replace some function names
[linux-2.6/zen-sources.git] / mm / swapfile.c
blobc9d528cf80d086243b9d42f010d0ffc24f7231dd
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 static DEFINE_SPINLOCK(swap_lock);
37 static unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 static int least_priority;
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
47 static struct swap_list_t swap_list = {-1, -1};
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
51 static DEFINE_MUTEX(swapon_mutex);
54 * We need this because the bdev->unplug_fn can sleep and we cannot
55 * hold swap_lock while calling the unplug_fn. And swap_lock
56 * cannot be turned into a mutex.
58 static DECLARE_RWSEM(swap_unplug_sem);
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62 swp_entry_t entry;
64 down_read(&swap_unplug_sem);
65 entry.val = page_private(page);
66 if (PageSwapCache(page)) {
67 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68 struct backing_dev_info *bdi;
71 * If the page is removed from swapcache from under us (with a
72 * racy try_to_unuse/swapoff) we need an additional reference
73 * count to avoid reading garbage from page_private(page) above.
74 * If the WARN_ON triggers during a swapoff it maybe the race
75 * condition and it's harmless. However if it triggers without
76 * swapoff it signals a problem.
78 WARN_ON(page_count(page) <= 1);
80 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81 blk_run_backing_dev(bdi, page);
83 up_read(&swap_unplug_sem);
86 #define SWAPFILE_CLUSTER 256
87 #define LATENCY_LIMIT 256
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
91 unsigned long offset, last_in_cluster;
92 int latency_ration = LATENCY_LIMIT;
94 /*
95 * We try to cluster swap pages by allocating them sequentially
96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
97 * way, however, we resort to first-free allocation, starting
98 * a new cluster. This prevents us from scattering swap pages
99 * all over the entire swap partition, so that we reduce
100 * overall disk seek times between swap pages. -- sct
101 * But we do now try to find an empty cluster. -Andrea
104 si->flags += SWP_SCANNING;
105 if (unlikely(!si->cluster_nr)) {
106 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108 goto lowest;
109 spin_unlock(&swap_lock);
111 offset = si->lowest_bit;
112 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
114 /* Locate the first empty (unaligned) cluster */
115 for (; last_in_cluster <= si->highest_bit; offset++) {
116 if (si->swap_map[offset])
117 last_in_cluster = offset + SWAPFILE_CLUSTER;
118 else if (offset == last_in_cluster) {
119 spin_lock(&swap_lock);
120 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121 goto cluster;
123 if (unlikely(--latency_ration < 0)) {
124 cond_resched();
125 latency_ration = LATENCY_LIMIT;
128 spin_lock(&swap_lock);
129 goto lowest;
132 si->cluster_nr--;
133 cluster:
134 offset = si->cluster_next;
135 if (offset > si->highest_bit)
136 lowest: offset = si->lowest_bit;
137 checks: if (!(si->flags & SWP_WRITEOK))
138 goto no_page;
139 if (!si->highest_bit)
140 goto no_page;
141 if (!si->swap_map[offset]) {
142 if (offset == si->lowest_bit)
143 si->lowest_bit++;
144 if (offset == si->highest_bit)
145 si->highest_bit--;
146 si->inuse_pages++;
147 if (si->inuse_pages == si->pages) {
148 si->lowest_bit = si->max;
149 si->highest_bit = 0;
151 si->swap_map[offset] = 1;
152 si->cluster_next = offset + 1;
153 si->flags -= SWP_SCANNING;
154 return offset;
157 spin_unlock(&swap_lock);
158 while (++offset <= si->highest_bit) {
159 if (!si->swap_map[offset]) {
160 spin_lock(&swap_lock);
161 goto checks;
163 if (unlikely(--latency_ration < 0)) {
164 cond_resched();
165 latency_ration = LATENCY_LIMIT;
168 spin_lock(&swap_lock);
169 goto lowest;
171 no_page:
172 si->flags -= SWP_SCANNING;
173 return 0;
176 swp_entry_t get_swap_page(void)
178 struct swap_info_struct *si;
179 pgoff_t offset;
180 int type, next;
181 int wrapped = 0;
183 spin_lock(&swap_lock);
184 if (nr_swap_pages <= 0)
185 goto noswap;
186 nr_swap_pages--;
188 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189 si = swap_info + type;
190 next = si->next;
191 if (next < 0 ||
192 (!wrapped && si->prio != swap_info[next].prio)) {
193 next = swap_list.head;
194 wrapped++;
197 if (!si->highest_bit)
198 continue;
199 if (!(si->flags & SWP_WRITEOK))
200 continue;
202 swap_list.next = next;
203 offset = scan_swap_map(si);
204 if (offset) {
205 spin_unlock(&swap_lock);
206 return swp_entry(type, offset);
208 next = swap_list.next;
211 nr_swap_pages++;
212 noswap:
213 spin_unlock(&swap_lock);
214 return (swp_entry_t) {0};
217 swp_entry_t get_swap_page_of_type(int type)
219 struct swap_info_struct *si;
220 pgoff_t offset;
222 spin_lock(&swap_lock);
223 si = swap_info + type;
224 if (si->flags & SWP_WRITEOK) {
225 nr_swap_pages--;
226 offset = scan_swap_map(si);
227 if (offset) {
228 spin_unlock(&swap_lock);
229 return swp_entry(type, offset);
231 nr_swap_pages++;
233 spin_unlock(&swap_lock);
234 return (swp_entry_t) {0};
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
239 struct swap_info_struct * p;
240 unsigned long offset, type;
242 if (!entry.val)
243 goto out;
244 type = swp_type(entry);
245 if (type >= nr_swapfiles)
246 goto bad_nofile;
247 p = & swap_info[type];
248 if (!(p->flags & SWP_USED))
249 goto bad_device;
250 offset = swp_offset(entry);
251 if (offset >= p->max)
252 goto bad_offset;
253 if (!p->swap_map[offset])
254 goto bad_free;
255 spin_lock(&swap_lock);
256 return p;
258 bad_free:
259 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260 goto out;
261 bad_offset:
262 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263 goto out;
264 bad_device:
265 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266 goto out;
267 bad_nofile:
268 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270 return NULL;
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
275 int count = p->swap_map[offset];
277 if (count < SWAP_MAP_MAX) {
278 count--;
279 p->swap_map[offset] = count;
280 if (!count) {
281 if (offset < p->lowest_bit)
282 p->lowest_bit = offset;
283 if (offset > p->highest_bit)
284 p->highest_bit = offset;
285 if (p->prio > swap_info[swap_list.next].prio)
286 swap_list.next = p - swap_info;
287 nr_swap_pages++;
288 p->inuse_pages--;
289 if (p->notify_swap_entry_free_fn)
290 p->notify_swap_entry_free_fn(offset);
293 return count;
297 * Caller has made sure that the swapdevice corresponding to entry
298 * is still around or has not been recycled.
300 void swap_free(swp_entry_t entry)
302 struct swap_info_struct * p;
304 p = swap_info_get(entry);
305 if (p) {
306 swap_entry_free(p, swp_offset(entry));
307 spin_unlock(&swap_lock);
312 * How many references to page are currently swapped out?
314 static inline int page_swapcount(struct page *page)
316 int count = 0;
317 struct swap_info_struct *p;
318 swp_entry_t entry;
320 entry.val = page_private(page);
321 p = swap_info_get(entry);
322 if (p) {
323 /* Subtract the 1 for the swap cache itself */
324 count = p->swap_map[swp_offset(entry)] - 1;
325 spin_unlock(&swap_lock);
327 return count;
331 * We can use this swap cache entry directly
332 * if there are no other references to it.
334 int can_share_swap_page(struct page *page)
336 int count;
338 BUG_ON(!PageLocked(page));
339 count = page_mapcount(page);
340 if (count <= 1 && PageSwapCache(page))
341 count += page_swapcount(page);
342 return count == 1;
346 * Work out if there are any other processes sharing this
347 * swap cache page. Free it if you can. Return success.
349 static int remove_exclusive_swap_page_count(struct page *page, int count)
351 int retval;
352 struct swap_info_struct * p;
353 swp_entry_t entry;
355 BUG_ON(PagePrivate(page));
356 BUG_ON(!PageLocked(page));
358 if (!PageSwapCache(page))
359 return 0;
360 if (PageWriteback(page))
361 return 0;
362 if (page_count(page) != count) /* us + cache + ptes */
363 return 0;
365 entry.val = page_private(page);
366 p = swap_info_get(entry);
367 if (!p)
368 return 0;
370 /* Is the only swap cache user the cache itself? */
371 retval = 0;
372 if (p->swap_map[swp_offset(entry)] == 1) {
373 /* Recheck the page count with the swapcache lock held.. */
374 spin_lock_irq(&swapper_space.tree_lock);
375 if ((page_count(page) == count) && !PageWriteback(page)) {
376 __delete_from_swap_cache(page);
377 SetPageDirty(page);
378 retval = 1;
380 spin_unlock_irq(&swapper_space.tree_lock);
382 spin_unlock(&swap_lock);
384 if (retval) {
385 swap_free(entry);
386 page_cache_release(page);
389 return retval;
393 * Most of the time the page should have two references: one for the
394 * process and one for the swap cache.
396 int remove_exclusive_swap_page(struct page *page)
398 return remove_exclusive_swap_page_count(page, 2);
402 * The pageout code holds an extra reference to the page. That raises
403 * the reference count to test for to 2 for a page that is only in the
404 * swap cache plus 1 for each process that maps the page.
406 int remove_exclusive_swap_page_ref(struct page *page)
408 return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page));
412 * Free the swap entry like above, but also try to
413 * free the page cache entry if it is the last user.
415 void free_swap_and_cache(swp_entry_t entry)
417 struct swap_info_struct * p;
418 struct page *page = NULL;
420 if (is_migration_entry(entry))
421 return;
423 p = swap_info_get(entry);
424 if (p) {
425 if (swap_entry_free(p, swp_offset(entry)) == 1) {
426 page = find_get_page(&swapper_space, entry.val);
427 if (page && !trylock_page(page)) {
428 page_cache_release(page);
429 page = NULL;
432 spin_unlock(&swap_lock);
434 if (page) {
435 int one_user;
437 BUG_ON(PagePrivate(page));
438 one_user = (page_count(page) == 2);
439 /* Only cache user (+us), or swap space full? Free it! */
440 /* Also recheck PageSwapCache after page is locked (above) */
441 if (PageSwapCache(page) && !PageWriteback(page) &&
442 (one_user || vm_swap_full())) {
443 delete_from_swap_cache(page);
444 SetPageDirty(page);
446 unlock_page(page);
447 page_cache_release(page);
451 #ifdef CONFIG_HIBERNATION
453 * Find the swap type that corresponds to given device (if any).
455 * @offset - number of the PAGE_SIZE-sized block of the device, starting
456 * from 0, in which the swap header is expected to be located.
458 * This is needed for the suspend to disk (aka swsusp).
460 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
462 struct block_device *bdev = NULL;
463 int i;
465 if (device)
466 bdev = bdget(device);
468 spin_lock(&swap_lock);
469 for (i = 0; i < nr_swapfiles; i++) {
470 struct swap_info_struct *sis = swap_info + i;
472 if (!(sis->flags & SWP_WRITEOK))
473 continue;
475 if (!bdev) {
476 if (bdev_p)
477 *bdev_p = sis->bdev;
479 spin_unlock(&swap_lock);
480 return i;
482 if (bdev == sis->bdev) {
483 struct swap_extent *se;
485 se = list_entry(sis->extent_list.next,
486 struct swap_extent, list);
487 if (se->start_block == offset) {
488 if (bdev_p)
489 *bdev_p = sis->bdev;
491 spin_unlock(&swap_lock);
492 bdput(bdev);
493 return i;
497 spin_unlock(&swap_lock);
498 if (bdev)
499 bdput(bdev);
501 return -ENODEV;
505 * Return either the total number of swap pages of given type, or the number
506 * of free pages of that type (depending on @free)
508 * This is needed for software suspend
510 unsigned int count_swap_pages(int type, int free)
512 unsigned int n = 0;
514 if (type < nr_swapfiles) {
515 spin_lock(&swap_lock);
516 if (swap_info[type].flags & SWP_WRITEOK) {
517 n = swap_info[type].pages;
518 if (free)
519 n -= swap_info[type].inuse_pages;
521 spin_unlock(&swap_lock);
523 return n;
525 #endif
528 * No need to decide whether this PTE shares the swap entry with others,
529 * just let do_wp_page work it out if a write is requested later - to
530 * force COW, vm_page_prot omits write permission from any private vma.
532 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
533 unsigned long addr, swp_entry_t entry, struct page *page)
535 spinlock_t *ptl;
536 pte_t *pte;
537 int ret = 1;
539 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
540 ret = -ENOMEM;
542 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
543 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
544 if (ret > 0)
545 mem_cgroup_uncharge_page(page);
546 ret = 0;
547 goto out;
550 inc_mm_counter(vma->vm_mm, anon_rss);
551 get_page(page);
552 set_pte_at(vma->vm_mm, addr, pte,
553 pte_mkold(mk_pte(page, vma->vm_page_prot)));
554 page_add_anon_rmap(page, vma, addr);
555 swap_free(entry);
557 * Move the page to the active list so it is not
558 * immediately swapped out again after swapon.
560 activate_page(page);
561 out:
562 pte_unmap_unlock(pte, ptl);
563 return ret;
566 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
567 unsigned long addr, unsigned long end,
568 swp_entry_t entry, struct page *page)
570 pte_t swp_pte = swp_entry_to_pte(entry);
571 pte_t *pte;
572 int ret = 0;
575 * We don't actually need pte lock while scanning for swp_pte: since
576 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
577 * page table while we're scanning; though it could get zapped, and on
578 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
579 * of unmatched parts which look like swp_pte, so unuse_pte must
580 * recheck under pte lock. Scanning without pte lock lets it be
581 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
583 pte = pte_offset_map(pmd, addr);
584 do {
586 * swapoff spends a _lot_ of time in this loop!
587 * Test inline before going to call unuse_pte.
589 if (unlikely(pte_same(*pte, swp_pte))) {
590 pte_unmap(pte);
591 ret = unuse_pte(vma, pmd, addr, entry, page);
592 if (ret)
593 goto out;
594 pte = pte_offset_map(pmd, addr);
596 } while (pte++, addr += PAGE_SIZE, addr != end);
597 pte_unmap(pte - 1);
598 out:
599 return ret;
602 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
603 unsigned long addr, unsigned long end,
604 swp_entry_t entry, struct page *page)
606 pmd_t *pmd;
607 unsigned long next;
608 int ret;
610 pmd = pmd_offset(pud, addr);
611 do {
612 next = pmd_addr_end(addr, end);
613 if (pmd_none_or_clear_bad(pmd))
614 continue;
615 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
616 if (ret)
617 return ret;
618 } while (pmd++, addr = next, addr != end);
619 return 0;
622 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
623 unsigned long addr, unsigned long end,
624 swp_entry_t entry, struct page *page)
626 pud_t *pud;
627 unsigned long next;
628 int ret;
630 pud = pud_offset(pgd, addr);
631 do {
632 next = pud_addr_end(addr, end);
633 if (pud_none_or_clear_bad(pud))
634 continue;
635 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
636 if (ret)
637 return ret;
638 } while (pud++, addr = next, addr != end);
639 return 0;
642 static int unuse_vma(struct vm_area_struct *vma,
643 swp_entry_t entry, struct page *page)
645 pgd_t *pgd;
646 unsigned long addr, end, next;
647 int ret;
649 if (page->mapping) {
650 addr = page_address_in_vma(page, vma);
651 if (addr == -EFAULT)
652 return 0;
653 else
654 end = addr + PAGE_SIZE;
655 } else {
656 addr = vma->vm_start;
657 end = vma->vm_end;
660 pgd = pgd_offset(vma->vm_mm, addr);
661 do {
662 next = pgd_addr_end(addr, end);
663 if (pgd_none_or_clear_bad(pgd))
664 continue;
665 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
666 if (ret)
667 return ret;
668 } while (pgd++, addr = next, addr != end);
669 return 0;
672 static int unuse_mm(struct mm_struct *mm,
673 swp_entry_t entry, struct page *page)
675 struct vm_area_struct *vma;
676 int ret = 0;
678 if (!down_read_trylock(&mm->mmap_sem)) {
680 * Activate page so shrink_inactive_list is unlikely to unmap
681 * its ptes while lock is dropped, so swapoff can make progress.
683 activate_page(page);
684 unlock_page(page);
685 down_read(&mm->mmap_sem);
686 lock_page(page);
688 for (vma = mm->mmap; vma; vma = vma->vm_next) {
689 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
690 break;
692 up_read(&mm->mmap_sem);
693 return (ret < 0)? ret: 0;
697 * Scan swap_map from current position to next entry still in use.
698 * Recycle to start on reaching the end, returning 0 when empty.
700 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
701 unsigned int prev)
703 unsigned int max = si->max;
704 unsigned int i = prev;
705 int count;
708 * No need for swap_lock here: we're just looking
709 * for whether an entry is in use, not modifying it; false
710 * hits are okay, and sys_swapoff() has already prevented new
711 * allocations from this area (while holding swap_lock).
713 for (;;) {
714 if (++i >= max) {
715 if (!prev) {
716 i = 0;
717 break;
720 * No entries in use at top of swap_map,
721 * loop back to start and recheck there.
723 max = prev + 1;
724 prev = 0;
725 i = 1;
727 count = si->swap_map[i];
728 if (count && count != SWAP_MAP_BAD)
729 break;
731 return i;
735 * We completely avoid races by reading each swap page in advance,
736 * and then search for the process using it. All the necessary
737 * page table adjustments can then be made atomically.
739 static int try_to_unuse(unsigned int type)
741 struct swap_info_struct * si = &swap_info[type];
742 struct mm_struct *start_mm;
743 unsigned short *swap_map;
744 unsigned short swcount;
745 struct page *page;
746 swp_entry_t entry;
747 unsigned int i = 0;
748 int retval = 0;
749 int reset_overflow = 0;
750 int shmem;
753 * When searching mms for an entry, a good strategy is to
754 * start at the first mm we freed the previous entry from
755 * (though actually we don't notice whether we or coincidence
756 * freed the entry). Initialize this start_mm with a hold.
758 * A simpler strategy would be to start at the last mm we
759 * freed the previous entry from; but that would take less
760 * advantage of mmlist ordering, which clusters forked mms
761 * together, child after parent. If we race with dup_mmap(), we
762 * prefer to resolve parent before child, lest we miss entries
763 * duplicated after we scanned child: using last mm would invert
764 * that. Though it's only a serious concern when an overflowed
765 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
767 start_mm = &init_mm;
768 atomic_inc(&init_mm.mm_users);
771 * Keep on scanning until all entries have gone. Usually,
772 * one pass through swap_map is enough, but not necessarily:
773 * there are races when an instance of an entry might be missed.
775 while ((i = find_next_to_unuse(si, i)) != 0) {
776 if (signal_pending(current)) {
777 retval = -EINTR;
778 break;
782 * Get a page for the entry, using the existing swap
783 * cache page if there is one. Otherwise, get a clean
784 * page and read the swap into it.
786 swap_map = &si->swap_map[i];
787 entry = swp_entry(type, i);
788 page = read_swap_cache_async(entry,
789 GFP_HIGHUSER_MOVABLE, NULL, 0);
790 if (!page) {
792 * Either swap_duplicate() failed because entry
793 * has been freed independently, and will not be
794 * reused since sys_swapoff() already disabled
795 * allocation from here, or alloc_page() failed.
797 if (!*swap_map)
798 continue;
799 retval = -ENOMEM;
800 break;
804 * Don't hold on to start_mm if it looks like exiting.
806 if (atomic_read(&start_mm->mm_users) == 1) {
807 mmput(start_mm);
808 start_mm = &init_mm;
809 atomic_inc(&init_mm.mm_users);
813 * Wait for and lock page. When do_swap_page races with
814 * try_to_unuse, do_swap_page can handle the fault much
815 * faster than try_to_unuse can locate the entry. This
816 * apparently redundant "wait_on_page_locked" lets try_to_unuse
817 * defer to do_swap_page in such a case - in some tests,
818 * do_swap_page and try_to_unuse repeatedly compete.
820 wait_on_page_locked(page);
821 wait_on_page_writeback(page);
822 lock_page(page);
823 wait_on_page_writeback(page);
826 * Remove all references to entry.
827 * Whenever we reach init_mm, there's no address space
828 * to search, but use it as a reminder to search shmem.
830 shmem = 0;
831 swcount = *swap_map;
832 if (swcount > 1) {
833 if (start_mm == &init_mm)
834 shmem = shmem_unuse(entry, page);
835 else
836 retval = unuse_mm(start_mm, entry, page);
838 if (*swap_map > 1) {
839 int set_start_mm = (*swap_map >= swcount);
840 struct list_head *p = &start_mm->mmlist;
841 struct mm_struct *new_start_mm = start_mm;
842 struct mm_struct *prev_mm = start_mm;
843 struct mm_struct *mm;
845 atomic_inc(&new_start_mm->mm_users);
846 atomic_inc(&prev_mm->mm_users);
847 spin_lock(&mmlist_lock);
848 while (*swap_map > 1 && !retval && !shmem &&
849 (p = p->next) != &start_mm->mmlist) {
850 mm = list_entry(p, struct mm_struct, mmlist);
851 if (!atomic_inc_not_zero(&mm->mm_users))
852 continue;
853 spin_unlock(&mmlist_lock);
854 mmput(prev_mm);
855 prev_mm = mm;
857 cond_resched();
859 swcount = *swap_map;
860 if (swcount <= 1)
862 else if (mm == &init_mm) {
863 set_start_mm = 1;
864 shmem = shmem_unuse(entry, page);
865 } else
866 retval = unuse_mm(mm, entry, page);
867 if (set_start_mm && *swap_map < swcount) {
868 mmput(new_start_mm);
869 atomic_inc(&mm->mm_users);
870 new_start_mm = mm;
871 set_start_mm = 0;
873 spin_lock(&mmlist_lock);
875 spin_unlock(&mmlist_lock);
876 mmput(prev_mm);
877 mmput(start_mm);
878 start_mm = new_start_mm;
880 if (shmem) {
881 /* page has already been unlocked and released */
882 if (shmem > 0)
883 continue;
884 retval = shmem;
885 break;
887 if (retval) {
888 unlock_page(page);
889 page_cache_release(page);
890 break;
894 * How could swap count reach 0x7fff when the maximum
895 * pid is 0x7fff, and there's no way to repeat a swap
896 * page within an mm (except in shmem, where it's the
897 * shared object which takes the reference count)?
898 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
900 * If that's wrong, then we should worry more about
901 * exit_mmap() and do_munmap() cases described above:
902 * we might be resetting SWAP_MAP_MAX too early here.
903 * We know "Undead"s can happen, they're okay, so don't
904 * report them; but do report if we reset SWAP_MAP_MAX.
906 if (*swap_map == SWAP_MAP_MAX) {
907 spin_lock(&swap_lock);
908 *swap_map = 1;
909 spin_unlock(&swap_lock);
910 reset_overflow = 1;
914 * If a reference remains (rare), we would like to leave
915 * the page in the swap cache; but try_to_unmap could
916 * then re-duplicate the entry once we drop page lock,
917 * so we might loop indefinitely; also, that page could
918 * not be swapped out to other storage meanwhile. So:
919 * delete from cache even if there's another reference,
920 * after ensuring that the data has been saved to disk -
921 * since if the reference remains (rarer), it will be
922 * read from disk into another page. Splitting into two
923 * pages would be incorrect if swap supported "shared
924 * private" pages, but they are handled by tmpfs files.
926 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
927 struct writeback_control wbc = {
928 .sync_mode = WB_SYNC_NONE,
931 swap_writepage(page, &wbc);
932 lock_page(page);
933 wait_on_page_writeback(page);
935 if (PageSwapCache(page))
936 delete_from_swap_cache(page);
939 * So we could skip searching mms once swap count went
940 * to 1, we did not mark any present ptes as dirty: must
941 * mark page dirty so shrink_page_list will preserve it.
943 SetPageDirty(page);
944 unlock_page(page);
945 page_cache_release(page);
948 * Make sure that we aren't completely killing
949 * interactive performance.
951 cond_resched();
954 mmput(start_mm);
955 if (reset_overflow) {
956 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
957 swap_overflow = 0;
959 return retval;
963 * After a successful try_to_unuse, if no swap is now in use, we know
964 * we can empty the mmlist. swap_lock must be held on entry and exit.
965 * Note that mmlist_lock nests inside swap_lock, and an mm must be
966 * added to the mmlist just after page_duplicate - before would be racy.
968 static void drain_mmlist(void)
970 struct list_head *p, *next;
971 unsigned int i;
973 for (i = 0; i < nr_swapfiles; i++)
974 if (swap_info[i].inuse_pages)
975 return;
976 spin_lock(&mmlist_lock);
977 list_for_each_safe(p, next, &init_mm.mmlist)
978 list_del_init(p);
979 spin_unlock(&mmlist_lock);
983 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
984 * corresponds to page offset `offset'.
986 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
988 struct swap_extent *se = sis->curr_swap_extent;
989 struct swap_extent *start_se = se;
991 for ( ; ; ) {
992 struct list_head *lh;
994 if (se->start_page <= offset &&
995 offset < (se->start_page + se->nr_pages)) {
996 return se->start_block + (offset - se->start_page);
998 lh = se->list.next;
999 if (lh == &sis->extent_list)
1000 lh = lh->next;
1001 se = list_entry(lh, struct swap_extent, list);
1002 sis->curr_swap_extent = se;
1003 BUG_ON(se == start_se); /* It *must* be present */
1007 #ifdef CONFIG_HIBERNATION
1009 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1010 * corresponding to given index in swap_info (swap type).
1012 sector_t swapdev_block(int swap_type, pgoff_t offset)
1014 struct swap_info_struct *sis;
1016 if (swap_type >= nr_swapfiles)
1017 return 0;
1019 sis = swap_info + swap_type;
1020 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1022 #endif /* CONFIG_HIBERNATION */
1025 * Free all of a swapdev's extent information
1027 static void destroy_swap_extents(struct swap_info_struct *sis)
1029 while (!list_empty(&sis->extent_list)) {
1030 struct swap_extent *se;
1032 se = list_entry(sis->extent_list.next,
1033 struct swap_extent, list);
1034 list_del(&se->list);
1035 kfree(se);
1040 * Add a block range (and the corresponding page range) into this swapdev's
1041 * extent list. The extent list is kept sorted in page order.
1043 * This function rather assumes that it is called in ascending page order.
1045 static int
1046 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1047 unsigned long nr_pages, sector_t start_block)
1049 struct swap_extent *se;
1050 struct swap_extent *new_se;
1051 struct list_head *lh;
1053 lh = sis->extent_list.prev; /* The highest page extent */
1054 if (lh != &sis->extent_list) {
1055 se = list_entry(lh, struct swap_extent, list);
1056 BUG_ON(se->start_page + se->nr_pages != start_page);
1057 if (se->start_block + se->nr_pages == start_block) {
1058 /* Merge it */
1059 se->nr_pages += nr_pages;
1060 return 0;
1065 * No merge. Insert a new extent, preserving ordering.
1067 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1068 if (new_se == NULL)
1069 return -ENOMEM;
1070 new_se->start_page = start_page;
1071 new_se->nr_pages = nr_pages;
1072 new_se->start_block = start_block;
1074 list_add_tail(&new_se->list, &sis->extent_list);
1075 return 1;
1079 * A `swap extent' is a simple thing which maps a contiguous range of pages
1080 * onto a contiguous range of disk blocks. An ordered list of swap extents
1081 * is built at swapon time and is then used at swap_writepage/swap_readpage
1082 * time for locating where on disk a page belongs.
1084 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1085 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1086 * swap files identically.
1088 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1089 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1090 * swapfiles are handled *identically* after swapon time.
1092 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1093 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1094 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1095 * requirements, they are simply tossed out - we will never use those blocks
1096 * for swapping.
1098 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1099 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1100 * which will scribble on the fs.
1102 * The amount of disk space which a single swap extent represents varies.
1103 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1104 * extents in the list. To avoid much list walking, we cache the previous
1105 * search location in `curr_swap_extent', and start new searches from there.
1106 * This is extremely effective. The average number of iterations in
1107 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1109 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1111 struct inode *inode;
1112 unsigned blocks_per_page;
1113 unsigned long page_no;
1114 unsigned blkbits;
1115 sector_t probe_block;
1116 sector_t last_block;
1117 sector_t lowest_block = -1;
1118 sector_t highest_block = 0;
1119 int nr_extents = 0;
1120 int ret;
1122 inode = sis->swap_file->f_mapping->host;
1123 if (S_ISBLK(inode->i_mode)) {
1124 ret = add_swap_extent(sis, 0, sis->max, 0);
1125 *span = sis->pages;
1126 goto done;
1129 blkbits = inode->i_blkbits;
1130 blocks_per_page = PAGE_SIZE >> blkbits;
1133 * Map all the blocks into the extent list. This code doesn't try
1134 * to be very smart.
1136 probe_block = 0;
1137 page_no = 0;
1138 last_block = i_size_read(inode) >> blkbits;
1139 while ((probe_block + blocks_per_page) <= last_block &&
1140 page_no < sis->max) {
1141 unsigned block_in_page;
1142 sector_t first_block;
1144 first_block = bmap(inode, probe_block);
1145 if (first_block == 0)
1146 goto bad_bmap;
1149 * It must be PAGE_SIZE aligned on-disk
1151 if (first_block & (blocks_per_page - 1)) {
1152 probe_block++;
1153 goto reprobe;
1156 for (block_in_page = 1; block_in_page < blocks_per_page;
1157 block_in_page++) {
1158 sector_t block;
1160 block = bmap(inode, probe_block + block_in_page);
1161 if (block == 0)
1162 goto bad_bmap;
1163 if (block != first_block + block_in_page) {
1164 /* Discontiguity */
1165 probe_block++;
1166 goto reprobe;
1170 first_block >>= (PAGE_SHIFT - blkbits);
1171 if (page_no) { /* exclude the header page */
1172 if (first_block < lowest_block)
1173 lowest_block = first_block;
1174 if (first_block > highest_block)
1175 highest_block = first_block;
1179 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1181 ret = add_swap_extent(sis, page_no, 1, first_block);
1182 if (ret < 0)
1183 goto out;
1184 nr_extents += ret;
1185 page_no++;
1186 probe_block += blocks_per_page;
1187 reprobe:
1188 continue;
1190 ret = nr_extents;
1191 *span = 1 + highest_block - lowest_block;
1192 if (page_no == 0)
1193 page_no = 1; /* force Empty message */
1194 sis->max = page_no;
1195 sis->pages = page_no - 1;
1196 sis->highest_bit = page_no - 1;
1197 done:
1198 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1199 struct swap_extent, list);
1200 goto out;
1201 bad_bmap:
1202 printk(KERN_ERR "swapon: swapfile has holes\n");
1203 ret = -EINVAL;
1204 out:
1205 return ret;
1208 #if 0 /* We don't need this yet */
1209 #include <linux/backing-dev.h>
1210 int page_queue_congested(struct page *page)
1212 struct backing_dev_info *bdi;
1214 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1216 if (PageSwapCache(page)) {
1217 swp_entry_t entry = { .val = page_private(page) };
1218 struct swap_info_struct *sis;
1220 sis = get_swap_info_struct(swp_type(entry));
1221 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1222 } else
1223 bdi = page->mapping->backing_dev_info;
1224 return bdi_write_congested(bdi);
1226 #endif
1228 asmlinkage long sys_swapoff(const char __user * specialfile)
1230 struct swap_info_struct * p = NULL;
1231 unsigned short *swap_map;
1232 struct file *swap_file, *victim;
1233 struct address_space *mapping;
1234 struct inode *inode;
1235 char * pathname;
1236 int i, type, prev;
1237 int err;
1239 if (!capable(CAP_SYS_ADMIN))
1240 return -EPERM;
1242 pathname = getname(specialfile);
1243 err = PTR_ERR(pathname);
1244 if (IS_ERR(pathname))
1245 goto out;
1247 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1248 putname(pathname);
1249 err = PTR_ERR(victim);
1250 if (IS_ERR(victim))
1251 goto out;
1253 mapping = victim->f_mapping;
1254 prev = -1;
1255 spin_lock(&swap_lock);
1256 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1257 p = swap_info + type;
1258 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1259 if (p->swap_file->f_mapping == mapping)
1260 break;
1262 prev = type;
1264 if (type < 0) {
1265 err = -EINVAL;
1266 spin_unlock(&swap_lock);
1267 goto out_dput;
1269 if (!security_vm_enough_memory(p->pages))
1270 vm_unacct_memory(p->pages);
1271 else {
1272 err = -ENOMEM;
1273 spin_unlock(&swap_lock);
1274 goto out_dput;
1276 if (prev < 0) {
1277 swap_list.head = p->next;
1278 } else {
1279 swap_info[prev].next = p->next;
1281 if (type == swap_list.next) {
1282 /* just pick something that's safe... */
1283 swap_list.next = swap_list.head;
1285 if (p->prio < 0) {
1286 for (i = p->next; i >= 0; i = swap_info[i].next)
1287 swap_info[i].prio = p->prio--;
1288 least_priority++;
1290 nr_swap_pages -= p->pages;
1291 total_swap_pages -= p->pages;
1292 p->flags &= ~SWP_WRITEOK;
1293 spin_unlock(&swap_lock);
1295 current->flags |= PF_SWAPOFF;
1296 err = try_to_unuse(type);
1297 current->flags &= ~PF_SWAPOFF;
1299 if (err) {
1300 /* re-insert swap space back into swap_list */
1301 spin_lock(&swap_lock);
1302 if (p->prio < 0)
1303 p->prio = --least_priority;
1304 prev = -1;
1305 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1306 if (p->prio >= swap_info[i].prio)
1307 break;
1308 prev = i;
1310 p->next = i;
1311 if (prev < 0)
1312 swap_list.head = swap_list.next = p - swap_info;
1313 else
1314 swap_info[prev].next = p - swap_info;
1315 nr_swap_pages += p->pages;
1316 total_swap_pages += p->pages;
1317 p->flags |= SWP_WRITEOK;
1318 spin_unlock(&swap_lock);
1319 goto out_dput;
1322 /* wait for any unplug function to finish */
1323 down_write(&swap_unplug_sem);
1324 up_write(&swap_unplug_sem);
1326 destroy_swap_extents(p);
1327 mutex_lock(&swapon_mutex);
1328 spin_lock(&swap_lock);
1329 drain_mmlist();
1331 /* wait for anyone still in scan_swap_map */
1332 p->highest_bit = 0; /* cuts scans short */
1333 while (p->flags >= SWP_SCANNING) {
1334 spin_unlock(&swap_lock);
1335 schedule_timeout_uninterruptible(1);
1336 spin_lock(&swap_lock);
1339 swap_file = p->swap_file;
1340 p->swap_file = NULL;
1341 p->max = 0;
1342 swap_map = p->swap_map;
1343 p->swap_map = NULL;
1344 p->flags = 0;
1345 spin_unlock(&swap_lock);
1346 mutex_unlock(&swapon_mutex);
1347 vfree(swap_map);
1348 inode = mapping->host;
1349 if (S_ISBLK(inode->i_mode)) {
1350 struct block_device *bdev = I_BDEV(inode);
1351 set_blocksize(bdev, p->old_block_size);
1352 bd_release(bdev);
1353 } else {
1354 mutex_lock(&inode->i_mutex);
1355 inode->i_flags &= ~S_SWAPFILE;
1356 mutex_unlock(&inode->i_mutex);
1358 filp_close(swap_file, NULL);
1359 err = 0;
1361 out_dput:
1362 filp_close(victim, NULL);
1363 out:
1364 return err;
1367 #ifdef CONFIG_PROC_FS
1368 /* iterator */
1369 static void *swap_start(struct seq_file *swap, loff_t *pos)
1371 struct swap_info_struct *ptr = swap_info;
1372 int i;
1373 loff_t l = *pos;
1375 mutex_lock(&swapon_mutex);
1377 if (!l)
1378 return SEQ_START_TOKEN;
1380 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1381 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1382 continue;
1383 if (!--l)
1384 return ptr;
1387 return NULL;
1390 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1392 struct swap_info_struct *ptr;
1393 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1395 if (v == SEQ_START_TOKEN)
1396 ptr = swap_info;
1397 else {
1398 ptr = v;
1399 ptr++;
1402 for (; ptr < endptr; ptr++) {
1403 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1404 continue;
1405 ++*pos;
1406 return ptr;
1409 return NULL;
1412 static void swap_stop(struct seq_file *swap, void *v)
1414 mutex_unlock(&swapon_mutex);
1417 static int swap_show(struct seq_file *swap, void *v)
1419 struct swap_info_struct *ptr = v;
1420 struct file *file;
1421 int len;
1423 if (ptr == SEQ_START_TOKEN) {
1424 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1425 return 0;
1428 file = ptr->swap_file;
1429 len = seq_path(swap, &file->f_path, " \t\n\\");
1430 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1431 len < 40 ? 40 - len : 1, " ",
1432 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1433 "partition" : "file\t",
1434 ptr->pages << (PAGE_SHIFT - 10),
1435 ptr->inuse_pages << (PAGE_SHIFT - 10),
1436 ptr->prio);
1437 return 0;
1440 static const struct seq_operations swaps_op = {
1441 .start = swap_start,
1442 .next = swap_next,
1443 .stop = swap_stop,
1444 .show = swap_show
1447 static int swaps_open(struct inode *inode, struct file *file)
1449 return seq_open(file, &swaps_op);
1452 static const struct file_operations proc_swaps_operations = {
1453 .open = swaps_open,
1454 .read = seq_read,
1455 .llseek = seq_lseek,
1456 .release = seq_release,
1459 static int __init procswaps_init(void)
1461 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1462 return 0;
1464 __initcall(procswaps_init);
1465 #endif /* CONFIG_PROC_FS */
1468 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1470 * The swapon system call
1472 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1474 struct swap_info_struct * p;
1475 char *name = NULL;
1476 struct block_device *bdev = NULL;
1477 struct file *swap_file = NULL;
1478 struct address_space *mapping;
1479 unsigned int type;
1480 int i, prev;
1481 int error;
1482 union swap_header *swap_header = NULL;
1483 int swap_header_version;
1484 unsigned int nr_good_pages = 0;
1485 int nr_extents = 0;
1486 sector_t span;
1487 unsigned long maxpages = 1;
1488 int swapfilesize;
1489 unsigned short *swap_map = NULL;
1490 struct page *page = NULL;
1491 struct inode *inode = NULL;
1492 int did_down = 0;
1494 if (!capable(CAP_SYS_ADMIN))
1495 return -EPERM;
1496 spin_lock(&swap_lock);
1497 p = swap_info;
1498 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1499 if (!(p->flags & SWP_USED))
1500 break;
1501 error = -EPERM;
1502 if (type >= MAX_SWAPFILES) {
1503 spin_unlock(&swap_lock);
1504 goto out;
1506 if (type >= nr_swapfiles)
1507 nr_swapfiles = type+1;
1508 memset(p, 0, sizeof(*p));
1509 INIT_LIST_HEAD(&p->extent_list);
1510 p->flags = SWP_USED;
1511 p->next = -1;
1512 spin_unlock(&swap_lock);
1513 name = getname(specialfile);
1514 error = PTR_ERR(name);
1515 if (IS_ERR(name)) {
1516 name = NULL;
1517 goto bad_swap_2;
1519 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1520 error = PTR_ERR(swap_file);
1521 if (IS_ERR(swap_file)) {
1522 swap_file = NULL;
1523 goto bad_swap_2;
1526 p->swap_file = swap_file;
1527 mapping = swap_file->f_mapping;
1528 inode = mapping->host;
1530 error = -EBUSY;
1531 for (i = 0; i < nr_swapfiles; i++) {
1532 struct swap_info_struct *q = &swap_info[i];
1534 if (i == type || !q->swap_file)
1535 continue;
1536 if (mapping == q->swap_file->f_mapping)
1537 goto bad_swap;
1540 error = -EINVAL;
1541 if (S_ISBLK(inode->i_mode)) {
1542 bdev = I_BDEV(inode);
1543 error = bd_claim(bdev, sys_swapon);
1544 if (error < 0) {
1545 bdev = NULL;
1546 error = -EINVAL;
1547 goto bad_swap;
1549 p->old_block_size = block_size(bdev);
1550 error = set_blocksize(bdev, PAGE_SIZE);
1551 if (error < 0)
1552 goto bad_swap;
1553 p->bdev = bdev;
1554 } else if (S_ISREG(inode->i_mode)) {
1555 p->bdev = inode->i_sb->s_bdev;
1556 mutex_lock(&inode->i_mutex);
1557 did_down = 1;
1558 if (IS_SWAPFILE(inode)) {
1559 error = -EBUSY;
1560 goto bad_swap;
1562 } else {
1563 goto bad_swap;
1566 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1569 * Read the swap header.
1571 if (!mapping->a_ops->readpage) {
1572 error = -EINVAL;
1573 goto bad_swap;
1575 page = read_mapping_page(mapping, 0, swap_file);
1576 if (IS_ERR(page)) {
1577 error = PTR_ERR(page);
1578 goto bad_swap;
1580 kmap(page);
1581 swap_header = page_address(page);
1583 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1584 swap_header_version = 1;
1585 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1586 swap_header_version = 2;
1587 else {
1588 printk(KERN_ERR "Unable to find swap-space signature\n");
1589 error = -EINVAL;
1590 goto bad_swap;
1593 switch (swap_header_version) {
1594 case 1:
1595 printk(KERN_ERR "version 0 swap is no longer supported. "
1596 "Use mkswap -v1 %s\n", name);
1597 error = -EINVAL;
1598 goto bad_swap;
1599 case 2:
1600 /* swap partition endianess hack... */
1601 if (swab32(swap_header->info.version) == 1) {
1602 swab32s(&swap_header->info.version);
1603 swab32s(&swap_header->info.last_page);
1604 swab32s(&swap_header->info.nr_badpages);
1605 for (i = 0; i < swap_header->info.nr_badpages; i++)
1606 swab32s(&swap_header->info.badpages[i]);
1608 /* Check the swap header's sub-version and the size of
1609 the swap file and bad block lists */
1610 if (swap_header->info.version != 1) {
1611 printk(KERN_WARNING
1612 "Unable to handle swap header version %d\n",
1613 swap_header->info.version);
1614 error = -EINVAL;
1615 goto bad_swap;
1618 p->lowest_bit = 1;
1619 p->cluster_next = 1;
1622 * Find out how many pages are allowed for a single swap
1623 * device. There are two limiting factors: 1) the number of
1624 * bits for the swap offset in the swp_entry_t type and
1625 * 2) the number of bits in the a swap pte as defined by
1626 * the different architectures. In order to find the
1627 * largest possible bit mask a swap entry with swap type 0
1628 * and swap offset ~0UL is created, encoded to a swap pte,
1629 * decoded to a swp_entry_t again and finally the swap
1630 * offset is extracted. This will mask all the bits from
1631 * the initial ~0UL mask that can't be encoded in either
1632 * the swp_entry_t or the architecture definition of a
1633 * swap pte.
1635 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1636 if (maxpages > swap_header->info.last_page)
1637 maxpages = swap_header->info.last_page;
1638 p->highest_bit = maxpages - 1;
1640 error = -EINVAL;
1641 if (!maxpages)
1642 goto bad_swap;
1643 if (swapfilesize && maxpages > swapfilesize) {
1644 printk(KERN_WARNING
1645 "Swap area shorter than signature indicates\n");
1646 goto bad_swap;
1648 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1649 goto bad_swap;
1650 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1651 goto bad_swap;
1653 /* OK, set up the swap map and apply the bad block list */
1654 swap_map = vmalloc(maxpages * sizeof(short));
1655 if (!swap_map) {
1656 error = -ENOMEM;
1657 goto bad_swap;
1660 error = 0;
1661 memset(swap_map, 0, maxpages * sizeof(short));
1662 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1663 int page_nr = swap_header->info.badpages[i];
1664 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1665 error = -EINVAL;
1666 else
1667 swap_map[page_nr] = SWAP_MAP_BAD;
1669 nr_good_pages = swap_header->info.last_page -
1670 swap_header->info.nr_badpages -
1671 1 /* header page */;
1672 if (error)
1673 goto bad_swap;
1676 if (nr_good_pages) {
1677 swap_map[0] = SWAP_MAP_BAD;
1678 p->max = maxpages;
1679 p->pages = nr_good_pages;
1680 nr_extents = setup_swap_extents(p, &span);
1681 if (nr_extents < 0) {
1682 error = nr_extents;
1683 goto bad_swap;
1685 nr_good_pages = p->pages;
1687 if (!nr_good_pages) {
1688 printk(KERN_WARNING "Empty swap-file\n");
1689 error = -EINVAL;
1690 goto bad_swap;
1693 mutex_lock(&swapon_mutex);
1694 spin_lock(&swap_lock);
1695 if (swap_flags & SWAP_FLAG_PREFER)
1696 p->prio =
1697 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1698 else
1699 p->prio = --least_priority;
1700 p->swap_map = swap_map;
1701 p->flags = SWP_ACTIVE;
1702 nr_swap_pages += nr_good_pages;
1703 total_swap_pages += nr_good_pages;
1705 printk(KERN_INFO "Adding %uk swap on %s. "
1706 "Priority:%d extents:%d across:%lluk\n",
1707 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1708 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1710 /* insert swap space into swap_list: */
1711 prev = -1;
1712 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1713 if (p->prio >= swap_info[i].prio) {
1714 break;
1716 prev = i;
1718 p->next = i;
1719 if (prev < 0) {
1720 swap_list.head = swap_list.next = p - swap_info;
1721 } else {
1722 swap_info[prev].next = p - swap_info;
1724 spin_unlock(&swap_lock);
1725 mutex_unlock(&swapon_mutex);
1726 error = 0;
1727 goto out;
1728 bad_swap:
1729 if (bdev) {
1730 set_blocksize(bdev, p->old_block_size);
1731 bd_release(bdev);
1733 destroy_swap_extents(p);
1734 bad_swap_2:
1735 spin_lock(&swap_lock);
1736 p->swap_file = NULL;
1737 p->flags = 0;
1738 spin_unlock(&swap_lock);
1739 vfree(swap_map);
1740 if (swap_file)
1741 filp_close(swap_file, NULL);
1742 out:
1743 if (page && !IS_ERR(page)) {
1744 kunmap(page);
1745 page_cache_release(page);
1747 if (name)
1748 putname(name);
1749 if (did_down) {
1750 if (!error)
1751 inode->i_flags |= S_SWAPFILE;
1752 mutex_unlock(&inode->i_mutex);
1754 return error;
1757 void si_swapinfo(struct sysinfo *val)
1759 unsigned int i;
1760 unsigned long nr_to_be_unused = 0;
1762 spin_lock(&swap_lock);
1763 for (i = 0; i < nr_swapfiles; i++) {
1764 if (!(swap_info[i].flags & SWP_USED) ||
1765 (swap_info[i].flags & SWP_WRITEOK))
1766 continue;
1767 nr_to_be_unused += swap_info[i].inuse_pages;
1769 val->freeswap = nr_swap_pages + nr_to_be_unused;
1770 val->totalswap = total_swap_pages + nr_to_be_unused;
1771 spin_unlock(&swap_lock);
1775 * Verify that a swap entry is valid and increment its swap map count.
1777 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1778 * "permanent", but will be reclaimed by the next swapoff.
1780 int swap_duplicate(swp_entry_t entry)
1782 struct swap_info_struct * p;
1783 unsigned long offset, type;
1784 int result = 0;
1786 if (is_migration_entry(entry))
1787 return 1;
1789 type = swp_type(entry);
1790 if (type >= nr_swapfiles)
1791 goto bad_file;
1792 p = type + swap_info;
1793 offset = swp_offset(entry);
1795 spin_lock(&swap_lock);
1796 if (offset < p->max && p->swap_map[offset]) {
1797 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1798 p->swap_map[offset]++;
1799 result = 1;
1800 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1801 if (swap_overflow++ < 5)
1802 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1803 p->swap_map[offset] = SWAP_MAP_MAX;
1804 result = 1;
1807 spin_unlock(&swap_lock);
1808 out:
1809 return result;
1811 bad_file:
1812 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1813 goto out;
1816 struct swap_info_struct *
1817 get_swap_info_struct(unsigned type)
1819 return &swap_info[type];
1823 * Sets callback for event when swap_map[offset] == 0
1824 * i.e. page at this swap offset is not longer used.
1826 * type: identifies swap file
1827 * fn: callback function
1829 void set_notify_swap_entry_free(unsigned type, void (*fn) (unsigned long))
1831 struct swap_info_struct *sis;
1832 sis = get_swap_info_struct(type);
1833 BUG_ON(!sis);
1834 sis->notify_swap_entry_free_fn = fn;
1835 return;
1837 EXPORT_SYMBOL(set_notify_swap_entry_free);
1840 * swap_lock prevents swap_map being freed. Don't grab an extra
1841 * reference on the swaphandle, it doesn't matter if it becomes unused.
1843 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1845 struct swap_info_struct *si;
1846 int our_page_cluster = page_cluster;
1847 pgoff_t target, toff;
1848 pgoff_t base, end;
1849 int nr_pages = 0;
1851 if (!our_page_cluster) /* no readahead */
1852 return 0;
1854 si = &swap_info[swp_type(entry)];
1855 target = swp_offset(entry);
1856 base = (target >> our_page_cluster) << our_page_cluster;
1857 end = base + (1 << our_page_cluster);
1858 if (!base) /* first page is swap header */
1859 base++;
1861 spin_lock(&swap_lock);
1862 if (end > si->max) /* don't go beyond end of map */
1863 end = si->max;
1865 /* Count contiguous allocated slots above our target */
1866 for (toff = target; ++toff < end; nr_pages++) {
1867 /* Don't read in free or bad pages */
1868 if (!si->swap_map[toff])
1869 break;
1870 if (si->swap_map[toff] == SWAP_MAP_BAD)
1871 break;
1873 /* Count contiguous allocated slots below our target */
1874 for (toff = target; --toff >= base; nr_pages++) {
1875 /* Don't read in free or bad pages */
1876 if (!si->swap_map[toff])
1877 break;
1878 if (si->swap_map[toff] == SWAP_MAP_BAD)
1879 break;
1881 spin_unlock(&swap_lock);
1884 * Indicate starting offset, and return number of pages to get:
1885 * if only 1, say 0, since there's then no readahead to be done.
1887 *offset = ++toff;
1888 return nr_pages? ++nr_pages: 0;