1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
28 #include <asm/perfctr.h>
29 #include <asm/cacheflush.h>
34 /* Sparc64 chips have two performance counters, 32-bits each, with
35 * overflow interrupts generated on transition from 0xffffffff to 0.
36 * The counters are accessed in one go using a 64-bit register.
38 * Both counters are controlled using a single control register. The
39 * only way to stop all sampling is to clear all of the context (user,
40 * supervisor, hypervisor) sampling enable bits. But these bits apply
41 * to both counters, thus the two counters can't be enabled/disabled
44 * The control register has two event fields, one for each of the two
45 * counters. It's thus nearly impossible to have one counter going
46 * while keeping the other one stopped. Therefore it is possible to
47 * get overflow interrupts for counters not currently "in use" and
48 * that condition must be checked in the overflow interrupt handler.
50 * So we use a hack, in that we program inactive counters with the
51 * "sw_count0" and "sw_count1" events. These count how many times
52 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
53 * unusual way to encode a NOP and therefore will not trigger in
57 #define MAX_HWEVENTS 2
58 #define MAX_PERIOD ((1UL << 32) - 1)
60 #define PIC_UPPER_INDEX 0
61 #define PIC_LOWER_INDEX 1
62 #define PIC_NO_INDEX -1
64 struct cpu_hw_events
{
65 /* Number of events currently scheduled onto this cpu.
66 * This tells how many entries in the arrays below
71 /* Number of new events added since the last hw_perf_disable().
72 * This works because the perf event layer always adds new
73 * events inside of a perf_{disable,enable}() sequence.
77 /* Array of events current scheduled on this cpu. */
78 struct perf_event
*event
[MAX_HWEVENTS
];
80 /* Array of encoded longs, specifying the %pcr register
81 * encoding and the mask of PIC counters this even can
82 * be scheduled on. See perf_event_encode() et al.
84 unsigned long events
[MAX_HWEVENTS
];
86 /* The current counter index assigned to an event. When the
87 * event hasn't been programmed into the cpu yet, this will
88 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
89 * we ought to schedule the event.
91 int current_idx
[MAX_HWEVENTS
];
93 /* Software copy of %pcr register on this cpu. */
96 /* Enabled/disable state. */
99 unsigned int group_flag
;
101 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = { .enabled
= 1, };
103 /* An event map describes the characteristics of a performance
104 * counter event. In particular it gives the encoding as well as
105 * a mask telling which counters the event can be measured on.
107 struct perf_event_map
{
110 #define PIC_NONE 0x00
111 #define PIC_UPPER 0x01
112 #define PIC_LOWER 0x02
115 /* Encode a perf_event_map entry into a long. */
116 static unsigned long perf_event_encode(const struct perf_event_map
*pmap
)
118 return ((unsigned long) pmap
->encoding
<< 16) | pmap
->pic_mask
;
121 static u8
perf_event_get_msk(unsigned long val
)
126 static u64
perf_event_get_enc(unsigned long val
)
131 #define C(x) PERF_COUNT_HW_CACHE_##x
133 #define CACHE_OP_UNSUPPORTED 0xfffe
134 #define CACHE_OP_NONSENSE 0xffff
136 typedef struct perf_event_map cache_map_t
137 [PERF_COUNT_HW_CACHE_MAX
]
138 [PERF_COUNT_HW_CACHE_OP_MAX
]
139 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
142 const struct perf_event_map
*(*event_map
)(int);
143 const cache_map_t
*cache_map
;
154 static const struct perf_event_map ultra3_perfmon_event_map
[] = {
155 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x0000, PIC_UPPER
| PIC_LOWER
},
156 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x0001, PIC_UPPER
| PIC_LOWER
},
157 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0009, PIC_LOWER
},
158 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0009, PIC_UPPER
},
161 static const struct perf_event_map
*ultra3_event_map(int event_id
)
163 return &ultra3_perfmon_event_map
[event_id
];
166 static const cache_map_t ultra3_cache_map
= {
169 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
170 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
173 [C(RESULT_ACCESS
)] = { 0x0a, PIC_LOWER
},
174 [C(RESULT_MISS
)] = { 0x0a, PIC_UPPER
},
177 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
178 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
183 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
184 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
187 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
188 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
190 [ C(OP_PREFETCH
) ] = {
191 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
192 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
197 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
, },
198 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
, },
201 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
},
202 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
},
205 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
206 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
211 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
212 [C(RESULT_MISS
)] = { 0x12, PIC_UPPER
, },
215 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
216 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
218 [ C(OP_PREFETCH
) ] = {
219 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
220 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
225 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
226 [C(RESULT_MISS
)] = { 0x11, PIC_UPPER
, },
229 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
230 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
232 [ C(OP_PREFETCH
) ] = {
233 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
234 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
239 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
240 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
243 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
244 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
246 [ C(OP_PREFETCH
) ] = {
247 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
248 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
253 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
254 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
257 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
258 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
260 [ C(OP_PREFETCH
) ] = {
261 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
262 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
267 static const struct sparc_pmu ultra3_pmu
= {
268 .event_map
= ultra3_event_map
,
269 .cache_map
= &ultra3_cache_map
,
270 .max_events
= ARRAY_SIZE(ultra3_perfmon_event_map
),
278 /* Niagara1 is very limited. The upper PIC is hard-locked to count
279 * only instructions, so it is free running which creates all kinds of
280 * problems. Some hardware designs make one wonder if the creator
281 * even looked at how this stuff gets used by software.
283 static const struct perf_event_map niagara1_perfmon_event_map
[] = {
284 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, PIC_UPPER
},
285 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, PIC_UPPER
},
286 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0, PIC_NONE
},
287 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x03, PIC_LOWER
},
290 static const struct perf_event_map
*niagara1_event_map(int event_id
)
292 return &niagara1_perfmon_event_map
[event_id
];
295 static const cache_map_t niagara1_cache_map
= {
298 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
299 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
302 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
303 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
306 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
307 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
312 [C(RESULT_ACCESS
)] = { 0x00, PIC_UPPER
},
313 [C(RESULT_MISS
)] = { 0x02, PIC_LOWER
, },
316 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
317 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
319 [ C(OP_PREFETCH
) ] = {
320 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
321 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
326 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
327 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
330 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
331 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
334 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
335 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
340 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
341 [C(RESULT_MISS
)] = { 0x05, PIC_LOWER
, },
344 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
345 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
347 [ C(OP_PREFETCH
) ] = {
348 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
349 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
354 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
355 [C(RESULT_MISS
)] = { 0x04, PIC_LOWER
, },
358 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
359 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
361 [ C(OP_PREFETCH
) ] = {
362 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
363 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
368 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
369 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
372 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
373 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
375 [ C(OP_PREFETCH
) ] = {
376 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
377 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
382 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
383 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
386 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
387 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
389 [ C(OP_PREFETCH
) ] = {
390 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
391 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
396 static const struct sparc_pmu niagara1_pmu
= {
397 .event_map
= niagara1_event_map
,
398 .cache_map
= &niagara1_cache_map
,
399 .max_events
= ARRAY_SIZE(niagara1_perfmon_event_map
),
407 static const struct perf_event_map niagara2_perfmon_event_map
[] = {
408 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
409 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
410 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0208, PIC_UPPER
| PIC_LOWER
},
411 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0302, PIC_UPPER
| PIC_LOWER
},
412 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x0201, PIC_UPPER
| PIC_LOWER
},
413 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x0202, PIC_UPPER
| PIC_LOWER
},
416 static const struct perf_event_map
*niagara2_event_map(int event_id
)
418 return &niagara2_perfmon_event_map
[event_id
];
421 static const cache_map_t niagara2_cache_map
= {
424 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
425 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
428 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
429 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
432 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
433 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
438 [C(RESULT_ACCESS
)] = { 0x02ff, PIC_UPPER
| PIC_LOWER
, },
439 [C(RESULT_MISS
)] = { 0x0301, PIC_UPPER
| PIC_LOWER
, },
442 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
443 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
445 [ C(OP_PREFETCH
) ] = {
446 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
447 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
452 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
453 [C(RESULT_MISS
)] = { 0x0330, PIC_UPPER
| PIC_LOWER
, },
456 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
457 [C(RESULT_MISS
)] = { 0x0320, PIC_UPPER
| PIC_LOWER
, },
460 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
461 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
466 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
467 [C(RESULT_MISS
)] = { 0x0b08, PIC_UPPER
| PIC_LOWER
, },
470 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
471 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
473 [ C(OP_PREFETCH
) ] = {
474 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
475 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
480 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
481 [C(RESULT_MISS
)] = { 0xb04, PIC_UPPER
| PIC_LOWER
, },
484 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
485 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
487 [ C(OP_PREFETCH
) ] = {
488 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
489 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
494 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
495 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
498 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
499 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
501 [ C(OP_PREFETCH
) ] = {
502 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
503 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
508 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
509 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
512 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
513 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
515 [ C(OP_PREFETCH
) ] = {
516 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
517 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
522 static const struct sparc_pmu niagara2_pmu
= {
523 .event_map
= niagara2_event_map
,
524 .cache_map
= &niagara2_cache_map
,
525 .max_events
= ARRAY_SIZE(niagara2_perfmon_event_map
),
535 static const struct sparc_pmu
*sparc_pmu __read_mostly
;
537 static u64
event_encoding(u64 event_id
, int idx
)
539 if (idx
== PIC_UPPER_INDEX
)
540 event_id
<<= sparc_pmu
->upper_shift
;
542 event_id
<<= sparc_pmu
->lower_shift
;
546 static u64
mask_for_index(int idx
)
548 return event_encoding(sparc_pmu
->event_mask
, idx
);
551 static u64
nop_for_index(int idx
)
553 return event_encoding(idx
== PIC_UPPER_INDEX
?
554 sparc_pmu
->upper_nop
:
555 sparc_pmu
->lower_nop
, idx
);
558 static inline void sparc_pmu_enable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
560 u64 enc
, val
, mask
= mask_for_index(idx
);
562 enc
= perf_event_get_enc(cpuc
->events
[idx
]);
566 val
|= event_encoding(enc
, idx
);
569 pcr_ops
->write(cpuc
->pcr
);
572 static inline void sparc_pmu_disable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
574 u64 mask
= mask_for_index(idx
);
575 u64 nop
= nop_for_index(idx
);
583 pcr_ops
->write(cpuc
->pcr
);
586 static u32
read_pmc(int idx
)
591 if (idx
== PIC_UPPER_INDEX
)
594 return val
& 0xffffffff;
597 static void write_pmc(int idx
, u64 val
)
599 u64 shift
, mask
, pic
;
602 if (idx
== PIC_UPPER_INDEX
)
605 mask
= ((u64
) 0xffffffff) << shift
;
614 static u64
sparc_perf_event_update(struct perf_event
*event
,
615 struct hw_perf_event
*hwc
, int idx
)
618 u64 prev_raw_count
, new_raw_count
;
622 prev_raw_count
= local64_read(&hwc
->prev_count
);
623 new_raw_count
= read_pmc(idx
);
625 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
626 new_raw_count
) != prev_raw_count
)
629 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
632 local64_add(delta
, &event
->count
);
633 local64_sub(delta
, &hwc
->period_left
);
635 return new_raw_count
;
638 static int sparc_perf_event_set_period(struct perf_event
*event
,
639 struct hw_perf_event
*hwc
, int idx
)
641 s64 left
= local64_read(&hwc
->period_left
);
642 s64 period
= hwc
->sample_period
;
645 if (unlikely(left
<= -period
)) {
647 local64_set(&hwc
->period_left
, left
);
648 hwc
->last_period
= period
;
652 if (unlikely(left
<= 0)) {
654 local64_set(&hwc
->period_left
, left
);
655 hwc
->last_period
= period
;
658 if (left
> MAX_PERIOD
)
661 local64_set(&hwc
->prev_count
, (u64
)-left
);
663 write_pmc(idx
, (u64
)(-left
) & 0xffffffff);
665 perf_event_update_userpage(event
);
670 /* If performance event entries have been added, move existing
671 * events around (if necessary) and then assign new entries to
674 static u64
maybe_change_configuration(struct cpu_hw_events
*cpuc
, u64 pcr
)
681 /* Read in the counters which are moving. */
682 for (i
= 0; i
< cpuc
->n_events
; i
++) {
683 struct perf_event
*cp
= cpuc
->event
[i
];
685 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
&&
686 cpuc
->current_idx
[i
] != cp
->hw
.idx
) {
687 sparc_perf_event_update(cp
, &cp
->hw
,
688 cpuc
->current_idx
[i
]);
689 cpuc
->current_idx
[i
] = PIC_NO_INDEX
;
693 /* Assign to counters all unassigned events. */
694 for (i
= 0; i
< cpuc
->n_events
; i
++) {
695 struct perf_event
*cp
= cpuc
->event
[i
];
696 struct hw_perf_event
*hwc
= &cp
->hw
;
700 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
703 sparc_perf_event_set_period(cp
, hwc
, idx
);
704 cpuc
->current_idx
[i
] = idx
;
706 enc
= perf_event_get_enc(cpuc
->events
[i
]);
707 pcr
&= ~mask_for_index(idx
);
708 if (hwc
->state
& PERF_HES_STOPPED
)
709 pcr
|= nop_for_index(idx
);
711 pcr
|= event_encoding(enc
, idx
);
717 static void sparc_pmu_enable(struct pmu
*pmu
)
719 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
729 if (!cpuc
->n_events
) {
732 pcr
= maybe_change_configuration(cpuc
, pcr
);
734 /* We require that all of the events have the same
735 * configuration, so just fetch the settings from the
738 cpuc
->pcr
= pcr
| cpuc
->event
[0]->hw
.config_base
;
741 pcr_ops
->write(cpuc
->pcr
);
744 static void sparc_pmu_disable(struct pmu
*pmu
)
746 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
756 val
&= ~(PCR_UTRACE
| PCR_STRACE
|
757 sparc_pmu
->hv_bit
| sparc_pmu
->irq_bit
);
760 pcr_ops
->write(cpuc
->pcr
);
763 static int active_event_index(struct cpu_hw_events
*cpuc
,
764 struct perf_event
*event
)
768 for (i
= 0; i
< cpuc
->n_events
; i
++) {
769 if (cpuc
->event
[i
] == event
)
772 BUG_ON(i
== cpuc
->n_events
);
773 return cpuc
->current_idx
[i
];
776 static void sparc_pmu_start(struct perf_event
*event
, int flags
)
778 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
779 int idx
= active_event_index(cpuc
, event
);
781 if (flags
& PERF_EF_RELOAD
) {
782 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
783 sparc_perf_event_set_period(event
, &event
->hw
, idx
);
788 sparc_pmu_enable_event(cpuc
, &event
->hw
, idx
);
791 static void sparc_pmu_stop(struct perf_event
*event
, int flags
)
793 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
794 int idx
= active_event_index(cpuc
, event
);
796 if (!(event
->hw
.state
& PERF_HES_STOPPED
)) {
797 sparc_pmu_disable_event(cpuc
, &event
->hw
, idx
);
798 event
->hw
.state
|= PERF_HES_STOPPED
;
801 if (!(event
->hw
.state
& PERF_HES_UPTODATE
) && (flags
& PERF_EF_UPDATE
)) {
802 sparc_perf_event_update(event
, &event
->hw
, idx
);
803 event
->hw
.state
|= PERF_HES_UPTODATE
;
807 static void sparc_pmu_del(struct perf_event
*event
, int _flags
)
809 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
813 local_irq_save(flags
);
814 perf_pmu_disable(event
->pmu
);
816 for (i
= 0; i
< cpuc
->n_events
; i
++) {
817 if (event
== cpuc
->event
[i
]) {
818 /* Absorb the final count and turn off the
821 sparc_pmu_stop(event
, PERF_EF_UPDATE
);
823 /* Shift remaining entries down into
826 while (++i
< cpuc
->n_events
) {
827 cpuc
->event
[i
- 1] = cpuc
->event
[i
];
828 cpuc
->events
[i
- 1] = cpuc
->events
[i
];
829 cpuc
->current_idx
[i
- 1] =
830 cpuc
->current_idx
[i
];
833 perf_event_update_userpage(event
);
840 perf_pmu_enable(event
->pmu
);
841 local_irq_restore(flags
);
844 static void sparc_pmu_read(struct perf_event
*event
)
846 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
847 int idx
= active_event_index(cpuc
, event
);
848 struct hw_perf_event
*hwc
= &event
->hw
;
850 sparc_perf_event_update(event
, hwc
, idx
);
853 static atomic_t active_events
= ATOMIC_INIT(0);
854 static DEFINE_MUTEX(pmc_grab_mutex
);
856 static void perf_stop_nmi_watchdog(void *unused
)
858 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
860 stop_nmi_watchdog(NULL
);
861 cpuc
->pcr
= pcr_ops
->read();
864 void perf_event_grab_pmc(void)
866 if (atomic_inc_not_zero(&active_events
))
869 mutex_lock(&pmc_grab_mutex
);
870 if (atomic_read(&active_events
) == 0) {
871 if (atomic_read(&nmi_active
) > 0) {
872 on_each_cpu(perf_stop_nmi_watchdog
, NULL
, 1);
873 BUG_ON(atomic_read(&nmi_active
) != 0);
875 atomic_inc(&active_events
);
877 mutex_unlock(&pmc_grab_mutex
);
880 void perf_event_release_pmc(void)
882 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_grab_mutex
)) {
883 if (atomic_read(&nmi_active
) == 0)
884 on_each_cpu(start_nmi_watchdog
, NULL
, 1);
885 mutex_unlock(&pmc_grab_mutex
);
889 static const struct perf_event_map
*sparc_map_cache_event(u64 config
)
891 unsigned int cache_type
, cache_op
, cache_result
;
892 const struct perf_event_map
*pmap
;
894 if (!sparc_pmu
->cache_map
)
895 return ERR_PTR(-ENOENT
);
897 cache_type
= (config
>> 0) & 0xff;
898 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
899 return ERR_PTR(-EINVAL
);
901 cache_op
= (config
>> 8) & 0xff;
902 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
903 return ERR_PTR(-EINVAL
);
905 cache_result
= (config
>> 16) & 0xff;
906 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
907 return ERR_PTR(-EINVAL
);
909 pmap
= &((*sparc_pmu
->cache_map
)[cache_type
][cache_op
][cache_result
]);
911 if (pmap
->encoding
== CACHE_OP_UNSUPPORTED
)
912 return ERR_PTR(-ENOENT
);
914 if (pmap
->encoding
== CACHE_OP_NONSENSE
)
915 return ERR_PTR(-EINVAL
);
920 static void hw_perf_event_destroy(struct perf_event
*event
)
922 perf_event_release_pmc();
925 /* Make sure all events can be scheduled into the hardware at
926 * the same time. This is simplified by the fact that we only
927 * need to support 2 simultaneous HW events.
929 * As a side effect, the evts[]->hw.idx values will be assigned
930 * on success. These are pending indexes. When the events are
931 * actually programmed into the chip, these values will propagate
932 * to the per-cpu cpuc->current_idx[] slots, see the code in
933 * maybe_change_configuration() for details.
935 static int sparc_check_constraints(struct perf_event
**evts
,
936 unsigned long *events
, int n_ev
)
938 u8 msk0
= 0, msk1
= 0;
941 /* This case is possible when we are invoked from
942 * hw_perf_group_sched_in().
947 if (n_ev
> MAX_HWEVENTS
)
950 msk0
= perf_event_get_msk(events
[0]);
952 if (msk0
& PIC_LOWER
)
957 msk1
= perf_event_get_msk(events
[1]);
959 /* If both events can go on any counter, OK. */
960 if (msk0
== (PIC_UPPER
| PIC_LOWER
) &&
961 msk1
== (PIC_UPPER
| PIC_LOWER
))
964 /* If one event is limited to a specific counter,
965 * and the other can go on both, OK.
967 if ((msk0
== PIC_UPPER
|| msk0
== PIC_LOWER
) &&
968 msk1
== (PIC_UPPER
| PIC_LOWER
)) {
969 if (msk0
& PIC_LOWER
)
974 if ((msk1
== PIC_UPPER
|| msk1
== PIC_LOWER
) &&
975 msk0
== (PIC_UPPER
| PIC_LOWER
)) {
976 if (msk1
& PIC_UPPER
)
981 /* If the events are fixed to different counters, OK. */
982 if ((msk0
== PIC_UPPER
&& msk1
== PIC_LOWER
) ||
983 (msk0
== PIC_LOWER
&& msk1
== PIC_UPPER
)) {
984 if (msk0
& PIC_LOWER
)
989 /* Otherwise, there is a conflict. */
993 evts
[0]->hw
.idx
= idx0
;
995 evts
[1]->hw
.idx
= idx0
^ 1;
999 static int check_excludes(struct perf_event
**evts
, int n_prev
, int n_new
)
1001 int eu
= 0, ek
= 0, eh
= 0;
1002 struct perf_event
*event
;
1010 for (i
= 0; i
< n
; i
++) {
1013 eu
= event
->attr
.exclude_user
;
1014 ek
= event
->attr
.exclude_kernel
;
1015 eh
= event
->attr
.exclude_hv
;
1017 } else if (event
->attr
.exclude_user
!= eu
||
1018 event
->attr
.exclude_kernel
!= ek
||
1019 event
->attr
.exclude_hv
!= eh
) {
1027 static int collect_events(struct perf_event
*group
, int max_count
,
1028 struct perf_event
*evts
[], unsigned long *events
,
1031 struct perf_event
*event
;
1034 if (!is_software_event(group
)) {
1038 events
[n
] = group
->hw
.event_base
;
1039 current_idx
[n
++] = PIC_NO_INDEX
;
1041 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1042 if (!is_software_event(event
) &&
1043 event
->state
!= PERF_EVENT_STATE_OFF
) {
1047 events
[n
] = event
->hw
.event_base
;
1048 current_idx
[n
++] = PIC_NO_INDEX
;
1054 static int sparc_pmu_add(struct perf_event
*event
, int ef_flags
)
1056 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1057 int n0
, ret
= -EAGAIN
;
1058 unsigned long flags
;
1060 local_irq_save(flags
);
1061 perf_pmu_disable(event
->pmu
);
1063 n0
= cpuc
->n_events
;
1064 if (n0
>= MAX_HWEVENTS
)
1067 cpuc
->event
[n0
] = event
;
1068 cpuc
->events
[n0
] = event
->hw
.event_base
;
1069 cpuc
->current_idx
[n0
] = PIC_NO_INDEX
;
1071 event
->hw
.state
= PERF_HES_UPTODATE
;
1072 if (!(ef_flags
& PERF_EF_START
))
1073 event
->hw
.state
|= PERF_HES_STOPPED
;
1076 * If group events scheduling transaction was started,
1077 * skip the schedulability test here, it will be performed
1078 * at commit time(->commit_txn) as a whole
1080 if (cpuc
->group_flag
& PERF_EVENT_TXN
)
1083 if (check_excludes(cpuc
->event
, n0
, 1))
1085 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n0
+ 1))
1094 perf_pmu_enable(event
->pmu
);
1095 local_irq_restore(flags
);
1099 static int sparc_pmu_event_init(struct perf_event
*event
)
1101 struct perf_event_attr
*attr
= &event
->attr
;
1102 struct perf_event
*evts
[MAX_HWEVENTS
];
1103 struct hw_perf_event
*hwc
= &event
->hw
;
1104 unsigned long events
[MAX_HWEVENTS
];
1105 int current_idx_dmy
[MAX_HWEVENTS
];
1106 const struct perf_event_map
*pmap
;
1109 if (atomic_read(&nmi_active
) < 0)
1112 /* does not support taken branch sampling */
1113 if (has_branch_stack(event
))
1116 switch (attr
->type
) {
1117 case PERF_TYPE_HARDWARE
:
1118 if (attr
->config
>= sparc_pmu
->max_events
)
1120 pmap
= sparc_pmu
->event_map(attr
->config
);
1123 case PERF_TYPE_HW_CACHE
:
1124 pmap
= sparc_map_cache_event(attr
->config
);
1126 return PTR_ERR(pmap
);
1139 hwc
->event_base
= perf_event_encode(pmap
);
1142 * User gives us "(encoding << 16) | pic_mask" for
1143 * PERF_TYPE_RAW events.
1145 hwc
->event_base
= attr
->config
;
1148 /* We save the enable bits in the config_base. */
1149 hwc
->config_base
= sparc_pmu
->irq_bit
;
1150 if (!attr
->exclude_user
)
1151 hwc
->config_base
|= PCR_UTRACE
;
1152 if (!attr
->exclude_kernel
)
1153 hwc
->config_base
|= PCR_STRACE
;
1154 if (!attr
->exclude_hv
)
1155 hwc
->config_base
|= sparc_pmu
->hv_bit
;
1158 if (event
->group_leader
!= event
) {
1159 n
= collect_events(event
->group_leader
,
1161 evts
, events
, current_idx_dmy
);
1165 events
[n
] = hwc
->event_base
;
1168 if (check_excludes(evts
, n
, 1))
1171 if (sparc_check_constraints(evts
, events
, n
+ 1))
1174 hwc
->idx
= PIC_NO_INDEX
;
1176 /* Try to do all error checking before this point, as unwinding
1177 * state after grabbing the PMC is difficult.
1179 perf_event_grab_pmc();
1180 event
->destroy
= hw_perf_event_destroy
;
1182 if (!hwc
->sample_period
) {
1183 hwc
->sample_period
= MAX_PERIOD
;
1184 hwc
->last_period
= hwc
->sample_period
;
1185 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1192 * Start group events scheduling transaction
1193 * Set the flag to make pmu::enable() not perform the
1194 * schedulability test, it will be performed at commit time
1196 static void sparc_pmu_start_txn(struct pmu
*pmu
)
1198 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1200 perf_pmu_disable(pmu
);
1201 cpuhw
->group_flag
|= PERF_EVENT_TXN
;
1205 * Stop group events scheduling transaction
1206 * Clear the flag and pmu::enable() will perform the
1207 * schedulability test.
1209 static void sparc_pmu_cancel_txn(struct pmu
*pmu
)
1211 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1213 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1214 perf_pmu_enable(pmu
);
1218 * Commit group events scheduling transaction
1219 * Perform the group schedulability test as a whole
1220 * Return 0 if success
1222 static int sparc_pmu_commit_txn(struct pmu
*pmu
)
1224 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1230 cpuc
= &__get_cpu_var(cpu_hw_events
);
1232 if (check_excludes(cpuc
->event
, 0, n
))
1234 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n
))
1237 cpuc
->group_flag
&= ~PERF_EVENT_TXN
;
1238 perf_pmu_enable(pmu
);
1242 static struct pmu pmu
= {
1243 .pmu_enable
= sparc_pmu_enable
,
1244 .pmu_disable
= sparc_pmu_disable
,
1245 .event_init
= sparc_pmu_event_init
,
1246 .add
= sparc_pmu_add
,
1247 .del
= sparc_pmu_del
,
1248 .start
= sparc_pmu_start
,
1249 .stop
= sparc_pmu_stop
,
1250 .read
= sparc_pmu_read
,
1251 .start_txn
= sparc_pmu_start_txn
,
1252 .cancel_txn
= sparc_pmu_cancel_txn
,
1253 .commit_txn
= sparc_pmu_commit_txn
,
1256 void perf_event_print_debug(void)
1258 unsigned long flags
;
1265 local_irq_save(flags
);
1267 cpu
= smp_processor_id();
1269 pcr
= pcr_ops
->read();
1273 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1276 local_irq_restore(flags
);
1279 static int __kprobes
perf_event_nmi_handler(struct notifier_block
*self
,
1280 unsigned long cmd
, void *__args
)
1282 struct die_args
*args
= __args
;
1283 struct perf_sample_data data
;
1284 struct cpu_hw_events
*cpuc
;
1285 struct pt_regs
*regs
;
1288 if (!atomic_read(&active_events
))
1301 cpuc
= &__get_cpu_var(cpu_hw_events
);
1303 /* If the PMU has the TOE IRQ enable bits, we need to do a
1304 * dummy write to the %pcr to clear the overflow bits and thus
1307 * Do this before we peek at the counters to determine
1308 * overflow so we don't lose any events.
1310 if (sparc_pmu
->irq_bit
)
1311 pcr_ops
->write(cpuc
->pcr
);
1313 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1314 struct perf_event
*event
= cpuc
->event
[i
];
1315 int idx
= cpuc
->current_idx
[i
];
1316 struct hw_perf_event
*hwc
;
1320 val
= sparc_perf_event_update(event
, hwc
, idx
);
1321 if (val
& (1ULL << 31))
1324 perf_sample_data_init(&data
, 0, hwc
->last_period
);
1325 if (!sparc_perf_event_set_period(event
, hwc
, idx
))
1328 if (perf_event_overflow(event
, &data
, regs
))
1329 sparc_pmu_stop(event
, 0);
1335 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1336 .notifier_call
= perf_event_nmi_handler
,
1339 static bool __init
supported_pmu(void)
1341 if (!strcmp(sparc_pmu_type
, "ultra3") ||
1342 !strcmp(sparc_pmu_type
, "ultra3+") ||
1343 !strcmp(sparc_pmu_type
, "ultra3i") ||
1344 !strcmp(sparc_pmu_type
, "ultra4+")) {
1345 sparc_pmu
= &ultra3_pmu
;
1348 if (!strcmp(sparc_pmu_type
, "niagara")) {
1349 sparc_pmu
= &niagara1_pmu
;
1352 if (!strcmp(sparc_pmu_type
, "niagara2") ||
1353 !strcmp(sparc_pmu_type
, "niagara3")) {
1354 sparc_pmu
= &niagara2_pmu
;
1360 int __init
init_hw_perf_events(void)
1362 pr_info("Performance events: ");
1364 if (!supported_pmu()) {
1365 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type
);
1369 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type
);
1371 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1372 register_die_notifier(&perf_event_nmi_notifier
);
1376 early_initcall(init_hw_perf_events
);
1378 void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1379 struct pt_regs
*regs
)
1381 unsigned long ksp
, fp
;
1382 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1386 stack_trace_flush();
1388 perf_callchain_store(entry
, regs
->tpc
);
1390 ksp
= regs
->u_regs
[UREG_I6
];
1391 fp
= ksp
+ STACK_BIAS
;
1393 struct sparc_stackf
*sf
;
1394 struct pt_regs
*regs
;
1397 if (!kstack_valid(current_thread_info(), fp
))
1400 sf
= (struct sparc_stackf
*) fp
;
1401 regs
= (struct pt_regs
*) (sf
+ 1);
1403 if (kstack_is_trap_frame(current_thread_info(), regs
)) {
1404 if (user_mode(regs
))
1407 fp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1409 pc
= sf
->callers_pc
;
1410 fp
= (unsigned long)sf
->fp
+ STACK_BIAS
;
1412 perf_callchain_store(entry
, pc
);
1413 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1414 if ((pc
+ 8UL) == (unsigned long) &return_to_handler
) {
1415 int index
= current
->curr_ret_stack
;
1416 if (current
->ret_stack
&& index
>= graph
) {
1417 pc
= current
->ret_stack
[index
- graph
].ret
;
1418 perf_callchain_store(entry
, pc
);
1423 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1426 static void perf_callchain_user_64(struct perf_callchain_entry
*entry
,
1427 struct pt_regs
*regs
)
1431 ufp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1433 struct sparc_stackf
*usf
, sf
;
1436 usf
= (struct sparc_stackf
*) ufp
;
1437 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1441 ufp
= (unsigned long)sf
.fp
+ STACK_BIAS
;
1442 perf_callchain_store(entry
, pc
);
1443 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1446 static void perf_callchain_user_32(struct perf_callchain_entry
*entry
,
1447 struct pt_regs
*regs
)
1451 ufp
= regs
->u_regs
[UREG_I6
] & 0xffffffffUL
;
1453 struct sparc_stackf32
*usf
, sf
;
1456 usf
= (struct sparc_stackf32
*) ufp
;
1457 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1461 ufp
= (unsigned long)sf
.fp
;
1462 perf_callchain_store(entry
, pc
);
1463 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1467 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1469 perf_callchain_store(entry
, regs
->tpc
);
1475 if (test_thread_flag(TIF_32BIT
))
1476 perf_callchain_user_32(entry
, regs
);
1478 perf_callchain_user_64(entry
, regs
);