[PATCH] fix memory scribble in arch/i386/pci/fixup.c
[linux-2.6/verdex.git] / drivers / net / 3c59x.c
blobb5e076043431aa69769503a41486c591aa7d23ea
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Linux Kernel Additions:
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
198 #define DRV_NAME "3c59x"
199 #define DRV_VERSION "LK1.1.19"
200 #define DRV_RELDATE "10 Nov 2002"
204 /* A few values that may be tweaked. */
205 /* Keep the ring sizes a power of two for efficiency. */
206 #define TX_RING_SIZE 16
207 #define RX_RING_SIZE 32
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
210 /* "Knobs" that adjust features and parameters. */
211 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213 #ifndef __arm__
214 static int rx_copybreak = 200;
215 #else
216 /* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218 static int rx_copybreak = 1513;
219 #endif
220 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221 static const int mtu = 1500;
222 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223 static int max_interrupt_work = 32;
224 /* Tx timeout interval (millisecs) */
225 static int watchdog = 5000;
227 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
231 #define tx_interrupt_mitigation 1
233 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234 #define vortex_debug debug
235 #ifdef VORTEX_DEBUG
236 static int vortex_debug = VORTEX_DEBUG;
237 #else
238 static int vortex_debug = 1;
239 #endif
241 #include <linux/config.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/string.h>
245 #include <linux/timer.h>
246 #include <linux/errno.h>
247 #include <linux/in.h>
248 #include <linux/ioport.h>
249 #include <linux/slab.h>
250 #include <linux/interrupt.h>
251 #include <linux/pci.h>
252 #include <linux/mii.h>
253 #include <linux/init.h>
254 #include <linux/netdevice.h>
255 #include <linux/etherdevice.h>
256 #include <linux/skbuff.h>
257 #include <linux/ethtool.h>
258 #include <linux/highmem.h>
259 #include <linux/eisa.h>
260 #include <linux/bitops.h>
261 #include <asm/irq.h> /* For NR_IRQS only. */
262 #include <asm/io.h>
263 #include <asm/uaccess.h>
265 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
266 This is only in the support-all-kernels source code. */
268 #define RUN_AT(x) (jiffies + (x))
270 #include <linux/delay.h>
273 static char version[] __devinitdata =
274 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
276 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
277 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
278 DRV_VERSION " " DRV_RELDATE);
279 MODULE_LICENSE("GPL");
280 MODULE_VERSION(DRV_VERSION);
283 /* Operational parameter that usually are not changed. */
285 /* The Vortex size is twice that of the original EtherLinkIII series: the
286 runtime register window, window 1, is now always mapped in.
287 The Boomerang size is twice as large as the Vortex -- it has additional
288 bus master control registers. */
289 #define VORTEX_TOTAL_SIZE 0x20
290 #define BOOMERANG_TOTAL_SIZE 0x40
292 /* Set iff a MII transceiver on any interface requires mdio preamble.
293 This only set with the original DP83840 on older 3c905 boards, so the extra
294 code size of a per-interface flag is not worthwhile. */
295 static char mii_preamble_required;
297 #define PFX DRV_NAME ": "
302 Theory of Operation
304 I. Board Compatibility
306 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
307 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
308 versions of the FastEtherLink cards. The supported product IDs are
309 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
311 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
312 with the kernel source or available from
313 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
315 II. Board-specific settings
317 PCI bus devices are configured by the system at boot time, so no jumpers
318 need to be set on the board. The system BIOS should be set to assign the
319 PCI INTA signal to an otherwise unused system IRQ line.
321 The EEPROM settings for media type and forced-full-duplex are observed.
322 The EEPROM media type should be left at the default "autoselect" unless using
323 10base2 or AUI connections which cannot be reliably detected.
325 III. Driver operation
327 The 3c59x series use an interface that's very similar to the previous 3c5x9
328 series. The primary interface is two programmed-I/O FIFOs, with an
329 alternate single-contiguous-region bus-master transfer (see next).
331 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
332 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
333 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
334 programmed-I/O interface that has been removed in 'B' and subsequent board
335 revisions.
337 One extension that is advertised in a very large font is that the adapters
338 are capable of being bus masters. On the Vortex chip this capability was
339 only for a single contiguous region making it far less useful than the full
340 bus master capability. There is a significant performance impact of taking
341 an extra interrupt or polling for the completion of each transfer, as well
342 as difficulty sharing the single transfer engine between the transmit and
343 receive threads. Using DMA transfers is a win only with large blocks or
344 with the flawed versions of the Intel Orion motherboard PCI controller.
346 The Boomerang chip's full-bus-master interface is useful, and has the
347 currently-unused advantages over other similar chips that queued transmit
348 packets may be reordered and receive buffer groups are associated with a
349 single frame.
351 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
352 Rather than a fixed intermediate receive buffer, this scheme allocates
353 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
354 the copying breakpoint: it is chosen to trade-off the memory wasted by
355 passing the full-sized skbuff to the queue layer for all frames vs. the
356 copying cost of copying a frame to a correctly-sized skbuff.
358 IIIC. Synchronization
359 The driver runs as two independent, single-threaded flows of control. One
360 is the send-packet routine, which enforces single-threaded use by the
361 dev->tbusy flag. The other thread is the interrupt handler, which is single
362 threaded by the hardware and other software.
364 IV. Notes
366 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
367 3c590, 3c595, and 3c900 boards.
368 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
369 the EISA version is called "Demon". According to Terry these names come
370 from rides at the local amusement park.
372 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
373 This driver only supports ethernet packets because of the skbuff allocation
374 limit of 4K.
377 /* This table drives the PCI probe routines. It's mostly boilerplate in all
378 of the drivers, and will likely be provided by some future kernel.
380 enum pci_flags_bit {
381 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
382 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
385 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
386 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
387 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
388 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
389 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
390 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
392 enum vortex_chips {
393 CH_3C590 = 0,
394 CH_3C592,
395 CH_3C597,
396 CH_3C595_1,
397 CH_3C595_2,
399 CH_3C595_3,
400 CH_3C900_1,
401 CH_3C900_2,
402 CH_3C900_3,
403 CH_3C900_4,
405 CH_3C900_5,
406 CH_3C900B_FL,
407 CH_3C905_1,
408 CH_3C905_2,
409 CH_3C905B_1,
411 CH_3C905B_2,
412 CH_3C905B_FX,
413 CH_3C905C,
414 CH_3C9202,
415 CH_3C980,
416 CH_3C9805,
418 CH_3CSOHO100_TX,
419 CH_3C555,
420 CH_3C556,
421 CH_3C556B,
422 CH_3C575,
424 CH_3C575_1,
425 CH_3CCFE575,
426 CH_3CCFE575CT,
427 CH_3CCFE656,
428 CH_3CCFEM656,
430 CH_3CCFEM656_1,
431 CH_3C450,
432 CH_3C920,
433 CH_3C982A,
434 CH_3C982B,
436 CH_905BT4,
437 CH_920B_EMB_WNM,
441 /* note: this array directly indexed by above enums, and MUST
442 * be kept in sync with both the enums above, and the PCI device
443 * table below
445 static struct vortex_chip_info {
446 const char *name;
447 int flags;
448 int drv_flags;
449 int io_size;
450 } vortex_info_tbl[] __devinitdata = {
451 {"3c590 Vortex 10Mbps",
452 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
453 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
454 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
455 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
456 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
457 {"3c595 Vortex 100baseTx",
458 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
459 {"3c595 Vortex 100baseT4",
460 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
462 {"3c595 Vortex 100base-MII",
463 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
464 {"3c900 Boomerang 10baseT",
465 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
466 {"3c900 Boomerang 10Mbps Combo",
467 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
468 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
469 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
470 {"3c900 Cyclone 10Mbps Combo",
471 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
473 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
474 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
475 {"3c900B-FL Cyclone 10base-FL",
476 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
477 {"3c905 Boomerang 100baseTx",
478 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
479 {"3c905 Boomerang 100baseT4",
480 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
481 {"3c905B Cyclone 100baseTx",
482 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
484 {"3c905B Cyclone 10/100/BNC",
485 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
486 {"3c905B-FX Cyclone 100baseFx",
487 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
488 {"3c905C Tornado",
489 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
490 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
491 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
492 {"3c980 Cyclone",
493 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
495 {"3c980C Python-T",
496 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
497 {"3cSOHO100-TX Hurricane",
498 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
499 {"3c555 Laptop Hurricane",
500 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
501 {"3c556 Laptop Tornado",
502 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
503 HAS_HWCKSM, 128, },
504 {"3c556B Laptop Hurricane",
505 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
506 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
508 {"3c575 [Megahertz] 10/100 LAN CardBus",
509 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
510 {"3c575 Boomerang CardBus",
511 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
512 {"3CCFE575BT Cyclone CardBus",
513 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
514 INVERT_LED_PWR|HAS_HWCKSM, 128, },
515 {"3CCFE575CT Tornado CardBus",
516 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
517 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
518 {"3CCFE656 Cyclone CardBus",
519 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
520 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522 {"3CCFEM656B Cyclone+Winmodem CardBus",
523 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
524 INVERT_LED_PWR|HAS_HWCKSM, 128, },
525 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
526 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
527 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
528 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
529 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
530 {"3c920 Tornado",
531 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
532 {"3c982 Hydra Dual Port A",
533 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
535 {"3c982 Hydra Dual Port B",
536 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
537 {"3c905B-T4",
538 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
539 {"3c920B-EMB-WNM Tornado",
540 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
542 {NULL,}, /* NULL terminated list. */
546 static struct pci_device_id vortex_pci_tbl[] = {
547 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
548 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
549 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
550 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
551 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
553 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
554 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
555 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
556 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
557 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
559 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
560 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
561 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
562 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
563 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
565 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
566 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
567 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
568 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
569 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
570 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
572 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
573 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
574 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
575 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
576 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
578 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
579 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
580 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
581 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
582 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
584 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
585 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
586 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
587 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
588 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
590 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
591 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
593 {0,} /* 0 terminated list. */
595 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
598 /* Operational definitions.
599 These are not used by other compilation units and thus are not
600 exported in a ".h" file.
602 First the windows. There are eight register windows, with the command
603 and status registers available in each.
605 #define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
606 #define EL3_CMD 0x0e
607 #define EL3_STATUS 0x0e
609 /* The top five bits written to EL3_CMD are a command, the lower
610 11 bits are the parameter, if applicable.
611 Note that 11 parameters bits was fine for ethernet, but the new chip
612 can handle FDDI length frames (~4500 octets) and now parameters count
613 32-bit 'Dwords' rather than octets. */
615 enum vortex_cmd {
616 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
617 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
618 UpStall = 6<<11, UpUnstall = (6<<11)+1,
619 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
620 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
621 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
622 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
623 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
624 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
625 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
627 /* The SetRxFilter command accepts the following classes: */
628 enum RxFilter {
629 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
631 /* Bits in the general status register. */
632 enum vortex_status {
633 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
634 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
635 IntReq = 0x0040, StatsFull = 0x0080,
636 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
637 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
638 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
641 /* Register window 1 offsets, the window used in normal operation.
642 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
643 enum Window1 {
644 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
645 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
646 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
648 enum Window0 {
649 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
650 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
651 IntrStatus=0x0E, /* Valid in all windows. */
653 enum Win0_EEPROM_bits {
654 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
655 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
656 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
658 /* EEPROM locations. */
659 enum eeprom_offset {
660 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
661 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
662 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
663 DriverTune=13, Checksum=15};
665 enum Window2 { /* Window 2. */
666 Wn2_ResetOptions=12,
668 enum Window3 { /* Window 3: MAC/config bits. */
669 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
672 #define BFEXT(value, offset, bitcount) \
673 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
675 #define BFINS(lhs, rhs, offset, bitcount) \
676 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
677 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
679 #define RAM_SIZE(v) BFEXT(v, 0, 3)
680 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
681 #define RAM_SPEED(v) BFEXT(v, 4, 2)
682 #define ROM_SIZE(v) BFEXT(v, 6, 2)
683 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
684 #define XCVR(v) BFEXT(v, 20, 4)
685 #define AUTOSELECT(v) BFEXT(v, 24, 1)
687 enum Window4 { /* Window 4: Xcvr/media bits. */
688 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
690 enum Win4_Media_bits {
691 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
692 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
693 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
694 Media_LnkBeat = 0x0800,
696 enum Window7 { /* Window 7: Bus Master control. */
697 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
698 Wn7_MasterStatus = 12,
700 /* Boomerang bus master control registers. */
701 enum MasterCtrl {
702 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
703 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
706 /* The Rx and Tx descriptor lists.
707 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
708 alignment contraint on tx_ring[] and rx_ring[]. */
709 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
710 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
711 struct boom_rx_desc {
712 u32 next; /* Last entry points to 0. */
713 s32 status;
714 u32 addr; /* Up to 63 addr/len pairs possible. */
715 s32 length; /* Set LAST_FRAG to indicate last pair. */
717 /* Values for the Rx status entry. */
718 enum rx_desc_status {
719 RxDComplete=0x00008000, RxDError=0x4000,
720 /* See boomerang_rx() for actual error bits */
721 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
722 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
725 #ifdef MAX_SKB_FRAGS
726 #define DO_ZEROCOPY 1
727 #else
728 #define DO_ZEROCOPY 0
729 #endif
731 struct boom_tx_desc {
732 u32 next; /* Last entry points to 0. */
733 s32 status; /* bits 0:12 length, others see below. */
734 #if DO_ZEROCOPY
735 struct {
736 u32 addr;
737 s32 length;
738 } frag[1+MAX_SKB_FRAGS];
739 #else
740 u32 addr;
741 s32 length;
742 #endif
745 /* Values for the Tx status entry. */
746 enum tx_desc_status {
747 CRCDisable=0x2000, TxDComplete=0x8000,
748 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
749 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
752 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
753 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
755 struct vortex_extra_stats {
756 unsigned long tx_deferred;
757 unsigned long tx_multiple_collisions;
758 unsigned long rx_bad_ssd;
761 struct vortex_private {
762 /* The Rx and Tx rings should be quad-word-aligned. */
763 struct boom_rx_desc* rx_ring;
764 struct boom_tx_desc* tx_ring;
765 dma_addr_t rx_ring_dma;
766 dma_addr_t tx_ring_dma;
767 /* The addresses of transmit- and receive-in-place skbuffs. */
768 struct sk_buff* rx_skbuff[RX_RING_SIZE];
769 struct sk_buff* tx_skbuff[TX_RING_SIZE];
770 unsigned int cur_rx, cur_tx; /* The next free ring entry */
771 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
772 struct net_device_stats stats; /* Generic stats */
773 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
774 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
775 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
777 /* PCI configuration space information. */
778 struct device *gendev;
779 char __iomem *cb_fn_base; /* CardBus function status addr space. */
781 /* Some values here only for performance evaluation and path-coverage */
782 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
783 int card_idx;
785 /* The remainder are related to chip state, mostly media selection. */
786 struct timer_list timer; /* Media selection timer. */
787 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
788 int options; /* User-settable misc. driver options. */
789 unsigned int media_override:4, /* Passed-in media type. */
790 default_media:4, /* Read from the EEPROM/Wn3_Config. */
791 full_duplex:1, force_fd:1, autoselect:1,
792 bus_master:1, /* Vortex can only do a fragment bus-m. */
793 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
794 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
795 partner_flow_ctrl:1, /* Partner supports flow control */
796 has_nway:1,
797 enable_wol:1, /* Wake-on-LAN is enabled */
798 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
799 open:1,
800 medialock:1,
801 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
802 large_frames:1; /* accept large frames */
803 int drv_flags;
804 u16 status_enable;
805 u16 intr_enable;
806 u16 available_media; /* From Wn3_Options. */
807 u16 capabilities, info1, info2; /* Various, from EEPROM. */
808 u16 advertising; /* NWay media advertisement */
809 unsigned char phys[2]; /* MII device addresses. */
810 u16 deferred; /* Resend these interrupts when we
811 * bale from the ISR */
812 u16 io_size; /* Size of PCI region (for release_region) */
813 spinlock_t lock; /* Serialise access to device & its vortex_private */
814 struct mii_if_info mii; /* MII lib hooks/info */
817 #ifdef CONFIG_PCI
818 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
819 #else
820 #define DEVICE_PCI(dev) NULL
821 #endif
823 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
825 #ifdef CONFIG_EISA
826 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
827 #else
828 #define DEVICE_EISA(dev) NULL
829 #endif
831 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
833 /* The action to take with a media selection timer tick.
834 Note that we deviate from the 3Com order by checking 10base2 before AUI.
836 enum xcvr_types {
837 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
838 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
841 static struct media_table {
842 char *name;
843 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
844 mask:8, /* The transceiver-present bit in Wn3_Config.*/
845 next:8; /* The media type to try next. */
846 int wait; /* Time before we check media status. */
847 } media_tbl[] = {
848 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
849 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
850 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
851 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
852 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
853 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
854 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
855 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
856 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
857 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
858 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
861 static struct {
862 const char str[ETH_GSTRING_LEN];
863 } ethtool_stats_keys[] = {
864 { "tx_deferred" },
865 { "tx_multiple_collisions" },
866 { "rx_bad_ssd" },
869 /* number of ETHTOOL_GSTATS u64's */
870 #define VORTEX_NUM_STATS 3
872 static int vortex_probe1(struct device *gendev, long ioaddr, int irq,
873 int chip_idx, int card_idx);
874 static void vortex_up(struct net_device *dev);
875 static void vortex_down(struct net_device *dev, int final);
876 static int vortex_open(struct net_device *dev);
877 static void mdio_sync(long ioaddr, int bits);
878 static int mdio_read(struct net_device *dev, int phy_id, int location);
879 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
880 static void vortex_timer(unsigned long arg);
881 static void rx_oom_timer(unsigned long arg);
882 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
883 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
884 static int vortex_rx(struct net_device *dev);
885 static int boomerang_rx(struct net_device *dev);
886 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
887 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
888 static int vortex_close(struct net_device *dev);
889 static void dump_tx_ring(struct net_device *dev);
890 static void update_stats(long ioaddr, struct net_device *dev);
891 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
892 static void set_rx_mode(struct net_device *dev);
893 #ifdef CONFIG_PCI
894 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
895 #endif
896 static void vortex_tx_timeout(struct net_device *dev);
897 static void acpi_set_WOL(struct net_device *dev);
898 static struct ethtool_ops vortex_ethtool_ops;
899 static void set_8021q_mode(struct net_device *dev, int enable);
902 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
903 /* Option count limit only -- unlimited interfaces are supported. */
904 #define MAX_UNITS 8
905 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1,};
906 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
907 static int hw_checksums[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
908 static int flow_ctrl[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
909 static int enable_wol[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
910 static int global_options = -1;
911 static int global_full_duplex = -1;
912 static int global_enable_wol = -1;
914 /* #define dev_alloc_skb dev_alloc_skb_debug */
916 /* Variables to work-around the Compaq PCI BIOS32 problem. */
917 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
918 static struct net_device *compaq_net_device;
920 static int vortex_cards_found;
922 module_param(debug, int, 0);
923 module_param(global_options, int, 0);
924 module_param_array(options, int, NULL, 0);
925 module_param(global_full_duplex, int, 0);
926 module_param_array(full_duplex, int, NULL, 0);
927 module_param_array(hw_checksums, int, NULL, 0);
928 module_param_array(flow_ctrl, int, NULL, 0);
929 module_param(global_enable_wol, int, 0);
930 module_param_array(enable_wol, int, NULL, 0);
931 module_param(rx_copybreak, int, 0);
932 module_param(max_interrupt_work, int, 0);
933 module_param(compaq_ioaddr, int, 0);
934 module_param(compaq_irq, int, 0);
935 module_param(compaq_device_id, int, 0);
936 module_param(watchdog, int, 0);
937 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
938 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
939 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
940 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
941 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if options is unset");
942 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
943 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
944 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
945 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if options is unset");
946 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
947 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
948 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
949 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
950 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
951 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
953 #ifdef CONFIG_NET_POLL_CONTROLLER
954 static void poll_vortex(struct net_device *dev)
956 struct vortex_private *vp = netdev_priv(dev);
957 unsigned long flags;
958 local_save_flags(flags);
959 local_irq_disable();
960 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
961 local_irq_restore(flags);
963 #endif
965 #ifdef CONFIG_PM
967 static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
969 struct net_device *dev = pci_get_drvdata(pdev);
971 if (dev && dev->priv) {
972 if (netif_running(dev)) {
973 netif_device_detach(dev);
974 vortex_down(dev, 1);
977 return 0;
980 static int vortex_resume (struct pci_dev *pdev)
982 struct net_device *dev = pci_get_drvdata(pdev);
984 if (dev && dev->priv) {
985 if (netif_running(dev)) {
986 vortex_up(dev);
987 netif_device_attach(dev);
990 return 0;
993 #endif /* CONFIG_PM */
995 #ifdef CONFIG_EISA
996 static struct eisa_device_id vortex_eisa_ids[] = {
997 { "TCM5920", CH_3C592 },
998 { "TCM5970", CH_3C597 },
999 { "" }
1002 static int vortex_eisa_probe (struct device *device);
1003 static int vortex_eisa_remove (struct device *device);
1005 static struct eisa_driver vortex_eisa_driver = {
1006 .id_table = vortex_eisa_ids,
1007 .driver = {
1008 .name = "3c59x",
1009 .probe = vortex_eisa_probe,
1010 .remove = vortex_eisa_remove
1014 static int vortex_eisa_probe (struct device *device)
1016 long ioaddr;
1017 struct eisa_device *edev;
1019 edev = to_eisa_device (device);
1020 ioaddr = edev->base_addr;
1022 if (!request_region(ioaddr, VORTEX_TOTAL_SIZE, DRV_NAME))
1023 return -EBUSY;
1025 if (vortex_probe1(device, ioaddr, inw(ioaddr + 0xC88) >> 12,
1026 edev->id.driver_data, vortex_cards_found)) {
1027 release_region (ioaddr, VORTEX_TOTAL_SIZE);
1028 return -ENODEV;
1031 vortex_cards_found++;
1033 return 0;
1036 static int vortex_eisa_remove (struct device *device)
1038 struct eisa_device *edev;
1039 struct net_device *dev;
1040 struct vortex_private *vp;
1041 long ioaddr;
1043 edev = to_eisa_device (device);
1044 dev = eisa_get_drvdata (edev);
1046 if (!dev) {
1047 printk("vortex_eisa_remove called for Compaq device!\n");
1048 BUG();
1051 vp = netdev_priv(dev);
1052 ioaddr = dev->base_addr;
1054 unregister_netdev (dev);
1055 outw (TotalReset|0x14, ioaddr + EL3_CMD);
1056 release_region (ioaddr, VORTEX_TOTAL_SIZE);
1058 free_netdev (dev);
1059 return 0;
1061 #endif
1063 /* returns count found (>= 0), or negative on error */
1064 static int __init vortex_eisa_init (void)
1066 int eisa_found = 0;
1067 int orig_cards_found = vortex_cards_found;
1069 #ifdef CONFIG_EISA
1070 if (eisa_driver_register (&vortex_eisa_driver) >= 0) {
1071 /* Because of the way EISA bus is probed, we cannot assume
1072 * any device have been found when we exit from
1073 * eisa_driver_register (the bus root driver may not be
1074 * initialized yet). So we blindly assume something was
1075 * found, and let the sysfs magic happend... */
1077 eisa_found = 1;
1079 #endif
1081 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1082 if (compaq_ioaddr) {
1083 vortex_probe1(NULL, compaq_ioaddr, compaq_irq,
1084 compaq_device_id, vortex_cards_found++);
1087 return vortex_cards_found - orig_cards_found + eisa_found;
1090 /* returns count (>= 0), or negative on error */
1091 static int __devinit vortex_init_one (struct pci_dev *pdev,
1092 const struct pci_device_id *ent)
1094 int rc;
1096 /* wake up and enable device */
1097 rc = pci_enable_device (pdev);
1098 if (rc < 0)
1099 goto out;
1101 rc = vortex_probe1 (&pdev->dev, pci_resource_start (pdev, 0),
1102 pdev->irq, ent->driver_data, vortex_cards_found);
1103 if (rc < 0) {
1104 pci_disable_device (pdev);
1105 goto out;
1108 vortex_cards_found++;
1110 out:
1111 return rc;
1115 * Start up the PCI/EISA device which is described by *gendev.
1116 * Return 0 on success.
1118 * NOTE: pdev can be NULL, for the case of a Compaq device
1120 static int __devinit vortex_probe1(struct device *gendev,
1121 long ioaddr, int irq,
1122 int chip_idx, int card_idx)
1124 struct vortex_private *vp;
1125 int option;
1126 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1127 int i, step;
1128 struct net_device *dev;
1129 static int printed_version;
1130 int retval, print_info;
1131 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1132 char *print_name = "3c59x";
1133 struct pci_dev *pdev = NULL;
1134 struct eisa_device *edev = NULL;
1136 if (!printed_version) {
1137 printk (version);
1138 printed_version = 1;
1141 if (gendev) {
1142 if ((pdev = DEVICE_PCI(gendev))) {
1143 print_name = pci_name(pdev);
1146 if ((edev = DEVICE_EISA(gendev))) {
1147 print_name = edev->dev.bus_id;
1151 dev = alloc_etherdev(sizeof(*vp));
1152 retval = -ENOMEM;
1153 if (!dev) {
1154 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1155 goto out;
1157 SET_MODULE_OWNER(dev);
1158 SET_NETDEV_DEV(dev, gendev);
1159 vp = netdev_priv(dev);
1161 option = global_options;
1163 /* The lower four bits are the media type. */
1164 if (dev->mem_start) {
1166 * The 'options' param is passed in as the third arg to the
1167 * LILO 'ether=' argument for non-modular use
1169 option = dev->mem_start;
1171 else if (card_idx < MAX_UNITS) {
1172 if (options[card_idx] >= 0)
1173 option = options[card_idx];
1176 if (option > 0) {
1177 if (option & 0x8000)
1178 vortex_debug = 7;
1179 if (option & 0x4000)
1180 vortex_debug = 2;
1181 if (option & 0x0400)
1182 vp->enable_wol = 1;
1185 print_info = (vortex_debug > 1);
1186 if (print_info)
1187 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1189 printk(KERN_INFO "%s: 3Com %s %s at 0x%lx. Vers " DRV_VERSION "\n",
1190 print_name,
1191 pdev ? "PCI" : "EISA",
1192 vci->name,
1193 ioaddr);
1195 dev->base_addr = ioaddr;
1196 dev->irq = irq;
1197 dev->mtu = mtu;
1198 vp->large_frames = mtu > 1500;
1199 vp->drv_flags = vci->drv_flags;
1200 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1201 vp->io_size = vci->io_size;
1202 vp->card_idx = card_idx;
1204 /* module list only for Compaq device */
1205 if (gendev == NULL) {
1206 compaq_net_device = dev;
1209 /* PCI-only startup logic */
1210 if (pdev) {
1211 /* EISA resources already marked, so only PCI needs to do this here */
1212 /* Ignore return value, because Cardbus drivers already allocate for us */
1213 if (request_region(ioaddr, vci->io_size, print_name) != NULL)
1214 vp->must_free_region = 1;
1216 /* enable bus-mastering if necessary */
1217 if (vci->flags & PCI_USES_MASTER)
1218 pci_set_master (pdev);
1220 if (vci->drv_flags & IS_VORTEX) {
1221 u8 pci_latency;
1222 u8 new_latency = 248;
1224 /* Check the PCI latency value. On the 3c590 series the latency timer
1225 must be set to the maximum value to avoid data corruption that occurs
1226 when the timer expires during a transfer. This bug exists the Vortex
1227 chip only. */
1228 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1229 if (pci_latency < new_latency) {
1230 printk(KERN_INFO "%s: Overriding PCI latency"
1231 " timer (CFLT) setting of %d, new value is %d.\n",
1232 print_name, pci_latency, new_latency);
1233 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1238 spin_lock_init(&vp->lock);
1239 vp->gendev = gendev;
1240 vp->mii.dev = dev;
1241 vp->mii.mdio_read = mdio_read;
1242 vp->mii.mdio_write = mdio_write;
1243 vp->mii.phy_id_mask = 0x1f;
1244 vp->mii.reg_num_mask = 0x1f;
1246 /* Makes sure rings are at least 16 byte aligned. */
1247 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1248 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1249 &vp->rx_ring_dma);
1250 retval = -ENOMEM;
1251 if (vp->rx_ring == 0)
1252 goto free_region;
1254 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1255 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1257 /* if we are a PCI driver, we store info in pdev->driver_data
1258 * instead of a module list */
1259 if (pdev)
1260 pci_set_drvdata(pdev, dev);
1261 if (edev)
1262 eisa_set_drvdata (edev, dev);
1264 vp->media_override = 7;
1265 if (option >= 0) {
1266 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1267 if (vp->media_override != 7)
1268 vp->medialock = 1;
1269 vp->full_duplex = (option & 0x200) ? 1 : 0;
1270 vp->bus_master = (option & 16) ? 1 : 0;
1273 if (global_full_duplex > 0)
1274 vp->full_duplex = 1;
1275 if (global_enable_wol > 0)
1276 vp->enable_wol = 1;
1278 if (card_idx < MAX_UNITS) {
1279 if (full_duplex[card_idx] > 0)
1280 vp->full_duplex = 1;
1281 if (flow_ctrl[card_idx] > 0)
1282 vp->flow_ctrl = 1;
1283 if (enable_wol[card_idx] > 0)
1284 vp->enable_wol = 1;
1287 vp->force_fd = vp->full_duplex;
1288 vp->options = option;
1289 /* Read the station address from the EEPROM. */
1290 EL3WINDOW(0);
1292 int base;
1294 if (vci->drv_flags & EEPROM_8BIT)
1295 base = 0x230;
1296 else if (vci->drv_flags & EEPROM_OFFSET)
1297 base = EEPROM_Read + 0x30;
1298 else
1299 base = EEPROM_Read;
1301 for (i = 0; i < 0x40; i++) {
1302 int timer;
1303 outw(base + i, ioaddr + Wn0EepromCmd);
1304 /* Pause for at least 162 us. for the read to take place. */
1305 for (timer = 10; timer >= 0; timer--) {
1306 udelay(162);
1307 if ((inw(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1308 break;
1310 eeprom[i] = inw(ioaddr + Wn0EepromData);
1313 for (i = 0; i < 0x18; i++)
1314 checksum ^= eeprom[i];
1315 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1316 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1317 while (i < 0x21)
1318 checksum ^= eeprom[i++];
1319 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1321 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1322 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1323 for (i = 0; i < 3; i++)
1324 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1325 if (print_info) {
1326 for (i = 0; i < 6; i++)
1327 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1329 /* Unfortunately an all zero eeprom passes the checksum and this
1330 gets found in the wild in failure cases. Crypto is hard 8) */
1331 if (!is_valid_ether_addr(dev->dev_addr)) {
1332 retval = -EINVAL;
1333 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1334 goto free_ring; /* With every pack */
1336 EL3WINDOW(2);
1337 for (i = 0; i < 6; i++)
1338 outb(dev->dev_addr[i], ioaddr + i);
1340 #ifdef __sparc__
1341 if (print_info)
1342 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1343 #else
1344 if (print_info)
1345 printk(", IRQ %d\n", dev->irq);
1346 /* Tell them about an invalid IRQ. */
1347 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1348 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1349 dev->irq);
1350 #endif
1352 EL3WINDOW(4);
1353 step = (inb(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1354 if (print_info) {
1355 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1356 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1357 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1361 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1362 unsigned long fn_st_addr; /* Cardbus function status space */
1363 unsigned short n;
1365 fn_st_addr = pci_resource_start (pdev, 2);
1366 if (fn_st_addr) {
1367 vp->cb_fn_base = ioremap(fn_st_addr, 128);
1368 retval = -ENOMEM;
1369 if (!vp->cb_fn_base)
1370 goto free_ring;
1372 if (print_info) {
1373 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1374 print_name, fn_st_addr, vp->cb_fn_base);
1376 EL3WINDOW(2);
1378 n = inw(ioaddr + Wn2_ResetOptions) & ~0x4010;
1379 if (vp->drv_flags & INVERT_LED_PWR)
1380 n |= 0x10;
1381 if (vp->drv_flags & INVERT_MII_PWR)
1382 n |= 0x4000;
1383 outw(n, ioaddr + Wn2_ResetOptions);
1384 if (vp->drv_flags & WNO_XCVR_PWR) {
1385 EL3WINDOW(0);
1386 outw(0x0800, ioaddr);
1390 /* Extract our information from the EEPROM data. */
1391 vp->info1 = eeprom[13];
1392 vp->info2 = eeprom[15];
1393 vp->capabilities = eeprom[16];
1395 if (vp->info1 & 0x8000) {
1396 vp->full_duplex = 1;
1397 if (print_info)
1398 printk(KERN_INFO "Full duplex capable\n");
1402 static const char * ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1403 unsigned int config;
1404 EL3WINDOW(3);
1405 vp->available_media = inw(ioaddr + Wn3_Options);
1406 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1407 vp->available_media = 0x40;
1408 config = inl(ioaddr + Wn3_Config);
1409 if (print_info) {
1410 printk(KERN_DEBUG " Internal config register is %4.4x, "
1411 "transceivers %#x.\n", config, inw(ioaddr + Wn3_Options));
1412 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1413 8 << RAM_SIZE(config),
1414 RAM_WIDTH(config) ? "word" : "byte",
1415 ram_split[RAM_SPLIT(config)],
1416 AUTOSELECT(config) ? "autoselect/" : "",
1417 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1418 media_tbl[XCVR(config)].name);
1420 vp->default_media = XCVR(config);
1421 if (vp->default_media == XCVR_NWAY)
1422 vp->has_nway = 1;
1423 vp->autoselect = AUTOSELECT(config);
1426 if (vp->media_override != 7) {
1427 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1428 print_name, vp->media_override,
1429 media_tbl[vp->media_override].name);
1430 dev->if_port = vp->media_override;
1431 } else
1432 dev->if_port = vp->default_media;
1434 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1435 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1436 int phy, phy_idx = 0;
1437 EL3WINDOW(4);
1438 mii_preamble_required++;
1439 if (vp->drv_flags & EXTRA_PREAMBLE)
1440 mii_preamble_required++;
1441 mdio_sync(ioaddr, 32);
1442 mdio_read(dev, 24, 1);
1443 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1444 int mii_status, phyx;
1447 * For the 3c905CX we look at index 24 first, because it bogusly
1448 * reports an external PHY at all indices
1450 if (phy == 0)
1451 phyx = 24;
1452 else if (phy <= 24)
1453 phyx = phy - 1;
1454 else
1455 phyx = phy;
1456 mii_status = mdio_read(dev, phyx, 1);
1457 if (mii_status && mii_status != 0xffff) {
1458 vp->phys[phy_idx++] = phyx;
1459 if (print_info) {
1460 printk(KERN_INFO " MII transceiver found at address %d,"
1461 " status %4x.\n", phyx, mii_status);
1463 if ((mii_status & 0x0040) == 0)
1464 mii_preamble_required++;
1467 mii_preamble_required--;
1468 if (phy_idx == 0) {
1469 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1470 vp->phys[0] = 24;
1471 } else {
1472 vp->advertising = mdio_read(dev, vp->phys[0], 4);
1473 if (vp->full_duplex) {
1474 /* Only advertise the FD media types. */
1475 vp->advertising &= ~0x02A0;
1476 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1479 vp->mii.phy_id = vp->phys[0];
1482 if (vp->capabilities & CapBusMaster) {
1483 vp->full_bus_master_tx = 1;
1484 if (print_info) {
1485 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1486 (vp->info2 & 1) ? "early" : "whole-frame" );
1488 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1489 vp->bus_master = 0; /* AKPM: vortex only */
1492 /* The 3c59x-specific entries in the device structure. */
1493 dev->open = vortex_open;
1494 if (vp->full_bus_master_tx) {
1495 dev->hard_start_xmit = boomerang_start_xmit;
1496 /* Actually, it still should work with iommu. */
1497 dev->features |= NETIF_F_SG;
1498 if (((hw_checksums[card_idx] == -1) && (vp->drv_flags & HAS_HWCKSM)) ||
1499 (hw_checksums[card_idx] == 1)) {
1500 dev->features |= NETIF_F_IP_CSUM;
1502 } else {
1503 dev->hard_start_xmit = vortex_start_xmit;
1506 if (print_info) {
1507 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1508 print_name,
1509 (dev->features & NETIF_F_SG) ? "en":"dis",
1510 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1513 dev->stop = vortex_close;
1514 dev->get_stats = vortex_get_stats;
1515 #ifdef CONFIG_PCI
1516 dev->do_ioctl = vortex_ioctl;
1517 #endif
1518 dev->ethtool_ops = &vortex_ethtool_ops;
1519 dev->set_multicast_list = set_rx_mode;
1520 dev->tx_timeout = vortex_tx_timeout;
1521 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1522 #ifdef CONFIG_NET_POLL_CONTROLLER
1523 dev->poll_controller = poll_vortex;
1524 #endif
1525 if (pdev) {
1526 vp->pm_state_valid = 1;
1527 pci_save_state(VORTEX_PCI(vp));
1528 acpi_set_WOL(dev);
1530 retval = register_netdev(dev);
1531 if (retval == 0)
1532 return 0;
1534 free_ring:
1535 pci_free_consistent(pdev,
1536 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1537 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1538 vp->rx_ring,
1539 vp->rx_ring_dma);
1540 free_region:
1541 if (vp->must_free_region)
1542 release_region(ioaddr, vci->io_size);
1543 free_netdev(dev);
1544 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1545 out:
1546 return retval;
1549 static void
1550 issue_and_wait(struct net_device *dev, int cmd)
1552 int i;
1554 outw(cmd, dev->base_addr + EL3_CMD);
1555 for (i = 0; i < 2000; i++) {
1556 if (!(inw(dev->base_addr + EL3_STATUS) & CmdInProgress))
1557 return;
1560 /* OK, that didn't work. Do it the slow way. One second */
1561 for (i = 0; i < 100000; i++) {
1562 if (!(inw(dev->base_addr + EL3_STATUS) & CmdInProgress)) {
1563 if (vortex_debug > 1)
1564 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1565 dev->name, cmd, i * 10);
1566 return;
1568 udelay(10);
1570 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1571 dev->name, cmd, inw(dev->base_addr + EL3_STATUS));
1574 static void
1575 vortex_up(struct net_device *dev)
1577 long ioaddr = dev->base_addr;
1578 struct vortex_private *vp = netdev_priv(dev);
1579 unsigned int config;
1580 int i;
1582 if (VORTEX_PCI(vp)) {
1583 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1584 if (vp->pm_state_valid)
1585 pci_restore_state(VORTEX_PCI(vp));
1586 pci_enable_device(VORTEX_PCI(vp));
1589 /* Before initializing select the active media port. */
1590 EL3WINDOW(3);
1591 config = inl(ioaddr + Wn3_Config);
1593 if (vp->media_override != 7) {
1594 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1595 dev->name, vp->media_override,
1596 media_tbl[vp->media_override].name);
1597 dev->if_port = vp->media_override;
1598 } else if (vp->autoselect) {
1599 if (vp->has_nway) {
1600 if (vortex_debug > 1)
1601 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1602 dev->name, dev->if_port);
1603 dev->if_port = XCVR_NWAY;
1604 } else {
1605 /* Find first available media type, starting with 100baseTx. */
1606 dev->if_port = XCVR_100baseTx;
1607 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1608 dev->if_port = media_tbl[dev->if_port].next;
1609 if (vortex_debug > 1)
1610 printk(KERN_INFO "%s: first available media type: %s\n",
1611 dev->name, media_tbl[dev->if_port].name);
1613 } else {
1614 dev->if_port = vp->default_media;
1615 if (vortex_debug > 1)
1616 printk(KERN_INFO "%s: using default media %s\n",
1617 dev->name, media_tbl[dev->if_port].name);
1620 init_timer(&vp->timer);
1621 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1622 vp->timer.data = (unsigned long)dev;
1623 vp->timer.function = vortex_timer; /* timer handler */
1624 add_timer(&vp->timer);
1626 init_timer(&vp->rx_oom_timer);
1627 vp->rx_oom_timer.data = (unsigned long)dev;
1628 vp->rx_oom_timer.function = rx_oom_timer;
1630 if (vortex_debug > 1)
1631 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1632 dev->name, media_tbl[dev->if_port].name);
1634 vp->full_duplex = vp->force_fd;
1635 config = BFINS(config, dev->if_port, 20, 4);
1636 if (vortex_debug > 6)
1637 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1638 outl(config, ioaddr + Wn3_Config);
1640 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1641 int mii_reg1, mii_reg5;
1642 EL3WINDOW(4);
1643 /* Read BMSR (reg1) only to clear old status. */
1644 mii_reg1 = mdio_read(dev, vp->phys[0], 1);
1645 mii_reg5 = mdio_read(dev, vp->phys[0], 5);
1646 if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) {
1647 netif_carrier_off(dev); /* No MII device or no link partner report */
1648 } else {
1649 mii_reg5 &= vp->advertising;
1650 if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */
1651 || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */
1652 vp->full_duplex = 1;
1653 netif_carrier_on(dev);
1655 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1656 if (vortex_debug > 1)
1657 printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x,"
1658 " info1 %04x, setting %s-duplex.\n",
1659 dev->name, vp->phys[0],
1660 mii_reg1, mii_reg5,
1661 vp->info1, ((vp->info1 & 0x8000) || vp->full_duplex) ? "full" : "half");
1662 EL3WINDOW(3);
1665 /* Set the full-duplex bit. */
1666 outw( ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1667 (vp->large_frames ? 0x40 : 0) |
1668 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1669 ioaddr + Wn3_MAC_Ctrl);
1671 if (vortex_debug > 1) {
1672 printk(KERN_DEBUG "%s: vortex_up() InternalConfig %8.8x.\n",
1673 dev->name, config);
1676 issue_and_wait(dev, TxReset);
1678 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1680 issue_and_wait(dev, RxReset|0x04);
1682 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1684 if (vortex_debug > 1) {
1685 EL3WINDOW(4);
1686 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1687 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
1690 /* Set the station address and mask in window 2 each time opened. */
1691 EL3WINDOW(2);
1692 for (i = 0; i < 6; i++)
1693 outb(dev->dev_addr[i], ioaddr + i);
1694 for (; i < 12; i+=2)
1695 outw(0, ioaddr + i);
1697 if (vp->cb_fn_base) {
1698 unsigned short n = inw(ioaddr + Wn2_ResetOptions) & ~0x4010;
1699 if (vp->drv_flags & INVERT_LED_PWR)
1700 n |= 0x10;
1701 if (vp->drv_flags & INVERT_MII_PWR)
1702 n |= 0x4000;
1703 outw(n, ioaddr + Wn2_ResetOptions);
1706 if (dev->if_port == XCVR_10base2)
1707 /* Start the thinnet transceiver. We should really wait 50ms...*/
1708 outw(StartCoax, ioaddr + EL3_CMD);
1709 if (dev->if_port != XCVR_NWAY) {
1710 EL3WINDOW(4);
1711 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1712 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1715 /* Switch to the stats window, and clear all stats by reading. */
1716 outw(StatsDisable, ioaddr + EL3_CMD);
1717 EL3WINDOW(6);
1718 for (i = 0; i < 10; i++)
1719 inb(ioaddr + i);
1720 inw(ioaddr + 10);
1721 inw(ioaddr + 12);
1722 /* New: On the Vortex we must also clear the BadSSD counter. */
1723 EL3WINDOW(4);
1724 inb(ioaddr + 12);
1725 /* ..and on the Boomerang we enable the extra statistics bits. */
1726 outw(0x0040, ioaddr + Wn4_NetDiag);
1728 /* Switch to register set 7 for normal use. */
1729 EL3WINDOW(7);
1731 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1732 vp->cur_rx = vp->dirty_rx = 0;
1733 /* Initialize the RxEarly register as recommended. */
1734 outw(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1735 outl(0x0020, ioaddr + PktStatus);
1736 outl(vp->rx_ring_dma, ioaddr + UpListPtr);
1738 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1739 vp->cur_tx = vp->dirty_tx = 0;
1740 if (vp->drv_flags & IS_BOOMERANG)
1741 outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1742 /* Clear the Rx, Tx rings. */
1743 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1744 vp->rx_ring[i].status = 0;
1745 for (i = 0; i < TX_RING_SIZE; i++)
1746 vp->tx_skbuff[i] = NULL;
1747 outl(0, ioaddr + DownListPtr);
1749 /* Set receiver mode: presumably accept b-case and phys addr only. */
1750 set_rx_mode(dev);
1751 /* enable 802.1q tagged frames */
1752 set_8021q_mode(dev, 1);
1753 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1755 // issue_and_wait(dev, SetTxStart|0x07ff);
1756 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1757 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1758 /* Allow status bits to be seen. */
1759 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1760 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1761 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1762 (vp->bus_master ? DMADone : 0);
1763 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1764 (vp->full_bus_master_rx ? 0 : RxComplete) |
1765 StatsFull | HostError | TxComplete | IntReq
1766 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1767 outw(vp->status_enable, ioaddr + EL3_CMD);
1768 /* Ack all pending events, and set active indicator mask. */
1769 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1770 ioaddr + EL3_CMD);
1771 outw(vp->intr_enable, ioaddr + EL3_CMD);
1772 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1773 writel(0x8000, vp->cb_fn_base + 4);
1774 netif_start_queue (dev);
1777 static int
1778 vortex_open(struct net_device *dev)
1780 struct vortex_private *vp = netdev_priv(dev);
1781 int i;
1782 int retval;
1784 /* Use the now-standard shared IRQ implementation. */
1785 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1786 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1787 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1788 goto out;
1791 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1792 if (vortex_debug > 2)
1793 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1794 for (i = 0; i < RX_RING_SIZE; i++) {
1795 struct sk_buff *skb;
1796 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1797 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1798 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1799 skb = dev_alloc_skb(PKT_BUF_SZ);
1800 vp->rx_skbuff[i] = skb;
1801 if (skb == NULL)
1802 break; /* Bad news! */
1803 skb->dev = dev; /* Mark as being used by this device. */
1804 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1805 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->tail, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1807 if (i != RX_RING_SIZE) {
1808 int j;
1809 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1810 for (j = 0; j < i; j++) {
1811 if (vp->rx_skbuff[j]) {
1812 dev_kfree_skb(vp->rx_skbuff[j]);
1813 vp->rx_skbuff[j] = NULL;
1816 retval = -ENOMEM;
1817 goto out_free_irq;
1819 /* Wrap the ring. */
1820 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1823 vortex_up(dev);
1824 return 0;
1826 out_free_irq:
1827 free_irq(dev->irq, dev);
1828 out:
1829 if (vortex_debug > 1)
1830 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1831 return retval;
1834 static void
1835 vortex_timer(unsigned long data)
1837 struct net_device *dev = (struct net_device *)data;
1838 struct vortex_private *vp = netdev_priv(dev);
1839 long ioaddr = dev->base_addr;
1840 int next_tick = 60*HZ;
1841 int ok = 0;
1842 int media_status, mii_status, old_window;
1844 if (vortex_debug > 2) {
1845 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1846 dev->name, media_tbl[dev->if_port].name);
1847 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1850 if (vp->medialock)
1851 goto leave_media_alone;
1852 disable_irq(dev->irq);
1853 old_window = inw(ioaddr + EL3_CMD) >> 13;
1854 EL3WINDOW(4);
1855 media_status = inw(ioaddr + Wn4_Media);
1856 switch (dev->if_port) {
1857 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1858 if (media_status & Media_LnkBeat) {
1859 netif_carrier_on(dev);
1860 ok = 1;
1861 if (vortex_debug > 1)
1862 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1863 dev->name, media_tbl[dev->if_port].name, media_status);
1864 } else {
1865 netif_carrier_off(dev);
1866 if (vortex_debug > 1) {
1867 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1868 dev->name, media_tbl[dev->if_port].name, media_status);
1871 break;
1872 case XCVR_MII: case XCVR_NWAY:
1874 spin_lock_bh(&vp->lock);
1875 mii_status = mdio_read(dev, vp->phys[0], 1);
1876 ok = 1;
1877 if (vortex_debug > 2)
1878 printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n",
1879 dev->name, mii_status);
1880 if (mii_status & BMSR_LSTATUS) {
1881 int mii_reg5 = mdio_read(dev, vp->phys[0], 5);
1882 if (! vp->force_fd && mii_reg5 != 0xffff) {
1883 int duplex;
1885 mii_reg5 &= vp->advertising;
1886 duplex = (mii_reg5&0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
1887 if (vp->full_duplex != duplex) {
1888 vp->full_duplex = duplex;
1889 printk(KERN_INFO "%s: Setting %s-duplex based on MII "
1890 "#%d link partner capability of %4.4x.\n",
1891 dev->name, vp->full_duplex ? "full" : "half",
1892 vp->phys[0], mii_reg5);
1893 /* Set the full-duplex bit. */
1894 EL3WINDOW(3);
1895 outw( (vp->full_duplex ? 0x20 : 0) |
1896 (vp->large_frames ? 0x40 : 0) |
1897 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1898 ioaddr + Wn3_MAC_Ctrl);
1899 if (vortex_debug > 1)
1900 printk(KERN_DEBUG "Setting duplex in Wn3_MAC_Ctrl\n");
1901 /* AKPM: bug: should reset Tx and Rx after setting Duplex. Page 180 */
1904 netif_carrier_on(dev);
1905 } else {
1906 netif_carrier_off(dev);
1908 spin_unlock_bh(&vp->lock);
1910 break;
1911 default: /* Other media types handled by Tx timeouts. */
1912 if (vortex_debug > 1)
1913 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1914 dev->name, media_tbl[dev->if_port].name, media_status);
1915 ok = 1;
1917 if ( ! ok) {
1918 unsigned int config;
1920 do {
1921 dev->if_port = media_tbl[dev->if_port].next;
1922 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1923 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1924 dev->if_port = vp->default_media;
1925 if (vortex_debug > 1)
1926 printk(KERN_DEBUG "%s: Media selection failing, using default "
1927 "%s port.\n",
1928 dev->name, media_tbl[dev->if_port].name);
1929 } else {
1930 if (vortex_debug > 1)
1931 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1932 "%s port.\n",
1933 dev->name, media_tbl[dev->if_port].name);
1934 next_tick = media_tbl[dev->if_port].wait;
1936 outw((media_status & ~(Media_10TP|Media_SQE)) |
1937 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1939 EL3WINDOW(3);
1940 config = inl(ioaddr + Wn3_Config);
1941 config = BFINS(config, dev->if_port, 20, 4);
1942 outl(config, ioaddr + Wn3_Config);
1944 outw(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1945 ioaddr + EL3_CMD);
1946 if (vortex_debug > 1)
1947 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1948 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1950 EL3WINDOW(old_window);
1951 enable_irq(dev->irq);
1953 leave_media_alone:
1954 if (vortex_debug > 2)
1955 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1956 dev->name, media_tbl[dev->if_port].name);
1958 mod_timer(&vp->timer, RUN_AT(next_tick));
1959 if (vp->deferred)
1960 outw(FakeIntr, ioaddr + EL3_CMD);
1961 return;
1964 static void vortex_tx_timeout(struct net_device *dev)
1966 struct vortex_private *vp = netdev_priv(dev);
1967 long ioaddr = dev->base_addr;
1969 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1970 dev->name, inb(ioaddr + TxStatus),
1971 inw(ioaddr + EL3_STATUS));
1972 EL3WINDOW(4);
1973 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1974 inw(ioaddr + Wn4_NetDiag),
1975 inw(ioaddr + Wn4_Media),
1976 inl(ioaddr + PktStatus),
1977 inw(ioaddr + Wn4_FIFODiag));
1978 /* Slight code bloat to be user friendly. */
1979 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
1980 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1981 " network cable problem?\n", dev->name);
1982 if (inw(ioaddr + EL3_STATUS) & IntLatch) {
1983 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1984 " IRQ blocked by another device?\n", dev->name);
1985 /* Bad idea here.. but we might as well handle a few events. */
1988 * Block interrupts because vortex_interrupt does a bare spin_lock()
1990 unsigned long flags;
1991 local_irq_save(flags);
1992 if (vp->full_bus_master_tx)
1993 boomerang_interrupt(dev->irq, dev, NULL);
1994 else
1995 vortex_interrupt(dev->irq, dev, NULL);
1996 local_irq_restore(flags);
2000 if (vortex_debug > 0)
2001 dump_tx_ring(dev);
2003 issue_and_wait(dev, TxReset);
2005 vp->stats.tx_errors++;
2006 if (vp->full_bus_master_tx) {
2007 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2008 if (vp->cur_tx - vp->dirty_tx > 0 && inl(ioaddr + DownListPtr) == 0)
2009 outl(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2010 ioaddr + DownListPtr);
2011 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2012 netif_wake_queue (dev);
2013 if (vp->drv_flags & IS_BOOMERANG)
2014 outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2015 outw(DownUnstall, ioaddr + EL3_CMD);
2016 } else {
2017 vp->stats.tx_dropped++;
2018 netif_wake_queue(dev);
2021 /* Issue Tx Enable */
2022 outw(TxEnable, ioaddr + EL3_CMD);
2023 dev->trans_start = jiffies;
2025 /* Switch to register set 7 for normal use. */
2026 EL3WINDOW(7);
2030 * Handle uncommon interrupt sources. This is a separate routine to minimize
2031 * the cache impact.
2033 static void
2034 vortex_error(struct net_device *dev, int status)
2036 struct vortex_private *vp = netdev_priv(dev);
2037 long ioaddr = dev->base_addr;
2038 int do_tx_reset = 0, reset_mask = 0;
2039 unsigned char tx_status = 0;
2041 if (vortex_debug > 2) {
2042 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2045 if (status & TxComplete) { /* Really "TxError" for us. */
2046 tx_status = inb(ioaddr + TxStatus);
2047 /* Presumably a tx-timeout. We must merely re-enable. */
2048 if (vortex_debug > 2
2049 || (tx_status != 0x88 && vortex_debug > 0)) {
2050 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2051 dev->name, tx_status);
2052 if (tx_status == 0x82) {
2053 printk(KERN_ERR "Probably a duplex mismatch. See "
2054 "Documentation/networking/vortex.txt\n");
2056 dump_tx_ring(dev);
2058 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2059 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2060 outb(0, ioaddr + TxStatus);
2061 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2062 do_tx_reset = 1;
2063 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
2064 do_tx_reset = 1;
2065 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2066 } else { /* Merely re-enable the transmitter. */
2067 outw(TxEnable, ioaddr + EL3_CMD);
2071 if (status & RxEarly) { /* Rx early is unused. */
2072 vortex_rx(dev);
2073 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
2075 if (status & StatsFull) { /* Empty statistics. */
2076 static int DoneDidThat;
2077 if (vortex_debug > 4)
2078 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2079 update_stats(ioaddr, dev);
2080 /* HACK: Disable statistics as an interrupt source. */
2081 /* This occurs when we have the wrong media type! */
2082 if (DoneDidThat == 0 &&
2083 inw(ioaddr + EL3_STATUS) & StatsFull) {
2084 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2085 "stats as an interrupt source.\n", dev->name);
2086 EL3WINDOW(5);
2087 outw(SetIntrEnb | (inw(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2088 vp->intr_enable &= ~StatsFull;
2089 EL3WINDOW(7);
2090 DoneDidThat++;
2093 if (status & IntReq) { /* Restore all interrupt sources. */
2094 outw(vp->status_enable, ioaddr + EL3_CMD);
2095 outw(vp->intr_enable, ioaddr + EL3_CMD);
2097 if (status & HostError) {
2098 u16 fifo_diag;
2099 EL3WINDOW(4);
2100 fifo_diag = inw(ioaddr + Wn4_FIFODiag);
2101 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2102 dev->name, fifo_diag);
2103 /* Adapter failure requires Tx/Rx reset and reinit. */
2104 if (vp->full_bus_master_tx) {
2105 int bus_status = inl(ioaddr + PktStatus);
2106 /* 0x80000000 PCI master abort. */
2107 /* 0x40000000 PCI target abort. */
2108 if (vortex_debug)
2109 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2111 /* In this case, blow the card away */
2112 /* Must not enter D3 or we can't legally issue the reset! */
2113 vortex_down(dev, 0);
2114 issue_and_wait(dev, TotalReset | 0xff);
2115 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2116 } else if (fifo_diag & 0x0400)
2117 do_tx_reset = 1;
2118 if (fifo_diag & 0x3000) {
2119 /* Reset Rx fifo and upload logic */
2120 issue_and_wait(dev, RxReset|0x07);
2121 /* Set the Rx filter to the current state. */
2122 set_rx_mode(dev);
2123 /* enable 802.1q VLAN tagged frames */
2124 set_8021q_mode(dev, 1);
2125 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2126 outw(AckIntr | HostError, ioaddr + EL3_CMD);
2130 if (do_tx_reset) {
2131 issue_and_wait(dev, TxReset|reset_mask);
2132 outw(TxEnable, ioaddr + EL3_CMD);
2133 if (!vp->full_bus_master_tx)
2134 netif_wake_queue(dev);
2138 static int
2139 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2141 struct vortex_private *vp = netdev_priv(dev);
2142 long ioaddr = dev->base_addr;
2144 /* Put out the doubleword header... */
2145 outl(skb->len, ioaddr + TX_FIFO);
2146 if (vp->bus_master) {
2147 /* Set the bus-master controller to transfer the packet. */
2148 int len = (skb->len + 3) & ~3;
2149 outl( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2150 ioaddr + Wn7_MasterAddr);
2151 outw(len, ioaddr + Wn7_MasterLen);
2152 vp->tx_skb = skb;
2153 outw(StartDMADown, ioaddr + EL3_CMD);
2154 /* netif_wake_queue() will be called at the DMADone interrupt. */
2155 } else {
2156 /* ... and the packet rounded to a doubleword. */
2157 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2158 dev_kfree_skb (skb);
2159 if (inw(ioaddr + TxFree) > 1536) {
2160 netif_start_queue (dev); /* AKPM: redundant? */
2161 } else {
2162 /* Interrupt us when the FIFO has room for max-sized packet. */
2163 netif_stop_queue(dev);
2164 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2168 dev->trans_start = jiffies;
2170 /* Clear the Tx status stack. */
2172 int tx_status;
2173 int i = 32;
2175 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
2176 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2177 if (vortex_debug > 2)
2178 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2179 dev->name, tx_status);
2180 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2181 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2182 if (tx_status & 0x30) {
2183 issue_and_wait(dev, TxReset);
2185 outw(TxEnable, ioaddr + EL3_CMD);
2187 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2190 return 0;
2193 static int
2194 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2196 struct vortex_private *vp = netdev_priv(dev);
2197 long ioaddr = dev->base_addr;
2198 /* Calculate the next Tx descriptor entry. */
2199 int entry = vp->cur_tx % TX_RING_SIZE;
2200 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2201 unsigned long flags;
2203 if (vortex_debug > 6) {
2204 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2205 if (vortex_debug > 3)
2206 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2207 dev->name, vp->cur_tx);
2210 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2211 if (vortex_debug > 0)
2212 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2213 dev->name);
2214 netif_stop_queue(dev);
2215 return 1;
2218 vp->tx_skbuff[entry] = skb;
2220 vp->tx_ring[entry].next = 0;
2221 #if DO_ZEROCOPY
2222 if (skb->ip_summed != CHECKSUM_HW)
2223 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2224 else
2225 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2227 if (!skb_shinfo(skb)->nr_frags) {
2228 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2229 skb->len, PCI_DMA_TODEVICE));
2230 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2231 } else {
2232 int i;
2234 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2235 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2236 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2238 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2239 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2241 vp->tx_ring[entry].frag[i+1].addr =
2242 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2243 (void*)page_address(frag->page) + frag->page_offset,
2244 frag->size, PCI_DMA_TODEVICE));
2246 if (i == skb_shinfo(skb)->nr_frags-1)
2247 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2248 else
2249 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2252 #else
2253 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2254 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2255 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2256 #endif
2258 spin_lock_irqsave(&vp->lock, flags);
2259 /* Wait for the stall to complete. */
2260 issue_and_wait(dev, DownStall);
2261 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2262 if (inl(ioaddr + DownListPtr) == 0) {
2263 outl(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2264 vp->queued_packet++;
2267 vp->cur_tx++;
2268 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2269 netif_stop_queue (dev);
2270 } else { /* Clear previous interrupt enable. */
2271 #if defined(tx_interrupt_mitigation)
2272 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2273 * were selected, this would corrupt DN_COMPLETE. No?
2275 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2276 #endif
2278 outw(DownUnstall, ioaddr + EL3_CMD);
2279 spin_unlock_irqrestore(&vp->lock, flags);
2280 dev->trans_start = jiffies;
2281 return 0;
2284 /* The interrupt handler does all of the Rx thread work and cleans up
2285 after the Tx thread. */
2288 * This is the ISR for the vortex series chips.
2289 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2292 static irqreturn_t
2293 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2295 struct net_device *dev = dev_id;
2296 struct vortex_private *vp = netdev_priv(dev);
2297 long ioaddr;
2298 int status;
2299 int work_done = max_interrupt_work;
2300 int handled = 0;
2302 ioaddr = dev->base_addr;
2303 spin_lock(&vp->lock);
2305 status = inw(ioaddr + EL3_STATUS);
2307 if (vortex_debug > 6)
2308 printk("vortex_interrupt(). status=0x%4x\n", status);
2310 if ((status & IntLatch) == 0)
2311 goto handler_exit; /* No interrupt: shared IRQs cause this */
2312 handled = 1;
2314 if (status & IntReq) {
2315 status |= vp->deferred;
2316 vp->deferred = 0;
2319 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2320 goto handler_exit;
2322 if (vortex_debug > 4)
2323 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2324 dev->name, status, inb(ioaddr + Timer));
2326 do {
2327 if (vortex_debug > 5)
2328 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2329 dev->name, status);
2330 if (status & RxComplete)
2331 vortex_rx(dev);
2333 if (status & TxAvailable) {
2334 if (vortex_debug > 5)
2335 printk(KERN_DEBUG " TX room bit was handled.\n");
2336 /* There's room in the FIFO for a full-sized packet. */
2337 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2338 netif_wake_queue (dev);
2341 if (status & DMADone) {
2342 if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) {
2343 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2344 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2345 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2346 if (inw(ioaddr + TxFree) > 1536) {
2348 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2349 * insufficient FIFO room, the TxAvailable test will succeed and call
2350 * netif_wake_queue()
2352 netif_wake_queue(dev);
2353 } else { /* Interrupt when FIFO has room for max-sized packet. */
2354 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2355 netif_stop_queue(dev);
2359 /* Check for all uncommon interrupts at once. */
2360 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2361 if (status == 0xffff)
2362 break;
2363 vortex_error(dev, status);
2366 if (--work_done < 0) {
2367 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2368 "%4.4x.\n", dev->name, status);
2369 /* Disable all pending interrupts. */
2370 do {
2371 vp->deferred |= status;
2372 outw(SetStatusEnb | (~vp->deferred & vp->status_enable),
2373 ioaddr + EL3_CMD);
2374 outw(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2375 } while ((status = inw(ioaddr + EL3_CMD)) & IntLatch);
2376 /* The timer will reenable interrupts. */
2377 mod_timer(&vp->timer, jiffies + 1*HZ);
2378 break;
2380 /* Acknowledge the IRQ. */
2381 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2382 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2384 if (vortex_debug > 4)
2385 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2386 dev->name, status);
2387 handler_exit:
2388 spin_unlock(&vp->lock);
2389 return IRQ_RETVAL(handled);
2393 * This is the ISR for the boomerang series chips.
2394 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2397 static irqreturn_t
2398 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2400 struct net_device *dev = dev_id;
2401 struct vortex_private *vp = netdev_priv(dev);
2402 long ioaddr;
2403 int status;
2404 int work_done = max_interrupt_work;
2406 ioaddr = dev->base_addr;
2409 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2410 * and boomerang_start_xmit
2412 spin_lock(&vp->lock);
2414 status = inw(ioaddr + EL3_STATUS);
2416 if (vortex_debug > 6)
2417 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2419 if ((status & IntLatch) == 0)
2420 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2422 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2423 if (vortex_debug > 1)
2424 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2425 goto handler_exit;
2428 if (status & IntReq) {
2429 status |= vp->deferred;
2430 vp->deferred = 0;
2433 if (vortex_debug > 4)
2434 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2435 dev->name, status, inb(ioaddr + Timer));
2436 do {
2437 if (vortex_debug > 5)
2438 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2439 dev->name, status);
2440 if (status & UpComplete) {
2441 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
2442 if (vortex_debug > 5)
2443 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2444 boomerang_rx(dev);
2447 if (status & DownComplete) {
2448 unsigned int dirty_tx = vp->dirty_tx;
2450 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
2451 while (vp->cur_tx - dirty_tx > 0) {
2452 int entry = dirty_tx % TX_RING_SIZE;
2453 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2454 if (inl(ioaddr + DownListPtr) ==
2455 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2456 break; /* It still hasn't been processed. */
2457 #else
2458 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2459 break; /* It still hasn't been processed. */
2460 #endif
2462 if (vp->tx_skbuff[entry]) {
2463 struct sk_buff *skb = vp->tx_skbuff[entry];
2464 #if DO_ZEROCOPY
2465 int i;
2466 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2467 pci_unmap_single(VORTEX_PCI(vp),
2468 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2469 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2470 PCI_DMA_TODEVICE);
2471 #else
2472 pci_unmap_single(VORTEX_PCI(vp),
2473 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2474 #endif
2475 dev_kfree_skb_irq(skb);
2476 vp->tx_skbuff[entry] = NULL;
2477 } else {
2478 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2480 /* vp->stats.tx_packets++; Counted below. */
2481 dirty_tx++;
2483 vp->dirty_tx = dirty_tx;
2484 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2485 if (vortex_debug > 6)
2486 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2487 netif_wake_queue (dev);
2491 /* Check for all uncommon interrupts at once. */
2492 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2493 vortex_error(dev, status);
2495 if (--work_done < 0) {
2496 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2497 "%4.4x.\n", dev->name, status);
2498 /* Disable all pending interrupts. */
2499 do {
2500 vp->deferred |= status;
2501 outw(SetStatusEnb | (~vp->deferred & vp->status_enable),
2502 ioaddr + EL3_CMD);
2503 outw(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2504 } while ((status = inw(ioaddr + EL3_CMD)) & IntLatch);
2505 /* The timer will reenable interrupts. */
2506 mod_timer(&vp->timer, jiffies + 1*HZ);
2507 break;
2509 /* Acknowledge the IRQ. */
2510 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2511 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2512 writel(0x8000, vp->cb_fn_base + 4);
2514 } while ((status = inw(ioaddr + EL3_STATUS)) & IntLatch);
2516 if (vortex_debug > 4)
2517 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2518 dev->name, status);
2519 handler_exit:
2520 spin_unlock(&vp->lock);
2521 return IRQ_HANDLED;
2524 static int vortex_rx(struct net_device *dev)
2526 struct vortex_private *vp = netdev_priv(dev);
2527 long ioaddr = dev->base_addr;
2528 int i;
2529 short rx_status;
2531 if (vortex_debug > 5)
2532 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2533 inw(ioaddr+EL3_STATUS), inw(ioaddr+RxStatus));
2534 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
2535 if (rx_status & 0x4000) { /* Error, update stats. */
2536 unsigned char rx_error = inb(ioaddr + RxErrors);
2537 if (vortex_debug > 2)
2538 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2539 vp->stats.rx_errors++;
2540 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2541 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2542 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2543 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2544 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2545 } else {
2546 /* The packet length: up to 4.5K!. */
2547 int pkt_len = rx_status & 0x1fff;
2548 struct sk_buff *skb;
2550 skb = dev_alloc_skb(pkt_len + 5);
2551 if (vortex_debug > 4)
2552 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2553 pkt_len, rx_status);
2554 if (skb != NULL) {
2555 skb->dev = dev;
2556 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2557 /* 'skb_put()' points to the start of sk_buff data area. */
2558 if (vp->bus_master &&
2559 ! (inw(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2560 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2561 pkt_len, PCI_DMA_FROMDEVICE);
2562 outl(dma, ioaddr + Wn7_MasterAddr);
2563 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2564 outw(StartDMAUp, ioaddr + EL3_CMD);
2565 while (inw(ioaddr + Wn7_MasterStatus) & 0x8000)
2567 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2568 } else {
2569 insl(ioaddr + RX_FIFO, skb_put(skb, pkt_len),
2570 (pkt_len + 3) >> 2);
2572 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2573 skb->protocol = eth_type_trans(skb, dev);
2574 netif_rx(skb);
2575 dev->last_rx = jiffies;
2576 vp->stats.rx_packets++;
2577 /* Wait a limited time to go to next packet. */
2578 for (i = 200; i >= 0; i--)
2579 if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
2580 break;
2581 continue;
2582 } else if (vortex_debug > 0)
2583 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2584 "size %d.\n", dev->name, pkt_len);
2586 vp->stats.rx_dropped++;
2587 issue_and_wait(dev, RxDiscard);
2590 return 0;
2593 static int
2594 boomerang_rx(struct net_device *dev)
2596 struct vortex_private *vp = netdev_priv(dev);
2597 int entry = vp->cur_rx % RX_RING_SIZE;
2598 long ioaddr = dev->base_addr;
2599 int rx_status;
2600 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2602 if (vortex_debug > 5)
2603 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", inw(ioaddr+EL3_STATUS));
2605 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2606 if (--rx_work_limit < 0)
2607 break;
2608 if (rx_status & RxDError) { /* Error, update stats. */
2609 unsigned char rx_error = rx_status >> 16;
2610 if (vortex_debug > 2)
2611 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2612 vp->stats.rx_errors++;
2613 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2614 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2615 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2616 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2617 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2618 } else {
2619 /* The packet length: up to 4.5K!. */
2620 int pkt_len = rx_status & 0x1fff;
2621 struct sk_buff *skb;
2622 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2624 if (vortex_debug > 4)
2625 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2626 pkt_len, rx_status);
2628 /* Check if the packet is long enough to just accept without
2629 copying to a properly sized skbuff. */
2630 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2631 skb->dev = dev;
2632 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2633 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2634 /* 'skb_put()' points to the start of sk_buff data area. */
2635 memcpy(skb_put(skb, pkt_len),
2636 vp->rx_skbuff[entry]->tail,
2637 pkt_len);
2638 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2639 vp->rx_copy++;
2640 } else {
2641 /* Pass up the skbuff already on the Rx ring. */
2642 skb = vp->rx_skbuff[entry];
2643 vp->rx_skbuff[entry] = NULL;
2644 skb_put(skb, pkt_len);
2645 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2646 vp->rx_nocopy++;
2648 skb->protocol = eth_type_trans(skb, dev);
2649 { /* Use hardware checksum info. */
2650 int csum_bits = rx_status & 0xee000000;
2651 if (csum_bits &&
2652 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2653 csum_bits == (IPChksumValid | UDPChksumValid))) {
2654 skb->ip_summed = CHECKSUM_UNNECESSARY;
2655 vp->rx_csumhits++;
2658 netif_rx(skb);
2659 dev->last_rx = jiffies;
2660 vp->stats.rx_packets++;
2662 entry = (++vp->cur_rx) % RX_RING_SIZE;
2664 /* Refill the Rx ring buffers. */
2665 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2666 struct sk_buff *skb;
2667 entry = vp->dirty_rx % RX_RING_SIZE;
2668 if (vp->rx_skbuff[entry] == NULL) {
2669 skb = dev_alloc_skb(PKT_BUF_SZ);
2670 if (skb == NULL) {
2671 static unsigned long last_jif;
2672 if ((jiffies - last_jif) > 10 * HZ) {
2673 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2674 last_jif = jiffies;
2676 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2677 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2678 break; /* Bad news! */
2680 skb->dev = dev; /* Mark as being used by this device. */
2681 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2682 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->tail, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2683 vp->rx_skbuff[entry] = skb;
2685 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2686 outw(UpUnstall, ioaddr + EL3_CMD);
2688 return 0;
2692 * If we've hit a total OOM refilling the Rx ring we poll once a second
2693 * for some memory. Otherwise there is no way to restart the rx process.
2695 static void
2696 rx_oom_timer(unsigned long arg)
2698 struct net_device *dev = (struct net_device *)arg;
2699 struct vortex_private *vp = netdev_priv(dev);
2701 spin_lock_irq(&vp->lock);
2702 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2703 boomerang_rx(dev);
2704 if (vortex_debug > 1) {
2705 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2706 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2708 spin_unlock_irq(&vp->lock);
2711 static void
2712 vortex_down(struct net_device *dev, int final_down)
2714 struct vortex_private *vp = netdev_priv(dev);
2715 long ioaddr = dev->base_addr;
2717 netif_stop_queue (dev);
2719 del_timer_sync(&vp->rx_oom_timer);
2720 del_timer_sync(&vp->timer);
2722 /* Turn off statistics ASAP. We update vp->stats below. */
2723 outw(StatsDisable, ioaddr + EL3_CMD);
2725 /* Disable the receiver and transmitter. */
2726 outw(RxDisable, ioaddr + EL3_CMD);
2727 outw(TxDisable, ioaddr + EL3_CMD);
2729 /* Disable receiving 802.1q tagged frames */
2730 set_8021q_mode(dev, 0);
2732 if (dev->if_port == XCVR_10base2)
2733 /* Turn off thinnet power. Green! */
2734 outw(StopCoax, ioaddr + EL3_CMD);
2736 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2738 update_stats(ioaddr, dev);
2739 if (vp->full_bus_master_rx)
2740 outl(0, ioaddr + UpListPtr);
2741 if (vp->full_bus_master_tx)
2742 outl(0, ioaddr + DownListPtr);
2744 if (final_down && VORTEX_PCI(vp)) {
2745 vp->pm_state_valid = 1;
2746 pci_save_state(VORTEX_PCI(vp));
2747 acpi_set_WOL(dev);
2751 static int
2752 vortex_close(struct net_device *dev)
2754 struct vortex_private *vp = netdev_priv(dev);
2755 long ioaddr = dev->base_addr;
2756 int i;
2758 if (netif_device_present(dev))
2759 vortex_down(dev, 1);
2761 if (vortex_debug > 1) {
2762 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2763 dev->name, inw(ioaddr + EL3_STATUS), inb(ioaddr + TxStatus));
2764 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2765 " tx_queued %d Rx pre-checksummed %d.\n",
2766 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2769 #if DO_ZEROCOPY
2770 if ( vp->rx_csumhits &&
2771 ((vp->drv_flags & HAS_HWCKSM) == 0) &&
2772 (hw_checksums[vp->card_idx] == -1)) {
2773 printk(KERN_WARNING "%s supports hardware checksums, and we're not using them!\n", dev->name);
2775 #endif
2777 free_irq(dev->irq, dev);
2779 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2780 for (i = 0; i < RX_RING_SIZE; i++)
2781 if (vp->rx_skbuff[i]) {
2782 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2783 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2784 dev_kfree_skb(vp->rx_skbuff[i]);
2785 vp->rx_skbuff[i] = NULL;
2788 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2789 for (i = 0; i < TX_RING_SIZE; i++) {
2790 if (vp->tx_skbuff[i]) {
2791 struct sk_buff *skb = vp->tx_skbuff[i];
2792 #if DO_ZEROCOPY
2793 int k;
2795 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2796 pci_unmap_single(VORTEX_PCI(vp),
2797 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2798 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2799 PCI_DMA_TODEVICE);
2800 #else
2801 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2802 #endif
2803 dev_kfree_skb(skb);
2804 vp->tx_skbuff[i] = NULL;
2809 return 0;
2812 static void
2813 dump_tx_ring(struct net_device *dev)
2815 if (vortex_debug > 0) {
2816 struct vortex_private *vp = netdev_priv(dev);
2817 long ioaddr = dev->base_addr;
2819 if (vp->full_bus_master_tx) {
2820 int i;
2821 int stalled = inl(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2823 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2824 vp->full_bus_master_tx,
2825 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2826 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2827 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2828 inl(ioaddr + DownListPtr),
2829 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2830 issue_and_wait(dev, DownStall);
2831 for (i = 0; i < TX_RING_SIZE; i++) {
2832 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2833 &vp->tx_ring[i],
2834 #if DO_ZEROCOPY
2835 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2836 #else
2837 le32_to_cpu(vp->tx_ring[i].length),
2838 #endif
2839 le32_to_cpu(vp->tx_ring[i].status));
2841 if (!stalled)
2842 outw(DownUnstall, ioaddr + EL3_CMD);
2847 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2849 struct vortex_private *vp = netdev_priv(dev);
2850 unsigned long flags;
2852 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2853 spin_lock_irqsave (&vp->lock, flags);
2854 update_stats(dev->base_addr, dev);
2855 spin_unlock_irqrestore (&vp->lock, flags);
2857 return &vp->stats;
2860 /* Update statistics.
2861 Unlike with the EL3 we need not worry about interrupts changing
2862 the window setting from underneath us, but we must still guard
2863 against a race condition with a StatsUpdate interrupt updating the
2864 table. This is done by checking that the ASM (!) code generated uses
2865 atomic updates with '+='.
2867 static void update_stats(long ioaddr, struct net_device *dev)
2869 struct vortex_private *vp = netdev_priv(dev);
2870 int old_window = inw(ioaddr + EL3_CMD);
2872 if (old_window == 0xffff) /* Chip suspended or ejected. */
2873 return;
2874 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2875 /* Switch to the stats window, and read everything. */
2876 EL3WINDOW(6);
2877 vp->stats.tx_carrier_errors += inb(ioaddr + 0);
2878 vp->stats.tx_heartbeat_errors += inb(ioaddr + 1);
2879 vp->stats.collisions += inb(ioaddr + 3);
2880 vp->stats.tx_window_errors += inb(ioaddr + 4);
2881 vp->stats.rx_fifo_errors += inb(ioaddr + 5);
2882 vp->stats.tx_packets += inb(ioaddr + 6);
2883 vp->stats.tx_packets += (inb(ioaddr + 9)&0x30) << 4;
2884 /* Rx packets */ inb(ioaddr + 7); /* Must read to clear */
2885 /* Don't bother with register 9, an extension of registers 6&7.
2886 If we do use the 6&7 values the atomic update assumption above
2887 is invalid. */
2888 vp->stats.rx_bytes += inw(ioaddr + 10);
2889 vp->stats.tx_bytes += inw(ioaddr + 12);
2890 /* Extra stats for get_ethtool_stats() */
2891 vp->xstats.tx_multiple_collisions += inb(ioaddr + 2);
2892 vp->xstats.tx_deferred += inb(ioaddr + 8);
2893 EL3WINDOW(4);
2894 vp->xstats.rx_bad_ssd += inb(ioaddr + 12);
2897 u8 up = inb(ioaddr + 13);
2898 vp->stats.rx_bytes += (up & 0x0f) << 16;
2899 vp->stats.tx_bytes += (up & 0xf0) << 12;
2902 EL3WINDOW(old_window >> 13);
2903 return;
2906 static int vortex_nway_reset(struct net_device *dev)
2908 struct vortex_private *vp = netdev_priv(dev);
2909 long ioaddr = dev->base_addr;
2910 unsigned long flags;
2911 int rc;
2913 spin_lock_irqsave(&vp->lock, flags);
2914 EL3WINDOW(4);
2915 rc = mii_nway_restart(&vp->mii);
2916 spin_unlock_irqrestore(&vp->lock, flags);
2917 return rc;
2920 static u32 vortex_get_link(struct net_device *dev)
2922 struct vortex_private *vp = netdev_priv(dev);
2923 long ioaddr = dev->base_addr;
2924 unsigned long flags;
2925 int rc;
2927 spin_lock_irqsave(&vp->lock, flags);
2928 EL3WINDOW(4);
2929 rc = mii_link_ok(&vp->mii);
2930 spin_unlock_irqrestore(&vp->lock, flags);
2931 return rc;
2934 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2936 struct vortex_private *vp = netdev_priv(dev);
2937 long ioaddr = dev->base_addr;
2938 unsigned long flags;
2939 int rc;
2941 spin_lock_irqsave(&vp->lock, flags);
2942 EL3WINDOW(4);
2943 rc = mii_ethtool_gset(&vp->mii, cmd);
2944 spin_unlock_irqrestore(&vp->lock, flags);
2945 return rc;
2948 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2950 struct vortex_private *vp = netdev_priv(dev);
2951 long ioaddr = dev->base_addr;
2952 unsigned long flags;
2953 int rc;
2955 spin_lock_irqsave(&vp->lock, flags);
2956 EL3WINDOW(4);
2957 rc = mii_ethtool_sset(&vp->mii, cmd);
2958 spin_unlock_irqrestore(&vp->lock, flags);
2959 return rc;
2962 static u32 vortex_get_msglevel(struct net_device *dev)
2964 return vortex_debug;
2967 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2969 vortex_debug = dbg;
2972 static int vortex_get_stats_count(struct net_device *dev)
2974 return VORTEX_NUM_STATS;
2977 static void vortex_get_ethtool_stats(struct net_device *dev,
2978 struct ethtool_stats *stats, u64 *data)
2980 struct vortex_private *vp = netdev_priv(dev);
2981 unsigned long flags;
2983 spin_lock_irqsave(&vp->lock, flags);
2984 update_stats(dev->base_addr, dev);
2985 spin_unlock_irqrestore(&vp->lock, flags);
2987 data[0] = vp->xstats.tx_deferred;
2988 data[1] = vp->xstats.tx_multiple_collisions;
2989 data[2] = vp->xstats.rx_bad_ssd;
2993 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2995 switch (stringset) {
2996 case ETH_SS_STATS:
2997 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2998 break;
2999 default:
3000 WARN_ON(1);
3001 break;
3005 static void vortex_get_drvinfo(struct net_device *dev,
3006 struct ethtool_drvinfo *info)
3008 struct vortex_private *vp = netdev_priv(dev);
3010 strcpy(info->driver, DRV_NAME);
3011 strcpy(info->version, DRV_VERSION);
3012 if (VORTEX_PCI(vp)) {
3013 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3014 } else {
3015 if (VORTEX_EISA(vp))
3016 sprintf(info->bus_info, vp->gendev->bus_id);
3017 else
3018 sprintf(info->bus_info, "EISA 0x%lx %d",
3019 dev->base_addr, dev->irq);
3023 static struct ethtool_ops vortex_ethtool_ops = {
3024 .get_drvinfo = vortex_get_drvinfo,
3025 .get_strings = vortex_get_strings,
3026 .get_msglevel = vortex_get_msglevel,
3027 .set_msglevel = vortex_set_msglevel,
3028 .get_ethtool_stats = vortex_get_ethtool_stats,
3029 .get_stats_count = vortex_get_stats_count,
3030 .get_settings = vortex_get_settings,
3031 .set_settings = vortex_set_settings,
3032 .get_link = vortex_get_link,
3033 .nway_reset = vortex_nway_reset,
3036 #ifdef CONFIG_PCI
3038 * Must power the device up to do MDIO operations
3040 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3042 int err;
3043 struct vortex_private *vp = netdev_priv(dev);
3044 long ioaddr = dev->base_addr;
3045 unsigned long flags;
3046 int state = 0;
3048 if(VORTEX_PCI(vp))
3049 state = VORTEX_PCI(vp)->current_state;
3051 /* The kernel core really should have pci_get_power_state() */
3053 if(state != 0)
3054 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3055 spin_lock_irqsave(&vp->lock, flags);
3056 EL3WINDOW(4);
3057 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3058 spin_unlock_irqrestore(&vp->lock, flags);
3059 if(state != 0)
3060 pci_set_power_state(VORTEX_PCI(vp), state);
3062 return err;
3064 #endif
3067 /* Pre-Cyclone chips have no documented multicast filter, so the only
3068 multicast setting is to receive all multicast frames. At least
3069 the chip has a very clean way to set the mode, unlike many others. */
3070 static void set_rx_mode(struct net_device *dev)
3072 long ioaddr = dev->base_addr;
3073 int new_mode;
3075 if (dev->flags & IFF_PROMISC) {
3076 if (vortex_debug > 0)
3077 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3078 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3079 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3080 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3081 } else
3082 new_mode = SetRxFilter | RxStation | RxBroadcast;
3084 outw(new_mode, ioaddr + EL3_CMD);
3087 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3088 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3089 Note that this must be done after each RxReset due to some backwards
3090 compatibility logic in the Cyclone and Tornado ASICs */
3092 /* The Ethernet Type used for 802.1q tagged frames */
3093 #define VLAN_ETHER_TYPE 0x8100
3095 static void set_8021q_mode(struct net_device *dev, int enable)
3097 struct vortex_private *vp = netdev_priv(dev);
3098 long ioaddr = dev->base_addr;
3099 int old_window = inw(ioaddr + EL3_CMD);
3100 int mac_ctrl;
3102 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3103 /* cyclone and tornado chipsets can recognize 802.1q
3104 * tagged frames and treat them correctly */
3106 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3107 if (enable)
3108 max_pkt_size += 4; /* 802.1Q VLAN tag */
3110 EL3WINDOW(3);
3111 outw(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3113 /* set VlanEtherType to let the hardware checksumming
3114 treat tagged frames correctly */
3115 EL3WINDOW(7);
3116 outw(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3117 } else {
3118 /* on older cards we have to enable large frames */
3120 vp->large_frames = dev->mtu > 1500 || enable;
3122 EL3WINDOW(3);
3123 mac_ctrl = inw(ioaddr+Wn3_MAC_Ctrl);
3124 if (vp->large_frames)
3125 mac_ctrl |= 0x40;
3126 else
3127 mac_ctrl &= ~0x40;
3128 outw(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3131 EL3WINDOW(old_window);
3133 #else
3135 static void set_8021q_mode(struct net_device *dev, int enable)
3140 #endif
3142 /* MII transceiver control section.
3143 Read and write the MII registers using software-generated serial
3144 MDIO protocol. See the MII specifications or DP83840A data sheet
3145 for details. */
3147 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3148 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3149 "overclocking" issues. */
3150 #define mdio_delay() inl(mdio_addr)
3152 #define MDIO_SHIFT_CLK 0x01
3153 #define MDIO_DIR_WRITE 0x04
3154 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3155 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3156 #define MDIO_DATA_READ 0x02
3157 #define MDIO_ENB_IN 0x00
3159 /* Generate the preamble required for initial synchronization and
3160 a few older transceivers. */
3161 static void mdio_sync(long ioaddr, int bits)
3163 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3165 /* Establish sync by sending at least 32 logic ones. */
3166 while (-- bits >= 0) {
3167 outw(MDIO_DATA_WRITE1, mdio_addr);
3168 mdio_delay();
3169 outw(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3170 mdio_delay();
3174 static int mdio_read(struct net_device *dev, int phy_id, int location)
3176 int i;
3177 long ioaddr = dev->base_addr;
3178 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3179 unsigned int retval = 0;
3180 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3182 if (mii_preamble_required)
3183 mdio_sync(ioaddr, 32);
3185 /* Shift the read command bits out. */
3186 for (i = 14; i >= 0; i--) {
3187 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3188 outw(dataval, mdio_addr);
3189 mdio_delay();
3190 outw(dataval | MDIO_SHIFT_CLK, mdio_addr);
3191 mdio_delay();
3193 /* Read the two transition, 16 data, and wire-idle bits. */
3194 for (i = 19; i > 0; i--) {
3195 outw(MDIO_ENB_IN, mdio_addr);
3196 mdio_delay();
3197 retval = (retval << 1) | ((inw(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3198 outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3199 mdio_delay();
3201 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3204 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3206 long ioaddr = dev->base_addr;
3207 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3208 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3209 int i;
3211 if (mii_preamble_required)
3212 mdio_sync(ioaddr, 32);
3214 /* Shift the command bits out. */
3215 for (i = 31; i >= 0; i--) {
3216 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3217 outw(dataval, mdio_addr);
3218 mdio_delay();
3219 outw(dataval | MDIO_SHIFT_CLK, mdio_addr);
3220 mdio_delay();
3222 /* Leave the interface idle. */
3223 for (i = 1; i >= 0; i--) {
3224 outw(MDIO_ENB_IN, mdio_addr);
3225 mdio_delay();
3226 outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3227 mdio_delay();
3229 return;
3232 /* ACPI: Advanced Configuration and Power Interface. */
3233 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3234 static void acpi_set_WOL(struct net_device *dev)
3236 struct vortex_private *vp = netdev_priv(dev);
3237 long ioaddr = dev->base_addr;
3239 if (vp->enable_wol) {
3240 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3241 EL3WINDOW(7);
3242 outw(2, ioaddr + 0x0c);
3243 /* The RxFilter must accept the WOL frames. */
3244 outw(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3245 outw(RxEnable, ioaddr + EL3_CMD);
3247 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3249 /* Change the power state to D3; RxEnable doesn't take effect. */
3250 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3255 static void __devexit vortex_remove_one (struct pci_dev *pdev)
3257 struct net_device *dev = pci_get_drvdata(pdev);
3258 struct vortex_private *vp;
3260 if (!dev) {
3261 printk("vortex_remove_one called for Compaq device!\n");
3262 BUG();
3265 vp = netdev_priv(dev);
3267 /* AKPM: FIXME: we should have
3268 * if (vp->cb_fn_base) iounmap(vp->cb_fn_base);
3269 * here
3271 unregister_netdev(dev);
3273 if (VORTEX_PCI(vp)) {
3274 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3275 if (vp->pm_state_valid)
3276 pci_restore_state(VORTEX_PCI(vp));
3277 pci_disable_device(VORTEX_PCI(vp));
3279 /* Should really use issue_and_wait() here */
3280 outw(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3281 dev->base_addr + EL3_CMD);
3283 pci_free_consistent(pdev,
3284 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3285 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3286 vp->rx_ring,
3287 vp->rx_ring_dma);
3288 if (vp->must_free_region)
3289 release_region(dev->base_addr, vp->io_size);
3290 free_netdev(dev);
3294 static struct pci_driver vortex_driver = {
3295 .name = "3c59x",
3296 .probe = vortex_init_one,
3297 .remove = __devexit_p(vortex_remove_one),
3298 .id_table = vortex_pci_tbl,
3299 #ifdef CONFIG_PM
3300 .suspend = vortex_suspend,
3301 .resume = vortex_resume,
3302 #endif
3306 static int vortex_have_pci;
3307 static int vortex_have_eisa;
3310 static int __init vortex_init (void)
3312 int pci_rc, eisa_rc;
3314 pci_rc = pci_module_init(&vortex_driver);
3315 eisa_rc = vortex_eisa_init();
3317 if (pci_rc == 0)
3318 vortex_have_pci = 1;
3319 if (eisa_rc > 0)
3320 vortex_have_eisa = 1;
3322 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3326 static void __exit vortex_eisa_cleanup (void)
3328 struct vortex_private *vp;
3329 long ioaddr;
3331 #ifdef CONFIG_EISA
3332 /* Take care of the EISA devices */
3333 eisa_driver_unregister (&vortex_eisa_driver);
3334 #endif
3336 if (compaq_net_device) {
3337 vp = compaq_net_device->priv;
3338 ioaddr = compaq_net_device->base_addr;
3340 unregister_netdev (compaq_net_device);
3341 outw (TotalReset, ioaddr + EL3_CMD);
3342 release_region (ioaddr, VORTEX_TOTAL_SIZE);
3344 free_netdev (compaq_net_device);
3349 static void __exit vortex_cleanup (void)
3351 if (vortex_have_pci)
3352 pci_unregister_driver (&vortex_driver);
3353 if (vortex_have_eisa)
3354 vortex_eisa_cleanup ();
3358 module_init(vortex_init);
3359 module_exit(vortex_cleanup);
3363 * Local variables:
3364 * c-indent-level: 4
3365 * c-basic-offset: 4
3366 * tab-width: 4
3367 * End: