[PATCH] fix memory scribble in arch/i386/pci/fixup.c
[linux-2.6/verdex.git] / drivers / char / rtc.c
blobff4f09804865546527ca6926dc5c4f1ab1317605
1 /*
2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
52 #define RTC_VERSION "1.12"
54 #define RTC_IO_EXTENT 0x8
57 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 * design of the RTC, we don't want two different things trying to
60 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 * this driver.)
64 #include <linux/config.h>
65 #include <linux/interrupt.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/types.h>
69 #include <linux/miscdevice.h>
70 #include <linux/ioport.h>
71 #include <linux/fcntl.h>
72 #include <linux/mc146818rtc.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/spinlock.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
82 #include <asm/current.h>
83 #include <asm/uaccess.h>
84 #include <asm/system.h>
86 #if defined(__i386__)
87 #include <asm/hpet.h>
88 #endif
90 #ifdef __sparc__
91 #include <linux/pci.h>
92 #include <asm/ebus.h>
93 #ifdef __sparc_v9__
94 #include <asm/isa.h>
95 #endif
97 static unsigned long rtc_port;
98 static int rtc_irq = PCI_IRQ_NONE;
99 #endif
101 #ifdef CONFIG_HPET_RTC_IRQ
102 #undef RTC_IRQ
103 #endif
105 #ifdef RTC_IRQ
106 static int rtc_has_irq = 1;
107 #endif
109 #ifndef CONFIG_HPET_EMULATE_RTC
110 #define is_hpet_enabled() 0
111 #define hpet_set_alarm_time(hrs, min, sec) 0
112 #define hpet_set_periodic_freq(arg) 0
113 #define hpet_mask_rtc_irq_bit(arg) 0
114 #define hpet_set_rtc_irq_bit(arg) 0
115 #define hpet_rtc_timer_init() do { } while (0)
116 #define hpet_rtc_dropped_irq() 0
117 static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
118 #else
119 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
120 #endif
123 * We sponge a minor off of the misc major. No need slurping
124 * up another valuable major dev number for this. If you add
125 * an ioctl, make sure you don't conflict with SPARC's RTC
126 * ioctls.
129 static struct fasync_struct *rtc_async_queue;
131 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
133 #ifdef RTC_IRQ
134 static struct timer_list rtc_irq_timer;
135 #endif
137 static ssize_t rtc_read(struct file *file, char __user *buf,
138 size_t count, loff_t *ppos);
140 static int rtc_ioctl(struct inode *inode, struct file *file,
141 unsigned int cmd, unsigned long arg);
143 #ifdef RTC_IRQ
144 static unsigned int rtc_poll(struct file *file, poll_table *wait);
145 #endif
147 static void get_rtc_alm_time (struct rtc_time *alm_tm);
148 #ifdef RTC_IRQ
149 static void rtc_dropped_irq(unsigned long data);
151 static void set_rtc_irq_bit(unsigned char bit);
152 static void mask_rtc_irq_bit(unsigned char bit);
153 #endif
155 static int rtc_proc_open(struct inode *inode, struct file *file);
158 * Bits in rtc_status. (6 bits of room for future expansion)
161 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
162 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
165 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
166 * protected by the big kernel lock. However, ioctl can still disable the timer
167 * in rtc_status and then with del_timer after the interrupt has read
168 * rtc_status but before mod_timer is called, which would then reenable the
169 * timer (but you would need to have an awful timing before you'd trip on it)
171 static unsigned long rtc_status = 0; /* bitmapped status byte. */
172 static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */
173 static unsigned long rtc_irq_data = 0; /* our output to the world */
174 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
176 #ifdef RTC_IRQ
178 * rtc_task_lock nests inside rtc_lock.
180 static DEFINE_SPINLOCK(rtc_task_lock);
181 static rtc_task_t *rtc_callback = NULL;
182 #endif
185 * If this driver ever becomes modularised, it will be really nice
186 * to make the epoch retain its value across module reload...
189 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
191 static const unsigned char days_in_mo[] =
192 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
195 * Returns true if a clock update is in progress
197 static inline unsigned char rtc_is_updating(void)
199 unsigned char uip;
201 spin_lock_irq(&rtc_lock);
202 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
203 spin_unlock_irq(&rtc_lock);
204 return uip;
207 #ifdef RTC_IRQ
209 * A very tiny interrupt handler. It runs with SA_INTERRUPT set,
210 * but there is possibility of conflicting with the set_rtc_mmss()
211 * call (the rtc irq and the timer irq can easily run at the same
212 * time in two different CPUs). So we need to serialize
213 * accesses to the chip with the rtc_lock spinlock that each
214 * architecture should implement in the timer code.
215 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
218 irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
221 * Can be an alarm interrupt, update complete interrupt,
222 * or a periodic interrupt. We store the status in the
223 * low byte and the number of interrupts received since
224 * the last read in the remainder of rtc_irq_data.
227 spin_lock (&rtc_lock);
228 rtc_irq_data += 0x100;
229 rtc_irq_data &= ~0xff;
230 if (is_hpet_enabled()) {
232 * In this case it is HPET RTC interrupt handler
233 * calling us, with the interrupt information
234 * passed as arg1, instead of irq.
236 rtc_irq_data |= (unsigned long)irq & 0xF0;
237 } else {
238 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
241 if (rtc_status & RTC_TIMER_ON)
242 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
244 spin_unlock (&rtc_lock);
246 /* Now do the rest of the actions */
247 spin_lock(&rtc_task_lock);
248 if (rtc_callback)
249 rtc_callback->func(rtc_callback->private_data);
250 spin_unlock(&rtc_task_lock);
251 wake_up_interruptible(&rtc_wait);
253 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
255 return IRQ_HANDLED;
257 #endif
260 * sysctl-tuning infrastructure.
262 static ctl_table rtc_table[] = {
264 .ctl_name = 1,
265 .procname = "max-user-freq",
266 .data = &rtc_max_user_freq,
267 .maxlen = sizeof(int),
268 .mode = 0644,
269 .proc_handler = &proc_dointvec,
271 { .ctl_name = 0 }
274 static ctl_table rtc_root[] = {
276 .ctl_name = 1,
277 .procname = "rtc",
278 .maxlen = 0,
279 .mode = 0555,
280 .child = rtc_table,
282 { .ctl_name = 0 }
285 static ctl_table dev_root[] = {
287 .ctl_name = CTL_DEV,
288 .procname = "dev",
289 .maxlen = 0,
290 .mode = 0555,
291 .child = rtc_root,
293 { .ctl_name = 0 }
296 static struct ctl_table_header *sysctl_header;
298 static int __init init_sysctl(void)
300 sysctl_header = register_sysctl_table(dev_root, 0);
301 return 0;
304 static void __exit cleanup_sysctl(void)
306 unregister_sysctl_table(sysctl_header);
310 * Now all the various file operations that we export.
313 static ssize_t rtc_read(struct file *file, char __user *buf,
314 size_t count, loff_t *ppos)
316 #ifndef RTC_IRQ
317 return -EIO;
318 #else
319 DECLARE_WAITQUEUE(wait, current);
320 unsigned long data;
321 ssize_t retval;
323 if (rtc_has_irq == 0)
324 return -EIO;
326 if (count < sizeof(unsigned))
327 return -EINVAL;
329 add_wait_queue(&rtc_wait, &wait);
331 do {
332 /* First make it right. Then make it fast. Putting this whole
333 * block within the parentheses of a while would be too
334 * confusing. And no, xchg() is not the answer. */
336 __set_current_state(TASK_INTERRUPTIBLE);
338 spin_lock_irq (&rtc_lock);
339 data = rtc_irq_data;
340 rtc_irq_data = 0;
341 spin_unlock_irq (&rtc_lock);
343 if (data != 0)
344 break;
346 if (file->f_flags & O_NONBLOCK) {
347 retval = -EAGAIN;
348 goto out;
350 if (signal_pending(current)) {
351 retval = -ERESTARTSYS;
352 goto out;
354 schedule();
355 } while (1);
357 if (count < sizeof(unsigned long))
358 retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
359 else
360 retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
361 out:
362 current->state = TASK_RUNNING;
363 remove_wait_queue(&rtc_wait, &wait);
365 return retval;
366 #endif
369 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
371 struct rtc_time wtime;
373 #ifdef RTC_IRQ
374 if (rtc_has_irq == 0) {
375 switch (cmd) {
376 case RTC_AIE_OFF:
377 case RTC_AIE_ON:
378 case RTC_PIE_OFF:
379 case RTC_PIE_ON:
380 case RTC_UIE_OFF:
381 case RTC_UIE_ON:
382 case RTC_IRQP_READ:
383 case RTC_IRQP_SET:
384 return -EINVAL;
387 #endif
389 switch (cmd) {
390 #ifdef RTC_IRQ
391 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
393 mask_rtc_irq_bit(RTC_AIE);
394 return 0;
396 case RTC_AIE_ON: /* Allow alarm interrupts. */
398 set_rtc_irq_bit(RTC_AIE);
399 return 0;
401 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
403 mask_rtc_irq_bit(RTC_PIE);
404 if (rtc_status & RTC_TIMER_ON) {
405 spin_lock_irq (&rtc_lock);
406 rtc_status &= ~RTC_TIMER_ON;
407 del_timer(&rtc_irq_timer);
408 spin_unlock_irq (&rtc_lock);
410 return 0;
412 case RTC_PIE_ON: /* Allow periodic ints */
416 * We don't really want Joe User enabling more
417 * than 64Hz of interrupts on a multi-user machine.
419 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
420 (!capable(CAP_SYS_RESOURCE)))
421 return -EACCES;
423 if (!(rtc_status & RTC_TIMER_ON)) {
424 spin_lock_irq (&rtc_lock);
425 rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
426 add_timer(&rtc_irq_timer);
427 rtc_status |= RTC_TIMER_ON;
428 spin_unlock_irq (&rtc_lock);
430 set_rtc_irq_bit(RTC_PIE);
431 return 0;
433 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
435 mask_rtc_irq_bit(RTC_UIE);
436 return 0;
438 case RTC_UIE_ON: /* Allow ints for RTC updates. */
440 set_rtc_irq_bit(RTC_UIE);
441 return 0;
443 #endif
444 case RTC_ALM_READ: /* Read the present alarm time */
447 * This returns a struct rtc_time. Reading >= 0xc0
448 * means "don't care" or "match all". Only the tm_hour,
449 * tm_min, and tm_sec values are filled in.
451 memset(&wtime, 0, sizeof(struct rtc_time));
452 get_rtc_alm_time(&wtime);
453 break;
455 case RTC_ALM_SET: /* Store a time into the alarm */
458 * This expects a struct rtc_time. Writing 0xff means
459 * "don't care" or "match all". Only the tm_hour,
460 * tm_min and tm_sec are used.
462 unsigned char hrs, min, sec;
463 struct rtc_time alm_tm;
465 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
466 sizeof(struct rtc_time)))
467 return -EFAULT;
469 hrs = alm_tm.tm_hour;
470 min = alm_tm.tm_min;
471 sec = alm_tm.tm_sec;
473 spin_lock_irq(&rtc_lock);
474 if (hpet_set_alarm_time(hrs, min, sec)) {
476 * Fallthru and set alarm time in CMOS too,
477 * so that we will get proper value in RTC_ALM_READ
480 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
481 RTC_ALWAYS_BCD)
483 if (sec < 60) BIN_TO_BCD(sec);
484 else sec = 0xff;
486 if (min < 60) BIN_TO_BCD(min);
487 else min = 0xff;
489 if (hrs < 24) BIN_TO_BCD(hrs);
490 else hrs = 0xff;
492 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
495 spin_unlock_irq(&rtc_lock);
497 return 0;
499 case RTC_RD_TIME: /* Read the time/date from RTC */
501 memset(&wtime, 0, sizeof(struct rtc_time));
502 rtc_get_rtc_time(&wtime);
503 break;
505 case RTC_SET_TIME: /* Set the RTC */
507 struct rtc_time rtc_tm;
508 unsigned char mon, day, hrs, min, sec, leap_yr;
509 unsigned char save_control, save_freq_select;
510 unsigned int yrs;
511 #ifdef CONFIG_MACH_DECSTATION
512 unsigned int real_yrs;
513 #endif
515 if (!capable(CAP_SYS_TIME))
516 return -EACCES;
518 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
519 sizeof(struct rtc_time)))
520 return -EFAULT;
522 yrs = rtc_tm.tm_year + 1900;
523 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
524 day = rtc_tm.tm_mday;
525 hrs = rtc_tm.tm_hour;
526 min = rtc_tm.tm_min;
527 sec = rtc_tm.tm_sec;
529 if (yrs < 1970)
530 return -EINVAL;
532 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
534 if ((mon > 12) || (day == 0))
535 return -EINVAL;
537 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
538 return -EINVAL;
540 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
541 return -EINVAL;
543 if ((yrs -= epoch) > 255) /* They are unsigned */
544 return -EINVAL;
546 spin_lock_irq(&rtc_lock);
547 #ifdef CONFIG_MACH_DECSTATION
548 real_yrs = yrs;
549 yrs = 72;
552 * We want to keep the year set to 73 until March
553 * for non-leap years, so that Feb, 29th is handled
554 * correctly.
556 if (!leap_yr && mon < 3) {
557 real_yrs--;
558 yrs = 73;
560 #endif
561 /* These limits and adjustments are independent of
562 * whether the chip is in binary mode or not.
564 if (yrs > 169) {
565 spin_unlock_irq(&rtc_lock);
566 return -EINVAL;
568 if (yrs >= 100)
569 yrs -= 100;
571 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
572 || RTC_ALWAYS_BCD) {
573 BIN_TO_BCD(sec);
574 BIN_TO_BCD(min);
575 BIN_TO_BCD(hrs);
576 BIN_TO_BCD(day);
577 BIN_TO_BCD(mon);
578 BIN_TO_BCD(yrs);
581 save_control = CMOS_READ(RTC_CONTROL);
582 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
583 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
584 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
586 #ifdef CONFIG_MACH_DECSTATION
587 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
588 #endif
589 CMOS_WRITE(yrs, RTC_YEAR);
590 CMOS_WRITE(mon, RTC_MONTH);
591 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
592 CMOS_WRITE(hrs, RTC_HOURS);
593 CMOS_WRITE(min, RTC_MINUTES);
594 CMOS_WRITE(sec, RTC_SECONDS);
596 CMOS_WRITE(save_control, RTC_CONTROL);
597 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
599 spin_unlock_irq(&rtc_lock);
600 return 0;
602 #ifdef RTC_IRQ
603 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
605 return put_user(rtc_freq, (unsigned long __user *)arg);
607 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
609 int tmp = 0;
610 unsigned char val;
613 * The max we can do is 8192Hz.
615 if ((arg < 2) || (arg > 8192))
616 return -EINVAL;
618 * We don't really want Joe User generating more
619 * than 64Hz of interrupts on a multi-user machine.
621 if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
622 return -EACCES;
624 while (arg > (1<<tmp))
625 tmp++;
628 * Check that the input was really a power of 2.
630 if (arg != (1<<tmp))
631 return -EINVAL;
633 spin_lock_irq(&rtc_lock);
634 if (hpet_set_periodic_freq(arg)) {
635 spin_unlock_irq(&rtc_lock);
636 return 0;
638 rtc_freq = arg;
640 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
641 val |= (16 - tmp);
642 CMOS_WRITE(val, RTC_FREQ_SELECT);
643 spin_unlock_irq(&rtc_lock);
644 return 0;
646 #endif
647 case RTC_EPOCH_READ: /* Read the epoch. */
649 return put_user (epoch, (unsigned long __user *)arg);
651 case RTC_EPOCH_SET: /* Set the epoch. */
654 * There were no RTC clocks before 1900.
656 if (arg < 1900)
657 return -EINVAL;
659 if (!capable(CAP_SYS_TIME))
660 return -EACCES;
662 epoch = arg;
663 return 0;
665 default:
666 return -ENOTTY;
668 return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
671 static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
672 unsigned long arg)
674 return rtc_do_ioctl(cmd, arg, 0);
678 * We enforce only one user at a time here with the open/close.
679 * Also clear the previous interrupt data on an open, and clean
680 * up things on a close.
683 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
684 * needed here. Or anywhere else in this driver. */
685 static int rtc_open(struct inode *inode, struct file *file)
687 spin_lock_irq (&rtc_lock);
689 if(rtc_status & RTC_IS_OPEN)
690 goto out_busy;
692 rtc_status |= RTC_IS_OPEN;
694 rtc_irq_data = 0;
695 spin_unlock_irq (&rtc_lock);
696 return 0;
698 out_busy:
699 spin_unlock_irq (&rtc_lock);
700 return -EBUSY;
703 static int rtc_fasync (int fd, struct file *filp, int on)
706 return fasync_helper (fd, filp, on, &rtc_async_queue);
709 static int rtc_release(struct inode *inode, struct file *file)
711 #ifdef RTC_IRQ
712 unsigned char tmp;
714 if (rtc_has_irq == 0)
715 goto no_irq;
718 * Turn off all interrupts once the device is no longer
719 * in use, and clear the data.
722 spin_lock_irq(&rtc_lock);
723 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
724 tmp = CMOS_READ(RTC_CONTROL);
725 tmp &= ~RTC_PIE;
726 tmp &= ~RTC_AIE;
727 tmp &= ~RTC_UIE;
728 CMOS_WRITE(tmp, RTC_CONTROL);
729 CMOS_READ(RTC_INTR_FLAGS);
731 if (rtc_status & RTC_TIMER_ON) {
732 rtc_status &= ~RTC_TIMER_ON;
733 del_timer(&rtc_irq_timer);
735 spin_unlock_irq(&rtc_lock);
737 if (file->f_flags & FASYNC) {
738 rtc_fasync (-1, file, 0);
740 no_irq:
741 #endif
743 spin_lock_irq (&rtc_lock);
744 rtc_irq_data = 0;
745 rtc_status &= ~RTC_IS_OPEN;
746 spin_unlock_irq (&rtc_lock);
747 return 0;
750 #ifdef RTC_IRQ
751 /* Called without the kernel lock - fine */
752 static unsigned int rtc_poll(struct file *file, poll_table *wait)
754 unsigned long l;
756 if (rtc_has_irq == 0)
757 return 0;
759 poll_wait(file, &rtc_wait, wait);
761 spin_lock_irq (&rtc_lock);
762 l = rtc_irq_data;
763 spin_unlock_irq (&rtc_lock);
765 if (l != 0)
766 return POLLIN | POLLRDNORM;
767 return 0;
769 #endif
772 * exported stuffs
775 EXPORT_SYMBOL(rtc_register);
776 EXPORT_SYMBOL(rtc_unregister);
777 EXPORT_SYMBOL(rtc_control);
779 int rtc_register(rtc_task_t *task)
781 #ifndef RTC_IRQ
782 return -EIO;
783 #else
784 if (task == NULL || task->func == NULL)
785 return -EINVAL;
786 spin_lock_irq(&rtc_lock);
787 if (rtc_status & RTC_IS_OPEN) {
788 spin_unlock_irq(&rtc_lock);
789 return -EBUSY;
791 spin_lock(&rtc_task_lock);
792 if (rtc_callback) {
793 spin_unlock(&rtc_task_lock);
794 spin_unlock_irq(&rtc_lock);
795 return -EBUSY;
797 rtc_status |= RTC_IS_OPEN;
798 rtc_callback = task;
799 spin_unlock(&rtc_task_lock);
800 spin_unlock_irq(&rtc_lock);
801 return 0;
802 #endif
805 int rtc_unregister(rtc_task_t *task)
807 #ifndef RTC_IRQ
808 return -EIO;
809 #else
810 unsigned char tmp;
812 spin_lock_irq(&rtc_lock);
813 spin_lock(&rtc_task_lock);
814 if (rtc_callback != task) {
815 spin_unlock(&rtc_task_lock);
816 spin_unlock_irq(&rtc_lock);
817 return -ENXIO;
819 rtc_callback = NULL;
821 /* disable controls */
822 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
823 tmp = CMOS_READ(RTC_CONTROL);
824 tmp &= ~RTC_PIE;
825 tmp &= ~RTC_AIE;
826 tmp &= ~RTC_UIE;
827 CMOS_WRITE(tmp, RTC_CONTROL);
828 CMOS_READ(RTC_INTR_FLAGS);
830 if (rtc_status & RTC_TIMER_ON) {
831 rtc_status &= ~RTC_TIMER_ON;
832 del_timer(&rtc_irq_timer);
834 rtc_status &= ~RTC_IS_OPEN;
835 spin_unlock(&rtc_task_lock);
836 spin_unlock_irq(&rtc_lock);
837 return 0;
838 #endif
841 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
843 #ifndef RTC_IRQ
844 return -EIO;
845 #else
846 spin_lock_irq(&rtc_task_lock);
847 if (rtc_callback != task) {
848 spin_unlock_irq(&rtc_task_lock);
849 return -ENXIO;
851 spin_unlock_irq(&rtc_task_lock);
852 return rtc_do_ioctl(cmd, arg, 1);
853 #endif
858 * The various file operations we support.
861 static struct file_operations rtc_fops = {
862 .owner = THIS_MODULE,
863 .llseek = no_llseek,
864 .read = rtc_read,
865 #ifdef RTC_IRQ
866 .poll = rtc_poll,
867 #endif
868 .ioctl = rtc_ioctl,
869 .open = rtc_open,
870 .release = rtc_release,
871 .fasync = rtc_fasync,
874 static struct miscdevice rtc_dev = {
875 .minor = RTC_MINOR,
876 .name = "rtc",
877 .fops = &rtc_fops,
880 static struct file_operations rtc_proc_fops = {
881 .owner = THIS_MODULE,
882 .open = rtc_proc_open,
883 .read = seq_read,
884 .llseek = seq_lseek,
885 .release = single_release,
888 #if defined(RTC_IRQ) && !defined(__sparc__)
889 static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
890 #endif
892 static int __init rtc_init(void)
894 struct proc_dir_entry *ent;
895 #if defined(__alpha__) || defined(__mips__)
896 unsigned int year, ctrl;
897 unsigned long uip_watchdog;
898 char *guess = NULL;
899 #endif
900 #ifdef __sparc__
901 struct linux_ebus *ebus;
902 struct linux_ebus_device *edev;
903 #ifdef __sparc_v9__
904 struct sparc_isa_bridge *isa_br;
905 struct sparc_isa_device *isa_dev;
906 #endif
907 #endif
909 #ifdef __sparc__
910 for_each_ebus(ebus) {
911 for_each_ebusdev(edev, ebus) {
912 if(strcmp(edev->prom_name, "rtc") == 0) {
913 rtc_port = edev->resource[0].start;
914 rtc_irq = edev->irqs[0];
915 goto found;
919 #ifdef __sparc_v9__
920 for_each_isa(isa_br) {
921 for_each_isadev(isa_dev, isa_br) {
922 if (strcmp(isa_dev->prom_name, "rtc") == 0) {
923 rtc_port = isa_dev->resource.start;
924 rtc_irq = isa_dev->irq;
925 goto found;
929 #endif
930 printk(KERN_ERR "rtc_init: no PC rtc found\n");
931 return -EIO;
933 found:
934 if (rtc_irq == PCI_IRQ_NONE) {
935 rtc_has_irq = 0;
936 goto no_irq;
940 * XXX Interrupt pin #7 in Espresso is shared between RTC and
941 * PCI Slot 2 INTA# (and some INTx# in Slot 1). SA_INTERRUPT here
942 * is asking for trouble with add-on boards. Change to SA_SHIRQ.
944 if (request_irq(rtc_irq, rtc_interrupt, SA_INTERRUPT, "rtc", (void *)&rtc_port)) {
946 * Standard way for sparc to print irq's is to use
947 * __irq_itoa(). I think for EBus it's ok to use %d.
949 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
950 return -EIO;
952 no_irq:
953 #else
954 if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) {
955 printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0));
956 return -EIO;
959 #ifdef RTC_IRQ
960 if (is_hpet_enabled()) {
961 rtc_int_handler_ptr = hpet_rtc_interrupt;
962 } else {
963 rtc_int_handler_ptr = rtc_interrupt;
966 if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) {
967 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
968 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
969 release_region(RTC_PORT(0), RTC_IO_EXTENT);
970 return -EIO;
972 hpet_rtc_timer_init();
974 #endif
976 #endif /* __sparc__ vs. others */
978 if (misc_register(&rtc_dev)) {
979 #ifdef RTC_IRQ
980 free_irq(RTC_IRQ, NULL);
981 #endif
982 release_region(RTC_PORT(0), RTC_IO_EXTENT);
983 return -ENODEV;
986 ent = create_proc_entry("driver/rtc", 0, NULL);
987 if (!ent) {
988 #ifdef RTC_IRQ
989 free_irq(RTC_IRQ, NULL);
990 #endif
991 release_region(RTC_PORT(0), RTC_IO_EXTENT);
992 misc_deregister(&rtc_dev);
993 return -ENOMEM;
995 ent->proc_fops = &rtc_proc_fops;
997 #if defined(__alpha__) || defined(__mips__)
998 rtc_freq = HZ;
1000 /* Each operating system on an Alpha uses its own epoch.
1001 Let's try to guess which one we are using now. */
1003 uip_watchdog = jiffies;
1004 if (rtc_is_updating() != 0)
1005 while (jiffies - uip_watchdog < 2*HZ/100) {
1006 barrier();
1007 cpu_relax();
1010 spin_lock_irq(&rtc_lock);
1011 year = CMOS_READ(RTC_YEAR);
1012 ctrl = CMOS_READ(RTC_CONTROL);
1013 spin_unlock_irq(&rtc_lock);
1015 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1016 BCD_TO_BIN(year); /* This should never happen... */
1018 if (year < 20) {
1019 epoch = 2000;
1020 guess = "SRM (post-2000)";
1021 } else if (year >= 20 && year < 48) {
1022 epoch = 1980;
1023 guess = "ARC console";
1024 } else if (year >= 48 && year < 72) {
1025 epoch = 1952;
1026 guess = "Digital UNIX";
1027 #if defined(__mips__)
1028 } else if (year >= 72 && year < 74) {
1029 epoch = 2000;
1030 guess = "Digital DECstation";
1031 #else
1032 } else if (year >= 70) {
1033 epoch = 1900;
1034 guess = "Standard PC (1900)";
1035 #endif
1037 if (guess)
1038 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1039 #endif
1040 #ifdef RTC_IRQ
1041 if (rtc_has_irq == 0)
1042 goto no_irq2;
1044 init_timer(&rtc_irq_timer);
1045 rtc_irq_timer.function = rtc_dropped_irq;
1046 spin_lock_irq(&rtc_lock);
1047 rtc_freq = 1024;
1048 if (!hpet_set_periodic_freq(rtc_freq)) {
1049 /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1050 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1052 spin_unlock_irq(&rtc_lock);
1053 no_irq2:
1054 #endif
1056 (void) init_sysctl();
1058 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1060 return 0;
1063 static void __exit rtc_exit (void)
1065 cleanup_sysctl();
1066 remove_proc_entry ("driver/rtc", NULL);
1067 misc_deregister(&rtc_dev);
1069 #ifdef __sparc__
1070 if (rtc_has_irq)
1071 free_irq (rtc_irq, &rtc_port);
1072 #else
1073 release_region (RTC_PORT (0), RTC_IO_EXTENT);
1074 #ifdef RTC_IRQ
1075 if (rtc_has_irq)
1076 free_irq (RTC_IRQ, NULL);
1077 #endif
1078 #endif /* __sparc__ */
1081 module_init(rtc_init);
1082 module_exit(rtc_exit);
1084 #ifdef RTC_IRQ
1086 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1087 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1088 * Since the interrupt handler doesn't get called, the IRQ status
1089 * byte doesn't get read, and the RTC stops generating interrupts.
1090 * A timer is set, and will call this function if/when that happens.
1091 * To get it out of this stalled state, we just read the status.
1092 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1093 * (You *really* shouldn't be trying to use a non-realtime system
1094 * for something that requires a steady > 1KHz signal anyways.)
1097 static void rtc_dropped_irq(unsigned long data)
1099 unsigned long freq;
1101 spin_lock_irq (&rtc_lock);
1103 if (hpet_rtc_dropped_irq()) {
1104 spin_unlock_irq(&rtc_lock);
1105 return;
1108 /* Just in case someone disabled the timer from behind our back... */
1109 if (rtc_status & RTC_TIMER_ON)
1110 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1112 rtc_irq_data += ((rtc_freq/HZ)<<8);
1113 rtc_irq_data &= ~0xff;
1114 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1116 freq = rtc_freq;
1118 spin_unlock_irq(&rtc_lock);
1120 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1122 /* Now we have new data */
1123 wake_up_interruptible(&rtc_wait);
1125 kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1127 #endif
1130 * Info exported via "/proc/driver/rtc".
1133 static int rtc_proc_show(struct seq_file *seq, void *v)
1135 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1136 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1137 struct rtc_time tm;
1138 unsigned char batt, ctrl;
1139 unsigned long freq;
1141 spin_lock_irq(&rtc_lock);
1142 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1143 ctrl = CMOS_READ(RTC_CONTROL);
1144 freq = rtc_freq;
1145 spin_unlock_irq(&rtc_lock);
1148 rtc_get_rtc_time(&tm);
1151 * There is no way to tell if the luser has the RTC set for local
1152 * time or for Universal Standard Time (GMT). Probably local though.
1154 seq_printf(seq,
1155 "rtc_time\t: %02d:%02d:%02d\n"
1156 "rtc_date\t: %04d-%02d-%02d\n"
1157 "rtc_epoch\t: %04lu\n",
1158 tm.tm_hour, tm.tm_min, tm.tm_sec,
1159 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1161 get_rtc_alm_time(&tm);
1164 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1165 * match any value for that particular field. Values that are
1166 * greater than a valid time, but less than 0xc0 shouldn't appear.
1168 seq_puts(seq, "alarm\t\t: ");
1169 if (tm.tm_hour <= 24)
1170 seq_printf(seq, "%02d:", tm.tm_hour);
1171 else
1172 seq_puts(seq, "**:");
1174 if (tm.tm_min <= 59)
1175 seq_printf(seq, "%02d:", tm.tm_min);
1176 else
1177 seq_puts(seq, "**:");
1179 if (tm.tm_sec <= 59)
1180 seq_printf(seq, "%02d\n", tm.tm_sec);
1181 else
1182 seq_puts(seq, "**\n");
1184 seq_printf(seq,
1185 "DST_enable\t: %s\n"
1186 "BCD\t\t: %s\n"
1187 "24hr\t\t: %s\n"
1188 "square_wave\t: %s\n"
1189 "alarm_IRQ\t: %s\n"
1190 "update_IRQ\t: %s\n"
1191 "periodic_IRQ\t: %s\n"
1192 "periodic_freq\t: %ld\n"
1193 "batt_status\t: %s\n",
1194 YN(RTC_DST_EN),
1195 NY(RTC_DM_BINARY),
1196 YN(RTC_24H),
1197 YN(RTC_SQWE),
1198 YN(RTC_AIE),
1199 YN(RTC_UIE),
1200 YN(RTC_PIE),
1201 freq,
1202 batt ? "okay" : "dead");
1204 return 0;
1205 #undef YN
1206 #undef NY
1209 static int rtc_proc_open(struct inode *inode, struct file *file)
1211 return single_open(file, rtc_proc_show, NULL);
1214 void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1216 unsigned long uip_watchdog = jiffies;
1217 unsigned char ctrl;
1218 #ifdef CONFIG_MACH_DECSTATION
1219 unsigned int real_year;
1220 #endif
1223 * read RTC once any update in progress is done. The update
1224 * can take just over 2ms. We wait 10 to 20ms. There is no need to
1225 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1226 * If you need to know *exactly* when a second has started, enable
1227 * periodic update complete interrupts, (via ioctl) and then
1228 * immediately read /dev/rtc which will block until you get the IRQ.
1229 * Once the read clears, read the RTC time (again via ioctl). Easy.
1232 if (rtc_is_updating() != 0)
1233 while (jiffies - uip_watchdog < 2*HZ/100) {
1234 barrier();
1235 cpu_relax();
1239 * Only the values that we read from the RTC are set. We leave
1240 * tm_wday, tm_yday and tm_isdst untouched. Even though the
1241 * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
1242 * by the RTC when initially set to a non-zero value.
1244 spin_lock_irq(&rtc_lock);
1245 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1246 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1247 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1248 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1249 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1250 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1251 #ifdef CONFIG_MACH_DECSTATION
1252 real_year = CMOS_READ(RTC_DEC_YEAR);
1253 #endif
1254 ctrl = CMOS_READ(RTC_CONTROL);
1255 spin_unlock_irq(&rtc_lock);
1257 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1259 BCD_TO_BIN(rtc_tm->tm_sec);
1260 BCD_TO_BIN(rtc_tm->tm_min);
1261 BCD_TO_BIN(rtc_tm->tm_hour);
1262 BCD_TO_BIN(rtc_tm->tm_mday);
1263 BCD_TO_BIN(rtc_tm->tm_mon);
1264 BCD_TO_BIN(rtc_tm->tm_year);
1267 #ifdef CONFIG_MACH_DECSTATION
1268 rtc_tm->tm_year += real_year - 72;
1269 #endif
1272 * Account for differences between how the RTC uses the values
1273 * and how they are defined in a struct rtc_time;
1275 if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1276 rtc_tm->tm_year += 100;
1278 rtc_tm->tm_mon--;
1281 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1283 unsigned char ctrl;
1286 * Only the values that we read from the RTC are set. That
1287 * means only tm_hour, tm_min, and tm_sec.
1289 spin_lock_irq(&rtc_lock);
1290 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1291 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1292 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1293 ctrl = CMOS_READ(RTC_CONTROL);
1294 spin_unlock_irq(&rtc_lock);
1296 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1298 BCD_TO_BIN(alm_tm->tm_sec);
1299 BCD_TO_BIN(alm_tm->tm_min);
1300 BCD_TO_BIN(alm_tm->tm_hour);
1304 #ifdef RTC_IRQ
1306 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1307 * Rumour has it that if you frob the interrupt enable/disable
1308 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1309 * ensure you actually start getting interrupts. Probably for
1310 * compatibility with older/broken chipset RTC implementations.
1311 * We also clear out any old irq data after an ioctl() that
1312 * meddles with the interrupt enable/disable bits.
1315 static void mask_rtc_irq_bit(unsigned char bit)
1317 unsigned char val;
1319 spin_lock_irq(&rtc_lock);
1320 if (hpet_mask_rtc_irq_bit(bit)) {
1321 spin_unlock_irq(&rtc_lock);
1322 return;
1324 val = CMOS_READ(RTC_CONTROL);
1325 val &= ~bit;
1326 CMOS_WRITE(val, RTC_CONTROL);
1327 CMOS_READ(RTC_INTR_FLAGS);
1329 rtc_irq_data = 0;
1330 spin_unlock_irq(&rtc_lock);
1333 static void set_rtc_irq_bit(unsigned char bit)
1335 unsigned char val;
1337 spin_lock_irq(&rtc_lock);
1338 if (hpet_set_rtc_irq_bit(bit)) {
1339 spin_unlock_irq(&rtc_lock);
1340 return;
1342 val = CMOS_READ(RTC_CONTROL);
1343 val |= bit;
1344 CMOS_WRITE(val, RTC_CONTROL);
1345 CMOS_READ(RTC_INTR_FLAGS);
1347 rtc_irq_data = 0;
1348 spin_unlock_irq(&rtc_lock);
1350 #endif
1352 MODULE_AUTHOR("Paul Gortmaker");
1353 MODULE_LICENSE("GPL");
1354 MODULE_ALIAS_MISCDEV(RTC_MINOR);