 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3133 * states that events when retransmit arrives after original data are rare.
3134 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3135 * the biggest problem on large power networks even with minor reordering.
3136 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3137 * up to bandwidth of 18Gigabit/sec. 8) ]
3140 static int tcp_disordered_ack(struct tcp_sock
*tp
, struct sk_buff
*skb
)
3142 struct tcphdr
*th
= skb
->h
.th
;
3143 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3144 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3146 return (/* 1. Pure ACK with correct sequence number. */
3147 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3149 /* 2. ... and duplicate ACK. */
3150 ack
== tp
->snd_una
&&
3152 /* 3. ... and does not update window. */
3153 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3155 /* 4. ... and sits in replay window. */
3156 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (tp
->rto
*1024)/HZ
);
3159 static inline int tcp_paws_discard(struct tcp_sock
*tp
, struct sk_buff
*skb
)
3161 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
3162 xtime
.tv_sec
< tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
3163 !tcp_disordered_ack(tp
, skb
));
3166 /* Check segment sequence number for validity.
3168 * Segment controls are considered valid, if the segment
3169 * fits to the window after truncation to the window. Acceptability
3170 * of data (and SYN, FIN, of course) is checked separately.
3171 * See tcp_data_queue(), for example.
3173 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3174 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3175 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3176 * (borrowed from freebsd)
3179 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3181 return !before(end_seq
, tp
->rcv_wup
) &&
3182 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3185 /* When we get a reset we do this. */
3186 static void tcp_reset(struct sock
*sk
)
3188 /* We want the right error as BSD sees it (and indeed as we do). */
3189 switch (sk
->sk_state
) {
3191 sk
->sk_err
= ECONNREFUSED
;
3193 case TCP_CLOSE_WAIT
:
3199 sk
->sk_err
= ECONNRESET
;
3202 if (!sock_flag(sk
, SOCK_DEAD
))
3203 sk
->sk_error_report(sk
);
3209 * Process the FIN bit. This now behaves as it is supposed to work
3210 * and the FIN takes effect when it is validly part of sequence
3211 * space. Not before when we get holes.
3213 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3214 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3217 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3218 * close and we go into CLOSING (and later onto TIME-WAIT)
3220 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3222 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3224 struct tcp_sock
*tp
= tcp_sk(sk
);
3226 tcp_schedule_ack(tp
);
3228 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3229 sock_set_flag(sk
, SOCK_DONE
);
3231 switch (sk
->sk_state
) {
3233 case TCP_ESTABLISHED
:
3234 /* Move to CLOSE_WAIT */
3235 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3236 tp
->ack
.pingpong
= 1;
3239 case TCP_CLOSE_WAIT
:
3241 /* Received a retransmission of the FIN, do
3246 /* RFC793: Remain in the LAST-ACK state. */
3250 /* This case occurs when a simultaneous close
3251 * happens, we must ack the received FIN and
3252 * enter the CLOSING state.
3255 tcp_set_state(sk
, TCP_CLOSING
);
3258 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3260 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
3263 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3264 * cases we should never reach this piece of code.
3266 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
3267 __FUNCTION__
, sk
->sk_state
);
3271 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3272 * Probably, we should reset in this case. For now drop them.
3274 __skb_queue_purge(&tp
->out_of_order_queue
);
3275 if (tp
->rx_opt
.sack_ok
)
3276 tcp_sack_reset(&tp
->rx_opt
);
3277 sk_stream_mem_reclaim(sk
);
3279 if (!sock_flag(sk
, SOCK_DEAD
)) {
3280 sk
->sk_state_change(sk
);
3282 /* Do not send POLL_HUP for half duplex close. */
3283 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
3284 sk
->sk_state
== TCP_CLOSE
)
3285 sk_wake_async(sk
, 1, POLL_HUP
);
3287 sk_wake_async(sk
, 1, POLL_IN
);
3291 static __inline__
int
3292 tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
, u32 end_seq
)
3294 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
3295 if (before(seq
, sp
->start_seq
))
3296 sp
->start_seq
= seq
;
3297 if (after(end_seq
, sp
->end_seq
))
3298 sp
->end_seq
= end_seq
;
3304 static inline void tcp_dsack_set(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3306 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
3307 if (before(seq
, tp
->rcv_nxt
))
3308 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
3310 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
3312 tp
->rx_opt
.dsack
= 1;
3313 tp
->duplicate_sack
[0].start_seq
= seq
;
3314 tp
->duplicate_sack
[0].end_seq
= end_seq
;
3315 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ 1, 4 - tp
->rx_opt
.tstamp_ok
);
3319 static inline void tcp_dsack_extend(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3321 if (!tp
->rx_opt
.dsack
)
3322 tcp_dsack_set(tp
, seq
, end_seq
);
3324 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
3327 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
3329 struct tcp_sock
*tp
= tcp_sk(sk
);
3331 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
3332 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3333 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3334 tcp_enter_quickack_mode(tp
);
3336 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
3337 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3339 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
3340 end_seq
= tp
->rcv_nxt
;
3341 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
3348 /* These routines update the SACK block as out-of-order packets arrive or
3349 * in-order packets close up the sequence space.
3351 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
3354 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3355 struct tcp_sack_block
*swalk
= sp
+1;
3357 /* See if the recent change to the first SACK eats into
3358 * or hits the sequence space of other SACK blocks, if so coalesce.
3360 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
; ) {
3361 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
3364 /* Zap SWALK, by moving every further SACK up by one slot.
3365 * Decrease num_sacks.
3367 tp
->rx_opt
.num_sacks
--;
3368 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3369 for(i
=this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
3373 this_sack
++, swalk
++;
3377 static __inline__
void tcp_sack_swap(struct tcp_sack_block
*sack1
, struct tcp_sack_block
*sack2
)
3381 tmp
= sack1
->start_seq
;
3382 sack1
->start_seq
= sack2
->start_seq
;
3383 sack2
->start_seq
= tmp
;
3385 tmp
= sack1
->end_seq
;
3386 sack1
->end_seq
= sack2
->end_seq
;
3387 sack2
->end_seq
= tmp
;
3390 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3392 struct tcp_sock
*tp
= tcp_sk(sk
);
3393 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3394 int cur_sacks
= tp
->rx_opt
.num_sacks
;
3400 for (this_sack
=0; this_sack
<cur_sacks
; this_sack
++, sp
++) {
3401 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3402 /* Rotate this_sack to the first one. */
3403 for (; this_sack
>0; this_sack
--, sp
--)
3404 tcp_sack_swap(sp
, sp
-1);
3406 tcp_sack_maybe_coalesce(tp
);
3411 /* Could not find an adjacent existing SACK, build a new one,
3412 * put it at the front, and shift everyone else down. We
3413 * always know there is at least one SACK present already here.
3415 * If the sack array is full, forget about the last one.
3417 if (this_sack
>= 4) {
3419 tp
->rx_opt
.num_sacks
--;
3422 for(; this_sack
> 0; this_sack
--, sp
--)
3426 /* Build the new head SACK, and we're done. */
3427 sp
->start_seq
= seq
;
3428 sp
->end_seq
= end_seq
;
3429 tp
->rx_opt
.num_sacks
++;
3430 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3433 /* RCV.NXT advances, some SACKs should be eaten. */
3435 static void tcp_sack_remove(struct tcp_sock
*tp
)
3437 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3438 int num_sacks
= tp
->rx_opt
.num_sacks
;
3441 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3442 if (skb_queue_len(&tp
->out_of_order_queue
) == 0) {
3443 tp
->rx_opt
.num_sacks
= 0;
3444 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
3448 for(this_sack
= 0; this_sack
< num_sacks
; ) {
3449 /* Check if the start of the sack is covered by RCV.NXT. */
3450 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
3453 /* RCV.NXT must cover all the block! */
3454 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
3456 /* Zap this SACK, by moving forward any other SACKS. */
3457 for (i
=this_sack
+1; i
< num_sacks
; i
++)
3458 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
3465 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
3466 tp
->rx_opt
.num_sacks
= num_sacks
;
3467 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
3471 /* This one checks to see if we can put data from the
3472 * out_of_order queue into the receive_queue.
3474 static void tcp_ofo_queue(struct sock
*sk
)
3476 struct tcp_sock
*tp
= tcp_sk(sk
);
3477 __u32 dsack_high
= tp
->rcv_nxt
;
3478 struct sk_buff
*skb
;
3480 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
3481 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
3484 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
3485 __u32 dsack
= dsack_high
;
3486 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
3487 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
3488 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
3491 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3492 SOCK_DEBUG(sk
, "ofo packet was already received \n");
3493 __skb_unlink(skb
, skb
->list
);
3497 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
3498 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3499 TCP_SKB_CB(skb
)->end_seq
);
3501 __skb_unlink(skb
, skb
->list
);
3502 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3503 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3505 tcp_fin(skb
, sk
, skb
->h
.th
);
3509 static int tcp_prune_queue(struct sock
*sk
);
3511 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
3513 struct tcphdr
*th
= skb
->h
.th
;
3514 struct tcp_sock
*tp
= tcp_sk(sk
);
3517 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
3520 __skb_pull(skb
, th
->doff
*4);
3522 TCP_ECN_accept_cwr(tp
, skb
);
3524 if (tp
->rx_opt
.dsack
) {
3525 tp
->rx_opt
.dsack
= 0;
3526 tp
->rx_opt
.eff_sacks
= min_t(unsigned int, tp
->rx_opt
.num_sacks
,
3527 4 - tp
->rx_opt
.tstamp_ok
);
3530 /* Queue data for delivery to the user.
3531 * Packets in sequence go to the receive queue.
3532 * Out of sequence packets to the out_of_order_queue.
3534 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3535 if (tcp_receive_window(tp
) == 0)
3538 /* Ok. In sequence. In window. */
3539 if (tp
->ucopy
.task
== current
&&
3540 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
3541 sock_owned_by_user(sk
) && !tp
->urg_data
) {
3542 int chunk
= min_t(unsigned int, skb
->len
,
3545 __set_current_state(TASK_RUNNING
);
3548 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
3549 tp
->ucopy
.len
-= chunk
;
3550 tp
->copied_seq
+= chunk
;
3551 eaten
= (chunk
== skb
->len
&& !th
->fin
);
3552 tcp_rcv_space_adjust(sk
);
3560 (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3561 !sk_stream_rmem_schedule(sk
, skb
))) {
3562 if (tcp_prune_queue(sk
) < 0 ||
3563 !sk_stream_rmem_schedule(sk
, skb
))
3566 sk_stream_set_owner_r(skb
, sk
);
3567 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3569 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3571 tcp_event_data_recv(sk
, tp
, skb
);
3573 tcp_fin(skb
, sk
, th
);
3575 if (skb_queue_len(&tp
->out_of_order_queue
)) {
3578 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3579 * gap in queue is filled.
3581 if (!skb_queue_len(&tp
->out_of_order_queue
))
3582 tp
->ack
.pingpong
= 0;
3585 if (tp
->rx_opt
.num_sacks
)
3586 tcp_sack_remove(tp
);
3588 tcp_fast_path_check(sk
, tp
);
3592 else if (!sock_flag(sk
, SOCK_DEAD
))
3593 sk
->sk_data_ready(sk
, 0);
3597 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
3598 /* A retransmit, 2nd most common case. Force an immediate ack. */
3599 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
3600 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3603 tcp_enter_quickack_mode(tp
);
3604 tcp_schedule_ack(tp
);
3610 /* Out of window. F.e. zero window probe. */
3611 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
3614 tcp_enter_quickack_mode(tp
);
3616 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3617 /* Partial packet, seq < rcv_next < end_seq */
3618 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
3619 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
3620 TCP_SKB_CB(skb
)->end_seq
);
3622 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
3624 /* If window is closed, drop tail of packet. But after
3625 * remembering D-SACK for its head made in previous line.
3627 if (!tcp_receive_window(tp
))
3632 TCP_ECN_check_ce(tp
, skb
);
3634 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3635 !sk_stream_rmem_schedule(sk
, skb
)) {
3636 if (tcp_prune_queue(sk
) < 0 ||
3637 !sk_stream_rmem_schedule(sk
, skb
))
3641 /* Disable header prediction. */
3643 tcp_schedule_ack(tp
);
3645 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
3646 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3648 sk_stream_set_owner_r(skb
, sk
);
3650 if (!skb_peek(&tp
->out_of_order_queue
)) {
3651 /* Initial out of order segment, build 1 SACK. */
3652 if (tp
->rx_opt
.sack_ok
) {
3653 tp
->rx_opt
.num_sacks
= 1;
3654 tp
->rx_opt
.dsack
= 0;
3655 tp
->rx_opt
.eff_sacks
= 1;
3656 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
3657 tp
->selective_acks
[0].end_seq
=
3658 TCP_SKB_CB(skb
)->end_seq
;
3660 __skb_queue_head(&tp
->out_of_order_queue
,skb
);
3662 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
3663 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3664 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3666 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
3667 __skb_append(skb1
, skb
);
3669 if (!tp
->rx_opt
.num_sacks
||
3670 tp
->selective_acks
[0].end_seq
!= seq
)
3673 /* Common case: data arrive in order after hole. */
3674 tp
->selective_acks
[0].end_seq
= end_seq
;
3678 /* Find place to insert this segment. */
3680 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
3682 } while ((skb1
= skb1
->prev
) !=
3683 (struct sk_buff
*)&tp
->out_of_order_queue
);
3685 /* Do skb overlap to previous one? */
3686 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
3687 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3688 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3689 /* All the bits are present. Drop. */
3691 tcp_dsack_set(tp
, seq
, end_seq
);
3694 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
3695 /* Partial overlap. */
3696 tcp_dsack_set(tp
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
3701 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
3703 /* And clean segments covered by new one as whole. */
3704 while ((skb1
= skb
->next
) !=
3705 (struct sk_buff
*)&tp
->out_of_order_queue
&&
3706 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
3707 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3708 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, end_seq
);
3711 __skb_unlink(skb1
, skb1
->list
);
3712 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, TCP_SKB_CB(skb1
)->end_seq
);
3717 if (tp
->rx_opt
.sack_ok
)
3718 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
3722 /* Collapse contiguous sequence of skbs head..tail with
3723 * sequence numbers start..end.
3724 * Segments with FIN/SYN are not collapsed (only because this
3728 tcp_collapse(struct sock
*sk
, struct sk_buff
*head
,
3729 struct sk_buff
*tail
, u32 start
, u32 end
)
3731 struct sk_buff
*skb
;
3733 /* First, check that queue is collapsable and find
3734 * the point where collapsing can be useful. */
3735 for (skb
= head
; skb
!= tail
; ) {
3736 /* No new bits? It is possible on ofo queue. */
3737 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3738 struct sk_buff
*next
= skb
->next
;
3739 __skb_unlink(skb
, skb
->list
);
3741 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3746 /* The first skb to collapse is:
3748 * - bloated or contains data before "start" or
3749 * overlaps to the next one.
3751 if (!skb
->h
.th
->syn
&& !skb
->h
.th
->fin
&&
3752 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
3753 before(TCP_SKB_CB(skb
)->seq
, start
) ||
3754 (skb
->next
!= tail
&&
3755 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
3758 /* Decided to skip this, advance start seq. */
3759 start
= TCP_SKB_CB(skb
)->end_seq
;
3762 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3765 while (before(start
, end
)) {
3766 struct sk_buff
*nskb
;
3767 int header
= skb_headroom(skb
);
3768 int copy
= SKB_MAX_ORDER(header
, 0);
3770 /* Too big header? This can happen with IPv6. */
3773 if (end
-start
< copy
)
3775 nskb
= alloc_skb(copy
+header
, GFP_ATOMIC
);
3778 skb_reserve(nskb
, header
);
3779 memcpy(nskb
->head
, skb
->head
, header
);
3780 nskb
->nh
.raw
= nskb
->head
+ (skb
->nh
.raw
-skb
->head
);
3781 nskb
->h
.raw
= nskb
->head
+ (skb
->h
.raw
-skb
->head
);
3782 nskb
->mac
.raw
= nskb
->head
+ (skb
->mac
.raw
-skb
->head
);
3783 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
3784 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
3785 __skb_insert(nskb
, skb
->prev
, skb
, skb
->list
);
3786 sk_stream_set_owner_r(nskb
, sk
);
3788 /* Copy data, releasing collapsed skbs. */
3790 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
3791 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
3793 if (offset
< 0) BUG();
3795 size
= min(copy
, size
);
3796 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
3798 TCP_SKB_CB(nskb
)->end_seq
+= size
;
3802 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3803 struct sk_buff
*next
= skb
->next
;
3804 __skb_unlink(skb
, skb
->list
);
3806 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3808 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3815 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3816 * and tcp_collapse() them until all the queue is collapsed.
3818 static void tcp_collapse_ofo_queue(struct sock
*sk
)
3820 struct tcp_sock
*tp
= tcp_sk(sk
);
3821 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
3822 struct sk_buff
*head
;
3828 start
= TCP_SKB_CB(skb
)->seq
;
3829 end
= TCP_SKB_CB(skb
)->end_seq
;
3835 /* Segment is terminated when we see gap or when
3836 * we are at the end of all the queue. */
3837 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
3838 after(TCP_SKB_CB(skb
)->seq
, end
) ||
3839 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
3840 tcp_collapse(sk
, head
, skb
, start
, end
);
3842 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
3844 /* Start new segment */
3845 start
= TCP_SKB_CB(skb
)->seq
;
3846 end
= TCP_SKB_CB(skb
)->end_seq
;
3848 if (before(TCP_SKB_CB(skb
)->seq
, start
))
3849 start
= TCP_SKB_CB(skb
)->seq
;
3850 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
3851 end
= TCP_SKB_CB(skb
)->end_seq
;
3856 /* Reduce allocated memory if we can, trying to get
3857 * the socket within its memory limits again.
3859 * Return less than zero if we should start dropping frames
3860 * until the socket owning process reads some of the data
3861 * to stabilize the situation.
3863 static int tcp_prune_queue(struct sock
*sk
)
3865 struct tcp_sock
*tp
= tcp_sk(sk
);
3867 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
3869 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
3871 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
3872 tcp_clamp_window(sk
, tp
);
3873 else if (tcp_memory_pressure
)
3874 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
3876 tcp_collapse_ofo_queue(sk
);
3877 tcp_collapse(sk
, sk
->sk_receive_queue
.next
,
3878 (struct sk_buff
*)&sk
->sk_receive_queue
,
3879 tp
->copied_seq
, tp
->rcv_nxt
);
3880 sk_stream_mem_reclaim(sk
);
3882 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3885 /* Collapsing did not help, destructive actions follow.
3886 * This must not ever occur. */
3888 /* First, purge the out_of_order queue. */
3889 if (skb_queue_len(&tp
->out_of_order_queue
)) {
3890 NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED
,
3891 skb_queue_len(&tp
->out_of_order_queue
));
3892 __skb_queue_purge(&tp
->out_of_order_queue
);
3894 /* Reset SACK state. A conforming SACK implementation will
3895 * do the same at a timeout based retransmit. When a connection
3896 * is in a sad state like this, we care only about integrity
3897 * of the connection not performance.
3899 if (tp
->rx_opt
.sack_ok
)
3900 tcp_sack_reset(&tp
->rx_opt
);
3901 sk_stream_mem_reclaim(sk
);
3904 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3907 /* If we are really being abused, tell the caller to silently
3908 * drop receive data on the floor. It will get retransmitted
3909 * and hopefully then we'll have sufficient space.
3911 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
3913 /* Massive buffer overcommit. */
3919 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3920 * As additional protections, we do not touch cwnd in retransmission phases,
3921 * and if application hit its sndbuf limit recently.
3923 void tcp_cwnd_application_limited(struct sock
*sk
)
3925 struct tcp_sock
*tp
= tcp_sk(sk
);
3927 if (tp
->ca_state
== TCP_CA_Open
&&
3928 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
3929 /* Limited by application or receiver window. */
3930 u32 win_used
= max(tp
->snd_cwnd_used
, 2U);
3931 if (win_used
< tp
->snd_cwnd
) {
3932 tp
->snd_ssthresh
= tcp_current_ssthresh(tp
);
3933 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
3935 tp
->snd_cwnd_used
= 0;
3937 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3941 /* When incoming ACK allowed to free some skb from write_queue,
3942 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3943 * on the exit from tcp input handler.
3945 * PROBLEM: sndbuf expansion does not work well with largesend.
3947 static void tcp_new_space(struct sock
*sk
)
3949 struct tcp_sock
*tp
= tcp_sk(sk
);
3951 if (tp
->packets_out
< tp
->snd_cwnd
&&
3952 !(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
) &&
3953 !tcp_memory_pressure
&&
3954 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
3955 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache_std
) +
3956 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
3957 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
3958 tp
->reordering
+ 1);
3959 sndmem
*= 2*demanded
;
3960 if (sndmem
> sk
->sk_sndbuf
)
3961 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
3962 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3965 sk
->sk_write_space(sk
);
3968 static inline void tcp_check_space(struct sock
*sk
)
3970 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
3971 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
3972 if (sk
->sk_socket
&&
3973 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
3978 static void __tcp_data_snd_check(struct sock
*sk
, struct sk_buff
*skb
)
3980 struct tcp_sock
*tp
= tcp_sk(sk
);
3982 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
+ tp
->snd_wnd
) ||
3983 tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
||
3984 tcp_write_xmit(sk
, tp
->nonagle
))
3985 tcp_check_probe_timer(sk
, tp
);
3988 static __inline__
void tcp_data_snd_check(struct sock
*sk
)
3990 struct sk_buff
*skb
= sk
->sk_send_head
;
3993 __tcp_data_snd_check(sk
, skb
);
3994 tcp_check_space(sk
);
3998 * Check if sending an ack is needed.
4000 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4002 struct tcp_sock
*tp
= tcp_sk(sk
);
4004 /* More than one full frame received... */
4005 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > tp
->ack
.rcv_mss
4006 /* ... and right edge of window advances far enough.
4007 * (tcp_recvmsg() will send ACK otherwise). Or...
4009 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4010 /* We ACK each frame or... */
4011 tcp_in_quickack_mode(tp
) ||
4012 /* We have out of order data. */
4014 skb_peek(&tp
->out_of_order_queue
))) {
4015 /* Then ack it now */
4018 /* Else, send delayed ack. */
4019 tcp_send_delayed_ack(sk
);
4023 static __inline__
void tcp_ack_snd_check(struct sock
*sk
)
4025 struct tcp_sock
*tp
= tcp_sk(sk
);
4026 if (!tcp_ack_scheduled(tp
)) {
4027 /* We sent a data segment already. */
4030 __tcp_ack_snd_check(sk
, 1);
4034 * This routine is only called when we have urgent data
4035 * signalled. Its the 'slow' part of tcp_urg. It could be
4036 * moved inline now as tcp_urg is only called from one
4037 * place. We handle URGent data wrong. We have to - as
4038 * BSD still doesn't use the correction from RFC961.
4039 * For 1003.1g we should support a new option TCP_STDURG to permit
4040 * either form (or just set the sysctl tcp_stdurg).
4043 static void tcp_check_urg(struct sock
* sk
, struct tcphdr
* th
)
4045 struct tcp_sock
*tp
= tcp_sk(sk
);
4046 u32 ptr
= ntohs(th
->urg_ptr
);
4048 if (ptr
&& !sysctl_tcp_stdurg
)
4050 ptr
+= ntohl(th
->seq
);
4052 /* Ignore urgent data that we've already seen and read. */
4053 if (after(tp
->copied_seq
, ptr
))
4056 /* Do not replay urg ptr.
4058 * NOTE: interesting situation not covered by specs.
4059 * Misbehaving sender may send urg ptr, pointing to segment,
4060 * which we already have in ofo queue. We are not able to fetch
4061 * such data and will stay in TCP_URG_NOTYET until will be eaten
4062 * by recvmsg(). Seems, we are not obliged to handle such wicked
4063 * situations. But it is worth to think about possibility of some
4064 * DoSes using some hypothetical application level deadlock.
4066 if (before(ptr
, tp
->rcv_nxt
))
4069 /* Do we already have a newer (or duplicate) urgent pointer? */
4070 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4073 /* Tell the world about our new urgent pointer. */
4076 /* We may be adding urgent data when the last byte read was
4077 * urgent. To do this requires some care. We cannot just ignore
4078 * tp->copied_seq since we would read the last urgent byte again
4079 * as data, nor can we alter copied_seq until this data arrives
4080 * or we break the sematics of SIOCATMARK (and thus sockatmark())
4082 * NOTE. Double Dutch. Rendering to plain English: author of comment
4083 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4084 * and expect that both A and B disappear from stream. This is _wrong_.
4085 * Though this happens in BSD with high probability, this is occasional.
4086 * Any application relying on this is buggy. Note also, that fix "works"
4087 * only in this artificial test. Insert some normal data between A and B and we will
4088 * decline of BSD again. Verdict: it is better to remove to trap
4091 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4092 !sock_flag(sk
, SOCK_URGINLINE
) &&
4093 tp
->copied_seq
!= tp
->rcv_nxt
) {
4094 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4096 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4097 __skb_unlink(skb
, skb
->list
);
4102 tp
->urg_data
= TCP_URG_NOTYET
;
4105 /* Disable header prediction. */
4109 /* This is the 'fast' part of urgent handling. */
4110 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4112 struct tcp_sock
*tp
= tcp_sk(sk
);
4114 /* Check if we get a new urgent pointer - normally not. */
4116 tcp_check_urg(sk
,th
);
4118 /* Do we wait for any urgent data? - normally not... */
4119 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4120 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4123 /* Is the urgent pointer pointing into this packet? */
4124 if (ptr
< skb
->len
) {
4126 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4128 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4129 if (!sock_flag(sk
, SOCK_DEAD
))
4130 sk
->sk_data_ready(sk
, 0);
4135 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4137 struct tcp_sock
*tp
= tcp_sk(sk
);
4138 int chunk
= skb
->len
- hlen
;
4142 if (skb
->ip_summed
==CHECKSUM_UNNECESSARY
)
4143 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4145 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4149 tp
->ucopy
.len
-= chunk
;
4150 tp
->copied_seq
+= chunk
;
4151 tcp_rcv_space_adjust(sk
);
4158 static int __tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
4162 if (sock_owned_by_user(sk
)) {
4164 result
= __tcp_checksum_complete(skb
);
4167 result
= __tcp_checksum_complete(skb
);
4172 static __inline__
int
4173 tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
4175 return skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
4176 __tcp_checksum_complete_user(sk
, skb
);
4180 * TCP receive function for the ESTABLISHED state.
4182 * It is split into a fast path and a slow path. The fast path is
4184 * - A zero window was announced from us - zero window probing
4185 * is only handled properly in the slow path.
4186 * - Out of order segments arrived.
4187 * - Urgent data is expected.
4188 * - There is no buffer space left
4189 * - Unexpected TCP flags/window values/header lengths are received
4190 * (detected by checking the TCP header against pred_flags)
4191 * - Data is sent in both directions. Fast path only supports pure senders
4192 * or pure receivers (this means either the sequence number or the ack
4193 * value must stay constant)
4194 * - Unexpected TCP option.
4196 * When these conditions are not satisfied it drops into a standard
4197 * receive procedure patterned after RFC793 to handle all cases.
4198 * The first three cases are guaranteed by proper pred_flags setting,
4199 * the rest is checked inline. Fast processing is turned on in
4200 * tcp_data_queue when everything is OK.
4202 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
4203 struct tcphdr
*th
, unsigned len
)
4205 struct tcp_sock
*tp
= tcp_sk(sk
);
4208 * Header prediction.
4209 * The code loosely follows the one in the famous
4210 * "30 instruction TCP receive" Van Jacobson mail.
4212 * Van's trick is to deposit buffers into socket queue
4213 * on a device interrupt, to call tcp_recv function
4214 * on the receive process context and checksum and copy
4215 * the buffer to user space. smart...
4217 * Our current scheme is not silly either but we take the
4218 * extra cost of the net_bh soft interrupt processing...
4219 * We do checksum and copy also but from device to kernel.
4222 tp
->rx_opt
.saw_tstamp
= 0;
4224 /* pred_flags is 0xS?10 << 16 + snd_wnd
4225 * if header_predition is to be made
4226 * 'S' will always be tp->tcp_header_len >> 2
4227 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4228 * turn it off (when there are holes in the receive
4229 * space for instance)
4230 * PSH flag is ignored.
4233 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
4234 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4235 int tcp_header_len
= tp
->tcp_header_len
;
4237 /* Timestamp header prediction: tcp_header_len
4238 * is automatically equal to th->doff*4 due to pred_flags
4242 /* Check timestamp */
4243 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
4244 __u32
*ptr
= (__u32
*)(th
+ 1);
4246 /* No? Slow path! */
4247 if (*ptr
!= ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
4248 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
4251 tp
->rx_opt
.saw_tstamp
= 1;
4253 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
4255 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
4257 /* If PAWS failed, check it more carefully in slow path */
4258 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
4261 /* DO NOT update ts_recent here, if checksum fails
4262 * and timestamp was corrupted part, it will result
4263 * in a hung connection since we will drop all
4264 * future packets due to the PAWS test.
4268 if (len
<= tcp_header_len
) {
4269 /* Bulk data transfer: sender */
4270 if (len
== tcp_header_len
) {
4271 /* Predicted packet is in window by definition.
4272 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4273 * Hence, check seq<=rcv_wup reduces to:
4275 if (tcp_header_len
==
4276 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4277 tp
->rcv_nxt
== tp
->rcv_wup
)
4278 tcp_store_ts_recent(tp
);
4280 tcp_rcv_rtt_measure_ts(tp
, skb
);
4282 /* We know that such packets are checksummed
4285 tcp_ack(sk
, skb
, 0);
4287 tcp_data_snd_check(sk
);
4289 } else { /* Header too small */
4290 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4296 if (tp
->ucopy
.task
== current
&&
4297 tp
->copied_seq
== tp
->rcv_nxt
&&
4298 len
- tcp_header_len
<= tp
->ucopy
.len
&&
4299 sock_owned_by_user(sk
)) {
4300 __set_current_state(TASK_RUNNING
);
4302 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
4303 /* Predicted packet is in window by definition.
4304 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4305 * Hence, check seq<=rcv_wup reduces to:
4307 if (tcp_header_len
==
4308 (sizeof(struct tcphdr
) +
4309 TCPOLEN_TSTAMP_ALIGNED
) &&
4310 tp
->rcv_nxt
== tp
->rcv_wup
)
4311 tcp_store_ts_recent(tp
);
4313 tcp_rcv_rtt_measure_ts(tp
, skb
);
4315 __skb_pull(skb
, tcp_header_len
);
4316 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4317 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
4322 if (tcp_checksum_complete_user(sk
, skb
))
4325 /* Predicted packet is in window by definition.
4326 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4327 * Hence, check seq<=rcv_wup reduces to:
4329 if (tcp_header_len
==
4330 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
4331 tp
->rcv_nxt
== tp
->rcv_wup
)
4332 tcp_store_ts_recent(tp
);
4334 tcp_rcv_rtt_measure_ts(tp
, skb
);
4336 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
4339 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
4341 /* Bulk data transfer: receiver */
4342 __skb_pull(skb
,tcp_header_len
);
4343 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4344 sk_stream_set_owner_r(skb
, sk
);
4345 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4348 tcp_event_data_recv(sk
, tp
, skb
);
4350 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
4351 /* Well, only one small jumplet in fast path... */
4352 tcp_ack(sk
, skb
, FLAG_DATA
);
4353 tcp_data_snd_check(sk
);
4354 if (!tcp_ack_scheduled(tp
))
4359 if (tcp_in_quickack_mode(tp
)) {
4362 tcp_send_delayed_ack(sk
);
4365 __tcp_ack_snd_check(sk
, 0);
4372 sk
->sk_data_ready(sk
, 0);
4378 if (len
< (th
->doff
<<2) || tcp_checksum_complete_user(sk
, skb
))
4382 * RFC1323: H1. Apply PAWS check first.
4384 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4385 tcp_paws_discard(tp
, skb
)) {
4387 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4388 tcp_send_dupack(sk
, skb
);
4391 /* Resets are accepted even if PAWS failed.
4393 ts_recent update must be made after we are sure
4394 that the packet is in window.
4399 * Standard slow path.
4402 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4403 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4404 * (RST) segments are validated by checking their SEQ-fields."
4405 * And page 69: "If an incoming segment is not acceptable,
4406 * an acknowledgment should be sent in reply (unless the RST bit
4407 * is set, if so drop the segment and return)".
4410 tcp_send_dupack(sk
, skb
);
4419 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4421 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4422 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4423 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4430 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4432 tcp_rcv_rtt_measure_ts(tp
, skb
);
4434 /* Process urgent data. */
4435 tcp_urg(sk
, skb
, th
);
4437 /* step 7: process the segment text */
4438 tcp_data_queue(sk
, skb
);
4440 tcp_data_snd_check(sk
);
4441 tcp_ack_snd_check(sk
);
4445 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
4452 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4453 struct tcphdr
*th
, unsigned len
)
4455 struct tcp_sock
*tp
= tcp_sk(sk
);
4456 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
4458 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
4462 * "If the state is SYN-SENT then
4463 * first check the ACK bit
4464 * If the ACK bit is set
4465 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4466 * a reset (unless the RST bit is set, if so drop
4467 * the segment and return)"
4469 * We do not send data with SYN, so that RFC-correct
4472 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
4473 goto reset_and_undo
;
4475 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4476 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
4478 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
4479 goto reset_and_undo
;
4482 /* Now ACK is acceptable.
4484 * "If the RST bit is set
4485 * If the ACK was acceptable then signal the user "error:
4486 * connection reset", drop the segment, enter CLOSED state,
4487 * delete TCB, and return."
4496 * "fifth, if neither of the SYN or RST bits is set then
4497 * drop the segment and return."
4503 goto discard_and_undo
;
4506 * "If the SYN bit is on ...
4507 * are acceptable then ...
4508 * (our SYN has been ACKed), change the connection
4509 * state to ESTABLISHED..."
4512 TCP_ECN_rcv_synack(tp
, th
);
4513 if (tp
->ecn_flags
&TCP_ECN_OK
)
4514 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
4516 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4517 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4519 /* Ok.. it's good. Set up sequence numbers and
4520 * move to established.
4522 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4523 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4525 /* RFC1323: The window in SYN & SYN/ACK segments is
4528 tp
->snd_wnd
= ntohs(th
->window
);
4529 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
4531 if (!tp
->rx_opt
.wscale_ok
) {
4532 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
4533 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
4536 if (tp
->rx_opt
.saw_tstamp
) {
4537 tp
->rx_opt
.tstamp_ok
= 1;
4538 tp
->tcp_header_len
=
4539 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4540 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4541 tcp_store_ts_recent(tp
);
4543 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4546 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_fack
)
4547 tp
->rx_opt
.sack_ok
|= 2;
4549 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
4550 tcp_initialize_rcv_mss(sk
);
4552 /* Remember, tcp_poll() does not lock socket!
4553 * Change state from SYN-SENT only after copied_seq
4554 * is initialized. */
4555 tp
->copied_seq
= tp
->rcv_nxt
;
4557 tcp_set_state(sk
, TCP_ESTABLISHED
);
4559 /* Make sure socket is routed, for correct metrics. */
4560 tp
->af_specific
->rebuild_header(sk
);
4562 tcp_init_metrics(sk
);
4564 /* Prevent spurious tcp_cwnd_restart() on first data
4567 tp
->lsndtime
= tcp_time_stamp
;
4569 tcp_init_buffer_space(sk
);
4571 if (sock_flag(sk
, SOCK_KEEPOPEN
))
4572 tcp_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
4574 if (!tp
->rx_opt
.snd_wscale
)
4575 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
4579 if (!sock_flag(sk
, SOCK_DEAD
)) {
4580 sk
->sk_state_change(sk
);
4581 sk_wake_async(sk
, 0, POLL_OUT
);
4584 if (sk
->sk_write_pending
|| tp
->defer_accept
|| tp
->ack
.pingpong
) {
4585 /* Save one ACK. Data will be ready after
4586 * several ticks, if write_pending is set.
4588 * It may be deleted, but with this feature tcpdumps
4589 * look so _wonderfully_ clever, that I was not able
4590 * to stand against the temptation 8) --ANK
4592 tcp_schedule_ack(tp
);
4593 tp
->ack
.lrcvtime
= tcp_time_stamp
;
4594 tp
->ack
.ato
= TCP_ATO_MIN
;
4595 tcp_incr_quickack(tp
);
4596 tcp_enter_quickack_mode(tp
);
4597 tcp_reset_xmit_timer(sk
, TCP_TIME_DACK
, TCP_DELACK_MAX
);
4608 /* No ACK in the segment */
4612 * "If the RST bit is set
4614 * Otherwise (no ACK) drop the segment and return."
4617 goto discard_and_undo
;
4621 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&& tcp_paws_check(&tp
->rx_opt
, 0))
4622 goto discard_and_undo
;
4625 /* We see SYN without ACK. It is attempt of
4626 * simultaneous connect with crossed SYNs.
4627 * Particularly, it can be connect to self.
4629 tcp_set_state(sk
, TCP_SYN_RECV
);
4631 if (tp
->rx_opt
.saw_tstamp
) {
4632 tp
->rx_opt
.tstamp_ok
= 1;
4633 tcp_store_ts_recent(tp
);
4634 tp
->tcp_header_len
=
4635 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4637 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4640 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4641 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4643 /* RFC1323: The window in SYN & SYN/ACK segments is
4646 tp
->snd_wnd
= ntohs(th
->window
);
4647 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4648 tp
->max_window
= tp
->snd_wnd
;
4650 TCP_ECN_rcv_syn(tp
, th
);
4651 if (tp
->ecn_flags
&TCP_ECN_OK
)
4652 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
4654 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
4655 tcp_initialize_rcv_mss(sk
);
4658 tcp_send_synack(sk
);
4660 /* Note, we could accept data and URG from this segment.
4661 * There are no obstacles to make this.
4663 * However, if we ignore data in ACKless segments sometimes,
4664 * we have no reasons to accept it sometimes.
4665 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4666 * is not flawless. So, discard packet for sanity.
4667 * Uncomment this return to process the data.
4674 /* "fifth, if neither of the SYN or RST bits is set then
4675 * drop the segment and return."
4679 tcp_clear_options(&tp
->rx_opt
);
4680 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4684 tcp_clear_options(&tp
->rx_opt
);
4685 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4691 * This function implements the receiving procedure of RFC 793 for
4692 * all states except ESTABLISHED and TIME_WAIT.
4693 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4694 * address independent.
4697 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4698 struct tcphdr
*th
, unsigned len
)
4700 struct tcp_sock
*tp
= tcp_sk(sk
);
4703 tp
->rx_opt
.saw_tstamp
= 0;
4705 switch (sk
->sk_state
) {
4717 if(tp
->af_specific
->conn_request(sk
, skb
) < 0)
4723 /* Now we have several options: In theory there is
4724 * nothing else in the frame. KA9Q has an option to
4725 * send data with the syn, BSD accepts data with the
4726 * syn up to the [to be] advertised window and
4727 * Solaris 2.1 gives you a protocol error. For now
4728 * we just ignore it, that fits the spec precisely
4729 * and avoids incompatibilities. It would be nice in
4730 * future to drop through and process the data.
4732 * Now that TTCP is starting to be used we ought to
4734 * But, this leaves one open to an easy denial of
4735 * service attack, and SYN cookies can't defend
4736 * against this problem. So, we drop the data
4737 * in the interest of security over speed.
4747 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
4751 /* Do step6 onward by hand. */
4752 tcp_urg(sk
, skb
, th
);
4754 tcp_data_snd_check(sk
);
4758 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4759 tcp_paws_discard(tp
, skb
)) {
4761 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4762 tcp_send_dupack(sk
, skb
);
4765 /* Reset is accepted even if it did not pass PAWS. */
4768 /* step 1: check sequence number */
4769 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4771 tcp_send_dupack(sk
, skb
);
4775 /* step 2: check RST bit */
4781 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4783 /* step 3: check security and precedence [ignored] */
4787 * Check for a SYN in window.
4789 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4790 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4795 /* step 5: check the ACK field */
4797 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4799 switch(sk
->sk_state
) {
4802 tp
->copied_seq
= tp
->rcv_nxt
;
4804 tcp_set_state(sk
, TCP_ESTABLISHED
);
4805 sk
->sk_state_change(sk
);
4807 /* Note, that this wakeup is only for marginal
4808 * crossed SYN case. Passively open sockets
4809 * are not waked up, because sk->sk_sleep ==
4810 * NULL and sk->sk_socket == NULL.
4812 if (sk
->sk_socket
) {
4813 sk_wake_async(sk
,0,POLL_OUT
);
4816 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
4817 tp
->snd_wnd
= ntohs(th
->window
) <<
4818 tp
->rx_opt
.snd_wscale
;
4819 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
4820 TCP_SKB_CB(skb
)->seq
);
4822 /* tcp_ack considers this ACK as duplicate
4823 * and does not calculate rtt.
4824 * Fix it at least with timestamps.
4826 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4828 tcp_ack_saw_tstamp(tp
, 0);
4830 if (tp
->rx_opt
.tstamp_ok
)
4831 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4833 /* Make sure socket is routed, for
4836 tp
->af_specific
->rebuild_header(sk
);
4838 tcp_init_metrics(sk
);
4840 /* Prevent spurious tcp_cwnd_restart() on
4841 * first data packet.
4843 tp
->lsndtime
= tcp_time_stamp
;
4845 tcp_initialize_rcv_mss(sk
);
4846 tcp_init_buffer_space(sk
);
4847 tcp_fast_path_on(tp
);
4854 if (tp
->snd_una
== tp
->write_seq
) {
4855 tcp_set_state(sk
, TCP_FIN_WAIT2
);
4856 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
4857 dst_confirm(sk
->sk_dst_cache
);
4859 if (!sock_flag(sk
, SOCK_DEAD
))
4860 /* Wake up lingering close() */
4861 sk
->sk_state_change(sk
);
4865 if (tp
->linger2
< 0 ||
4866 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4867 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
4869 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4873 tmo
= tcp_fin_time(tp
);
4874 if (tmo
> TCP_TIMEWAIT_LEN
) {
4875 tcp_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
4876 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
4877 /* Bad case. We could lose such FIN otherwise.
4878 * It is not a big problem, but it looks confusing
4879 * and not so rare event. We still can lose it now,
4880 * if it spins in bh_lock_sock(), but it is really
4883 tcp_reset_keepalive_timer(sk
, tmo
);
4885 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
4893 if (tp
->snd_una
== tp
->write_seq
) {
4894 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4900 if (tp
->snd_una
== tp
->write_seq
) {
4901 tcp_update_metrics(sk
);
4910 /* step 6: check the URG bit */
4911 tcp_urg(sk
, skb
, th
);
4913 /* step 7: process the segment text */
4914 switch (sk
->sk_state
) {
4915 case TCP_CLOSE_WAIT
:
4918 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4922 /* RFC 793 says to queue data in these states,
4923 * RFC 1122 says we MUST send a reset.
4924 * BSD 4.4 also does reset.
4926 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
4927 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4928 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
4929 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4935 case TCP_ESTABLISHED
:
4936 tcp_data_queue(sk
, skb
);
4941 /* tcp_data could move socket to TIME-WAIT */
4942 if (sk
->sk_state
!= TCP_CLOSE
) {
4943 tcp_data_snd_check(sk
);
4944 tcp_ack_snd_check(sk
);
4954 EXPORT_SYMBOL(sysctl_tcp_ecn
);
4955 EXPORT_SYMBOL(sysctl_tcp_reordering
);
4956 EXPORT_SYMBOL(tcp_parse_options
);
4957 EXPORT_SYMBOL(tcp_rcv_established
);
4958 EXPORT_SYMBOL(tcp_rcv_state_process
);