2 * arch/sh/kernel/time.c
4 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
5 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
6 * Copyright (C) 2002, 2003, 2004 Paul Mundt
7 * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org>
9 * Some code taken from i386 version.
10 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/smp.h>
26 #include <linux/profile.h>
28 #include <asm/processor.h>
29 #include <asm/uaccess.h>
32 #include <asm/delay.h>
33 #include <asm/machvec.h>
36 #include <asm/cpu/timer.h>
41 #include <linux/timex.h>
42 #include <linux/irq.h>
44 #define TMU_TOCR_INIT 0x00
45 #define TMU0_TCR_INIT 0x0020
46 #define TMU_TSTR_INIT 1
48 #define TMU0_TCR_CALIB 0x0000
50 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
51 #define CLOCKGEN_MEMCLKCR 0xbb040038
52 #define MEMCLKCR_RATIO_MASK 0x7
53 #endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */
55 extern unsigned long wall_jiffies
;
56 #define TICK_SIZE (tick_nsec / 1000)
57 DEFINE_SPINLOCK(tmu0_lock
);
59 u64 jiffies_64
= INITIAL_JIFFIES
;
61 EXPORT_SYMBOL(jiffies_64
);
63 /* XXX: Can we initialize this in a routine somewhere? Dreamcast doesn't want
64 * these routines anywhere... */
66 void (*rtc_get_time
)(struct timespec
*) = sh_rtc_gettimeofday
;
67 int (*rtc_set_time
)(const time_t) = sh_rtc_settimeofday
;
69 void (*rtc_get_time
)(struct timespec
*);
70 int (*rtc_set_time
)(const time_t);
73 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
74 static int md_table
[] = { 1, 2, 3, 4, 6, 8, 12 };
76 #if defined(CONFIG_CPU_SH3)
77 static int stc_multipliers
[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
78 static int stc_values
[] = { 0, 1, 4, 2, 5, 0, 0, 0 };
79 #define bfc_divisors stc_multipliers
80 #define bfc_values stc_values
81 static int ifc_divisors
[] = { 1, 2, 3, 4, 1, 1, 1, 1 };
82 static int ifc_values
[] = { 0, 1, 4, 2, 0, 0, 0, 0 };
83 static int pfc_divisors
[] = { 1, 2, 3, 4, 6, 1, 1, 1 };
84 static int pfc_values
[] = { 0, 1, 4, 2, 5, 0, 0, 0 };
85 #elif defined(CONFIG_CPU_SH4)
86 #if defined(CONFIG_CPU_SUBTYPE_SH73180)
87 static int ifc_divisors
[] = { 1, 2, 3, 4, 6, 8, 12, 16 };
88 static int ifc_values
[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
89 #define bfc_divisors ifc_divisors /* Same */
90 #define bfc_values ifc_values
91 #define pfc_divisors ifc_divisors /* Same */
92 #define pfc_values ifc_values
94 static int ifc_divisors
[] = { 1, 2, 3, 4, 6, 8, 1, 1 };
95 static int ifc_values
[] = { 0, 1, 2, 3, 0, 4, 0, 5 };
96 #define bfc_divisors ifc_divisors /* Same */
97 #define bfc_values ifc_values
98 static int pfc_divisors
[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
99 static int pfc_values
[] = { 0, 0, 1, 2, 0, 3, 0, 4 };
102 #error "Unknown ifc/bfc/pfc/stc values for this processor"
106 * Scheduler clock - returns current time in nanosec units.
108 unsigned long long sched_clock(void)
110 return (unsigned long long)jiffies
* (1000000000 / HZ
);
113 static unsigned long do_gettimeoffset(void)
118 static int count_p
= 0x7fffffff; /* for the first call after boot */
119 static unsigned long jiffies_p
= 0;
122 * cache volatile jiffies temporarily; we have IRQs turned off.
124 unsigned long jiffies_t
;
126 spin_lock_irqsave(&tmu0_lock
, flags
);
127 /* timer count may underflow right here */
128 count
= ctrl_inl(TMU0_TCNT
); /* read the latched count */
133 * avoiding timer inconsistencies (they are rare, but they happen)...
134 * there is one kind of problem that must be avoided here:
135 * 1. the timer counter underflows
138 if( jiffies_t
== jiffies_p
) {
139 if( count
> count_p
) {
142 if(ctrl_inw(TMU0_TCR
) & 0x100) { /* Check UNF bit */
144 * We cannot detect lost timer interrupts ...
145 * well, that's why we call them lost, don't we? :)
146 * [hmm, on the Pentium and Alpha we can ... sort of]
150 printk("do_slow_gettimeoffset(): hardware timer problem?\n");
154 jiffies_p
= jiffies_t
;
157 spin_unlock_irqrestore(&tmu0_lock
, flags
);
159 count
= ((LATCH
-1) - count
) * TICK_SIZE
;
160 count
= (count
+ LATCH
/2) / LATCH
;
165 void do_gettimeofday(struct timeval
*tv
)
168 unsigned long usec
, sec
;
172 seq
= read_seqbegin(&xtime_lock
);
173 usec
= do_gettimeoffset();
175 lost
= jiffies
- wall_jiffies
;
177 usec
+= lost
* (1000000 / HZ
);
180 usec
+= xtime
.tv_nsec
/ 1000;
181 } while (read_seqretry(&xtime_lock
, seq
));
183 while (usec
>= 1000000) {
192 EXPORT_SYMBOL(do_gettimeofday
);
194 int do_settimeofday(struct timespec
*tv
)
196 time_t wtm_sec
, sec
= tv
->tv_sec
;
197 long wtm_nsec
, nsec
= tv
->tv_nsec
;
199 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
202 write_seqlock_irq(&xtime_lock
);
204 * This is revolting. We need to set "xtime" correctly. However, the
205 * value in this location is the value at the most recent update of
206 * wall time. Discover what correction gettimeofday() would have
207 * made, and then undo it!
209 nsec
-= 1000 * (do_gettimeoffset() +
210 (jiffies
- wall_jiffies
) * (1000000 / HZ
));
212 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- sec
);
213 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- nsec
);
215 set_normalized_timespec(&xtime
, sec
, nsec
);
216 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
218 time_adjust
= 0; /* stop active adjtime() */
219 time_status
|= STA_UNSYNC
;
220 time_maxerror
= NTP_PHASE_LIMIT
;
221 time_esterror
= NTP_PHASE_LIMIT
;
222 write_sequnlock_irq(&xtime_lock
);
228 EXPORT_SYMBOL(do_settimeofday
);
230 /* last time the RTC clock got updated */
231 static long last_rtc_update
;
234 * timer_interrupt() needs to keep up the real-time clock,
235 * as well as call the "do_timer()" routine every clocktick
237 static inline void do_timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
241 update_process_times(user_mode(regs
));
243 profile_tick(CPU_PROFILING
, regs
);
245 #ifdef CONFIG_HEARTBEAT
246 if (sh_mv
.mv_heartbeat
!= NULL
)
247 sh_mv
.mv_heartbeat();
251 * If we have an externally synchronized Linux clock, then update
252 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
253 * called as close as possible to 500 ms before the new second starts.
255 if ((time_status
& STA_UNSYNC
) == 0 &&
256 xtime
.tv_sec
> last_rtc_update
+ 660 &&
257 (xtime
.tv_nsec
/ 1000) >= 500000 - ((unsigned) TICK_SIZE
) / 2 &&
258 (xtime
.tv_nsec
/ 1000) <= 500000 + ((unsigned) TICK_SIZE
) / 2) {
259 if (rtc_set_time(xtime
.tv_sec
) == 0)
260 last_rtc_update
= xtime
.tv_sec
;
262 last_rtc_update
= xtime
.tv_sec
- 600; /* do it again in 60 s */
267 * This is the same as the above, except we _also_ save the current
268 * Time Stamp Counter value at the time of the timer interrupt, so that
269 * we later on can estimate the time of day more exactly.
271 static irqreturn_t
timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
273 unsigned long timer_status
;
276 timer_status
= ctrl_inw(TMU0_TCR
);
277 timer_status
&= ~0x100;
278 ctrl_outw(timer_status
, TMU0_TCR
);
281 * Here we are in the timer irq handler. We just have irqs locally
282 * disabled but we don't know if the timer_bh is running on the other
283 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
284 * the irq version of write_lock because as just said we have irq
285 * locally disabled. -arca
287 write_seqlock(&xtime_lock
);
288 do_timer_interrupt(irq
, NULL
, regs
);
289 write_sequnlock(&xtime_lock
);
295 * Hah! We'll see if this works (switching from usecs to nsecs).
297 static unsigned int __init
get_timer_frequency(void)
300 struct timespec ts1
, ts2
;
301 unsigned long diff_nsec
;
302 unsigned long factor
;
304 /* Setup the timer: We don't want to generate interrupts, just
305 * have it count down at its natural rate.
307 ctrl_outb(0, TMU_TSTR
);
308 #if !defined(CONFIG_CPU_SUBTYPE_SH7300)
309 ctrl_outb(TMU_TOCR_INIT
, TMU_TOCR
);
311 ctrl_outw(TMU0_TCR_CALIB
, TMU0_TCR
);
312 ctrl_outl(0xffffffff, TMU0_TCOR
);
313 ctrl_outl(0xffffffff, TMU0_TCNT
);
319 } while (ts1
.tv_nsec
== ts2
.tv_nsec
&& ts1
.tv_sec
== ts2
.tv_sec
);
321 /* actually start the timer */
322 ctrl_outb(TMU_TSTR_INIT
, TMU_TSTR
);
326 } while (ts1
.tv_nsec
== ts2
.tv_nsec
&& ts1
.tv_sec
== ts2
.tv_sec
);
328 freq
= 0xffffffff - ctrl_inl(TMU0_TCNT
);
329 if (ts2
.tv_nsec
< ts1
.tv_nsec
) {
330 ts2
.tv_nsec
+= 1000000000;
334 diff_nsec
= (ts2
.tv_sec
- ts1
.tv_sec
) * 1000000000 + (ts2
.tv_nsec
- ts1
.tv_nsec
);
336 /* this should work well if the RTC has a precision of n Hz, where
337 * n is an integer. I don't think we have to worry about the other
339 factor
= (1000000000 + diff_nsec
/2) / diff_nsec
;
341 if (factor
* diff_nsec
> 1100000000 ||
342 factor
* diff_nsec
< 900000000)
343 panic("weird RTC (diff_nsec %ld)", diff_nsec
);
345 return freq
* factor
;
348 void (*board_time_init
)(void);
349 void (*board_timer_setup
)(struct irqaction
*irq
);
351 static unsigned int sh_pclk_freq __initdata
= CONFIG_SH_PCLK_FREQ
;
353 static int __init
sh_pclk_setup(char *str
)
357 if (get_option(&str
, &freq
))
362 __setup("sh_pclk=", sh_pclk_setup
);
364 static struct irqaction irq0
= { timer_interrupt
, SA_INTERRUPT
, CPU_MASK_NONE
, "timer", NULL
, NULL
};
366 void get_current_frequency_divisors(unsigned int *ifc
, unsigned int *bfc
, unsigned int *pfc
)
368 unsigned int frqcr
= ctrl_inw(FRQCR
);
370 #if defined(CONFIG_CPU_SH3)
371 #if defined(CONFIG_CPU_SUBTYPE_SH7300)
372 *ifc
= md_table
[((frqcr
& 0x0070) >> 4)];
373 *bfc
= md_table
[((frqcr
& 0x0700) >> 8)];
374 *pfc
= md_table
[frqcr
& 0x0007];
375 #elif defined(CONFIG_CPU_SUBTYPE_SH7705)
376 *bfc
= stc_multipliers
[(frqcr
& 0x0300) >> 8];
377 *ifc
= ifc_divisors
[(frqcr
& 0x0030) >> 4];
378 *pfc
= pfc_divisors
[frqcr
& 0x0003];
382 tmp
= (frqcr
& 0x8000) >> 13;
383 tmp
|= (frqcr
& 0x0030) >> 4;
384 *bfc
= stc_multipliers
[tmp
];
385 tmp
= (frqcr
& 0x4000) >> 12;
386 tmp
|= (frqcr
& 0x000c) >> 2;
387 *ifc
= ifc_divisors
[tmp
];
388 tmp
= (frqcr
& 0x2000) >> 11;
389 tmp
|= frqcr
& 0x0003;
390 *pfc
= pfc_divisors
[tmp
];
392 #elif defined(CONFIG_CPU_SH4)
393 #if defined(CONFIG_CPU_SUBTYPE_SH73180)
394 *ifc
= ifc_divisors
[(frqcr
>> 20) & 0x0007];
395 *bfc
= bfc_divisors
[(frqcr
>> 12) & 0x0007];
396 *pfc
= pfc_divisors
[frqcr
& 0x0007];
398 *ifc
= ifc_divisors
[(frqcr
>> 6) & 0x0007];
399 *bfc
= bfc_divisors
[(frqcr
>> 3) & 0x0007];
400 *pfc
= pfc_divisors
[frqcr
& 0x0007];
406 * This bit of ugliness builds up accessor routines to get at both
407 * the divisors and the physical values.
409 #define _FREQ_TABLE(x) \
410 unsigned int get_##x##_divisor(unsigned int value) \
411 { return x##_divisors[value]; } \
413 unsigned int get_##x##_value(unsigned int divisor) \
414 { return x##_values[(divisor - 1)]; }
420 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
423 * The ST40 divisors are totally different so we set the cpu data
424 * clocks using a different algorithm
426 * I've just plugged this from the 2.4 code
427 * - Alex Bennee <kernel-hacker@bennee.com>
429 #define CCN_PVR_CHIP_SHIFT 24
430 #define CCN_PVR_CHIP_MASK 0xff
431 #define CCN_PVR_CHIP_ST40STB1 0x4
435 unsigned short frqcr
;
438 unsigned char multiplier
;
439 unsigned char divisor
;
443 static struct frqcr_data st40_frqcr_table
[] = {
444 { 0x000, {{1,1}, {1,1}, {1,2}}},
445 { 0x002, {{1,1}, {1,1}, {1,4}}},
446 { 0x004, {{1,1}, {1,1}, {1,8}}},
447 { 0x008, {{1,1}, {1,2}, {1,2}}},
448 { 0x00A, {{1,1}, {1,2}, {1,4}}},
449 { 0x00C, {{1,1}, {1,2}, {1,8}}},
450 { 0x011, {{1,1}, {2,3}, {1,6}}},
451 { 0x013, {{1,1}, {2,3}, {1,3}}},
452 { 0x01A, {{1,1}, {1,2}, {1,4}}},
453 { 0x01C, {{1,1}, {1,2}, {1,8}}},
454 { 0x023, {{1,1}, {2,3}, {1,3}}},
455 { 0x02C, {{1,1}, {1,2}, {1,8}}},
456 { 0x048, {{1,2}, {1,2}, {1,4}}},
457 { 0x04A, {{1,2}, {1,2}, {1,6}}},
458 { 0x04C, {{1,2}, {1,2}, {1,8}}},
459 { 0x05A, {{1,2}, {1,3}, {1,6}}},
460 { 0x05C, {{1,2}, {1,3}, {1,6}}},
461 { 0x063, {{1,2}, {1,4}, {1,4}}},
462 { 0x06C, {{1,2}, {1,4}, {1,8}}},
463 { 0x091, {{1,3}, {1,3}, {1,6}}},
464 { 0x093, {{1,3}, {1,3}, {1,6}}},
465 { 0x0A3, {{1,3}, {1,6}, {1,6}}},
466 { 0x0DA, {{1,4}, {1,4}, {1,8}}},
467 { 0x0DC, {{1,4}, {1,4}, {1,8}}},
468 { 0x0EC, {{1,4}, {1,8}, {1,8}}},
469 { 0x123, {{1,4}, {1,4}, {1,8}}},
470 { 0x16C, {{1,4}, {1,8}, {1,8}}},
474 unsigned char multiplier
;
475 unsigned char divisor
;
478 static struct memclk_data st40_memclk_table
[8] = {
489 static void st40_specific_time_init(unsigned int module_clock
, unsigned short frqcr
)
491 unsigned int cpu_clock
, master_clock
, bus_clock
, memory_clock
;
492 struct frqcr_data
*d
;
494 unsigned long memclkcr
;
495 struct memclk_data
*e
;
497 for (a
= 0; a
< ARRAY_SIZE(st40_frqcr_table
); a
++) {
498 d
= &st40_frqcr_table
[a
];
500 if (d
->frqcr
== (frqcr
& 0x1ff))
504 if (a
== ARRAY_SIZE(st40_frqcr_table
)) {
505 d
= st40_frqcr_table
;
507 printk("ERROR: Unrecognised FRQCR value (0x%x), "
508 "using default multipliers\n", frqcr
);
511 memclkcr
= ctrl_inl(CLOCKGEN_MEMCLKCR
);
512 e
= &st40_memclk_table
[memclkcr
& MEMCLKCR_RATIO_MASK
];
514 printk(KERN_INFO
"Clock multipliers: CPU: %d/%d Bus: %d/%d "
515 "Mem: %d/%d Periph: %d/%d\n",
516 d
->factor
[0].multiplier
, d
->factor
[0].divisor
,
517 d
->factor
[1].multiplier
, d
->factor
[1].divisor
,
518 e
->multiplier
, e
->divisor
,
519 d
->factor
[2].multiplier
, d
->factor
[2].divisor
);
521 master_clock
= module_clock
* d
->factor
[2].divisor
522 / d
->factor
[2].multiplier
;
523 bus_clock
= master_clock
* d
->factor
[1].multiplier
524 / d
->factor
[1].divisor
;
525 memory_clock
= master_clock
* e
->multiplier
527 cpu_clock
= master_clock
* d
->factor
[0].multiplier
528 / d
->factor
[0].divisor
;
530 current_cpu_data
.cpu_clock
= cpu_clock
;
531 current_cpu_data
.master_clock
= master_clock
;
532 current_cpu_data
.bus_clock
= bus_clock
;
533 current_cpu_data
.memory_clock
= memory_clock
;
534 current_cpu_data
.module_clock
= module_clock
;
538 void __init
time_init(void)
540 unsigned int timer_freq
= 0;
541 unsigned int ifc
, pfc
, bfc
;
542 unsigned long interval
;
543 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
545 unsigned short frqcr
;
552 * If we don't have an RTC (such as with the SH7300), don't attempt to
553 * probe the timer frequency. Rely on an either hardcoded peripheral
554 * clock value, or on the sh_pclk command line option. Note that we
555 * still need to have CONFIG_SH_PCLK_FREQ set in order for things like
556 * CLOCK_TICK_RATE to be sane.
558 current_cpu_data
.module_clock
= sh_pclk_freq
;
560 #ifdef CONFIG_SH_PCLK_CALC
561 /* XXX: Switch this over to a more generic test. */
566 * If we've specified a peripheral clock frequency, and we have
567 * an RTC, compare it against the autodetected value. Complain
568 * if there's a mismatch.
570 timer_freq
= get_timer_frequency();
571 freq
= timer_freq
* 4;
573 if (sh_pclk_freq
&& (sh_pclk_freq
/100*99 > freq
|| sh_pclk_freq
/100*101 < freq
)) {
574 printk(KERN_NOTICE
"Calculated peripheral clock value "
575 "%d differs from sh_pclk value %d, fixing..\n",
577 current_cpu_data
.module_clock
= freq
;
582 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
583 /* XXX: Update ST40 code to use board_time_init() */
584 pvr
= ctrl_inl(CCN_PVR
);
585 frqcr
= ctrl_inw(FRQCR
);
586 printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr
, frqcr
);
588 if (((pvr
>> CCN_PVR_CHIP_SHIFT
) & CCN_PVR_CHIP_MASK
) == CCN_PVR_CHIP_ST40STB1
)
589 st40_specific_time_init(current_cpu_data
.module_clock
, frqcr
);
592 get_current_frequency_divisors(&ifc
, &bfc
, &pfc
);
595 rtc_get_time(&xtime
);
597 xtime
.tv_sec
= mktime(2000, 1, 1, 0, 0, 0);
601 set_normalized_timespec(&wall_to_monotonic
,
602 -xtime
.tv_sec
, -xtime
.tv_nsec
);
604 if (board_timer_setup
) {
605 board_timer_setup(&irq0
);
607 setup_irq(TIMER_IRQ
, &irq0
);
611 * for ST40 chips the current_cpu_data should already be set
612 * so not having valid pfc/bfc/ifc shouldn't be a problem
614 if (!current_cpu_data
.master_clock
)
615 current_cpu_data
.master_clock
= current_cpu_data
.module_clock
* pfc
;
616 if (!current_cpu_data
.bus_clock
)
617 current_cpu_data
.bus_clock
= current_cpu_data
.master_clock
/ bfc
;
618 if (!current_cpu_data
.cpu_clock
)
619 current_cpu_data
.cpu_clock
= current_cpu_data
.master_clock
/ ifc
;
621 printk("CPU clock: %d.%02dMHz\n",
622 (current_cpu_data
.cpu_clock
/ 1000000),
623 (current_cpu_data
.cpu_clock
% 1000000)/10000);
624 printk("Bus clock: %d.%02dMHz\n",
625 (current_cpu_data
.bus_clock
/ 1000000),
626 (current_cpu_data
.bus_clock
% 1000000)/10000);
627 #ifdef CONFIG_CPU_SUBTYPE_ST40STB1
628 printk("Memory clock: %d.%02dMHz\n",
629 (current_cpu_data
.memory_clock
/ 1000000),
630 (current_cpu_data
.memory_clock
% 1000000)/10000);
632 printk("Module clock: %d.%02dMHz\n",
633 (current_cpu_data
.module_clock
/ 1000000),
634 (current_cpu_data
.module_clock
% 1000000)/10000);
636 interval
= (current_cpu_data
.module_clock
/4 + HZ
/2) / HZ
;
638 printk("Interval = %ld\n", interval
);
641 ctrl_outb(0, TMU_TSTR
);
642 #if !defined(CONFIG_CPU_SUBTYPE_SH7300)
643 ctrl_outb(TMU_TOCR_INIT
, TMU_TOCR
);
645 ctrl_outw(TMU0_TCR_INIT
, TMU0_TCR
);
646 ctrl_outl(interval
, TMU0_TCOR
);
647 ctrl_outl(interval
, TMU0_TCNT
);
648 ctrl_outb(TMU_TSTR_INIT
, TMU_TSTR
);
650 #if defined(CONFIG_SH_KGDB)
652 * Set up kgdb as requested. We do it here because the serial
653 * init uses the timer vars we just set up for figuring baud.