4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
24 #include <asm/cputype.h>
26 #include <asm/irq_regs.h>
28 #include <asm/stacktrace.h>
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
39 #define ARMPMU_MAX_HWEVENTS 32
41 static DEFINE_PER_CPU(struct perf_event
* [ARMPMU_MAX_HWEVENTS
], hw_events
);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS
)], used_mask
);
43 static DEFINE_PER_CPU(struct pmu_hw_events
, cpu_hw_events
);
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu
*cpu_pmu
;
50 const char *perf_pmu_name(void)
55 return cpu_pmu
->pmu
.name
;
57 EXPORT_SYMBOL_GPL(perf_pmu_name
);
59 int perf_num_counters(void)
64 max_events
= cpu_pmu
->num_events
;
68 EXPORT_SYMBOL_GPL(perf_num_counters
);
70 #define HW_OP_UNSUPPORTED 0xFFFF
73 PERF_COUNT_HW_CACHE_##_x
75 #define CACHE_OP_UNSUPPORTED 0xFFFF
78 armpmu_map_cache_event(const unsigned (*cache_map
)
79 [PERF_COUNT_HW_CACHE_MAX
]
80 [PERF_COUNT_HW_CACHE_OP_MAX
]
81 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
84 unsigned int cache_type
, cache_op
, cache_result
, ret
;
86 cache_type
= (config
>> 0) & 0xff;
87 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
90 cache_op
= (config
>> 8) & 0xff;
91 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
94 cache_result
= (config
>> 16) & 0xff;
95 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
98 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
100 if (ret
== CACHE_OP_UNSUPPORTED
)
107 armpmu_map_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
109 int mapping
= (*event_map
)[config
];
110 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
114 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
116 return (int)(config
& raw_event_mask
);
119 static int map_cpu_event(struct perf_event
*event
,
120 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
121 const unsigned (*cache_map
)
122 [PERF_COUNT_HW_CACHE_MAX
]
123 [PERF_COUNT_HW_CACHE_OP_MAX
]
124 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
127 u64 config
= event
->attr
.config
;
129 switch (event
->attr
.type
) {
130 case PERF_TYPE_HARDWARE
:
131 return armpmu_map_event(event_map
, config
);
132 case PERF_TYPE_HW_CACHE
:
133 return armpmu_map_cache_event(cache_map
, config
);
135 return armpmu_map_raw_event(raw_event_mask
, config
);
142 armpmu_event_set_period(struct perf_event
*event
,
143 struct hw_perf_event
*hwc
,
146 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
147 s64 left
= local64_read(&hwc
->period_left
);
148 s64 period
= hwc
->sample_period
;
151 if (unlikely(left
<= -period
)) {
153 local64_set(&hwc
->period_left
, left
);
154 hwc
->last_period
= period
;
158 if (unlikely(left
<= 0)) {
160 local64_set(&hwc
->period_left
, left
);
161 hwc
->last_period
= period
;
165 if (left
> (s64
)armpmu
->max_period
)
166 left
= armpmu
->max_period
;
168 local64_set(&hwc
->prev_count
, (u64
)-left
);
170 armpmu
->write_counter(idx
, (u64
)(-left
) & 0xffffffff);
172 perf_event_update_userpage(event
);
178 armpmu_event_update(struct perf_event
*event
,
179 struct hw_perf_event
*hwc
,
182 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
183 u64 delta
, prev_raw_count
, new_raw_count
;
186 prev_raw_count
= local64_read(&hwc
->prev_count
);
187 new_raw_count
= armpmu
->read_counter(idx
);
189 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
190 new_raw_count
) != prev_raw_count
)
193 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
195 local64_add(delta
, &event
->count
);
196 local64_sub(delta
, &hwc
->period_left
);
198 return new_raw_count
;
202 armpmu_read(struct perf_event
*event
)
204 struct hw_perf_event
*hwc
= &event
->hw
;
206 /* Don't read disabled counters! */
210 armpmu_event_update(event
, hwc
, hwc
->idx
);
214 armpmu_stop(struct perf_event
*event
, int flags
)
216 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
217 struct hw_perf_event
*hwc
= &event
->hw
;
220 * ARM pmu always has to update the counter, so ignore
221 * PERF_EF_UPDATE, see comments in armpmu_start().
223 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
224 armpmu
->disable(hwc
, hwc
->idx
);
225 barrier(); /* why? */
226 armpmu_event_update(event
, hwc
, hwc
->idx
);
227 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
232 armpmu_start(struct perf_event
*event
, int flags
)
234 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
235 struct hw_perf_event
*hwc
= &event
->hw
;
238 * ARM pmu always has to reprogram the period, so ignore
239 * PERF_EF_RELOAD, see the comment below.
241 if (flags
& PERF_EF_RELOAD
)
242 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
246 * Set the period again. Some counters can't be stopped, so when we
247 * were stopped we simply disabled the IRQ source and the counter
248 * may have been left counting. If we don't do this step then we may
249 * get an interrupt too soon or *way* too late if the overflow has
250 * happened since disabling.
252 armpmu_event_set_period(event
, hwc
, hwc
->idx
);
253 armpmu
->enable(hwc
, hwc
->idx
);
257 armpmu_del(struct perf_event
*event
, int flags
)
259 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
260 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
261 struct hw_perf_event
*hwc
= &event
->hw
;
266 armpmu_stop(event
, PERF_EF_UPDATE
);
267 hw_events
->events
[idx
] = NULL
;
268 clear_bit(idx
, hw_events
->used_mask
);
270 perf_event_update_userpage(event
);
274 armpmu_add(struct perf_event
*event
, int flags
)
276 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
277 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
278 struct hw_perf_event
*hwc
= &event
->hw
;
282 perf_pmu_disable(event
->pmu
);
284 /* If we don't have a space for the counter then finish early. */
285 idx
= armpmu
->get_event_idx(hw_events
, hwc
);
292 * If there is an event in the counter we are going to use then make
293 * sure it is disabled.
296 armpmu
->disable(hwc
, idx
);
297 hw_events
->events
[idx
] = event
;
299 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
300 if (flags
& PERF_EF_START
)
301 armpmu_start(event
, PERF_EF_RELOAD
);
303 /* Propagate our changes to the userspace mapping. */
304 perf_event_update_userpage(event
);
307 perf_pmu_enable(event
->pmu
);
312 validate_event(struct pmu_hw_events
*hw_events
,
313 struct perf_event
*event
)
315 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
316 struct hw_perf_event fake_event
= event
->hw
;
317 struct pmu
*leader_pmu
= event
->group_leader
->pmu
;
319 if (event
->pmu
!= leader_pmu
|| event
->state
<= PERF_EVENT_STATE_OFF
)
322 return armpmu
->get_event_idx(hw_events
, &fake_event
) >= 0;
326 validate_group(struct perf_event
*event
)
328 struct perf_event
*sibling
, *leader
= event
->group_leader
;
329 struct pmu_hw_events fake_pmu
;
330 DECLARE_BITMAP(fake_used_mask
, ARMPMU_MAX_HWEVENTS
);
333 * Initialise the fake PMU. We only need to populate the
334 * used_mask for the purposes of validation.
336 memset(fake_used_mask
, 0, sizeof(fake_used_mask
));
337 fake_pmu
.used_mask
= fake_used_mask
;
339 if (!validate_event(&fake_pmu
, leader
))
342 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
343 if (!validate_event(&fake_pmu
, sibling
))
347 if (!validate_event(&fake_pmu
, event
))
353 static irqreturn_t
armpmu_platform_irq(int irq
, void *dev
)
355 struct arm_pmu
*armpmu
= (struct arm_pmu
*) dev
;
356 struct platform_device
*plat_device
= armpmu
->plat_device
;
357 struct arm_pmu_platdata
*plat
= dev_get_platdata(&plat_device
->dev
);
359 return plat
->handle_irq(irq
, dev
, armpmu
->handle_irq
);
363 armpmu_release_hardware(struct arm_pmu
*armpmu
)
366 struct platform_device
*pmu_device
= armpmu
->plat_device
;
367 struct arm_pmu_platdata
*plat
=
368 dev_get_platdata(&pmu_device
->dev
);
370 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
372 for (i
= 0; i
< irqs
; ++i
) {
373 if (!cpumask_test_and_clear_cpu(i
, &armpmu
->active_irqs
))
375 irq
= platform_get_irq(pmu_device
, i
);
377 if (plat
&& plat
->disable_irq
)
378 plat
->disable_irq(irq
);
379 free_irq(irq
, armpmu
);
383 release_pmu(armpmu
->type
);
387 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
389 struct arm_pmu_platdata
*plat
;
390 irq_handler_t handle_irq
;
391 int i
, err
, irq
, irqs
;
392 struct platform_device
*pmu_device
= armpmu
->plat_device
;
397 err
= reserve_pmu(armpmu
->type
);
399 pr_warning("unable to reserve pmu\n");
403 plat
= dev_get_platdata(&pmu_device
->dev
);
404 if (plat
&& plat
->handle_irq
)
405 handle_irq
= armpmu_platform_irq
;
407 handle_irq
= armpmu
->handle_irq
;
409 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
411 pr_err("no irqs for PMUs defined\n");
415 for (i
= 0; i
< irqs
; ++i
) {
417 irq
= platform_get_irq(pmu_device
, i
);
422 * If we have a single PMU interrupt that we can't shift,
423 * assume that we're running on a uniprocessor machine and
424 * continue. Otherwise, continue without this interrupt.
426 if (irq_set_affinity(irq
, cpumask_of(i
)) && irqs
> 1) {
427 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
432 err
= request_irq(irq
, handle_irq
,
433 IRQF_DISABLED
| IRQF_NOBALANCING
,
436 pr_err("unable to request IRQ%d for ARM PMU counters\n",
438 armpmu_release_hardware(armpmu
);
440 } else if (plat
&& plat
->enable_irq
)
441 plat
->enable_irq(irq
);
443 cpumask_set_cpu(i
, &armpmu
->active_irqs
);
450 hw_perf_event_destroy(struct perf_event
*event
)
452 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
453 atomic_t
*active_events
= &armpmu
->active_events
;
454 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
456 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
457 armpmu_release_hardware(armpmu
);
458 mutex_unlock(pmu_reserve_mutex
);
463 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
465 return attr
->exclude_idle
|| attr
->exclude_user
||
466 attr
->exclude_kernel
|| attr
->exclude_hv
;
470 __hw_perf_event_init(struct perf_event
*event
)
472 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
473 struct hw_perf_event
*hwc
= &event
->hw
;
476 mapping
= armpmu
->map_event(event
);
479 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
485 * We don't assign an index until we actually place the event onto
486 * hardware. Use -1 to signify that we haven't decided where to put it
487 * yet. For SMP systems, each core has it's own PMU so we can't do any
488 * clever allocation or constraints checking at this point.
491 hwc
->config_base
= 0;
496 * Check whether we need to exclude the counter from certain modes.
498 if ((!armpmu
->set_event_filter
||
499 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
500 event_requires_mode_exclusion(&event
->attr
)) {
501 pr_debug("ARM performance counters do not support "
507 * Store the event encoding into the config_base field.
509 hwc
->config_base
|= (unsigned long)mapping
;
511 if (!hwc
->sample_period
) {
513 * For non-sampling runs, limit the sample_period to half
514 * of the counter width. That way, the new counter value
515 * is far less likely to overtake the previous one unless
516 * you have some serious IRQ latency issues.
518 hwc
->sample_period
= armpmu
->max_period
>> 1;
519 hwc
->last_period
= hwc
->sample_period
;
520 local64_set(&hwc
->period_left
, hwc
->sample_period
);
524 if (event
->group_leader
!= event
) {
525 err
= validate_group(event
);
533 static int armpmu_event_init(struct perf_event
*event
)
535 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
537 atomic_t
*active_events
= &armpmu
->active_events
;
539 /* does not support taken branch sampling */
540 if (has_branch_stack(event
))
543 if (armpmu
->map_event(event
) == -ENOENT
)
546 event
->destroy
= hw_perf_event_destroy
;
548 if (!atomic_inc_not_zero(active_events
)) {
549 mutex_lock(&armpmu
->reserve_mutex
);
550 if (atomic_read(active_events
) == 0)
551 err
= armpmu_reserve_hardware(armpmu
);
554 atomic_inc(active_events
);
555 mutex_unlock(&armpmu
->reserve_mutex
);
561 err
= __hw_perf_event_init(event
);
563 hw_perf_event_destroy(event
);
568 static void armpmu_enable(struct pmu
*pmu
)
570 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
571 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
572 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
578 static void armpmu_disable(struct pmu
*pmu
)
580 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
584 static void __init
armpmu_init(struct arm_pmu
*armpmu
)
586 atomic_set(&armpmu
->active_events
, 0);
587 mutex_init(&armpmu
->reserve_mutex
);
589 armpmu
->pmu
= (struct pmu
) {
590 .pmu_enable
= armpmu_enable
,
591 .pmu_disable
= armpmu_disable
,
592 .event_init
= armpmu_event_init
,
595 .start
= armpmu_start
,
601 int __init
armpmu_register(struct arm_pmu
*armpmu
, char *name
, int type
)
604 return perf_pmu_register(&armpmu
->pmu
, name
, type
);
607 /* Include the PMU-specific implementations. */
608 #include "perf_event_xscale.c"
609 #include "perf_event_v6.c"
610 #include "perf_event_v7.c"
613 * Ensure the PMU has sane values out of reset.
614 * This requires SMP to be available, so exists as a separate initcall.
619 if (cpu_pmu
&& cpu_pmu
->reset
)
620 return on_each_cpu(cpu_pmu
->reset
, NULL
, 1);
623 arch_initcall(cpu_pmu_reset
);
626 * PMU platform driver and devicetree bindings.
628 static struct of_device_id armpmu_of_device_ids
[] = {
629 {.compatible
= "arm,cortex-a9-pmu"},
630 {.compatible
= "arm,cortex-a8-pmu"},
631 {.compatible
= "arm,arm1136-pmu"},
632 {.compatible
= "arm,arm1176-pmu"},
636 static struct platform_device_id armpmu_plat_device_ids
[] = {
641 static int __devinit
armpmu_device_probe(struct platform_device
*pdev
)
646 cpu_pmu
->plat_device
= pdev
;
650 static struct platform_driver armpmu_driver
= {
653 .of_match_table
= armpmu_of_device_ids
,
655 .probe
= armpmu_device_probe
,
656 .id_table
= armpmu_plat_device_ids
,
659 static int __init
register_pmu_driver(void)
661 return platform_driver_register(&armpmu_driver
);
663 device_initcall(register_pmu_driver
);
665 static struct pmu_hw_events
*armpmu_get_cpu_events(void)
667 return &__get_cpu_var(cpu_hw_events
);
670 static void __init
cpu_pmu_init(struct arm_pmu
*armpmu
)
673 for_each_possible_cpu(cpu
) {
674 struct pmu_hw_events
*events
= &per_cpu(cpu_hw_events
, cpu
);
675 events
->events
= per_cpu(hw_events
, cpu
);
676 events
->used_mask
= per_cpu(used_mask
, cpu
);
677 raw_spin_lock_init(&events
->pmu_lock
);
679 armpmu
->get_hw_events
= armpmu_get_cpu_events
;
680 armpmu
->type
= ARM_PMU_DEVICE_CPU
;
684 * PMU hardware loses all context when a CPU goes offline.
685 * When a CPU is hotplugged back in, since some hardware registers are
686 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
687 * junk values out of them.
689 static int __cpuinit
pmu_cpu_notify(struct notifier_block
*b
,
690 unsigned long action
, void *hcpu
)
692 if ((action
& ~CPU_TASKS_FROZEN
) != CPU_STARTING
)
695 if (cpu_pmu
&& cpu_pmu
->reset
)
696 cpu_pmu
->reset(NULL
);
701 static struct notifier_block __cpuinitdata pmu_cpu_notifier
= {
702 .notifier_call
= pmu_cpu_notify
,
706 * CPU PMU identification and registration.
709 init_hw_perf_events(void)
711 unsigned long cpuid
= read_cpuid_id();
712 unsigned long implementor
= (cpuid
& 0xFF000000) >> 24;
713 unsigned long part_number
= (cpuid
& 0xFFF0);
716 if (0x41 == implementor
) {
717 switch (part_number
) {
718 case 0xB360: /* ARM1136 */
719 case 0xB560: /* ARM1156 */
720 case 0xB760: /* ARM1176 */
721 cpu_pmu
= armv6pmu_init();
723 case 0xB020: /* ARM11mpcore */
724 cpu_pmu
= armv6mpcore_pmu_init();
726 case 0xC080: /* Cortex-A8 */
727 cpu_pmu
= armv7_a8_pmu_init();
729 case 0xC090: /* Cortex-A9 */
730 cpu_pmu
= armv7_a9_pmu_init();
732 case 0xC050: /* Cortex-A5 */
733 cpu_pmu
= armv7_a5_pmu_init();
735 case 0xC0F0: /* Cortex-A15 */
736 cpu_pmu
= armv7_a15_pmu_init();
738 case 0xC070: /* Cortex-A7 */
739 cpu_pmu
= armv7_a7_pmu_init();
742 /* Intel CPUs [xscale]. */
743 } else if (0x69 == implementor
) {
744 part_number
= (cpuid
>> 13) & 0x7;
745 switch (part_number
) {
747 cpu_pmu
= xscale1pmu_init();
750 cpu_pmu
= xscale2pmu_init();
756 pr_info("enabled with %s PMU driver, %d counters available\n",
757 cpu_pmu
->name
, cpu_pmu
->num_events
);
758 cpu_pmu_init(cpu_pmu
);
759 register_cpu_notifier(&pmu_cpu_notifier
);
760 armpmu_register(cpu_pmu
, cpu_pmu
->name
, PERF_TYPE_RAW
);
762 pr_info("no hardware support available\n");
767 early_initcall(init_hw_perf_events
);
770 * Callchain handling code.
774 * The registers we're interested in are at the end of the variable
775 * length saved register structure. The fp points at the end of this
776 * structure so the address of this struct is:
777 * (struct frame_tail *)(xxx->fp)-1
779 * This code has been adapted from the ARM OProfile support.
782 struct frame_tail __user
*fp
;
785 } __attribute__((packed
));
788 * Get the return address for a single stackframe and return a pointer to the
791 static struct frame_tail __user
*
792 user_backtrace(struct frame_tail __user
*tail
,
793 struct perf_callchain_entry
*entry
)
795 struct frame_tail buftail
;
797 /* Also check accessibility of one struct frame_tail beyond */
798 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
800 if (__copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
)))
803 perf_callchain_store(entry
, buftail
.lr
);
806 * Frame pointers should strictly progress back up the stack
807 * (towards higher addresses).
809 if (tail
+ 1 >= buftail
.fp
)
812 return buftail
.fp
- 1;
816 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
818 struct frame_tail __user
*tail
;
821 tail
= (struct frame_tail __user
*)regs
->ARM_fp
- 1;
823 while ((entry
->nr
< PERF_MAX_STACK_DEPTH
) &&
824 tail
&& !((unsigned long)tail
& 0x3))
825 tail
= user_backtrace(tail
, entry
);
829 * Gets called by walk_stackframe() for every stackframe. This will be called
830 * whist unwinding the stackframe and is like a subroutine return so we use
834 callchain_trace(struct stackframe
*fr
,
837 struct perf_callchain_entry
*entry
= data
;
838 perf_callchain_store(entry
, fr
->pc
);
843 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
845 struct stackframe fr
;
847 fr
.fp
= regs
->ARM_fp
;
848 fr
.sp
= regs
->ARM_sp
;
849 fr
.lr
= regs
->ARM_lr
;
850 fr
.pc
= regs
->ARM_pc
;
851 walk_stackframe(&fr
, callchain_trace
, entry
);