[PATCH] fix memory scribble in arch/i386/pci/fixup.c
[linux-2.6/verdex.git] / fs / ext3 / inode.c
blob0d5fa73b18dc1542700ddbf2285c0b2ffe3b9e18
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/pagemap.h>
33 #include <linux/quotaops.h>
34 #include <linux/string.h>
35 #include <linux/buffer_head.h>
36 #include <linux/writeback.h>
37 #include <linux/mpage.h>
38 #include <linux/uio.h>
39 #include "xattr.h"
40 #include "acl.h"
42 static int ext3_writepage_trans_blocks(struct inode *inode);
45 * Test whether an inode is a fast symlink.
47 static inline int ext3_inode_is_fast_symlink(struct inode *inode)
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
56 /* The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
65 int ext3_forget(handle_t *handle, int is_metadata,
66 struct inode *inode, struct buffer_head *bh,
67 int blocknr)
69 int err;
71 might_sleep();
73 BUFFER_TRACE(bh, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
91 return 0;
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __FUNCTION__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
107 * Work out how many blocks we need to progress with the next chunk of a
108 * truncate transaction.
111 static unsigned long blocks_for_truncate(struct inode *inode)
113 unsigned long needed;
115 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
117 /* Give ourselves just enough room to cope with inodes in which
118 * i_blocks is corrupt: we've seen disk corruptions in the past
119 * which resulted in random data in an inode which looked enough
120 * like a regular file for ext3 to try to delete it. Things
121 * will go a bit crazy if that happens, but at least we should
122 * try not to panic the whole kernel. */
123 if (needed < 2)
124 needed = 2;
126 /* But we need to bound the transaction so we don't overflow the
127 * journal. */
128 if (needed > EXT3_MAX_TRANS_DATA)
129 needed = EXT3_MAX_TRANS_DATA;
131 return EXT3_DATA_TRANS_BLOCKS + needed;
135 * Truncate transactions can be complex and absolutely huge. So we need to
136 * be able to restart the transaction at a conventient checkpoint to make
137 * sure we don't overflow the journal.
139 * start_transaction gets us a new handle for a truncate transaction,
140 * and extend_transaction tries to extend the existing one a bit. If
141 * extend fails, we need to propagate the failure up and restart the
142 * transaction in the top-level truncate loop. --sct
145 static handle_t *start_transaction(struct inode *inode)
147 handle_t *result;
149 result = ext3_journal_start(inode, blocks_for_truncate(inode));
150 if (!IS_ERR(result))
151 return result;
153 ext3_std_error(inode->i_sb, PTR_ERR(result));
154 return result;
158 * Try to extend this transaction for the purposes of truncation.
160 * Returns 0 if we managed to create more room. If we can't create more
161 * room, and the transaction must be restarted we return 1.
163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
165 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166 return 0;
167 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168 return 0;
169 return 1;
173 * Restart the transaction associated with *handle. This does a commit,
174 * so before we call here everything must be consistently dirtied against
175 * this transaction.
177 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
179 jbd_debug(2, "restarting handle %p\n", handle);
180 return ext3_journal_restart(handle, blocks_for_truncate(inode));
184 * Called at the last iput() if i_nlink is zero.
186 void ext3_delete_inode (struct inode * inode)
188 handle_t *handle;
190 if (is_bad_inode(inode))
191 goto no_delete;
193 handle = start_transaction(inode);
194 if (IS_ERR(handle)) {
195 /* If we're going to skip the normal cleanup, we still
196 * need to make sure that the in-core orphan linked list
197 * is properly cleaned up. */
198 ext3_orphan_del(NULL, inode);
199 goto no_delete;
202 if (IS_SYNC(inode))
203 handle->h_sync = 1;
204 inode->i_size = 0;
205 if (inode->i_blocks)
206 ext3_truncate(inode);
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
215 ext3_orphan_del(handle, inode);
216 EXT3_I(inode)->i_dtime = get_seconds();
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
223 * fails.
225 if (ext3_mark_inode_dirty(handle, inode))
226 /* If that failed, just do the required in-core inode clear. */
227 clear_inode(inode);
228 else
229 ext3_free_inode(handle, inode);
230 ext3_journal_stop(handle);
231 return;
232 no_delete:
233 clear_inode(inode); /* We must guarantee clearing of inode... */
236 static int ext3_alloc_block (handle_t *handle,
237 struct inode * inode, unsigned long goal, int *err)
239 unsigned long result;
241 result = ext3_new_block(handle, inode, goal, err);
242 return result;
246 typedef struct {
247 __le32 *p;
248 __le32 key;
249 struct buffer_head *bh;
250 } Indirect;
252 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
254 p->key = *(p->p = v);
255 p->bh = bh;
258 static inline int verify_chain(Indirect *from, Indirect *to)
260 while (from <= to && from->key == *from->p)
261 from++;
262 return (from > to);
266 * ext3_block_to_path - parse the block number into array of offsets
267 * @inode: inode in question (we are only interested in its superblock)
268 * @i_block: block number to be parsed
269 * @offsets: array to store the offsets in
270 * @boundary: set this non-zero if the referred-to block is likely to be
271 * followed (on disk) by an indirect block.
273 * To store the locations of file's data ext3 uses a data structure common
274 * for UNIX filesystems - tree of pointers anchored in the inode, with
275 * data blocks at leaves and indirect blocks in intermediate nodes.
276 * This function translates the block number into path in that tree -
277 * return value is the path length and @offsets[n] is the offset of
278 * pointer to (n+1)th node in the nth one. If @block is out of range
279 * (negative or too large) warning is printed and zero returned.
281 * Note: function doesn't find node addresses, so no IO is needed. All
282 * we need to know is the capacity of indirect blocks (taken from the
283 * inode->i_sb).
287 * Portability note: the last comparison (check that we fit into triple
288 * indirect block) is spelled differently, because otherwise on an
289 * architecture with 32-bit longs and 8Kb pages we might get into trouble
290 * if our filesystem had 8Kb blocks. We might use long long, but that would
291 * kill us on x86. Oh, well, at least the sign propagation does not matter -
292 * i_block would have to be negative in the very beginning, so we would not
293 * get there at all.
296 static int ext3_block_to_path(struct inode *inode,
297 long i_block, int offsets[4], int *boundary)
299 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT3_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
307 if (i_block < 0) {
308 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
309 } else if (i_block < direct_blocks) {
310 offsets[n++] = i_block;
311 final = direct_blocks;
312 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
313 offsets[n++] = EXT3_IND_BLOCK;
314 offsets[n++] = i_block;
315 final = ptrs;
316 } else if ((i_block -= indirect_blocks) < double_blocks) {
317 offsets[n++] = EXT3_DIND_BLOCK;
318 offsets[n++] = i_block >> ptrs_bits;
319 offsets[n++] = i_block & (ptrs - 1);
320 final = ptrs;
321 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
322 offsets[n++] = EXT3_TIND_BLOCK;
323 offsets[n++] = i_block >> (ptrs_bits * 2);
324 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
325 offsets[n++] = i_block & (ptrs - 1);
326 final = ptrs;
327 } else {
328 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
330 if (boundary)
331 *boundary = (i_block & (ptrs - 1)) == (final - 1);
332 return n;
336 * ext3_get_branch - read the chain of indirect blocks leading to data
337 * @inode: inode in question
338 * @depth: depth of the chain (1 - direct pointer, etc.)
339 * @offsets: offsets of pointers in inode/indirect blocks
340 * @chain: place to store the result
341 * @err: here we store the error value
343 * Function fills the array of triples <key, p, bh> and returns %NULL
344 * if everything went OK or the pointer to the last filled triple
345 * (incomplete one) otherwise. Upon the return chain[i].key contains
346 * the number of (i+1)-th block in the chain (as it is stored in memory,
347 * i.e. little-endian 32-bit), chain[i].p contains the address of that
348 * number (it points into struct inode for i==0 and into the bh->b_data
349 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
350 * block for i>0 and NULL for i==0. In other words, it holds the block
351 * numbers of the chain, addresses they were taken from (and where we can
352 * verify that chain did not change) and buffer_heads hosting these
353 * numbers.
355 * Function stops when it stumbles upon zero pointer (absent block)
356 * (pointer to last triple returned, *@err == 0)
357 * or when it gets an IO error reading an indirect block
358 * (ditto, *@err == -EIO)
359 * or when it notices that chain had been changed while it was reading
360 * (ditto, *@err == -EAGAIN)
361 * or when it reads all @depth-1 indirect blocks successfully and finds
362 * the whole chain, all way to the data (returns %NULL, *err == 0).
364 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
365 Indirect chain[4], int *err)
367 struct super_block *sb = inode->i_sb;
368 Indirect *p = chain;
369 struct buffer_head *bh;
371 *err = 0;
372 /* i_data is not going away, no lock needed */
373 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
374 if (!p->key)
375 goto no_block;
376 while (--depth) {
377 bh = sb_bread(sb, le32_to_cpu(p->key));
378 if (!bh)
379 goto failure;
380 /* Reader: pointers */
381 if (!verify_chain(chain, p))
382 goto changed;
383 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
384 /* Reader: end */
385 if (!p->key)
386 goto no_block;
388 return NULL;
390 changed:
391 brelse(bh);
392 *err = -EAGAIN;
393 goto no_block;
394 failure:
395 *err = -EIO;
396 no_block:
397 return p;
401 * ext3_find_near - find a place for allocation with sufficient locality
402 * @inode: owner
403 * @ind: descriptor of indirect block.
405 * This function returns the prefered place for block allocation.
406 * It is used when heuristic for sequential allocation fails.
407 * Rules are:
408 * + if there is a block to the left of our position - allocate near it.
409 * + if pointer will live in indirect block - allocate near that block.
410 * + if pointer will live in inode - allocate in the same
411 * cylinder group.
413 * In the latter case we colour the starting block by the callers PID to
414 * prevent it from clashing with concurrent allocations for a different inode
415 * in the same block group. The PID is used here so that functionally related
416 * files will be close-by on-disk.
418 * Caller must make sure that @ind is valid and will stay that way.
421 static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
423 struct ext3_inode_info *ei = EXT3_I(inode);
424 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
425 __le32 *p;
426 unsigned long bg_start;
427 unsigned long colour;
429 /* Try to find previous block */
430 for (p = ind->p - 1; p >= start; p--)
431 if (*p)
432 return le32_to_cpu(*p);
434 /* No such thing, so let's try location of indirect block */
435 if (ind->bh)
436 return ind->bh->b_blocknr;
439 * It is going to be refered from inode itself? OK, just put it into
440 * the same cylinder group then.
442 bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
443 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
444 colour = (current->pid % 16) *
445 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
446 return bg_start + colour;
450 * ext3_find_goal - find a prefered place for allocation.
451 * @inode: owner
452 * @block: block we want
453 * @chain: chain of indirect blocks
454 * @partial: pointer to the last triple within a chain
455 * @goal: place to store the result.
457 * Normally this function find the prefered place for block allocation,
458 * stores it in *@goal and returns zero.
461 static unsigned long ext3_find_goal(struct inode *inode, long block,
462 Indirect chain[4], Indirect *partial)
464 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
467 * try the heuristic for sequential allocation,
468 * failing that at least try to get decent locality.
470 if (block_i && (block == block_i->last_alloc_logical_block + 1)
471 && (block_i->last_alloc_physical_block != 0)) {
472 return block_i->last_alloc_physical_block + 1;
475 return ext3_find_near(inode, partial);
479 * ext3_alloc_branch - allocate and set up a chain of blocks.
480 * @inode: owner
481 * @num: depth of the chain (number of blocks to allocate)
482 * @offsets: offsets (in the blocks) to store the pointers to next.
483 * @branch: place to store the chain in.
485 * This function allocates @num blocks, zeroes out all but the last one,
486 * links them into chain and (if we are synchronous) writes them to disk.
487 * In other words, it prepares a branch that can be spliced onto the
488 * inode. It stores the information about that chain in the branch[], in
489 * the same format as ext3_get_branch() would do. We are calling it after
490 * we had read the existing part of chain and partial points to the last
491 * triple of that (one with zero ->key). Upon the exit we have the same
492 * picture as after the successful ext3_get_block(), excpet that in one
493 * place chain is disconnected - *branch->p is still zero (we did not
494 * set the last link), but branch->key contains the number that should
495 * be placed into *branch->p to fill that gap.
497 * If allocation fails we free all blocks we've allocated (and forget
498 * their buffer_heads) and return the error value the from failed
499 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
500 * as described above and return 0.
503 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
504 int num,
505 unsigned long goal,
506 int *offsets,
507 Indirect *branch)
509 int blocksize = inode->i_sb->s_blocksize;
510 int n = 0, keys = 0;
511 int err = 0;
512 int i;
513 int parent = ext3_alloc_block(handle, inode, goal, &err);
515 branch[0].key = cpu_to_le32(parent);
516 if (parent) {
517 for (n = 1; n < num; n++) {
518 struct buffer_head *bh;
519 /* Allocate the next block */
520 int nr = ext3_alloc_block(handle, inode, parent, &err);
521 if (!nr)
522 break;
523 branch[n].key = cpu_to_le32(nr);
524 keys = n+1;
527 * Get buffer_head for parent block, zero it out
528 * and set the pointer to new one, then send
529 * parent to disk.
531 bh = sb_getblk(inode->i_sb, parent);
532 branch[n].bh = bh;
533 lock_buffer(bh);
534 BUFFER_TRACE(bh, "call get_create_access");
535 err = ext3_journal_get_create_access(handle, bh);
536 if (err) {
537 unlock_buffer(bh);
538 brelse(bh);
539 break;
542 memset(bh->b_data, 0, blocksize);
543 branch[n].p = (__le32*) bh->b_data + offsets[n];
544 *branch[n].p = branch[n].key;
545 BUFFER_TRACE(bh, "marking uptodate");
546 set_buffer_uptodate(bh);
547 unlock_buffer(bh);
549 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
550 err = ext3_journal_dirty_metadata(handle, bh);
551 if (err)
552 break;
554 parent = nr;
557 if (n == num)
558 return 0;
560 /* Allocation failed, free what we already allocated */
561 for (i = 1; i < keys; i++) {
562 BUFFER_TRACE(branch[i].bh, "call journal_forget");
563 ext3_journal_forget(handle, branch[i].bh);
565 for (i = 0; i < keys; i++)
566 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
567 return err;
571 * ext3_splice_branch - splice the allocated branch onto inode.
572 * @inode: owner
573 * @block: (logical) number of block we are adding
574 * @chain: chain of indirect blocks (with a missing link - see
575 * ext3_alloc_branch)
576 * @where: location of missing link
577 * @num: number of blocks we are adding
579 * This function fills the missing link and does all housekeeping needed in
580 * inode (->i_blocks, etc.). In case of success we end up with the full
581 * chain to new block and return 0.
584 static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
585 Indirect chain[4], Indirect *where, int num)
587 int i;
588 int err = 0;
589 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
592 * If we're splicing into a [td]indirect block (as opposed to the
593 * inode) then we need to get write access to the [td]indirect block
594 * before the splice.
596 if (where->bh) {
597 BUFFER_TRACE(where->bh, "get_write_access");
598 err = ext3_journal_get_write_access(handle, where->bh);
599 if (err)
600 goto err_out;
602 /* That's it */
604 *where->p = where->key;
607 * update the most recently allocated logical & physical block
608 * in i_block_alloc_info, to assist find the proper goal block for next
609 * allocation
611 if (block_i) {
612 block_i->last_alloc_logical_block = block;
613 block_i->last_alloc_physical_block = le32_to_cpu(where[num-1].key);
616 /* We are done with atomic stuff, now do the rest of housekeeping */
618 inode->i_ctime = CURRENT_TIME_SEC;
619 ext3_mark_inode_dirty(handle, inode);
621 /* had we spliced it onto indirect block? */
622 if (where->bh) {
624 * akpm: If we spliced it onto an indirect block, we haven't
625 * altered the inode. Note however that if it is being spliced
626 * onto an indirect block at the very end of the file (the
627 * file is growing) then we *will* alter the inode to reflect
628 * the new i_size. But that is not done here - it is done in
629 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
631 jbd_debug(5, "splicing indirect only\n");
632 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
633 err = ext3_journal_dirty_metadata(handle, where->bh);
634 if (err)
635 goto err_out;
636 } else {
638 * OK, we spliced it into the inode itself on a direct block.
639 * Inode was dirtied above.
641 jbd_debug(5, "splicing direct\n");
643 return err;
645 err_out:
646 for (i = 1; i < num; i++) {
647 BUFFER_TRACE(where[i].bh, "call journal_forget");
648 ext3_journal_forget(handle, where[i].bh);
650 return err;
654 * Allocation strategy is simple: if we have to allocate something, we will
655 * have to go the whole way to leaf. So let's do it before attaching anything
656 * to tree, set linkage between the newborn blocks, write them if sync is
657 * required, recheck the path, free and repeat if check fails, otherwise
658 * set the last missing link (that will protect us from any truncate-generated
659 * removals - all blocks on the path are immune now) and possibly force the
660 * write on the parent block.
661 * That has a nice additional property: no special recovery from the failed
662 * allocations is needed - we simply release blocks and do not touch anything
663 * reachable from inode.
665 * akpm: `handle' can be NULL if create == 0.
667 * The BKL may not be held on entry here. Be sure to take it early.
670 static int
671 ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
672 struct buffer_head *bh_result, int create, int extend_disksize)
674 int err = -EIO;
675 int offsets[4];
676 Indirect chain[4];
677 Indirect *partial;
678 unsigned long goal;
679 int left;
680 int boundary = 0;
681 const int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
682 struct ext3_inode_info *ei = EXT3_I(inode);
684 J_ASSERT(handle != NULL || create == 0);
686 if (depth == 0)
687 goto out;
689 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
691 /* Simplest case - block found, no allocation needed */
692 if (!partial) {
693 clear_buffer_new(bh_result);
694 goto got_it;
697 /* Next simple case - plain lookup or failed read of indirect block */
698 if (!create || err == -EIO)
699 goto cleanup;
701 down(&ei->truncate_sem);
704 * If the indirect block is missing while we are reading
705 * the chain(ext3_get_branch() returns -EAGAIN err), or
706 * if the chain has been changed after we grab the semaphore,
707 * (either because another process truncated this branch, or
708 * another get_block allocated this branch) re-grab the chain to see if
709 * the request block has been allocated or not.
711 * Since we already block the truncate/other get_block
712 * at this point, we will have the current copy of the chain when we
713 * splice the branch into the tree.
715 if (err == -EAGAIN || !verify_chain(chain, partial)) {
716 while (partial > chain) {
717 brelse(partial->bh);
718 partial--;
720 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
721 if (!partial) {
722 up(&ei->truncate_sem);
723 if (err)
724 goto cleanup;
725 clear_buffer_new(bh_result);
726 goto got_it;
731 * Okay, we need to do block allocation. Lazily initialize the block
732 * allocation info here if necessary
734 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
735 ext3_init_block_alloc_info(inode);
737 goal = ext3_find_goal(inode, iblock, chain, partial);
739 left = (chain + depth) - partial;
742 * Block out ext3_truncate while we alter the tree
744 err = ext3_alloc_branch(handle, inode, left, goal,
745 offsets + (partial - chain), partial);
748 * The ext3_splice_branch call will free and forget any buffers
749 * on the new chain if there is a failure, but that risks using
750 * up transaction credits, especially for bitmaps where the
751 * credits cannot be returned. Can we handle this somehow? We
752 * may need to return -EAGAIN upwards in the worst case. --sct
754 if (!err)
755 err = ext3_splice_branch(handle, inode, iblock, chain,
756 partial, left);
758 * i_disksize growing is protected by truncate_sem. Don't forget to
759 * protect it if you're about to implement concurrent
760 * ext3_get_block() -bzzz
762 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
763 ei->i_disksize = inode->i_size;
764 up(&ei->truncate_sem);
765 if (err)
766 goto cleanup;
768 set_buffer_new(bh_result);
769 got_it:
770 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
771 if (boundary)
772 set_buffer_boundary(bh_result);
773 /* Clean up and exit */
774 partial = chain + depth - 1; /* the whole chain */
775 cleanup:
776 while (partial > chain) {
777 BUFFER_TRACE(partial->bh, "call brelse");
778 brelse(partial->bh);
779 partial--;
781 BUFFER_TRACE(bh_result, "returned");
782 out:
783 return err;
786 static int ext3_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh_result, int create)
789 handle_t *handle = NULL;
790 int ret;
792 if (create) {
793 handle = ext3_journal_current_handle();
794 J_ASSERT(handle != 0);
796 ret = ext3_get_block_handle(handle, inode, iblock,
797 bh_result, create, 1);
798 return ret;
801 #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
803 static int
804 ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
805 unsigned long max_blocks, struct buffer_head *bh_result,
806 int create)
808 handle_t *handle = journal_current_handle();
809 int ret = 0;
811 if (!handle)
812 goto get_block; /* A read */
814 if (handle->h_transaction->t_state == T_LOCKED) {
816 * Huge direct-io writes can hold off commits for long
817 * periods of time. Let this commit run.
819 ext3_journal_stop(handle);
820 handle = ext3_journal_start(inode, DIO_CREDITS);
821 if (IS_ERR(handle))
822 ret = PTR_ERR(handle);
823 goto get_block;
826 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
828 * Getting low on buffer credits...
830 ret = ext3_journal_extend(handle, DIO_CREDITS);
831 if (ret > 0) {
833 * Couldn't extend the transaction. Start a new one.
835 ret = ext3_journal_restart(handle, DIO_CREDITS);
839 get_block:
840 if (ret == 0)
841 ret = ext3_get_block_handle(handle, inode, iblock,
842 bh_result, create, 0);
843 bh_result->b_size = (1 << inode->i_blkbits);
844 return ret;
848 * `handle' can be NULL if create is zero
850 struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
851 long block, int create, int * errp)
853 struct buffer_head dummy;
854 int fatal = 0, err;
856 J_ASSERT(handle != NULL || create == 0);
858 dummy.b_state = 0;
859 dummy.b_blocknr = -1000;
860 buffer_trace_init(&dummy.b_history);
861 *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
862 if (!*errp && buffer_mapped(&dummy)) {
863 struct buffer_head *bh;
864 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
865 if (buffer_new(&dummy)) {
866 J_ASSERT(create != 0);
867 J_ASSERT(handle != 0);
869 /* Now that we do not always journal data, we
870 should keep in mind whether this should
871 always journal the new buffer as metadata.
872 For now, regular file writes use
873 ext3_get_block instead, so it's not a
874 problem. */
875 lock_buffer(bh);
876 BUFFER_TRACE(bh, "call get_create_access");
877 fatal = ext3_journal_get_create_access(handle, bh);
878 if (!fatal && !buffer_uptodate(bh)) {
879 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
880 set_buffer_uptodate(bh);
882 unlock_buffer(bh);
883 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
884 err = ext3_journal_dirty_metadata(handle, bh);
885 if (!fatal)
886 fatal = err;
887 } else {
888 BUFFER_TRACE(bh, "not a new buffer");
890 if (fatal) {
891 *errp = fatal;
892 brelse(bh);
893 bh = NULL;
895 return bh;
897 return NULL;
900 struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
901 int block, int create, int *err)
903 struct buffer_head * bh;
905 bh = ext3_getblk(handle, inode, block, create, err);
906 if (!bh)
907 return bh;
908 if (buffer_uptodate(bh))
909 return bh;
910 ll_rw_block(READ, 1, &bh);
911 wait_on_buffer(bh);
912 if (buffer_uptodate(bh))
913 return bh;
914 put_bh(bh);
915 *err = -EIO;
916 return NULL;
919 static int walk_page_buffers( handle_t *handle,
920 struct buffer_head *head,
921 unsigned from,
922 unsigned to,
923 int *partial,
924 int (*fn)( handle_t *handle,
925 struct buffer_head *bh))
927 struct buffer_head *bh;
928 unsigned block_start, block_end;
929 unsigned blocksize = head->b_size;
930 int err, ret = 0;
931 struct buffer_head *next;
933 for ( bh = head, block_start = 0;
934 ret == 0 && (bh != head || !block_start);
935 block_start = block_end, bh = next)
937 next = bh->b_this_page;
938 block_end = block_start + blocksize;
939 if (block_end <= from || block_start >= to) {
940 if (partial && !buffer_uptodate(bh))
941 *partial = 1;
942 continue;
944 err = (*fn)(handle, bh);
945 if (!ret)
946 ret = err;
948 return ret;
952 * To preserve ordering, it is essential that the hole instantiation and
953 * the data write be encapsulated in a single transaction. We cannot
954 * close off a transaction and start a new one between the ext3_get_block()
955 * and the commit_write(). So doing the journal_start at the start of
956 * prepare_write() is the right place.
958 * Also, this function can nest inside ext3_writepage() ->
959 * block_write_full_page(). In that case, we *know* that ext3_writepage()
960 * has generated enough buffer credits to do the whole page. So we won't
961 * block on the journal in that case, which is good, because the caller may
962 * be PF_MEMALLOC.
964 * By accident, ext3 can be reentered when a transaction is open via
965 * quota file writes. If we were to commit the transaction while thus
966 * reentered, there can be a deadlock - we would be holding a quota
967 * lock, and the commit would never complete if another thread had a
968 * transaction open and was blocking on the quota lock - a ranking
969 * violation.
971 * So what we do is to rely on the fact that journal_stop/journal_start
972 * will _not_ run commit under these circumstances because handle->h_ref
973 * is elevated. We'll still have enough credits for the tiny quotafile
974 * write.
977 static int do_journal_get_write_access(handle_t *handle,
978 struct buffer_head *bh)
980 if (!buffer_mapped(bh) || buffer_freed(bh))
981 return 0;
982 return ext3_journal_get_write_access(handle, bh);
985 static int ext3_prepare_write(struct file *file, struct page *page,
986 unsigned from, unsigned to)
988 struct inode *inode = page->mapping->host;
989 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
990 handle_t *handle;
991 int retries = 0;
993 retry:
994 handle = ext3_journal_start(inode, needed_blocks);
995 if (IS_ERR(handle)) {
996 ret = PTR_ERR(handle);
997 goto out;
999 if (test_opt(inode->i_sb, NOBH))
1000 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1001 else
1002 ret = block_prepare_write(page, from, to, ext3_get_block);
1003 if (ret)
1004 goto prepare_write_failed;
1006 if (ext3_should_journal_data(inode)) {
1007 ret = walk_page_buffers(handle, page_buffers(page),
1008 from, to, NULL, do_journal_get_write_access);
1010 prepare_write_failed:
1011 if (ret)
1012 ext3_journal_stop(handle);
1013 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1014 goto retry;
1015 out:
1016 return ret;
1020 ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1022 int err = journal_dirty_data(handle, bh);
1023 if (err)
1024 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1025 bh, handle,err);
1026 return err;
1029 /* For commit_write() in data=journal mode */
1030 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1032 if (!buffer_mapped(bh) || buffer_freed(bh))
1033 return 0;
1034 set_buffer_uptodate(bh);
1035 return ext3_journal_dirty_metadata(handle, bh);
1039 * We need to pick up the new inode size which generic_commit_write gave us
1040 * `file' can be NULL - eg, when called from page_symlink().
1042 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1043 * buffers are managed internally.
1046 static int ext3_ordered_commit_write(struct file *file, struct page *page,
1047 unsigned from, unsigned to)
1049 handle_t *handle = ext3_journal_current_handle();
1050 struct inode *inode = page->mapping->host;
1051 int ret = 0, ret2;
1053 ret = walk_page_buffers(handle, page_buffers(page),
1054 from, to, NULL, ext3_journal_dirty_data);
1056 if (ret == 0) {
1058 * generic_commit_write() will run mark_inode_dirty() if i_size
1059 * changes. So let's piggyback the i_disksize mark_inode_dirty
1060 * into that.
1062 loff_t new_i_size;
1064 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1065 if (new_i_size > EXT3_I(inode)->i_disksize)
1066 EXT3_I(inode)->i_disksize = new_i_size;
1067 ret = generic_commit_write(file, page, from, to);
1069 ret2 = ext3_journal_stop(handle);
1070 if (!ret)
1071 ret = ret2;
1072 return ret;
1075 static int ext3_writeback_commit_write(struct file *file, struct page *page,
1076 unsigned from, unsigned to)
1078 handle_t *handle = ext3_journal_current_handle();
1079 struct inode *inode = page->mapping->host;
1080 int ret = 0, ret2;
1081 loff_t new_i_size;
1083 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1084 if (new_i_size > EXT3_I(inode)->i_disksize)
1085 EXT3_I(inode)->i_disksize = new_i_size;
1087 if (test_opt(inode->i_sb, NOBH))
1088 ret = nobh_commit_write(file, page, from, to);
1089 else
1090 ret = generic_commit_write(file, page, from, to);
1092 ret2 = ext3_journal_stop(handle);
1093 if (!ret)
1094 ret = ret2;
1095 return ret;
1098 static int ext3_journalled_commit_write(struct file *file,
1099 struct page *page, unsigned from, unsigned to)
1101 handle_t *handle = ext3_journal_current_handle();
1102 struct inode *inode = page->mapping->host;
1103 int ret = 0, ret2;
1104 int partial = 0;
1105 loff_t pos;
1108 * Here we duplicate the generic_commit_write() functionality
1110 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1112 ret = walk_page_buffers(handle, page_buffers(page), from,
1113 to, &partial, commit_write_fn);
1114 if (!partial)
1115 SetPageUptodate(page);
1116 if (pos > inode->i_size)
1117 i_size_write(inode, pos);
1118 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1119 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1120 EXT3_I(inode)->i_disksize = inode->i_size;
1121 ret2 = ext3_mark_inode_dirty(handle, inode);
1122 if (!ret)
1123 ret = ret2;
1125 ret2 = ext3_journal_stop(handle);
1126 if (!ret)
1127 ret = ret2;
1128 return ret;
1132 * bmap() is special. It gets used by applications such as lilo and by
1133 * the swapper to find the on-disk block of a specific piece of data.
1135 * Naturally, this is dangerous if the block concerned is still in the
1136 * journal. If somebody makes a swapfile on an ext3 data-journaling
1137 * filesystem and enables swap, then they may get a nasty shock when the
1138 * data getting swapped to that swapfile suddenly gets overwritten by
1139 * the original zero's written out previously to the journal and
1140 * awaiting writeback in the kernel's buffer cache.
1142 * So, if we see any bmap calls here on a modified, data-journaled file,
1143 * take extra steps to flush any blocks which might be in the cache.
1145 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1147 struct inode *inode = mapping->host;
1148 journal_t *journal;
1149 int err;
1151 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1153 * This is a REALLY heavyweight approach, but the use of
1154 * bmap on dirty files is expected to be extremely rare:
1155 * only if we run lilo or swapon on a freshly made file
1156 * do we expect this to happen.
1158 * (bmap requires CAP_SYS_RAWIO so this does not
1159 * represent an unprivileged user DOS attack --- we'd be
1160 * in trouble if mortal users could trigger this path at
1161 * will.)
1163 * NB. EXT3_STATE_JDATA is not set on files other than
1164 * regular files. If somebody wants to bmap a directory
1165 * or symlink and gets confused because the buffer
1166 * hasn't yet been flushed to disk, they deserve
1167 * everything they get.
1170 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1171 journal = EXT3_JOURNAL(inode);
1172 journal_lock_updates(journal);
1173 err = journal_flush(journal);
1174 journal_unlock_updates(journal);
1176 if (err)
1177 return 0;
1180 return generic_block_bmap(mapping,block,ext3_get_block);
1183 static int bget_one(handle_t *handle, struct buffer_head *bh)
1185 get_bh(bh);
1186 return 0;
1189 static int bput_one(handle_t *handle, struct buffer_head *bh)
1191 put_bh(bh);
1192 return 0;
1195 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1197 if (buffer_mapped(bh))
1198 return ext3_journal_dirty_data(handle, bh);
1199 return 0;
1203 * Note that we always start a transaction even if we're not journalling
1204 * data. This is to preserve ordering: any hole instantiation within
1205 * __block_write_full_page -> ext3_get_block() should be journalled
1206 * along with the data so we don't crash and then get metadata which
1207 * refers to old data.
1209 * In all journalling modes block_write_full_page() will start the I/O.
1211 * Problem:
1213 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1214 * ext3_writepage()
1216 * Similar for:
1218 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1220 * Same applies to ext3_get_block(). We will deadlock on various things like
1221 * lock_journal and i_truncate_sem.
1223 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1224 * allocations fail.
1226 * 16May01: If we're reentered then journal_current_handle() will be
1227 * non-zero. We simply *return*.
1229 * 1 July 2001: @@@ FIXME:
1230 * In journalled data mode, a data buffer may be metadata against the
1231 * current transaction. But the same file is part of a shared mapping
1232 * and someone does a writepage() on it.
1234 * We will move the buffer onto the async_data list, but *after* it has
1235 * been dirtied. So there's a small window where we have dirty data on
1236 * BJ_Metadata.
1238 * Note that this only applies to the last partial page in the file. The
1239 * bit which block_write_full_page() uses prepare/commit for. (That's
1240 * broken code anyway: it's wrong for msync()).
1242 * It's a rare case: affects the final partial page, for journalled data
1243 * where the file is subject to bith write() and writepage() in the same
1244 * transction. To fix it we'll need a custom block_write_full_page().
1245 * We'll probably need that anyway for journalling writepage() output.
1247 * We don't honour synchronous mounts for writepage(). That would be
1248 * disastrous. Any write() or metadata operation will sync the fs for
1249 * us.
1251 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1252 * we don't need to open a transaction here.
1254 static int ext3_ordered_writepage(struct page *page,
1255 struct writeback_control *wbc)
1257 struct inode *inode = page->mapping->host;
1258 struct buffer_head *page_bufs;
1259 handle_t *handle = NULL;
1260 int ret = 0;
1261 int err;
1263 J_ASSERT(PageLocked(page));
1266 * We give up here if we're reentered, because it might be for a
1267 * different filesystem.
1269 if (ext3_journal_current_handle())
1270 goto out_fail;
1272 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1274 if (IS_ERR(handle)) {
1275 ret = PTR_ERR(handle);
1276 goto out_fail;
1279 if (!page_has_buffers(page)) {
1280 create_empty_buffers(page, inode->i_sb->s_blocksize,
1281 (1 << BH_Dirty)|(1 << BH_Uptodate));
1283 page_bufs = page_buffers(page);
1284 walk_page_buffers(handle, page_bufs, 0,
1285 PAGE_CACHE_SIZE, NULL, bget_one);
1287 ret = block_write_full_page(page, ext3_get_block, wbc);
1290 * The page can become unlocked at any point now, and
1291 * truncate can then come in and change things. So we
1292 * can't touch *page from now on. But *page_bufs is
1293 * safe due to elevated refcount.
1297 * And attach them to the current transaction. But only if
1298 * block_write_full_page() succeeded. Otherwise they are unmapped,
1299 * and generally junk.
1301 if (ret == 0) {
1302 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1303 NULL, journal_dirty_data_fn);
1304 if (!ret)
1305 ret = err;
1307 walk_page_buffers(handle, page_bufs, 0,
1308 PAGE_CACHE_SIZE, NULL, bput_one);
1309 err = ext3_journal_stop(handle);
1310 if (!ret)
1311 ret = err;
1312 return ret;
1314 out_fail:
1315 redirty_page_for_writepage(wbc, page);
1316 unlock_page(page);
1317 return ret;
1320 static int ext3_writeback_writepage(struct page *page,
1321 struct writeback_control *wbc)
1323 struct inode *inode = page->mapping->host;
1324 handle_t *handle = NULL;
1325 int ret = 0;
1326 int err;
1328 if (ext3_journal_current_handle())
1329 goto out_fail;
1331 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1332 if (IS_ERR(handle)) {
1333 ret = PTR_ERR(handle);
1334 goto out_fail;
1337 if (test_opt(inode->i_sb, NOBH))
1338 ret = nobh_writepage(page, ext3_get_block, wbc);
1339 else
1340 ret = block_write_full_page(page, ext3_get_block, wbc);
1342 err = ext3_journal_stop(handle);
1343 if (!ret)
1344 ret = err;
1345 return ret;
1347 out_fail:
1348 redirty_page_for_writepage(wbc, page);
1349 unlock_page(page);
1350 return ret;
1353 static int ext3_journalled_writepage(struct page *page,
1354 struct writeback_control *wbc)
1356 struct inode *inode = page->mapping->host;
1357 handle_t *handle = NULL;
1358 int ret = 0;
1359 int err;
1361 if (ext3_journal_current_handle())
1362 goto no_write;
1364 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1365 if (IS_ERR(handle)) {
1366 ret = PTR_ERR(handle);
1367 goto no_write;
1370 if (!page_has_buffers(page) || PageChecked(page)) {
1372 * It's mmapped pagecache. Add buffers and journal it. There
1373 * doesn't seem much point in redirtying the page here.
1375 ClearPageChecked(page);
1376 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1377 ext3_get_block);
1378 if (ret != 0)
1379 goto out_unlock;
1380 ret = walk_page_buffers(handle, page_buffers(page), 0,
1381 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1383 err = walk_page_buffers(handle, page_buffers(page), 0,
1384 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1385 if (ret == 0)
1386 ret = err;
1387 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1388 unlock_page(page);
1389 } else {
1391 * It may be a page full of checkpoint-mode buffers. We don't
1392 * really know unless we go poke around in the buffer_heads.
1393 * But block_write_full_page will do the right thing.
1395 ret = block_write_full_page(page, ext3_get_block, wbc);
1397 err = ext3_journal_stop(handle);
1398 if (!ret)
1399 ret = err;
1400 out:
1401 return ret;
1403 no_write:
1404 redirty_page_for_writepage(wbc, page);
1405 out_unlock:
1406 unlock_page(page);
1407 goto out;
1410 static int ext3_readpage(struct file *file, struct page *page)
1412 return mpage_readpage(page, ext3_get_block);
1415 static int
1416 ext3_readpages(struct file *file, struct address_space *mapping,
1417 struct list_head *pages, unsigned nr_pages)
1419 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1422 static int ext3_invalidatepage(struct page *page, unsigned long offset)
1424 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1427 * If it's a full truncate we just forget about the pending dirtying
1429 if (offset == 0)
1430 ClearPageChecked(page);
1432 return journal_invalidatepage(journal, page, offset);
1435 static int ext3_releasepage(struct page *page, int wait)
1437 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1439 WARN_ON(PageChecked(page));
1440 if (!page_has_buffers(page))
1441 return 0;
1442 return journal_try_to_free_buffers(journal, page, wait);
1446 * If the O_DIRECT write will extend the file then add this inode to the
1447 * orphan list. So recovery will truncate it back to the original size
1448 * if the machine crashes during the write.
1450 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1451 * crashes then stale disk data _may_ be exposed inside the file.
1453 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1454 const struct iovec *iov, loff_t offset,
1455 unsigned long nr_segs)
1457 struct file *file = iocb->ki_filp;
1458 struct inode *inode = file->f_mapping->host;
1459 struct ext3_inode_info *ei = EXT3_I(inode);
1460 handle_t *handle = NULL;
1461 ssize_t ret;
1462 int orphan = 0;
1463 size_t count = iov_length(iov, nr_segs);
1465 if (rw == WRITE) {
1466 loff_t final_size = offset + count;
1468 handle = ext3_journal_start(inode, DIO_CREDITS);
1469 if (IS_ERR(handle)) {
1470 ret = PTR_ERR(handle);
1471 goto out;
1473 if (final_size > inode->i_size) {
1474 ret = ext3_orphan_add(handle, inode);
1475 if (ret)
1476 goto out_stop;
1477 orphan = 1;
1478 ei->i_disksize = inode->i_size;
1482 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1483 offset, nr_segs,
1484 ext3_direct_io_get_blocks, NULL);
1487 * Reacquire the handle: ext3_direct_io_get_block() can restart the
1488 * transaction
1490 handle = journal_current_handle();
1492 out_stop:
1493 if (handle) {
1494 int err;
1496 if (orphan && inode->i_nlink)
1497 ext3_orphan_del(handle, inode);
1498 if (orphan && ret > 0) {
1499 loff_t end = offset + ret;
1500 if (end > inode->i_size) {
1501 ei->i_disksize = end;
1502 i_size_write(inode, end);
1504 * We're going to return a positive `ret'
1505 * here due to non-zero-length I/O, so there's
1506 * no way of reporting error returns from
1507 * ext3_mark_inode_dirty() to userspace. So
1508 * ignore it.
1510 ext3_mark_inode_dirty(handle, inode);
1513 err = ext3_journal_stop(handle);
1514 if (ret == 0)
1515 ret = err;
1517 out:
1518 return ret;
1522 * Pages can be marked dirty completely asynchronously from ext3's journalling
1523 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1524 * much here because ->set_page_dirty is called under VFS locks. The page is
1525 * not necessarily locked.
1527 * We cannot just dirty the page and leave attached buffers clean, because the
1528 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1529 * or jbddirty because all the journalling code will explode.
1531 * So what we do is to mark the page "pending dirty" and next time writepage
1532 * is called, propagate that into the buffers appropriately.
1534 static int ext3_journalled_set_page_dirty(struct page *page)
1536 SetPageChecked(page);
1537 return __set_page_dirty_nobuffers(page);
1540 static struct address_space_operations ext3_ordered_aops = {
1541 .readpage = ext3_readpage,
1542 .readpages = ext3_readpages,
1543 .writepage = ext3_ordered_writepage,
1544 .sync_page = block_sync_page,
1545 .prepare_write = ext3_prepare_write,
1546 .commit_write = ext3_ordered_commit_write,
1547 .bmap = ext3_bmap,
1548 .invalidatepage = ext3_invalidatepage,
1549 .releasepage = ext3_releasepage,
1550 .direct_IO = ext3_direct_IO,
1553 static struct address_space_operations ext3_writeback_aops = {
1554 .readpage = ext3_readpage,
1555 .readpages = ext3_readpages,
1556 .writepage = ext3_writeback_writepage,
1557 .sync_page = block_sync_page,
1558 .prepare_write = ext3_prepare_write,
1559 .commit_write = ext3_writeback_commit_write,
1560 .bmap = ext3_bmap,
1561 .invalidatepage = ext3_invalidatepage,
1562 .releasepage = ext3_releasepage,
1563 .direct_IO = ext3_direct_IO,
1566 static struct address_space_operations ext3_journalled_aops = {
1567 .readpage = ext3_readpage,
1568 .readpages = ext3_readpages,
1569 .writepage = ext3_journalled_writepage,
1570 .sync_page = block_sync_page,
1571 .prepare_write = ext3_prepare_write,
1572 .commit_write = ext3_journalled_commit_write,
1573 .set_page_dirty = ext3_journalled_set_page_dirty,
1574 .bmap = ext3_bmap,
1575 .invalidatepage = ext3_invalidatepage,
1576 .releasepage = ext3_releasepage,
1579 void ext3_set_aops(struct inode *inode)
1581 if (ext3_should_order_data(inode))
1582 inode->i_mapping->a_ops = &ext3_ordered_aops;
1583 else if (ext3_should_writeback_data(inode))
1584 inode->i_mapping->a_ops = &ext3_writeback_aops;
1585 else
1586 inode->i_mapping->a_ops = &ext3_journalled_aops;
1590 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1591 * up to the end of the block which corresponds to `from'.
1592 * This required during truncate. We need to physically zero the tail end
1593 * of that block so it doesn't yield old data if the file is later grown.
1595 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1596 struct address_space *mapping, loff_t from)
1598 unsigned long index = from >> PAGE_CACHE_SHIFT;
1599 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1600 unsigned blocksize, iblock, length, pos;
1601 struct inode *inode = mapping->host;
1602 struct buffer_head *bh;
1603 int err = 0;
1604 void *kaddr;
1606 blocksize = inode->i_sb->s_blocksize;
1607 length = blocksize - (offset & (blocksize - 1));
1608 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1611 * For "nobh" option, we can only work if we don't need to
1612 * read-in the page - otherwise we create buffers to do the IO.
1614 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH)) {
1615 if (PageUptodate(page)) {
1616 kaddr = kmap_atomic(page, KM_USER0);
1617 memset(kaddr + offset, 0, length);
1618 flush_dcache_page(page);
1619 kunmap_atomic(kaddr, KM_USER0);
1620 set_page_dirty(page);
1621 goto unlock;
1625 if (!page_has_buffers(page))
1626 create_empty_buffers(page, blocksize, 0);
1628 /* Find the buffer that contains "offset" */
1629 bh = page_buffers(page);
1630 pos = blocksize;
1631 while (offset >= pos) {
1632 bh = bh->b_this_page;
1633 iblock++;
1634 pos += blocksize;
1637 err = 0;
1638 if (buffer_freed(bh)) {
1639 BUFFER_TRACE(bh, "freed: skip");
1640 goto unlock;
1643 if (!buffer_mapped(bh)) {
1644 BUFFER_TRACE(bh, "unmapped");
1645 ext3_get_block(inode, iblock, bh, 0);
1646 /* unmapped? It's a hole - nothing to do */
1647 if (!buffer_mapped(bh)) {
1648 BUFFER_TRACE(bh, "still unmapped");
1649 goto unlock;
1653 /* Ok, it's mapped. Make sure it's up-to-date */
1654 if (PageUptodate(page))
1655 set_buffer_uptodate(bh);
1657 if (!buffer_uptodate(bh)) {
1658 err = -EIO;
1659 ll_rw_block(READ, 1, &bh);
1660 wait_on_buffer(bh);
1661 /* Uhhuh. Read error. Complain and punt. */
1662 if (!buffer_uptodate(bh))
1663 goto unlock;
1666 if (ext3_should_journal_data(inode)) {
1667 BUFFER_TRACE(bh, "get write access");
1668 err = ext3_journal_get_write_access(handle, bh);
1669 if (err)
1670 goto unlock;
1673 kaddr = kmap_atomic(page, KM_USER0);
1674 memset(kaddr + offset, 0, length);
1675 flush_dcache_page(page);
1676 kunmap_atomic(kaddr, KM_USER0);
1678 BUFFER_TRACE(bh, "zeroed end of block");
1680 err = 0;
1681 if (ext3_should_journal_data(inode)) {
1682 err = ext3_journal_dirty_metadata(handle, bh);
1683 } else {
1684 if (ext3_should_order_data(inode))
1685 err = ext3_journal_dirty_data(handle, bh);
1686 mark_buffer_dirty(bh);
1689 unlock:
1690 unlock_page(page);
1691 page_cache_release(page);
1692 return err;
1696 * Probably it should be a library function... search for first non-zero word
1697 * or memcmp with zero_page, whatever is better for particular architecture.
1698 * Linus?
1700 static inline int all_zeroes(__le32 *p, __le32 *q)
1702 while (p < q)
1703 if (*p++)
1704 return 0;
1705 return 1;
1709 * ext3_find_shared - find the indirect blocks for partial truncation.
1710 * @inode: inode in question
1711 * @depth: depth of the affected branch
1712 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1713 * @chain: place to store the pointers to partial indirect blocks
1714 * @top: place to the (detached) top of branch
1716 * This is a helper function used by ext3_truncate().
1718 * When we do truncate() we may have to clean the ends of several
1719 * indirect blocks but leave the blocks themselves alive. Block is
1720 * partially truncated if some data below the new i_size is refered
1721 * from it (and it is on the path to the first completely truncated
1722 * data block, indeed). We have to free the top of that path along
1723 * with everything to the right of the path. Since no allocation
1724 * past the truncation point is possible until ext3_truncate()
1725 * finishes, we may safely do the latter, but top of branch may
1726 * require special attention - pageout below the truncation point
1727 * might try to populate it.
1729 * We atomically detach the top of branch from the tree, store the
1730 * block number of its root in *@top, pointers to buffer_heads of
1731 * partially truncated blocks - in @chain[].bh and pointers to
1732 * their last elements that should not be removed - in
1733 * @chain[].p. Return value is the pointer to last filled element
1734 * of @chain.
1736 * The work left to caller to do the actual freeing of subtrees:
1737 * a) free the subtree starting from *@top
1738 * b) free the subtrees whose roots are stored in
1739 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1740 * c) free the subtrees growing from the inode past the @chain[0].
1741 * (no partially truncated stuff there). */
1743 static Indirect *ext3_find_shared(struct inode *inode,
1744 int depth,
1745 int offsets[4],
1746 Indirect chain[4],
1747 __le32 *top)
1749 Indirect *partial, *p;
1750 int k, err;
1752 *top = 0;
1753 /* Make k index the deepest non-null offest + 1 */
1754 for (k = depth; k > 1 && !offsets[k-1]; k--)
1756 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1757 /* Writer: pointers */
1758 if (!partial)
1759 partial = chain + k-1;
1761 * If the branch acquired continuation since we've looked at it -
1762 * fine, it should all survive and (new) top doesn't belong to us.
1764 if (!partial->key && *partial->p)
1765 /* Writer: end */
1766 goto no_top;
1767 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1770 * OK, we've found the last block that must survive. The rest of our
1771 * branch should be detached before unlocking. However, if that rest
1772 * of branch is all ours and does not grow immediately from the inode
1773 * it's easier to cheat and just decrement partial->p.
1775 if (p == chain + k - 1 && p > chain) {
1776 p->p--;
1777 } else {
1778 *top = *p->p;
1779 /* Nope, don't do this in ext3. Must leave the tree intact */
1780 #if 0
1781 *p->p = 0;
1782 #endif
1784 /* Writer: end */
1786 while(partial > p)
1788 brelse(partial->bh);
1789 partial--;
1791 no_top:
1792 return partial;
1796 * Zero a number of block pointers in either an inode or an indirect block.
1797 * If we restart the transaction we must again get write access to the
1798 * indirect block for further modification.
1800 * We release `count' blocks on disk, but (last - first) may be greater
1801 * than `count' because there can be holes in there.
1803 static void
1804 ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1805 unsigned long block_to_free, unsigned long count,
1806 __le32 *first, __le32 *last)
1808 __le32 *p;
1809 if (try_to_extend_transaction(handle, inode)) {
1810 if (bh) {
1811 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1812 ext3_journal_dirty_metadata(handle, bh);
1814 ext3_mark_inode_dirty(handle, inode);
1815 ext3_journal_test_restart(handle, inode);
1816 if (bh) {
1817 BUFFER_TRACE(bh, "retaking write access");
1818 ext3_journal_get_write_access(handle, bh);
1823 * Any buffers which are on the journal will be in memory. We find
1824 * them on the hash table so journal_revoke() will run journal_forget()
1825 * on them. We've already detached each block from the file, so
1826 * bforget() in journal_forget() should be safe.
1828 * AKPM: turn on bforget in journal_forget()!!!
1830 for (p = first; p < last; p++) {
1831 u32 nr = le32_to_cpu(*p);
1832 if (nr) {
1833 struct buffer_head *bh;
1835 *p = 0;
1836 bh = sb_find_get_block(inode->i_sb, nr);
1837 ext3_forget(handle, 0, inode, bh, nr);
1841 ext3_free_blocks(handle, inode, block_to_free, count);
1845 * ext3_free_data - free a list of data blocks
1846 * @handle: handle for this transaction
1847 * @inode: inode we are dealing with
1848 * @this_bh: indirect buffer_head which contains *@first and *@last
1849 * @first: array of block numbers
1850 * @last: points immediately past the end of array
1852 * We are freeing all blocks refered from that array (numbers are stored as
1853 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1855 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1856 * blocks are contiguous then releasing them at one time will only affect one
1857 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1858 * actually use a lot of journal space.
1860 * @this_bh will be %NULL if @first and @last point into the inode's direct
1861 * block pointers.
1863 static void ext3_free_data(handle_t *handle, struct inode *inode,
1864 struct buffer_head *this_bh,
1865 __le32 *first, __le32 *last)
1867 unsigned long block_to_free = 0; /* Starting block # of a run */
1868 unsigned long count = 0; /* Number of blocks in the run */
1869 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1870 corresponding to
1871 block_to_free */
1872 unsigned long nr; /* Current block # */
1873 __le32 *p; /* Pointer into inode/ind
1874 for current block */
1875 int err;
1877 if (this_bh) { /* For indirect block */
1878 BUFFER_TRACE(this_bh, "get_write_access");
1879 err = ext3_journal_get_write_access(handle, this_bh);
1880 /* Important: if we can't update the indirect pointers
1881 * to the blocks, we can't free them. */
1882 if (err)
1883 return;
1886 for (p = first; p < last; p++) {
1887 nr = le32_to_cpu(*p);
1888 if (nr) {
1889 /* accumulate blocks to free if they're contiguous */
1890 if (count == 0) {
1891 block_to_free = nr;
1892 block_to_free_p = p;
1893 count = 1;
1894 } else if (nr == block_to_free + count) {
1895 count++;
1896 } else {
1897 ext3_clear_blocks(handle, inode, this_bh,
1898 block_to_free,
1899 count, block_to_free_p, p);
1900 block_to_free = nr;
1901 block_to_free_p = p;
1902 count = 1;
1907 if (count > 0)
1908 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1909 count, block_to_free_p, p);
1911 if (this_bh) {
1912 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1913 ext3_journal_dirty_metadata(handle, this_bh);
1918 * ext3_free_branches - free an array of branches
1919 * @handle: JBD handle for this transaction
1920 * @inode: inode we are dealing with
1921 * @parent_bh: the buffer_head which contains *@first and *@last
1922 * @first: array of block numbers
1923 * @last: pointer immediately past the end of array
1924 * @depth: depth of the branches to free
1926 * We are freeing all blocks refered from these branches (numbers are
1927 * stored as little-endian 32-bit) and updating @inode->i_blocks
1928 * appropriately.
1930 static void ext3_free_branches(handle_t *handle, struct inode *inode,
1931 struct buffer_head *parent_bh,
1932 __le32 *first, __le32 *last, int depth)
1934 unsigned long nr;
1935 __le32 *p;
1937 if (is_handle_aborted(handle))
1938 return;
1940 if (depth--) {
1941 struct buffer_head *bh;
1942 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1943 p = last;
1944 while (--p >= first) {
1945 nr = le32_to_cpu(*p);
1946 if (!nr)
1947 continue; /* A hole */
1949 /* Go read the buffer for the next level down */
1950 bh = sb_bread(inode->i_sb, nr);
1953 * A read failure? Report error and clear slot
1954 * (should be rare).
1956 if (!bh) {
1957 ext3_error(inode->i_sb, "ext3_free_branches",
1958 "Read failure, inode=%ld, block=%ld",
1959 inode->i_ino, nr);
1960 continue;
1963 /* This zaps the entire block. Bottom up. */
1964 BUFFER_TRACE(bh, "free child branches");
1965 ext3_free_branches(handle, inode, bh,
1966 (__le32*)bh->b_data,
1967 (__le32*)bh->b_data + addr_per_block,
1968 depth);
1971 * We've probably journalled the indirect block several
1972 * times during the truncate. But it's no longer
1973 * needed and we now drop it from the transaction via
1974 * journal_revoke().
1976 * That's easy if it's exclusively part of this
1977 * transaction. But if it's part of the committing
1978 * transaction then journal_forget() will simply
1979 * brelse() it. That means that if the underlying
1980 * block is reallocated in ext3_get_block(),
1981 * unmap_underlying_metadata() will find this block
1982 * and will try to get rid of it. damn, damn.
1984 * If this block has already been committed to the
1985 * journal, a revoke record will be written. And
1986 * revoke records must be emitted *before* clearing
1987 * this block's bit in the bitmaps.
1989 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
1992 * Everything below this this pointer has been
1993 * released. Now let this top-of-subtree go.
1995 * We want the freeing of this indirect block to be
1996 * atomic in the journal with the updating of the
1997 * bitmap block which owns it. So make some room in
1998 * the journal.
2000 * We zero the parent pointer *after* freeing its
2001 * pointee in the bitmaps, so if extend_transaction()
2002 * for some reason fails to put the bitmap changes and
2003 * the release into the same transaction, recovery
2004 * will merely complain about releasing a free block,
2005 * rather than leaking blocks.
2007 if (is_handle_aborted(handle))
2008 return;
2009 if (try_to_extend_transaction(handle, inode)) {
2010 ext3_mark_inode_dirty(handle, inode);
2011 ext3_journal_test_restart(handle, inode);
2014 ext3_free_blocks(handle, inode, nr, 1);
2016 if (parent_bh) {
2018 * The block which we have just freed is
2019 * pointed to by an indirect block: journal it
2021 BUFFER_TRACE(parent_bh, "get_write_access");
2022 if (!ext3_journal_get_write_access(handle,
2023 parent_bh)){
2024 *p = 0;
2025 BUFFER_TRACE(parent_bh,
2026 "call ext3_journal_dirty_metadata");
2027 ext3_journal_dirty_metadata(handle,
2028 parent_bh);
2032 } else {
2033 /* We have reached the bottom of the tree. */
2034 BUFFER_TRACE(parent_bh, "free data blocks");
2035 ext3_free_data(handle, inode, parent_bh, first, last);
2040 * ext3_truncate()
2042 * We block out ext3_get_block() block instantiations across the entire
2043 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2044 * simultaneously on behalf of the same inode.
2046 * As we work through the truncate and commmit bits of it to the journal there
2047 * is one core, guiding principle: the file's tree must always be consistent on
2048 * disk. We must be able to restart the truncate after a crash.
2050 * The file's tree may be transiently inconsistent in memory (although it
2051 * probably isn't), but whenever we close off and commit a journal transaction,
2052 * the contents of (the filesystem + the journal) must be consistent and
2053 * restartable. It's pretty simple, really: bottom up, right to left (although
2054 * left-to-right works OK too).
2056 * Note that at recovery time, journal replay occurs *before* the restart of
2057 * truncate against the orphan inode list.
2059 * The committed inode has the new, desired i_size (which is the same as
2060 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2061 * that this inode's truncate did not complete and it will again call
2062 * ext3_truncate() to have another go. So there will be instantiated blocks
2063 * to the right of the truncation point in a crashed ext3 filesystem. But
2064 * that's fine - as long as they are linked from the inode, the post-crash
2065 * ext3_truncate() run will find them and release them.
2068 void ext3_truncate(struct inode * inode)
2070 handle_t *handle;
2071 struct ext3_inode_info *ei = EXT3_I(inode);
2072 __le32 *i_data = ei->i_data;
2073 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2074 struct address_space *mapping = inode->i_mapping;
2075 int offsets[4];
2076 Indirect chain[4];
2077 Indirect *partial;
2078 __le32 nr = 0;
2079 int n;
2080 long last_block;
2081 unsigned blocksize = inode->i_sb->s_blocksize;
2082 struct page *page;
2084 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2085 S_ISLNK(inode->i_mode)))
2086 return;
2087 if (ext3_inode_is_fast_symlink(inode))
2088 return;
2089 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2090 return;
2093 * We have to lock the EOF page here, because lock_page() nests
2094 * outside journal_start().
2096 if ((inode->i_size & (blocksize - 1)) == 0) {
2097 /* Block boundary? Nothing to do */
2098 page = NULL;
2099 } else {
2100 page = grab_cache_page(mapping,
2101 inode->i_size >> PAGE_CACHE_SHIFT);
2102 if (!page)
2103 return;
2106 handle = start_transaction(inode);
2107 if (IS_ERR(handle)) {
2108 if (page) {
2109 clear_highpage(page);
2110 flush_dcache_page(page);
2111 unlock_page(page);
2112 page_cache_release(page);
2114 return; /* AKPM: return what? */
2117 last_block = (inode->i_size + blocksize-1)
2118 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2120 if (page)
2121 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2123 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2124 if (n == 0)
2125 goto out_stop; /* error */
2128 * OK. This truncate is going to happen. We add the inode to the
2129 * orphan list, so that if this truncate spans multiple transactions,
2130 * and we crash, we will resume the truncate when the filesystem
2131 * recovers. It also marks the inode dirty, to catch the new size.
2133 * Implication: the file must always be in a sane, consistent
2134 * truncatable state while each transaction commits.
2136 if (ext3_orphan_add(handle, inode))
2137 goto out_stop;
2140 * The orphan list entry will now protect us from any crash which
2141 * occurs before the truncate completes, so it is now safe to propagate
2142 * the new, shorter inode size (held for now in i_size) into the
2143 * on-disk inode. We do this via i_disksize, which is the value which
2144 * ext3 *really* writes onto the disk inode.
2146 ei->i_disksize = inode->i_size;
2149 * From here we block out all ext3_get_block() callers who want to
2150 * modify the block allocation tree.
2152 down(&ei->truncate_sem);
2154 if (n == 1) { /* direct blocks */
2155 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2156 i_data + EXT3_NDIR_BLOCKS);
2157 goto do_indirects;
2160 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2161 /* Kill the top of shared branch (not detached) */
2162 if (nr) {
2163 if (partial == chain) {
2164 /* Shared branch grows from the inode */
2165 ext3_free_branches(handle, inode, NULL,
2166 &nr, &nr+1, (chain+n-1) - partial);
2167 *partial->p = 0;
2169 * We mark the inode dirty prior to restart,
2170 * and prior to stop. No need for it here.
2172 } else {
2173 /* Shared branch grows from an indirect block */
2174 BUFFER_TRACE(partial->bh, "get_write_access");
2175 ext3_free_branches(handle, inode, partial->bh,
2176 partial->p,
2177 partial->p+1, (chain+n-1) - partial);
2180 /* Clear the ends of indirect blocks on the shared branch */
2181 while (partial > chain) {
2182 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2183 (__le32*)partial->bh->b_data+addr_per_block,
2184 (chain+n-1) - partial);
2185 BUFFER_TRACE(partial->bh, "call brelse");
2186 brelse (partial->bh);
2187 partial--;
2189 do_indirects:
2190 /* Kill the remaining (whole) subtrees */
2191 switch (offsets[0]) {
2192 default:
2193 nr = i_data[EXT3_IND_BLOCK];
2194 if (nr) {
2195 ext3_free_branches(handle, inode, NULL,
2196 &nr, &nr+1, 1);
2197 i_data[EXT3_IND_BLOCK] = 0;
2199 case EXT3_IND_BLOCK:
2200 nr = i_data[EXT3_DIND_BLOCK];
2201 if (nr) {
2202 ext3_free_branches(handle, inode, NULL,
2203 &nr, &nr+1, 2);
2204 i_data[EXT3_DIND_BLOCK] = 0;
2206 case EXT3_DIND_BLOCK:
2207 nr = i_data[EXT3_TIND_BLOCK];
2208 if (nr) {
2209 ext3_free_branches(handle, inode, NULL,
2210 &nr, &nr+1, 3);
2211 i_data[EXT3_TIND_BLOCK] = 0;
2213 case EXT3_TIND_BLOCK:
2217 ext3_discard_reservation(inode);
2219 up(&ei->truncate_sem);
2220 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2221 ext3_mark_inode_dirty(handle, inode);
2223 /* In a multi-transaction truncate, we only make the final
2224 * transaction synchronous */
2225 if (IS_SYNC(inode))
2226 handle->h_sync = 1;
2227 out_stop:
2229 * If this was a simple ftruncate(), and the file will remain alive
2230 * then we need to clear up the orphan record which we created above.
2231 * However, if this was a real unlink then we were called by
2232 * ext3_delete_inode(), and we allow that function to clean up the
2233 * orphan info for us.
2235 if (inode->i_nlink)
2236 ext3_orphan_del(handle, inode);
2238 ext3_journal_stop(handle);
2241 static unsigned long ext3_get_inode_block(struct super_block *sb,
2242 unsigned long ino, struct ext3_iloc *iloc)
2244 unsigned long desc, group_desc, block_group;
2245 unsigned long offset, block;
2246 struct buffer_head *bh;
2247 struct ext3_group_desc * gdp;
2250 if ((ino != EXT3_ROOT_INO &&
2251 ino != EXT3_JOURNAL_INO &&
2252 ino != EXT3_RESIZE_INO &&
2253 ino < EXT3_FIRST_INO(sb)) ||
2254 ino > le32_to_cpu(
2255 EXT3_SB(sb)->s_es->s_inodes_count)) {
2256 ext3_error (sb, "ext3_get_inode_block",
2257 "bad inode number: %lu", ino);
2258 return 0;
2260 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2261 if (block_group >= EXT3_SB(sb)->s_groups_count) {
2262 ext3_error (sb, "ext3_get_inode_block",
2263 "group >= groups count");
2264 return 0;
2266 smp_rmb();
2267 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2268 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2269 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2270 if (!bh) {
2271 ext3_error (sb, "ext3_get_inode_block",
2272 "Descriptor not loaded");
2273 return 0;
2276 gdp = (struct ext3_group_desc *) bh->b_data;
2278 * Figure out the offset within the block group inode table
2280 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2281 EXT3_INODE_SIZE(sb);
2282 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2283 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2285 iloc->block_group = block_group;
2286 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2287 return block;
2291 * ext3_get_inode_loc returns with an extra refcount against the inode's
2292 * underlying buffer_head on success. If 'in_mem' is true, we have all
2293 * data in memory that is needed to recreate the on-disk version of this
2294 * inode.
2296 static int __ext3_get_inode_loc(struct inode *inode,
2297 struct ext3_iloc *iloc, int in_mem)
2299 unsigned long block;
2300 struct buffer_head *bh;
2302 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2303 if (!block)
2304 return -EIO;
2306 bh = sb_getblk(inode->i_sb, block);
2307 if (!bh) {
2308 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2309 "unable to read inode block - "
2310 "inode=%lu, block=%lu", inode->i_ino, block);
2311 return -EIO;
2313 if (!buffer_uptodate(bh)) {
2314 lock_buffer(bh);
2315 if (buffer_uptodate(bh)) {
2316 /* someone brought it uptodate while we waited */
2317 unlock_buffer(bh);
2318 goto has_buffer;
2322 * If we have all information of the inode in memory and this
2323 * is the only valid inode in the block, we need not read the
2324 * block.
2326 if (in_mem) {
2327 struct buffer_head *bitmap_bh;
2328 struct ext3_group_desc *desc;
2329 int inodes_per_buffer;
2330 int inode_offset, i;
2331 int block_group;
2332 int start;
2334 block_group = (inode->i_ino - 1) /
2335 EXT3_INODES_PER_GROUP(inode->i_sb);
2336 inodes_per_buffer = bh->b_size /
2337 EXT3_INODE_SIZE(inode->i_sb);
2338 inode_offset = ((inode->i_ino - 1) %
2339 EXT3_INODES_PER_GROUP(inode->i_sb));
2340 start = inode_offset & ~(inodes_per_buffer - 1);
2342 /* Is the inode bitmap in cache? */
2343 desc = ext3_get_group_desc(inode->i_sb,
2344 block_group, NULL);
2345 if (!desc)
2346 goto make_io;
2348 bitmap_bh = sb_getblk(inode->i_sb,
2349 le32_to_cpu(desc->bg_inode_bitmap));
2350 if (!bitmap_bh)
2351 goto make_io;
2354 * If the inode bitmap isn't in cache then the
2355 * optimisation may end up performing two reads instead
2356 * of one, so skip it.
2358 if (!buffer_uptodate(bitmap_bh)) {
2359 brelse(bitmap_bh);
2360 goto make_io;
2362 for (i = start; i < start + inodes_per_buffer; i++) {
2363 if (i == inode_offset)
2364 continue;
2365 if (ext3_test_bit(i, bitmap_bh->b_data))
2366 break;
2368 brelse(bitmap_bh);
2369 if (i == start + inodes_per_buffer) {
2370 /* all other inodes are free, so skip I/O */
2371 memset(bh->b_data, 0, bh->b_size);
2372 set_buffer_uptodate(bh);
2373 unlock_buffer(bh);
2374 goto has_buffer;
2378 make_io:
2380 * There are other valid inodes in the buffer, this inode
2381 * has in-inode xattrs, or we don't have this inode in memory.
2382 * Read the block from disk.
2384 get_bh(bh);
2385 bh->b_end_io = end_buffer_read_sync;
2386 submit_bh(READ, bh);
2387 wait_on_buffer(bh);
2388 if (!buffer_uptodate(bh)) {
2389 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2390 "unable to read inode block - "
2391 "inode=%lu, block=%lu",
2392 inode->i_ino, block);
2393 brelse(bh);
2394 return -EIO;
2397 has_buffer:
2398 iloc->bh = bh;
2399 return 0;
2402 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2404 /* We have all inode data except xattrs in memory here. */
2405 return __ext3_get_inode_loc(inode, iloc,
2406 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2409 void ext3_set_inode_flags(struct inode *inode)
2411 unsigned int flags = EXT3_I(inode)->i_flags;
2413 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2414 if (flags & EXT3_SYNC_FL)
2415 inode->i_flags |= S_SYNC;
2416 if (flags & EXT3_APPEND_FL)
2417 inode->i_flags |= S_APPEND;
2418 if (flags & EXT3_IMMUTABLE_FL)
2419 inode->i_flags |= S_IMMUTABLE;
2420 if (flags & EXT3_NOATIME_FL)
2421 inode->i_flags |= S_NOATIME;
2422 if (flags & EXT3_DIRSYNC_FL)
2423 inode->i_flags |= S_DIRSYNC;
2426 void ext3_read_inode(struct inode * inode)
2428 struct ext3_iloc iloc;
2429 struct ext3_inode *raw_inode;
2430 struct ext3_inode_info *ei = EXT3_I(inode);
2431 struct buffer_head *bh;
2432 int block;
2434 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2435 ei->i_acl = EXT3_ACL_NOT_CACHED;
2436 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2437 #endif
2438 ei->i_block_alloc_info = NULL;
2440 if (__ext3_get_inode_loc(inode, &iloc, 0))
2441 goto bad_inode;
2442 bh = iloc.bh;
2443 raw_inode = ext3_raw_inode(&iloc);
2444 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2445 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2446 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2447 if(!(test_opt (inode->i_sb, NO_UID32))) {
2448 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2449 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2451 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2452 inode->i_size = le32_to_cpu(raw_inode->i_size);
2453 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2454 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2455 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2456 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2458 ei->i_state = 0;
2459 ei->i_dir_start_lookup = 0;
2460 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2461 /* We now have enough fields to check if the inode was active or not.
2462 * This is needed because nfsd might try to access dead inodes
2463 * the test is that same one that e2fsck uses
2464 * NeilBrown 1999oct15
2466 if (inode->i_nlink == 0) {
2467 if (inode->i_mode == 0 ||
2468 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2469 /* this inode is deleted */
2470 brelse (bh);
2471 goto bad_inode;
2473 /* The only unlinked inodes we let through here have
2474 * valid i_mode and are being read by the orphan
2475 * recovery code: that's fine, we're about to complete
2476 * the process of deleting those. */
2478 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
2479 * (for stat), not the fs block
2480 * size */
2481 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2482 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2483 #ifdef EXT3_FRAGMENTS
2484 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2485 ei->i_frag_no = raw_inode->i_frag;
2486 ei->i_frag_size = raw_inode->i_fsize;
2487 #endif
2488 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2489 if (!S_ISREG(inode->i_mode)) {
2490 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2491 } else {
2492 inode->i_size |=
2493 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2495 ei->i_disksize = inode->i_size;
2496 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2497 ei->i_block_group = iloc.block_group;
2499 * NOTE! The in-memory inode i_data array is in little-endian order
2500 * even on big-endian machines: we do NOT byteswap the block numbers!
2502 for (block = 0; block < EXT3_N_BLOCKS; block++)
2503 ei->i_data[block] = raw_inode->i_block[block];
2504 INIT_LIST_HEAD(&ei->i_orphan);
2506 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2507 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2509 * When mke2fs creates big inodes it does not zero out
2510 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2511 * so ignore those first few inodes.
2513 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2514 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2515 EXT3_INODE_SIZE(inode->i_sb))
2516 goto bad_inode;
2517 if (ei->i_extra_isize == 0) {
2518 /* The extra space is currently unused. Use it. */
2519 ei->i_extra_isize = sizeof(struct ext3_inode) -
2520 EXT3_GOOD_OLD_INODE_SIZE;
2521 } else {
2522 __le32 *magic = (void *)raw_inode +
2523 EXT3_GOOD_OLD_INODE_SIZE +
2524 ei->i_extra_isize;
2525 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2526 ei->i_state |= EXT3_STATE_XATTR;
2528 } else
2529 ei->i_extra_isize = 0;
2531 if (S_ISREG(inode->i_mode)) {
2532 inode->i_op = &ext3_file_inode_operations;
2533 inode->i_fop = &ext3_file_operations;
2534 ext3_set_aops(inode);
2535 } else if (S_ISDIR(inode->i_mode)) {
2536 inode->i_op = &ext3_dir_inode_operations;
2537 inode->i_fop = &ext3_dir_operations;
2538 } else if (S_ISLNK(inode->i_mode)) {
2539 if (ext3_inode_is_fast_symlink(inode))
2540 inode->i_op = &ext3_fast_symlink_inode_operations;
2541 else {
2542 inode->i_op = &ext3_symlink_inode_operations;
2543 ext3_set_aops(inode);
2545 } else {
2546 inode->i_op = &ext3_special_inode_operations;
2547 if (raw_inode->i_block[0])
2548 init_special_inode(inode, inode->i_mode,
2549 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2550 else
2551 init_special_inode(inode, inode->i_mode,
2552 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2554 brelse (iloc.bh);
2555 ext3_set_inode_flags(inode);
2556 return;
2558 bad_inode:
2559 make_bad_inode(inode);
2560 return;
2564 * Post the struct inode info into an on-disk inode location in the
2565 * buffer-cache. This gobbles the caller's reference to the
2566 * buffer_head in the inode location struct.
2568 * The caller must have write access to iloc->bh.
2570 static int ext3_do_update_inode(handle_t *handle,
2571 struct inode *inode,
2572 struct ext3_iloc *iloc)
2574 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2575 struct ext3_inode_info *ei = EXT3_I(inode);
2576 struct buffer_head *bh = iloc->bh;
2577 int err = 0, rc, block;
2579 /* For fields not not tracking in the in-memory inode,
2580 * initialise them to zero for new inodes. */
2581 if (ei->i_state & EXT3_STATE_NEW)
2582 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2584 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2585 if(!(test_opt(inode->i_sb, NO_UID32))) {
2586 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2587 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2589 * Fix up interoperability with old kernels. Otherwise, old inodes get
2590 * re-used with the upper 16 bits of the uid/gid intact
2592 if(!ei->i_dtime) {
2593 raw_inode->i_uid_high =
2594 cpu_to_le16(high_16_bits(inode->i_uid));
2595 raw_inode->i_gid_high =
2596 cpu_to_le16(high_16_bits(inode->i_gid));
2597 } else {
2598 raw_inode->i_uid_high = 0;
2599 raw_inode->i_gid_high = 0;
2601 } else {
2602 raw_inode->i_uid_low =
2603 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2604 raw_inode->i_gid_low =
2605 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2606 raw_inode->i_uid_high = 0;
2607 raw_inode->i_gid_high = 0;
2609 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2610 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2611 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2612 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2613 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2614 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2615 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2616 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2617 #ifdef EXT3_FRAGMENTS
2618 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2619 raw_inode->i_frag = ei->i_frag_no;
2620 raw_inode->i_fsize = ei->i_frag_size;
2621 #endif
2622 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2623 if (!S_ISREG(inode->i_mode)) {
2624 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2625 } else {
2626 raw_inode->i_size_high =
2627 cpu_to_le32(ei->i_disksize >> 32);
2628 if (ei->i_disksize > 0x7fffffffULL) {
2629 struct super_block *sb = inode->i_sb;
2630 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2631 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2632 EXT3_SB(sb)->s_es->s_rev_level ==
2633 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2634 /* If this is the first large file
2635 * created, add a flag to the superblock.
2637 err = ext3_journal_get_write_access(handle,
2638 EXT3_SB(sb)->s_sbh);
2639 if (err)
2640 goto out_brelse;
2641 ext3_update_dynamic_rev(sb);
2642 EXT3_SET_RO_COMPAT_FEATURE(sb,
2643 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2644 sb->s_dirt = 1;
2645 handle->h_sync = 1;
2646 err = ext3_journal_dirty_metadata(handle,
2647 EXT3_SB(sb)->s_sbh);
2651 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2652 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2653 if (old_valid_dev(inode->i_rdev)) {
2654 raw_inode->i_block[0] =
2655 cpu_to_le32(old_encode_dev(inode->i_rdev));
2656 raw_inode->i_block[1] = 0;
2657 } else {
2658 raw_inode->i_block[0] = 0;
2659 raw_inode->i_block[1] =
2660 cpu_to_le32(new_encode_dev(inode->i_rdev));
2661 raw_inode->i_block[2] = 0;
2663 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2664 raw_inode->i_block[block] = ei->i_data[block];
2666 if (EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE)
2667 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2669 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2670 rc = ext3_journal_dirty_metadata(handle, bh);
2671 if (!err)
2672 err = rc;
2673 ei->i_state &= ~EXT3_STATE_NEW;
2675 out_brelse:
2676 brelse (bh);
2677 ext3_std_error(inode->i_sb, err);
2678 return err;
2682 * ext3_write_inode()
2684 * We are called from a few places:
2686 * - Within generic_file_write() for O_SYNC files.
2687 * Here, there will be no transaction running. We wait for any running
2688 * trasnaction to commit.
2690 * - Within sys_sync(), kupdate and such.
2691 * We wait on commit, if tol to.
2693 * - Within prune_icache() (PF_MEMALLOC == true)
2694 * Here we simply return. We can't afford to block kswapd on the
2695 * journal commit.
2697 * In all cases it is actually safe for us to return without doing anything,
2698 * because the inode has been copied into a raw inode buffer in
2699 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2700 * knfsd.
2702 * Note that we are absolutely dependent upon all inode dirtiers doing the
2703 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2704 * which we are interested.
2706 * It would be a bug for them to not do this. The code:
2708 * mark_inode_dirty(inode)
2709 * stuff();
2710 * inode->i_size = expr;
2712 * is in error because a kswapd-driven write_inode() could occur while
2713 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2714 * will no longer be on the superblock's dirty inode list.
2716 int ext3_write_inode(struct inode *inode, int wait)
2718 if (current->flags & PF_MEMALLOC)
2719 return 0;
2721 if (ext3_journal_current_handle()) {
2722 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2723 dump_stack();
2724 return -EIO;
2727 if (!wait)
2728 return 0;
2730 return ext3_force_commit(inode->i_sb);
2734 * ext3_setattr()
2736 * Called from notify_change.
2738 * We want to trap VFS attempts to truncate the file as soon as
2739 * possible. In particular, we want to make sure that when the VFS
2740 * shrinks i_size, we put the inode on the orphan list and modify
2741 * i_disksize immediately, so that during the subsequent flushing of
2742 * dirty pages and freeing of disk blocks, we can guarantee that any
2743 * commit will leave the blocks being flushed in an unused state on
2744 * disk. (On recovery, the inode will get truncated and the blocks will
2745 * be freed, so we have a strong guarantee that no future commit will
2746 * leave these blocks visible to the user.)
2748 * Called with inode->sem down.
2750 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2752 struct inode *inode = dentry->d_inode;
2753 int error, rc = 0;
2754 const unsigned int ia_valid = attr->ia_valid;
2756 error = inode_change_ok(inode, attr);
2757 if (error)
2758 return error;
2760 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2761 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2762 handle_t *handle;
2764 /* (user+group)*(old+new) structure, inode write (sb,
2765 * inode block, ? - but truncate inode update has it) */
2766 handle = ext3_journal_start(inode, 4*EXT3_QUOTA_INIT_BLOCKS+3);
2767 if (IS_ERR(handle)) {
2768 error = PTR_ERR(handle);
2769 goto err_out;
2771 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2772 if (error) {
2773 ext3_journal_stop(handle);
2774 return error;
2776 /* Update corresponding info in inode so that everything is in
2777 * one transaction */
2778 if (attr->ia_valid & ATTR_UID)
2779 inode->i_uid = attr->ia_uid;
2780 if (attr->ia_valid & ATTR_GID)
2781 inode->i_gid = attr->ia_gid;
2782 error = ext3_mark_inode_dirty(handle, inode);
2783 ext3_journal_stop(handle);
2786 if (S_ISREG(inode->i_mode) &&
2787 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2788 handle_t *handle;
2790 handle = ext3_journal_start(inode, 3);
2791 if (IS_ERR(handle)) {
2792 error = PTR_ERR(handle);
2793 goto err_out;
2796 error = ext3_orphan_add(handle, inode);
2797 EXT3_I(inode)->i_disksize = attr->ia_size;
2798 rc = ext3_mark_inode_dirty(handle, inode);
2799 if (!error)
2800 error = rc;
2801 ext3_journal_stop(handle);
2804 rc = inode_setattr(inode, attr);
2806 /* If inode_setattr's call to ext3_truncate failed to get a
2807 * transaction handle at all, we need to clean up the in-core
2808 * orphan list manually. */
2809 if (inode->i_nlink)
2810 ext3_orphan_del(NULL, inode);
2812 if (!rc && (ia_valid & ATTR_MODE))
2813 rc = ext3_acl_chmod(inode);
2815 err_out:
2816 ext3_std_error(inode->i_sb, error);
2817 if (!error)
2818 error = rc;
2819 return error;
2824 * akpm: how many blocks doth make a writepage()?
2826 * With N blocks per page, it may be:
2827 * N data blocks
2828 * 2 indirect block
2829 * 2 dindirect
2830 * 1 tindirect
2831 * N+5 bitmap blocks (from the above)
2832 * N+5 group descriptor summary blocks
2833 * 1 inode block
2834 * 1 superblock.
2835 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2837 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2839 * With ordered or writeback data it's the same, less the N data blocks.
2841 * If the inode's direct blocks can hold an integral number of pages then a
2842 * page cannot straddle two indirect blocks, and we can only touch one indirect
2843 * and dindirect block, and the "5" above becomes "3".
2845 * This still overestimates under most circumstances. If we were to pass the
2846 * start and end offsets in here as well we could do block_to_path() on each
2847 * block and work out the exact number of indirects which are touched. Pah.
2850 static int ext3_writepage_trans_blocks(struct inode *inode)
2852 int bpp = ext3_journal_blocks_per_page(inode);
2853 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2854 int ret;
2856 if (ext3_should_journal_data(inode))
2857 ret = 3 * (bpp + indirects) + 2;
2858 else
2859 ret = 2 * (bpp + indirects) + 2;
2861 #ifdef CONFIG_QUOTA
2862 /* We know that structure was already allocated during DQUOT_INIT so
2863 * we will be updating only the data blocks + inodes */
2864 ret += 2*EXT3_QUOTA_TRANS_BLOCKS;
2865 #endif
2867 return ret;
2871 * The caller must have previously called ext3_reserve_inode_write().
2872 * Give this, we know that the caller already has write access to iloc->bh.
2874 int ext3_mark_iloc_dirty(handle_t *handle,
2875 struct inode *inode, struct ext3_iloc *iloc)
2877 int err = 0;
2879 /* the do_update_inode consumes one bh->b_count */
2880 get_bh(iloc->bh);
2882 /* ext3_do_update_inode() does journal_dirty_metadata */
2883 err = ext3_do_update_inode(handle, inode, iloc);
2884 put_bh(iloc->bh);
2885 return err;
2889 * On success, We end up with an outstanding reference count against
2890 * iloc->bh. This _must_ be cleaned up later.
2894 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
2895 struct ext3_iloc *iloc)
2897 int err = 0;
2898 if (handle) {
2899 err = ext3_get_inode_loc(inode, iloc);
2900 if (!err) {
2901 BUFFER_TRACE(iloc->bh, "get_write_access");
2902 err = ext3_journal_get_write_access(handle, iloc->bh);
2903 if (err) {
2904 brelse(iloc->bh);
2905 iloc->bh = NULL;
2909 ext3_std_error(inode->i_sb, err);
2910 return err;
2914 * akpm: What we do here is to mark the in-core inode as clean
2915 * with respect to inode dirtiness (it may still be data-dirty).
2916 * This means that the in-core inode may be reaped by prune_icache
2917 * without having to perform any I/O. This is a very good thing,
2918 * because *any* task may call prune_icache - even ones which
2919 * have a transaction open against a different journal.
2921 * Is this cheating? Not really. Sure, we haven't written the
2922 * inode out, but prune_icache isn't a user-visible syncing function.
2923 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2924 * we start and wait on commits.
2926 * Is this efficient/effective? Well, we're being nice to the system
2927 * by cleaning up our inodes proactively so they can be reaped
2928 * without I/O. But we are potentially leaving up to five seconds'
2929 * worth of inodes floating about which prune_icache wants us to
2930 * write out. One way to fix that would be to get prune_icache()
2931 * to do a write_super() to free up some memory. It has the desired
2932 * effect.
2934 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2936 struct ext3_iloc iloc;
2937 int err;
2939 might_sleep();
2940 err = ext3_reserve_inode_write(handle, inode, &iloc);
2941 if (!err)
2942 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2943 return err;
2947 * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2949 * We're really interested in the case where a file is being extended.
2950 * i_size has been changed by generic_commit_write() and we thus need
2951 * to include the updated inode in the current transaction.
2953 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2954 * are allocated to the file.
2956 * If the inode is marked synchronous, we don't honour that here - doing
2957 * so would cause a commit on atime updates, which we don't bother doing.
2958 * We handle synchronous inodes at the highest possible level.
2960 void ext3_dirty_inode(struct inode *inode)
2962 handle_t *current_handle = ext3_journal_current_handle();
2963 handle_t *handle;
2965 handle = ext3_journal_start(inode, 2);
2966 if (IS_ERR(handle))
2967 goto out;
2968 if (current_handle &&
2969 current_handle->h_transaction != handle->h_transaction) {
2970 /* This task has a transaction open against a different fs */
2971 printk(KERN_EMERG "%s: transactions do not match!\n",
2972 __FUNCTION__);
2973 } else {
2974 jbd_debug(5, "marking dirty. outer handle=%p\n",
2975 current_handle);
2976 ext3_mark_inode_dirty(handle, inode);
2978 ext3_journal_stop(handle);
2979 out:
2980 return;
2983 #ifdef AKPM
2985 * Bind an inode's backing buffer_head into this transaction, to prevent
2986 * it from being flushed to disk early. Unlike
2987 * ext3_reserve_inode_write, this leaves behind no bh reference and
2988 * returns no iloc structure, so the caller needs to repeat the iloc
2989 * lookup to mark the inode dirty later.
2991 static inline int
2992 ext3_pin_inode(handle_t *handle, struct inode *inode)
2994 struct ext3_iloc iloc;
2996 int err = 0;
2997 if (handle) {
2998 err = ext3_get_inode_loc(inode, &iloc);
2999 if (!err) {
3000 BUFFER_TRACE(iloc.bh, "get_write_access");
3001 err = journal_get_write_access(handle, iloc.bh);
3002 if (!err)
3003 err = ext3_journal_dirty_metadata(handle,
3004 iloc.bh);
3005 brelse(iloc.bh);
3008 ext3_std_error(inode->i_sb, err);
3009 return err;
3011 #endif
3013 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3015 journal_t *journal;
3016 handle_t *handle;
3017 int err;
3020 * We have to be very careful here: changing a data block's
3021 * journaling status dynamically is dangerous. If we write a
3022 * data block to the journal, change the status and then delete
3023 * that block, we risk forgetting to revoke the old log record
3024 * from the journal and so a subsequent replay can corrupt data.
3025 * So, first we make sure that the journal is empty and that
3026 * nobody is changing anything.
3029 journal = EXT3_JOURNAL(inode);
3030 if (is_journal_aborted(journal) || IS_RDONLY(inode))
3031 return -EROFS;
3033 journal_lock_updates(journal);
3034 journal_flush(journal);
3037 * OK, there are no updates running now, and all cached data is
3038 * synced to disk. We are now in a completely consistent state
3039 * which doesn't have anything in the journal, and we know that
3040 * no filesystem updates are running, so it is safe to modify
3041 * the inode's in-core data-journaling state flag now.
3044 if (val)
3045 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3046 else
3047 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3048 ext3_set_aops(inode);
3050 journal_unlock_updates(journal);
3052 /* Finally we can mark the inode as dirty. */
3054 handle = ext3_journal_start(inode, 1);
3055 if (IS_ERR(handle))
3056 return PTR_ERR(handle);
3058 err = ext3_mark_inode_dirty(handle, inode);
3059 handle->h_sync = 1;
3060 ext3_journal_stop(handle);
3061 ext3_std_error(inode->i_sb, err);
3063 return err;