[PATCH] fix memory scribble in arch/i386/pci/fixup.c
[linux-2.6/verdex.git] / arch / parisc / mm / init.c
blobcac37589e35cbbf7bbd844a1b24392a080782148
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
12 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 extern char _text; /* start of kernel code, defined by linker */
34 extern int data_start;
35 extern char _end; /* end of BSS, defined by linker */
36 extern char __init_begin, __init_end;
38 #ifdef CONFIG_DISCONTIGMEM
39 struct node_map_data node_data[MAX_NUMNODES];
40 bootmem_data_t bmem_data[MAX_NUMNODES];
41 unsigned char pfnnid_map[PFNNID_MAP_MAX];
42 #endif
44 static struct resource data_resource = {
45 .name = "Kernel data",
46 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
49 static struct resource code_resource = {
50 .name = "Kernel code",
51 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
54 static struct resource pdcdata_resource = {
55 .name = "PDC data (Page Zero)",
56 .start = 0,
57 .end = 0x9ff,
58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
61 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
63 /* The following array is initialized from the firmware specific
64 * information retrieved in kernel/inventory.c.
67 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
68 int npmem_ranges;
70 #ifdef __LP64__
71 #define MAX_MEM (~0UL)
72 #else /* !__LP64__ */
73 #define MAX_MEM (3584U*1024U*1024U)
74 #endif /* !__LP64__ */
76 static unsigned long mem_limit = MAX_MEM;
78 static void __init mem_limit_func(void)
80 char *cp, *end;
81 unsigned long limit;
82 extern char saved_command_line[];
84 /* We need this before __setup() functions are called */
86 limit = MAX_MEM;
87 for (cp = saved_command_line; *cp; ) {
88 if (memcmp(cp, "mem=", 4) == 0) {
89 cp += 4;
90 limit = memparse(cp, &end);
91 if (end != cp)
92 break;
93 cp = end;
94 } else {
95 while (*cp != ' ' && *cp)
96 ++cp;
97 while (*cp == ' ')
98 ++cp;
102 if (limit < mem_limit)
103 mem_limit = limit;
106 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108 static void __init setup_bootmem(void)
110 unsigned long bootmap_size;
111 unsigned long mem_max;
112 unsigned long bootmap_pages;
113 unsigned long bootmap_start_pfn;
114 unsigned long bootmap_pfn;
115 #ifndef CONFIG_DISCONTIGMEM
116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117 int npmem_holes;
118 #endif
119 int i, sysram_resource_count;
121 disable_sr_hashing(); /* Turn off space register hashing */
124 * Sort the ranges. Since the number of ranges is typically
125 * small, and performance is not an issue here, just do
126 * a simple insertion sort.
129 for (i = 1; i < npmem_ranges; i++) {
130 int j;
132 for (j = i; j > 0; j--) {
133 unsigned long tmp;
135 if (pmem_ranges[j-1].start_pfn <
136 pmem_ranges[j].start_pfn) {
138 break;
140 tmp = pmem_ranges[j-1].start_pfn;
141 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
142 pmem_ranges[j].start_pfn = tmp;
143 tmp = pmem_ranges[j-1].pages;
144 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
145 pmem_ranges[j].pages = tmp;
149 #ifndef CONFIG_DISCONTIGMEM
151 * Throw out ranges that are too far apart (controlled by
152 * MAX_GAP).
155 for (i = 1; i < npmem_ranges; i++) {
156 if (pmem_ranges[i].start_pfn -
157 (pmem_ranges[i-1].start_pfn +
158 pmem_ranges[i-1].pages) > MAX_GAP) {
159 npmem_ranges = i;
160 printk("Large gap in memory detected (%ld pages). "
161 "Consider turning on CONFIG_DISCONTIGMEM\n",
162 pmem_ranges[i].start_pfn -
163 (pmem_ranges[i-1].start_pfn +
164 pmem_ranges[i-1].pages));
165 break;
168 #endif
170 if (npmem_ranges > 1) {
172 /* Print the memory ranges */
174 printk(KERN_INFO "Memory Ranges:\n");
176 for (i = 0; i < npmem_ranges; i++) {
177 unsigned long start;
178 unsigned long size;
180 size = (pmem_ranges[i].pages << PAGE_SHIFT);
181 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
182 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
183 i,start, start + (size - 1), size >> 20);
187 sysram_resource_count = npmem_ranges;
188 for (i = 0; i < sysram_resource_count; i++) {
189 struct resource *res = &sysram_resources[i];
190 res->name = "System RAM";
191 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
192 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194 request_resource(&iomem_resource, res);
198 * For 32 bit kernels we limit the amount of memory we can
199 * support, in order to preserve enough kernel address space
200 * for other purposes. For 64 bit kernels we don't normally
201 * limit the memory, but this mechanism can be used to
202 * artificially limit the amount of memory (and it is written
203 * to work with multiple memory ranges).
206 mem_limit_func(); /* check for "mem=" argument */
208 mem_max = 0;
209 num_physpages = 0;
210 for (i = 0; i < npmem_ranges; i++) {
211 unsigned long rsize;
213 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
214 if ((mem_max + rsize) > mem_limit) {
215 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
216 if (mem_max == mem_limit)
217 npmem_ranges = i;
218 else {
219 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
220 - (mem_max >> PAGE_SHIFT);
221 npmem_ranges = i + 1;
222 mem_max = mem_limit;
224 num_physpages += pmem_ranges[i].pages;
225 break;
227 num_physpages += pmem_ranges[i].pages;
228 mem_max += rsize;
231 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
233 #ifndef CONFIG_DISCONTIGMEM
234 /* Merge the ranges, keeping track of the holes */
237 unsigned long end_pfn;
238 unsigned long hole_pages;
240 npmem_holes = 0;
241 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
242 for (i = 1; i < npmem_ranges; i++) {
244 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
245 if (hole_pages) {
246 pmem_holes[npmem_holes].start_pfn = end_pfn;
247 pmem_holes[npmem_holes++].pages = hole_pages;
248 end_pfn += hole_pages;
250 end_pfn += pmem_ranges[i].pages;
253 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
254 npmem_ranges = 1;
256 #endif
258 bootmap_pages = 0;
259 for (i = 0; i < npmem_ranges; i++)
260 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
262 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
264 #ifdef CONFIG_DISCONTIGMEM
265 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
266 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
267 NODE_DATA(i)->bdata = &bmem_data[i];
269 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
271 for (i = 0; i < npmem_ranges; i++)
272 node_set_online(i);
273 #endif
276 * Initialize and free the full range of memory in each range.
277 * Note that the only writing these routines do are to the bootmap,
278 * and we've made sure to locate the bootmap properly so that they
279 * won't be writing over anything important.
282 bootmap_pfn = bootmap_start_pfn;
283 max_pfn = 0;
284 for (i = 0; i < npmem_ranges; i++) {
285 unsigned long start_pfn;
286 unsigned long npages;
288 start_pfn = pmem_ranges[i].start_pfn;
289 npages = pmem_ranges[i].pages;
291 bootmap_size = init_bootmem_node(NODE_DATA(i),
292 bootmap_pfn,
293 start_pfn,
294 (start_pfn + npages) );
295 free_bootmem_node(NODE_DATA(i),
296 (start_pfn << PAGE_SHIFT),
297 (npages << PAGE_SHIFT) );
298 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
299 if ((start_pfn + npages) > max_pfn)
300 max_pfn = start_pfn + npages;
303 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
304 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
305 BUG();
308 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
310 #define PDC_CONSOLE_IO_IODC_SIZE 32768
312 reserve_bootmem_node(NODE_DATA(0), 0UL,
313 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
314 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
315 (unsigned long)(&_end - &_text));
316 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
317 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
319 #ifndef CONFIG_DISCONTIGMEM
321 /* reserve the holes */
323 for (i = 0; i < npmem_holes; i++) {
324 reserve_bootmem_node(NODE_DATA(0),
325 (pmem_holes[i].start_pfn << PAGE_SHIFT),
326 (pmem_holes[i].pages << PAGE_SHIFT));
328 #endif
330 #ifdef CONFIG_BLK_DEV_INITRD
331 if (initrd_start) {
332 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
333 if (__pa(initrd_start) < mem_max) {
334 unsigned long initrd_reserve;
336 if (__pa(initrd_end) > mem_max) {
337 initrd_reserve = mem_max - __pa(initrd_start);
338 } else {
339 initrd_reserve = initrd_end - initrd_start;
341 initrd_below_start_ok = 1;
342 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
344 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
347 #endif
349 data_resource.start = virt_to_phys(&data_start);
350 data_resource.end = virt_to_phys(&_end)-1;
351 code_resource.start = virt_to_phys(&_text);
352 code_resource.end = virt_to_phys(&data_start)-1;
354 /* We don't know which region the kernel will be in, so try
355 * all of them.
357 for (i = 0; i < sysram_resource_count; i++) {
358 struct resource *res = &sysram_resources[i];
359 request_resource(res, &code_resource);
360 request_resource(res, &data_resource);
362 request_resource(&sysram_resources[0], &pdcdata_resource);
365 void free_initmem(void)
367 /* FIXME: */
368 #if 0
369 printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
370 (&__init_end - &__init_begin) >> 10);
371 return;
372 #else
373 unsigned long addr;
375 printk(KERN_INFO "Freeing unused kernel memory: ");
377 #if 1
378 /* Attempt to catch anyone trying to execute code here
379 * by filling the page with BRK insns.
381 * If we disable interrupts for all CPUs, then IPI stops working.
382 * Kinda breaks the global cache flushing.
384 local_irq_disable();
386 memset(&__init_begin, 0x00,
387 (unsigned long)&__init_end - (unsigned long)&__init_begin);
389 flush_data_cache();
390 asm volatile("sync" : : );
391 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
392 asm volatile("sync" : : );
394 local_irq_enable();
395 #endif
397 addr = (unsigned long)(&__init_begin);
398 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
399 ClearPageReserved(virt_to_page(addr));
400 set_page_count(virt_to_page(addr), 1);
401 free_page(addr);
402 num_physpages++;
403 totalram_pages++;
406 /* set up a new led state on systems shipped LED State panel */
407 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
409 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
410 #endif
414 * Just an arbitrary offset to serve as a "hole" between mapping areas
415 * (between top of physical memory and a potential pcxl dma mapping
416 * area, and below the vmalloc mapping area).
418 * The current 32K value just means that there will be a 32K "hole"
419 * between mapping areas. That means that any out-of-bounds memory
420 * accesses will hopefully be caught. The vmalloc() routines leaves
421 * a hole of 4kB between each vmalloced area for the same reason.
424 /* Leave room for gateway page expansion */
425 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
426 #error KERNEL_MAP_START is in gateway reserved region
427 #endif
428 #define MAP_START (KERNEL_MAP_START)
430 #define VM_MAP_OFFSET (32*1024)
431 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
432 & ~(VM_MAP_OFFSET-1)))
434 void *vmalloc_start;
435 EXPORT_SYMBOL(vmalloc_start);
437 #ifdef CONFIG_PA11
438 unsigned long pcxl_dma_start;
439 #endif
441 void __init mem_init(void)
443 high_memory = __va((max_pfn << PAGE_SHIFT));
445 #ifndef CONFIG_DISCONTIGMEM
446 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
447 totalram_pages += free_all_bootmem();
448 #else
450 int i;
452 for (i = 0; i < npmem_ranges; i++)
453 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
455 #endif
457 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
459 #ifdef CONFIG_PA11
460 if (hppa_dma_ops == &pcxl_dma_ops) {
461 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
462 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
463 } else {
464 pcxl_dma_start = 0;
465 vmalloc_start = SET_MAP_OFFSET(MAP_START);
467 #else
468 vmalloc_start = SET_MAP_OFFSET(MAP_START);
469 #endif
473 int do_check_pgt_cache(int low, int high)
475 return 0;
478 unsigned long *empty_zero_page;
480 void show_mem(void)
482 int i,free = 0,total = 0,reserved = 0;
483 int shared = 0, cached = 0;
485 printk(KERN_INFO "Mem-info:\n");
486 show_free_areas();
487 printk(KERN_INFO "Free swap: %6ldkB\n",
488 nr_swap_pages<<(PAGE_SHIFT-10));
489 #ifndef CONFIG_DISCONTIGMEM
490 i = max_mapnr;
491 while (i-- > 0) {
492 total++;
493 if (PageReserved(mem_map+i))
494 reserved++;
495 else if (PageSwapCache(mem_map+i))
496 cached++;
497 else if (!page_count(&mem_map[i]))
498 free++;
499 else
500 shared += page_count(&mem_map[i]) - 1;
502 #else
503 for (i = 0; i < npmem_ranges; i++) {
504 int j;
506 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
507 struct page *p;
509 p = node_mem_map(i) + j - node_start_pfn(i);
511 total++;
512 if (PageReserved(p))
513 reserved++;
514 else if (PageSwapCache(p))
515 cached++;
516 else if (!page_count(p))
517 free++;
518 else
519 shared += page_count(p) - 1;
522 #endif
523 printk(KERN_INFO "%d pages of RAM\n", total);
524 printk(KERN_INFO "%d reserved pages\n", reserved);
525 printk(KERN_INFO "%d pages shared\n", shared);
526 printk(KERN_INFO "%d pages swap cached\n", cached);
529 #ifdef CONFIG_DISCONTIGMEM
531 struct zonelist *zl;
532 int i, j, k;
534 for (i = 0; i < npmem_ranges; i++) {
535 for (j = 0; j < MAX_NR_ZONES; j++) {
536 zl = NODE_DATA(i)->node_zonelists + j;
538 printk("Zone list for zone %d on node %d: ", j, i);
539 for (k = 0; zl->zones[k] != NULL; k++)
540 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
541 printk("\n");
545 #endif
549 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
551 pgd_t *pg_dir;
552 pmd_t *pmd;
553 pte_t *pg_table;
554 unsigned long end_paddr;
555 unsigned long start_pmd;
556 unsigned long start_pte;
557 unsigned long tmp1;
558 unsigned long tmp2;
559 unsigned long address;
560 unsigned long ro_start;
561 unsigned long ro_end;
562 unsigned long fv_addr;
563 unsigned long gw_addr;
564 extern const unsigned long fault_vector_20;
565 extern void * const linux_gateway_page;
567 ro_start = __pa((unsigned long)&_text);
568 ro_end = __pa((unsigned long)&data_start);
569 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
570 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
572 end_paddr = start_paddr + size;
574 pg_dir = pgd_offset_k(start_vaddr);
576 #if PTRS_PER_PMD == 1
577 start_pmd = 0;
578 #else
579 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
580 #endif
581 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
583 address = start_paddr;
584 while (address < end_paddr) {
585 #if PTRS_PER_PMD == 1
586 pmd = (pmd_t *)__pa(pg_dir);
587 #else
588 pmd = (pmd_t *)pgd_address(*pg_dir);
591 * pmd is physical at this point
594 if (!pmd) {
595 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
596 pmd = (pmd_t *) __pa(pmd);
599 pgd_populate(NULL, pg_dir, __va(pmd));
600 #endif
601 pg_dir++;
603 /* now change pmd to kernel virtual addresses */
605 pmd = (pmd_t *)__va(pmd) + start_pmd;
606 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
609 * pg_table is physical at this point
612 pg_table = (pte_t *)pmd_address(*pmd);
613 if (!pg_table) {
614 pg_table = (pte_t *)
615 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
616 pg_table = (pte_t *) __pa(pg_table);
619 pmd_populate_kernel(NULL, pmd, __va(pg_table));
621 /* now change pg_table to kernel virtual addresses */
623 pg_table = (pte_t *) __va(pg_table) + start_pte;
624 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
625 pte_t pte;
628 * Map the fault vector writable so we can
629 * write the HPMC checksum.
631 if (address >= ro_start && address < ro_end
632 && address != fv_addr
633 && address != gw_addr)
634 pte = __mk_pte(address, PAGE_KERNEL_RO);
635 else
636 pte = __mk_pte(address, pgprot);
638 if (address >= end_paddr)
639 pte_val(pte) = 0;
641 set_pte(pg_table, pte);
643 address += PAGE_SIZE;
645 start_pte = 0;
647 if (address >= end_paddr)
648 break;
650 start_pmd = 0;
655 * pagetable_init() sets up the page tables
657 * Note that gateway_init() places the Linux gateway page at page 0.
658 * Since gateway pages cannot be dereferenced this has the desirable
659 * side effect of trapping those pesky NULL-reference errors in the
660 * kernel.
662 static void __init pagetable_init(void)
664 int range;
666 /* Map each physical memory range to its kernel vaddr */
668 for (range = 0; range < npmem_ranges; range++) {
669 unsigned long start_paddr;
670 unsigned long end_paddr;
671 unsigned long size;
673 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
674 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
675 size = pmem_ranges[range].pages << PAGE_SHIFT;
677 map_pages((unsigned long)__va(start_paddr), start_paddr,
678 size, PAGE_KERNEL);
681 #ifdef CONFIG_BLK_DEV_INITRD
682 if (initrd_end && initrd_end > mem_limit) {
683 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
684 map_pages(initrd_start, __pa(initrd_start),
685 initrd_end - initrd_start, PAGE_KERNEL);
687 #endif
689 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
690 memset(empty_zero_page, 0, PAGE_SIZE);
693 static void __init gateway_init(void)
695 unsigned long linux_gateway_page_addr;
696 /* FIXME: This is 'const' in order to trick the compiler
697 into not treating it as DP-relative data. */
698 extern void * const linux_gateway_page;
700 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
703 * Setup Linux Gateway page.
705 * The Linux gateway page will reside in kernel space (on virtual
706 * page 0), so it doesn't need to be aliased into user space.
709 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
710 PAGE_SIZE, PAGE_GATEWAY);
713 #ifdef CONFIG_HPUX
714 void
715 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
717 pgd_t *pg_dir;
718 pmd_t *pmd;
719 pte_t *pg_table;
720 unsigned long start_pmd;
721 unsigned long start_pte;
722 unsigned long address;
723 unsigned long hpux_gw_page_addr;
724 /* FIXME: This is 'const' in order to trick the compiler
725 into not treating it as DP-relative data. */
726 extern void * const hpux_gateway_page;
728 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
731 * Setup HP-UX Gateway page.
733 * The HP-UX gateway page resides in the user address space,
734 * so it needs to be aliased into each process.
737 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
739 #if PTRS_PER_PMD == 1
740 start_pmd = 0;
741 #else
742 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
743 #endif
744 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
746 address = __pa(&hpux_gateway_page);
747 #if PTRS_PER_PMD == 1
748 pmd = (pmd_t *)__pa(pg_dir);
749 #else
750 pmd = (pmd_t *) pgd_address(*pg_dir);
753 * pmd is physical at this point
756 if (!pmd) {
757 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
758 pmd = (pmd_t *) __pa(pmd);
761 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
762 #endif
763 /* now change pmd to kernel virtual addresses */
765 pmd = (pmd_t *)__va(pmd) + start_pmd;
768 * pg_table is physical at this point
771 pg_table = (pte_t *) pmd_address(*pmd);
772 if (!pg_table)
773 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
775 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
777 /* now change pg_table to kernel virtual addresses */
779 pg_table = (pte_t *) __va(pg_table) + start_pte;
780 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
782 EXPORT_SYMBOL(map_hpux_gateway_page);
783 #endif
785 extern void flush_tlb_all_local(void);
787 void __init paging_init(void)
789 int i;
791 setup_bootmem();
792 pagetable_init();
793 gateway_init();
794 flush_cache_all_local(); /* start with known state */
795 flush_tlb_all_local();
797 for (i = 0; i < npmem_ranges; i++) {
798 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
800 /* We have an IOMMU, so all memory can go into a single
801 ZONE_DMA zone. */
802 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
804 #ifdef CONFIG_DISCONTIGMEM
805 /* Need to initialize the pfnnid_map before we can initialize
806 the zone */
808 int j;
809 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
810 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
811 j++) {
812 pfnnid_map[j] = i;
815 #endif
817 free_area_init_node(i, NODE_DATA(i), zones_size,
818 pmem_ranges[i].start_pfn, NULL);
822 #ifdef CONFIG_PA20
825 * Currently, all PA20 chips have 18 bit protection id's, which is the
826 * limiting factor (space ids are 32 bits).
829 #define NR_SPACE_IDS 262144
831 #else
834 * Currently we have a one-to-one relationship between space id's and
835 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
836 * support 15 bit protection id's, so that is the limiting factor.
837 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
838 * probably not worth the effort for a special case here.
841 #define NR_SPACE_IDS 32768
843 #endif /* !CONFIG_PA20 */
845 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
846 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
848 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
849 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
850 static unsigned long space_id_index;
851 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
852 static unsigned long dirty_space_ids = 0;
854 static DEFINE_SPINLOCK(sid_lock);
856 unsigned long alloc_sid(void)
858 unsigned long index;
860 spin_lock(&sid_lock);
862 if (free_space_ids == 0) {
863 if (dirty_space_ids != 0) {
864 spin_unlock(&sid_lock);
865 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
866 spin_lock(&sid_lock);
868 if (free_space_ids == 0)
869 BUG();
872 free_space_ids--;
874 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
875 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
876 space_id_index = index;
878 spin_unlock(&sid_lock);
880 return index << SPACEID_SHIFT;
883 void free_sid(unsigned long spaceid)
885 unsigned long index = spaceid >> SPACEID_SHIFT;
886 unsigned long *dirty_space_offset;
888 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
889 index &= (BITS_PER_LONG - 1);
891 spin_lock(&sid_lock);
893 if (*dirty_space_offset & (1L << index))
894 BUG(); /* attempt to free space id twice */
896 *dirty_space_offset |= (1L << index);
897 dirty_space_ids++;
899 spin_unlock(&sid_lock);
903 #ifdef CONFIG_SMP
904 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
906 int i;
908 /* NOTE: sid_lock must be held upon entry */
910 *ndirtyptr = dirty_space_ids;
911 if (dirty_space_ids != 0) {
912 for (i = 0; i < SID_ARRAY_SIZE; i++) {
913 dirty_array[i] = dirty_space_id[i];
914 dirty_space_id[i] = 0;
916 dirty_space_ids = 0;
919 return;
922 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
924 int i;
926 /* NOTE: sid_lock must be held upon entry */
928 if (ndirty != 0) {
929 for (i = 0; i < SID_ARRAY_SIZE; i++) {
930 space_id[i] ^= dirty_array[i];
933 free_space_ids += ndirty;
934 space_id_index = 0;
938 #else /* CONFIG_SMP */
940 static void recycle_sids(void)
942 int i;
944 /* NOTE: sid_lock must be held upon entry */
946 if (dirty_space_ids != 0) {
947 for (i = 0; i < SID_ARRAY_SIZE; i++) {
948 space_id[i] ^= dirty_space_id[i];
949 dirty_space_id[i] = 0;
952 free_space_ids += dirty_space_ids;
953 dirty_space_ids = 0;
954 space_id_index = 0;
957 #endif
960 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
961 * purged, we can safely reuse the space ids that were released but
962 * not flushed from the tlb.
965 #ifdef CONFIG_SMP
967 static unsigned long recycle_ndirty;
968 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
969 static unsigned int recycle_inuse = 0;
971 void flush_tlb_all(void)
973 int do_recycle;
975 do_recycle = 0;
976 spin_lock(&sid_lock);
977 if (dirty_space_ids > RECYCLE_THRESHOLD) {
978 if (recycle_inuse) {
979 BUG(); /* FIXME: Use a semaphore/wait queue here */
981 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
982 recycle_inuse++;
983 do_recycle++;
985 spin_unlock(&sid_lock);
986 on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
987 if (do_recycle) {
988 spin_lock(&sid_lock);
989 recycle_sids(recycle_ndirty,recycle_dirty_array);
990 recycle_inuse = 0;
991 spin_unlock(&sid_lock);
994 #else
995 void flush_tlb_all(void)
997 spin_lock(&sid_lock);
998 flush_tlb_all_local();
999 recycle_sids();
1000 spin_unlock(&sid_lock);
1002 #endif
1004 #ifdef CONFIG_BLK_DEV_INITRD
1005 void free_initrd_mem(unsigned long start, unsigned long end)
1007 #if 0
1008 if (start < end)
1009 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1010 for (; start < end; start += PAGE_SIZE) {
1011 ClearPageReserved(virt_to_page(start));
1012 set_page_count(virt_to_page(start), 1);
1013 free_page(start);
1014 num_physpages++;
1015 totalram_pages++;
1017 #endif
1019 #endif