initial commit with v3.6.7
[linux-3.6.7-moxart.git] / drivers / base / regmap / regmap.c
blobc241ae2f2f10b91e8998e5b657d5f739cc0c0b7b
1 /*
2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/regmap.h>
23 #include "internal.h"
26 * Sometimes for failures during very early init the trace
27 * infrastructure isn't available early enough to be used. For this
28 * sort of problem defining LOG_DEVICE will add printks for basic
29 * register I/O on a specific device.
31 #undef LOG_DEVICE
33 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
34 unsigned int mask, unsigned int val,
35 bool *change);
37 bool regmap_writeable(struct regmap *map, unsigned int reg)
39 if (map->max_register && reg > map->max_register)
40 return false;
42 if (map->writeable_reg)
43 return map->writeable_reg(map->dev, reg);
45 return true;
48 bool regmap_readable(struct regmap *map, unsigned int reg)
50 if (map->max_register && reg > map->max_register)
51 return false;
53 if (map->format.format_write)
54 return false;
56 if (map->readable_reg)
57 return map->readable_reg(map->dev, reg);
59 return true;
62 bool regmap_volatile(struct regmap *map, unsigned int reg)
64 if (!regmap_readable(map, reg))
65 return false;
67 if (map->volatile_reg)
68 return map->volatile_reg(map->dev, reg);
70 return true;
73 bool regmap_precious(struct regmap *map, unsigned int reg)
75 if (!regmap_readable(map, reg))
76 return false;
78 if (map->precious_reg)
79 return map->precious_reg(map->dev, reg);
81 return false;
84 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
85 unsigned int num)
87 unsigned int i;
89 for (i = 0; i < num; i++)
90 if (!regmap_volatile(map, reg + i))
91 return false;
93 return true;
96 static void regmap_format_2_6_write(struct regmap *map,
97 unsigned int reg, unsigned int val)
99 u8 *out = map->work_buf;
101 *out = (reg << 6) | val;
104 static void regmap_format_4_12_write(struct regmap *map,
105 unsigned int reg, unsigned int val)
107 __be16 *out = map->work_buf;
108 *out = cpu_to_be16((reg << 12) | val);
111 static void regmap_format_7_9_write(struct regmap *map,
112 unsigned int reg, unsigned int val)
114 __be16 *out = map->work_buf;
115 *out = cpu_to_be16((reg << 9) | val);
118 static void regmap_format_10_14_write(struct regmap *map,
119 unsigned int reg, unsigned int val)
121 u8 *out = map->work_buf;
123 out[2] = val;
124 out[1] = (val >> 8) | (reg << 6);
125 out[0] = reg >> 2;
128 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
130 u8 *b = buf;
132 b[0] = val << shift;
135 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
137 __be16 *b = buf;
139 b[0] = cpu_to_be16(val << shift);
142 static void regmap_format_16_native(void *buf, unsigned int val,
143 unsigned int shift)
145 *(u16 *)buf = val << shift;
148 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
150 u8 *b = buf;
152 val <<= shift;
154 b[0] = val >> 16;
155 b[1] = val >> 8;
156 b[2] = val;
159 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
161 __be32 *b = buf;
163 b[0] = cpu_to_be32(val << shift);
166 static void regmap_format_32_native(void *buf, unsigned int val,
167 unsigned int shift)
169 *(u32 *)buf = val << shift;
172 static unsigned int regmap_parse_8(void *buf)
174 u8 *b = buf;
176 return b[0];
179 static unsigned int regmap_parse_16_be(void *buf)
181 __be16 *b = buf;
183 b[0] = be16_to_cpu(b[0]);
185 return b[0];
188 static unsigned int regmap_parse_16_native(void *buf)
190 return *(u16 *)buf;
193 static unsigned int regmap_parse_24(void *buf)
195 u8 *b = buf;
196 unsigned int ret = b[2];
197 ret |= ((unsigned int)b[1]) << 8;
198 ret |= ((unsigned int)b[0]) << 16;
200 return ret;
203 static unsigned int regmap_parse_32_be(void *buf)
205 __be32 *b = buf;
207 b[0] = be32_to_cpu(b[0]);
209 return b[0];
212 static unsigned int regmap_parse_32_native(void *buf)
214 return *(u32 *)buf;
217 static void regmap_lock_mutex(struct regmap *map)
219 mutex_lock(&map->mutex);
222 static void regmap_unlock_mutex(struct regmap *map)
224 mutex_unlock(&map->mutex);
227 static void regmap_lock_spinlock(struct regmap *map)
229 spin_lock(&map->spinlock);
232 static void regmap_unlock_spinlock(struct regmap *map)
234 spin_unlock(&map->spinlock);
237 static void dev_get_regmap_release(struct device *dev, void *res)
240 * We don't actually have anything to do here; the goal here
241 * is not to manage the regmap but to provide a simple way to
242 * get the regmap back given a struct device.
246 static bool _regmap_range_add(struct regmap *map,
247 struct regmap_range_node *data)
249 struct rb_root *root = &map->range_tree;
250 struct rb_node **new = &(root->rb_node), *parent = NULL;
252 while (*new) {
253 struct regmap_range_node *this =
254 container_of(*new, struct regmap_range_node, node);
256 parent = *new;
257 if (data->range_max < this->range_min)
258 new = &((*new)->rb_left);
259 else if (data->range_min > this->range_max)
260 new = &((*new)->rb_right);
261 else
262 return false;
265 rb_link_node(&data->node, parent, new);
266 rb_insert_color(&data->node, root);
268 return true;
271 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
272 unsigned int reg)
274 struct rb_node *node = map->range_tree.rb_node;
276 while (node) {
277 struct regmap_range_node *this =
278 container_of(node, struct regmap_range_node, node);
280 if (reg < this->range_min)
281 node = node->rb_left;
282 else if (reg > this->range_max)
283 node = node->rb_right;
284 else
285 return this;
288 return NULL;
291 static void regmap_range_exit(struct regmap *map)
293 struct rb_node *next;
294 struct regmap_range_node *range_node;
296 next = rb_first(&map->range_tree);
297 while (next) {
298 range_node = rb_entry(next, struct regmap_range_node, node);
299 next = rb_next(&range_node->node);
300 rb_erase(&range_node->node, &map->range_tree);
301 kfree(range_node);
304 kfree(map->selector_work_buf);
308 * regmap_init(): Initialise register map
310 * @dev: Device that will be interacted with
311 * @bus: Bus-specific callbacks to use with device
312 * @bus_context: Data passed to bus-specific callbacks
313 * @config: Configuration for register map
315 * The return value will be an ERR_PTR() on error or a valid pointer to
316 * a struct regmap. This function should generally not be called
317 * directly, it should be called by bus-specific init functions.
319 struct regmap *regmap_init(struct device *dev,
320 const struct regmap_bus *bus,
321 void *bus_context,
322 const struct regmap_config *config)
324 struct regmap *map, **m;
325 int ret = -EINVAL;
326 enum regmap_endian reg_endian, val_endian;
327 int i, j;
329 if (!bus || !config)
330 goto err;
332 map = kzalloc(sizeof(*map), GFP_KERNEL);
333 if (map == NULL) {
334 ret = -ENOMEM;
335 goto err;
338 if (bus->fast_io) {
339 spin_lock_init(&map->spinlock);
340 map->lock = regmap_lock_spinlock;
341 map->unlock = regmap_unlock_spinlock;
342 } else {
343 mutex_init(&map->mutex);
344 map->lock = regmap_lock_mutex;
345 map->unlock = regmap_unlock_mutex;
347 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
348 map->format.pad_bytes = config->pad_bits / 8;
349 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
350 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
351 config->val_bits + config->pad_bits, 8);
352 map->reg_shift = config->pad_bits % 8;
353 if (config->reg_stride)
354 map->reg_stride = config->reg_stride;
355 else
356 map->reg_stride = 1;
357 map->use_single_rw = config->use_single_rw;
358 map->dev = dev;
359 map->bus = bus;
360 map->bus_context = bus_context;
361 map->max_register = config->max_register;
362 map->writeable_reg = config->writeable_reg;
363 map->readable_reg = config->readable_reg;
364 map->volatile_reg = config->volatile_reg;
365 map->precious_reg = config->precious_reg;
366 map->cache_type = config->cache_type;
367 map->name = config->name;
369 if (config->read_flag_mask || config->write_flag_mask) {
370 map->read_flag_mask = config->read_flag_mask;
371 map->write_flag_mask = config->write_flag_mask;
372 } else {
373 map->read_flag_mask = bus->read_flag_mask;
376 reg_endian = config->reg_format_endian;
377 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
378 reg_endian = bus->reg_format_endian_default;
379 if (reg_endian == REGMAP_ENDIAN_DEFAULT)
380 reg_endian = REGMAP_ENDIAN_BIG;
382 val_endian = config->val_format_endian;
383 if (val_endian == REGMAP_ENDIAN_DEFAULT)
384 val_endian = bus->val_format_endian_default;
385 if (val_endian == REGMAP_ENDIAN_DEFAULT)
386 val_endian = REGMAP_ENDIAN_BIG;
388 switch (config->reg_bits + map->reg_shift) {
389 case 2:
390 switch (config->val_bits) {
391 case 6:
392 map->format.format_write = regmap_format_2_6_write;
393 break;
394 default:
395 goto err_map;
397 break;
399 case 4:
400 switch (config->val_bits) {
401 case 12:
402 map->format.format_write = regmap_format_4_12_write;
403 break;
404 default:
405 goto err_map;
407 break;
409 case 7:
410 switch (config->val_bits) {
411 case 9:
412 map->format.format_write = regmap_format_7_9_write;
413 break;
414 default:
415 goto err_map;
417 break;
419 case 10:
420 switch (config->val_bits) {
421 case 14:
422 map->format.format_write = regmap_format_10_14_write;
423 break;
424 default:
425 goto err_map;
427 break;
429 case 8:
430 map->format.format_reg = regmap_format_8;
431 break;
433 case 16:
434 switch (reg_endian) {
435 case REGMAP_ENDIAN_BIG:
436 map->format.format_reg = regmap_format_16_be;
437 break;
438 case REGMAP_ENDIAN_NATIVE:
439 map->format.format_reg = regmap_format_16_native;
440 break;
441 default:
442 goto err_map;
444 break;
446 case 32:
447 switch (reg_endian) {
448 case REGMAP_ENDIAN_BIG:
449 map->format.format_reg = regmap_format_32_be;
450 break;
451 case REGMAP_ENDIAN_NATIVE:
452 map->format.format_reg = regmap_format_32_native;
453 break;
454 default:
455 goto err_map;
457 break;
459 default:
460 goto err_map;
463 switch (config->val_bits) {
464 case 8:
465 map->format.format_val = regmap_format_8;
466 map->format.parse_val = regmap_parse_8;
467 break;
468 case 16:
469 switch (val_endian) {
470 case REGMAP_ENDIAN_BIG:
471 map->format.format_val = regmap_format_16_be;
472 map->format.parse_val = regmap_parse_16_be;
473 break;
474 case REGMAP_ENDIAN_NATIVE:
475 map->format.format_val = regmap_format_16_native;
476 map->format.parse_val = regmap_parse_16_native;
477 break;
478 default:
479 goto err_map;
481 break;
482 case 24:
483 if (val_endian != REGMAP_ENDIAN_BIG)
484 goto err_map;
485 map->format.format_val = regmap_format_24;
486 map->format.parse_val = regmap_parse_24;
487 break;
488 case 32:
489 switch (val_endian) {
490 case REGMAP_ENDIAN_BIG:
491 map->format.format_val = regmap_format_32_be;
492 map->format.parse_val = regmap_parse_32_be;
493 break;
494 case REGMAP_ENDIAN_NATIVE:
495 map->format.format_val = regmap_format_32_native;
496 map->format.parse_val = regmap_parse_32_native;
497 break;
498 default:
499 goto err_map;
501 break;
504 if (map->format.format_write) {
505 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
506 (val_endian != REGMAP_ENDIAN_BIG))
507 goto err_map;
508 map->use_single_rw = true;
511 if (!map->format.format_write &&
512 !(map->format.format_reg && map->format.format_val))
513 goto err_map;
515 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
516 if (map->work_buf == NULL) {
517 ret = -ENOMEM;
518 goto err_map;
521 map->range_tree = RB_ROOT;
522 for (i = 0; i < config->n_ranges; i++) {
523 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
524 struct regmap_range_node *new;
526 /* Sanity check */
527 if (range_cfg->range_max < range_cfg->range_min ||
528 range_cfg->range_max > map->max_register ||
529 range_cfg->selector_reg > map->max_register ||
530 range_cfg->window_len == 0)
531 goto err_range;
533 /* Make sure, that this register range has no selector
534 or data window within its boundary */
535 for (j = 0; j < config->n_ranges; j++) {
536 unsigned sel_reg = config->ranges[j].selector_reg;
537 unsigned win_min = config->ranges[j].window_start;
538 unsigned win_max = win_min +
539 config->ranges[j].window_len - 1;
541 if (range_cfg->range_min <= sel_reg &&
542 sel_reg <= range_cfg->range_max) {
543 goto err_range;
546 if (!(win_max < range_cfg->range_min ||
547 win_min > range_cfg->range_max)) {
548 goto err_range;
552 new = kzalloc(sizeof(*new), GFP_KERNEL);
553 if (new == NULL) {
554 ret = -ENOMEM;
555 goto err_range;
558 new->range_min = range_cfg->range_min;
559 new->range_max = range_cfg->range_max;
560 new->selector_reg = range_cfg->selector_reg;
561 new->selector_mask = range_cfg->selector_mask;
562 new->selector_shift = range_cfg->selector_shift;
563 new->window_start = range_cfg->window_start;
564 new->window_len = range_cfg->window_len;
566 if (_regmap_range_add(map, new) == false) {
567 kfree(new);
568 goto err_range;
571 if (map->selector_work_buf == NULL) {
572 map->selector_work_buf =
573 kzalloc(map->format.buf_size, GFP_KERNEL);
574 if (map->selector_work_buf == NULL) {
575 ret = -ENOMEM;
576 goto err_range;
581 ret = regcache_init(map, config);
582 if (ret < 0)
583 goto err_range;
585 regmap_debugfs_init(map, config->name);
587 /* Add a devres resource for dev_get_regmap() */
588 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
589 if (!m) {
590 ret = -ENOMEM;
591 goto err_debugfs;
593 *m = map;
594 devres_add(dev, m);
596 return map;
598 err_debugfs:
599 regmap_debugfs_exit(map);
600 regcache_exit(map);
601 err_range:
602 regmap_range_exit(map);
603 kfree(map->work_buf);
604 err_map:
605 kfree(map);
606 err:
607 return ERR_PTR(ret);
609 EXPORT_SYMBOL_GPL(regmap_init);
611 static void devm_regmap_release(struct device *dev, void *res)
613 regmap_exit(*(struct regmap **)res);
617 * devm_regmap_init(): Initialise managed register map
619 * @dev: Device that will be interacted with
620 * @bus: Bus-specific callbacks to use with device
621 * @bus_context: Data passed to bus-specific callbacks
622 * @config: Configuration for register map
624 * The return value will be an ERR_PTR() on error or a valid pointer
625 * to a struct regmap. This function should generally not be called
626 * directly, it should be called by bus-specific init functions. The
627 * map will be automatically freed by the device management code.
629 struct regmap *devm_regmap_init(struct device *dev,
630 const struct regmap_bus *bus,
631 void *bus_context,
632 const struct regmap_config *config)
634 struct regmap **ptr, *regmap;
636 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
637 if (!ptr)
638 return ERR_PTR(-ENOMEM);
640 regmap = regmap_init(dev, bus, bus_context, config);
641 if (!IS_ERR(regmap)) {
642 *ptr = regmap;
643 devres_add(dev, ptr);
644 } else {
645 devres_free(ptr);
648 return regmap;
650 EXPORT_SYMBOL_GPL(devm_regmap_init);
653 * regmap_reinit_cache(): Reinitialise the current register cache
655 * @map: Register map to operate on.
656 * @config: New configuration. Only the cache data will be used.
658 * Discard any existing register cache for the map and initialize a
659 * new cache. This can be used to restore the cache to defaults or to
660 * update the cache configuration to reflect runtime discovery of the
661 * hardware.
663 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
665 int ret;
667 map->lock(map);
669 regcache_exit(map);
670 regmap_debugfs_exit(map);
672 map->max_register = config->max_register;
673 map->writeable_reg = config->writeable_reg;
674 map->readable_reg = config->readable_reg;
675 map->volatile_reg = config->volatile_reg;
676 map->precious_reg = config->precious_reg;
677 map->cache_type = config->cache_type;
679 regmap_debugfs_init(map, config->name);
681 map->cache_bypass = false;
682 map->cache_only = false;
684 ret = regcache_init(map, config);
686 map->unlock(map);
688 return ret;
690 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
693 * regmap_exit(): Free a previously allocated register map
695 void regmap_exit(struct regmap *map)
697 regcache_exit(map);
698 regmap_debugfs_exit(map);
699 regmap_range_exit(map);
700 if (map->bus->free_context)
701 map->bus->free_context(map->bus_context);
702 kfree(map->work_buf);
703 kfree(map);
705 EXPORT_SYMBOL_GPL(regmap_exit);
707 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
709 struct regmap **r = res;
710 if (!r || !*r) {
711 WARN_ON(!r || !*r);
712 return 0;
715 /* If the user didn't specify a name match any */
716 if (data)
717 return (*r)->name == data;
718 else
719 return 1;
723 * dev_get_regmap(): Obtain the regmap (if any) for a device
725 * @dev: Device to retrieve the map for
726 * @name: Optional name for the register map, usually NULL.
728 * Returns the regmap for the device if one is present, or NULL. If
729 * name is specified then it must match the name specified when
730 * registering the device, if it is NULL then the first regmap found
731 * will be used. Devices with multiple register maps are very rare,
732 * generic code should normally not need to specify a name.
734 struct regmap *dev_get_regmap(struct device *dev, const char *name)
736 struct regmap **r = devres_find(dev, dev_get_regmap_release,
737 dev_get_regmap_match, (void *)name);
739 if (!r)
740 return NULL;
741 return *r;
743 EXPORT_SYMBOL_GPL(dev_get_regmap);
745 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
746 unsigned int val_num)
748 struct regmap_range_node *range;
749 void *orig_work_buf;
750 unsigned int win_offset;
751 unsigned int win_page;
752 bool page_chg;
753 int ret;
755 range = _regmap_range_lookup(map, *reg);
756 if (range) {
757 win_offset = (*reg - range->range_min) % range->window_len;
758 win_page = (*reg - range->range_min) / range->window_len;
760 if (val_num > 1) {
761 /* Bulk write shouldn't cross range boundary */
762 if (*reg + val_num - 1 > range->range_max)
763 return -EINVAL;
765 /* ... or single page boundary */
766 if (val_num > range->window_len - win_offset)
767 return -EINVAL;
770 /* It is possible to have selector register inside data window.
771 In that case, selector register is located on every page and
772 it needs no page switching, when accessed alone. */
773 if (val_num > 1 ||
774 range->window_start + win_offset != range->selector_reg) {
775 /* Use separate work_buf during page switching */
776 orig_work_buf = map->work_buf;
777 map->work_buf = map->selector_work_buf;
779 ret = _regmap_update_bits(map, range->selector_reg,
780 range->selector_mask,
781 win_page << range->selector_shift,
782 &page_chg);
784 map->work_buf = orig_work_buf;
786 if (ret < 0)
787 return ret;
790 *reg = range->window_start + win_offset;
793 return 0;
796 static int _regmap_raw_write(struct regmap *map, unsigned int reg,
797 const void *val, size_t val_len)
799 u8 *u8 = map->work_buf;
800 void *buf;
801 int ret = -ENOTSUPP;
802 size_t len;
803 int i;
805 /* Check for unwritable registers before we start */
806 if (map->writeable_reg)
807 for (i = 0; i < val_len / map->format.val_bytes; i++)
808 if (!map->writeable_reg(map->dev,
809 reg + (i * map->reg_stride)))
810 return -EINVAL;
812 if (!map->cache_bypass && map->format.parse_val) {
813 unsigned int ival;
814 int val_bytes = map->format.val_bytes;
815 for (i = 0; i < val_len / val_bytes; i++) {
816 memcpy(map->work_buf, val + (i * val_bytes), val_bytes);
817 ival = map->format.parse_val(map->work_buf);
818 ret = regcache_write(map, reg + (i * map->reg_stride),
819 ival);
820 if (ret) {
821 dev_err(map->dev,
822 "Error in caching of register: %u ret: %d\n",
823 reg + i, ret);
824 return ret;
827 if (map->cache_only) {
828 map->cache_dirty = true;
829 return 0;
833 ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
834 if (ret < 0)
835 return ret;
837 map->format.format_reg(map->work_buf, reg, map->reg_shift);
839 u8[0] |= map->write_flag_mask;
841 trace_regmap_hw_write_start(map->dev, reg,
842 val_len / map->format.val_bytes);
844 /* If we're doing a single register write we can probably just
845 * send the work_buf directly, otherwise try to do a gather
846 * write.
848 if (val == (map->work_buf + map->format.pad_bytes +
849 map->format.reg_bytes))
850 ret = map->bus->write(map->bus_context, map->work_buf,
851 map->format.reg_bytes +
852 map->format.pad_bytes +
853 val_len);
854 else if (map->bus->gather_write)
855 ret = map->bus->gather_write(map->bus_context, map->work_buf,
856 map->format.reg_bytes +
857 map->format.pad_bytes,
858 val, val_len);
860 /* If that didn't work fall back on linearising by hand. */
861 if (ret == -ENOTSUPP) {
862 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
863 buf = kzalloc(len, GFP_KERNEL);
864 if (!buf)
865 return -ENOMEM;
867 memcpy(buf, map->work_buf, map->format.reg_bytes);
868 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
869 val, val_len);
870 ret = map->bus->write(map->bus_context, buf, len);
872 kfree(buf);
875 trace_regmap_hw_write_done(map->dev, reg,
876 val_len / map->format.val_bytes);
878 return ret;
881 int _regmap_write(struct regmap *map, unsigned int reg,
882 unsigned int val)
884 int ret;
885 BUG_ON(!map->format.format_write && !map->format.format_val);
887 if (!map->cache_bypass && map->format.format_write) {
888 ret = regcache_write(map, reg, val);
889 if (ret != 0)
890 return ret;
891 if (map->cache_only) {
892 map->cache_dirty = true;
893 return 0;
897 #ifdef LOG_DEVICE
898 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
899 dev_info(map->dev, "%x <= %x\n", reg, val);
900 #endif
902 trace_regmap_reg_write(map->dev, reg, val);
904 if (map->format.format_write) {
905 ret = _regmap_select_page(map, &reg, 1);
906 if (ret < 0)
907 return ret;
909 map->format.format_write(map, reg, val);
911 trace_regmap_hw_write_start(map->dev, reg, 1);
913 ret = map->bus->write(map->bus_context, map->work_buf,
914 map->format.buf_size);
916 trace_regmap_hw_write_done(map->dev, reg, 1);
918 return ret;
919 } else {
920 map->format.format_val(map->work_buf + map->format.reg_bytes
921 + map->format.pad_bytes, val, 0);
922 return _regmap_raw_write(map, reg,
923 map->work_buf +
924 map->format.reg_bytes +
925 map->format.pad_bytes,
926 map->format.val_bytes);
931 * regmap_write(): Write a value to a single register
933 * @map: Register map to write to
934 * @reg: Register to write to
935 * @val: Value to be written
937 * A value of zero will be returned on success, a negative errno will
938 * be returned in error cases.
940 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
942 int ret;
944 if (reg % map->reg_stride)
945 return -EINVAL;
947 map->lock(map);
949 ret = _regmap_write(map, reg, val);
951 map->unlock(map);
953 return ret;
955 EXPORT_SYMBOL_GPL(regmap_write);
958 * regmap_raw_write(): Write raw values to one or more registers
960 * @map: Register map to write to
961 * @reg: Initial register to write to
962 * @val: Block of data to be written, laid out for direct transmission to the
963 * device
964 * @val_len: Length of data pointed to by val.
966 * This function is intended to be used for things like firmware
967 * download where a large block of data needs to be transferred to the
968 * device. No formatting will be done on the data provided.
970 * A value of zero will be returned on success, a negative errno will
971 * be returned in error cases.
973 int regmap_raw_write(struct regmap *map, unsigned int reg,
974 const void *val, size_t val_len)
976 int ret;
978 if (val_len % map->format.val_bytes)
979 return -EINVAL;
980 if (reg % map->reg_stride)
981 return -EINVAL;
983 map->lock(map);
985 ret = _regmap_raw_write(map, reg, val, val_len);
987 map->unlock(map);
989 return ret;
991 EXPORT_SYMBOL_GPL(regmap_raw_write);
994 * regmap_bulk_write(): Write multiple registers to the device
996 * @map: Register map to write to
997 * @reg: First register to be write from
998 * @val: Block of data to be written, in native register size for device
999 * @val_count: Number of registers to write
1001 * This function is intended to be used for writing a large block of
1002 * data to be device either in single transfer or multiple transfer.
1004 * A value of zero will be returned on success, a negative errno will
1005 * be returned in error cases.
1007 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1008 size_t val_count)
1010 int ret = 0, i;
1011 size_t val_bytes = map->format.val_bytes;
1012 void *wval;
1014 if (!map->format.parse_val)
1015 return -EINVAL;
1016 if (reg % map->reg_stride)
1017 return -EINVAL;
1019 map->lock(map);
1021 /* No formatting is require if val_byte is 1 */
1022 if (val_bytes == 1) {
1023 wval = (void *)val;
1024 } else {
1025 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1026 if (!wval) {
1027 ret = -ENOMEM;
1028 dev_err(map->dev, "Error in memory allocation\n");
1029 goto out;
1031 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1032 map->format.parse_val(wval + i);
1035 * Some devices does not support bulk write, for
1036 * them we have a series of single write operations.
1038 if (map->use_single_rw) {
1039 for (i = 0; i < val_count; i++) {
1040 ret = regmap_raw_write(map,
1041 reg + (i * map->reg_stride),
1042 val + (i * val_bytes),
1043 val_bytes);
1044 if (ret != 0)
1045 return ret;
1047 } else {
1048 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1051 if (val_bytes != 1)
1052 kfree(wval);
1054 out:
1055 map->unlock(map);
1056 return ret;
1058 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1060 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1061 unsigned int val_len)
1063 u8 *u8 = map->work_buf;
1064 int ret;
1066 ret = _regmap_select_page(map, &reg, val_len / map->format.val_bytes);
1067 if (ret < 0)
1068 return ret;
1070 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1073 * Some buses or devices flag reads by setting the high bits in the
1074 * register addresss; since it's always the high bits for all
1075 * current formats we can do this here rather than in
1076 * formatting. This may break if we get interesting formats.
1078 u8[0] |= map->read_flag_mask;
1080 trace_regmap_hw_read_start(map->dev, reg,
1081 val_len / map->format.val_bytes);
1083 ret = map->bus->read(map->bus_context, map->work_buf,
1084 map->format.reg_bytes + map->format.pad_bytes,
1085 val, val_len);
1087 trace_regmap_hw_read_done(map->dev, reg,
1088 val_len / map->format.val_bytes);
1090 return ret;
1093 static int _regmap_read(struct regmap *map, unsigned int reg,
1094 unsigned int *val)
1096 int ret;
1098 if (!map->cache_bypass) {
1099 ret = regcache_read(map, reg, val);
1100 if (ret == 0)
1101 return 0;
1104 if (!map->format.parse_val)
1105 return -EINVAL;
1107 if (map->cache_only)
1108 return -EBUSY;
1110 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1111 if (ret == 0) {
1112 *val = map->format.parse_val(map->work_buf);
1114 #ifdef LOG_DEVICE
1115 if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1116 dev_info(map->dev, "%x => %x\n", reg, *val);
1117 #endif
1119 trace_regmap_reg_read(map->dev, reg, *val);
1122 if (ret == 0 && !map->cache_bypass)
1123 regcache_write(map, reg, *val);
1125 return ret;
1129 * regmap_read(): Read a value from a single register
1131 * @map: Register map to write to
1132 * @reg: Register to be read from
1133 * @val: Pointer to store read value
1135 * A value of zero will be returned on success, a negative errno will
1136 * be returned in error cases.
1138 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1140 int ret;
1142 if (reg % map->reg_stride)
1143 return -EINVAL;
1145 map->lock(map);
1147 ret = _regmap_read(map, reg, val);
1149 map->unlock(map);
1151 return ret;
1153 EXPORT_SYMBOL_GPL(regmap_read);
1156 * regmap_raw_read(): Read raw data from the device
1158 * @map: Register map to write to
1159 * @reg: First register to be read from
1160 * @val: Pointer to store read value
1161 * @val_len: Size of data to read
1163 * A value of zero will be returned on success, a negative errno will
1164 * be returned in error cases.
1166 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1167 size_t val_len)
1169 size_t val_bytes = map->format.val_bytes;
1170 size_t val_count = val_len / val_bytes;
1171 unsigned int v;
1172 int ret, i;
1174 if (val_len % map->format.val_bytes)
1175 return -EINVAL;
1176 if (reg % map->reg_stride)
1177 return -EINVAL;
1179 map->lock(map);
1181 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1182 map->cache_type == REGCACHE_NONE) {
1183 /* Physical block read if there's no cache involved */
1184 ret = _regmap_raw_read(map, reg, val, val_len);
1186 } else {
1187 /* Otherwise go word by word for the cache; should be low
1188 * cost as we expect to hit the cache.
1190 for (i = 0; i < val_count; i++) {
1191 ret = _regmap_read(map, reg + (i * map->reg_stride),
1192 &v);
1193 if (ret != 0)
1194 goto out;
1196 map->format.format_val(val + (i * val_bytes), v, 0);
1200 out:
1201 map->unlock(map);
1203 return ret;
1205 EXPORT_SYMBOL_GPL(regmap_raw_read);
1208 * regmap_bulk_read(): Read multiple registers from the device
1210 * @map: Register map to write to
1211 * @reg: First register to be read from
1212 * @val: Pointer to store read value, in native register size for device
1213 * @val_count: Number of registers to read
1215 * A value of zero will be returned on success, a negative errno will
1216 * be returned in error cases.
1218 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1219 size_t val_count)
1221 int ret, i;
1222 size_t val_bytes = map->format.val_bytes;
1223 bool vol = regmap_volatile_range(map, reg, val_count);
1225 if (!map->format.parse_val)
1226 return -EINVAL;
1227 if (reg % map->reg_stride)
1228 return -EINVAL;
1230 if (vol || map->cache_type == REGCACHE_NONE) {
1232 * Some devices does not support bulk read, for
1233 * them we have a series of single read operations.
1235 if (map->use_single_rw) {
1236 for (i = 0; i < val_count; i++) {
1237 ret = regmap_raw_read(map,
1238 reg + (i * map->reg_stride),
1239 val + (i * val_bytes),
1240 val_bytes);
1241 if (ret != 0)
1242 return ret;
1244 } else {
1245 ret = regmap_raw_read(map, reg, val,
1246 val_bytes * val_count);
1247 if (ret != 0)
1248 return ret;
1251 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1252 map->format.parse_val(val + i);
1253 } else {
1254 for (i = 0; i < val_count; i++) {
1255 unsigned int ival;
1256 ret = regmap_read(map, reg + (i * map->reg_stride),
1257 &ival);
1258 if (ret != 0)
1259 return ret;
1260 memcpy(val + (i * val_bytes), &ival, val_bytes);
1264 return 0;
1266 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1268 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1269 unsigned int mask, unsigned int val,
1270 bool *change)
1272 int ret;
1273 unsigned int tmp, orig;
1275 ret = _regmap_read(map, reg, &orig);
1276 if (ret != 0)
1277 return ret;
1279 tmp = orig & ~mask;
1280 tmp |= val & mask;
1282 if (tmp != orig) {
1283 ret = _regmap_write(map, reg, tmp);
1284 *change = true;
1285 } else {
1286 *change = false;
1289 return ret;
1293 * regmap_update_bits: Perform a read/modify/write cycle on the register map
1295 * @map: Register map to update
1296 * @reg: Register to update
1297 * @mask: Bitmask to change
1298 * @val: New value for bitmask
1300 * Returns zero for success, a negative number on error.
1302 int regmap_update_bits(struct regmap *map, unsigned int reg,
1303 unsigned int mask, unsigned int val)
1305 bool change;
1306 int ret;
1308 map->lock(map);
1309 ret = _regmap_update_bits(map, reg, mask, val, &change);
1310 map->unlock(map);
1312 return ret;
1314 EXPORT_SYMBOL_GPL(regmap_update_bits);
1317 * regmap_update_bits_check: Perform a read/modify/write cycle on the
1318 * register map and report if updated
1320 * @map: Register map to update
1321 * @reg: Register to update
1322 * @mask: Bitmask to change
1323 * @val: New value for bitmask
1324 * @change: Boolean indicating if a write was done
1326 * Returns zero for success, a negative number on error.
1328 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1329 unsigned int mask, unsigned int val,
1330 bool *change)
1332 int ret;
1334 map->lock(map);
1335 ret = _regmap_update_bits(map, reg, mask, val, change);
1336 map->unlock(map);
1337 return ret;
1339 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1342 * regmap_register_patch: Register and apply register updates to be applied
1343 * on device initialistion
1345 * @map: Register map to apply updates to.
1346 * @regs: Values to update.
1347 * @num_regs: Number of entries in regs.
1349 * Register a set of register updates to be applied to the device
1350 * whenever the device registers are synchronised with the cache and
1351 * apply them immediately. Typically this is used to apply
1352 * corrections to be applied to the device defaults on startup, such
1353 * as the updates some vendors provide to undocumented registers.
1355 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1356 int num_regs)
1358 int i, ret;
1359 bool bypass;
1361 /* If needed the implementation can be extended to support this */
1362 if (map->patch)
1363 return -EBUSY;
1365 map->lock(map);
1367 bypass = map->cache_bypass;
1369 map->cache_bypass = true;
1371 /* Write out first; it's useful to apply even if we fail later. */
1372 for (i = 0; i < num_regs; i++) {
1373 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1374 if (ret != 0) {
1375 dev_err(map->dev, "Failed to write %x = %x: %d\n",
1376 regs[i].reg, regs[i].def, ret);
1377 goto out;
1381 map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1382 if (map->patch != NULL) {
1383 memcpy(map->patch, regs,
1384 num_regs * sizeof(struct reg_default));
1385 map->patch_regs = num_regs;
1386 } else {
1387 ret = -ENOMEM;
1390 out:
1391 map->cache_bypass = bypass;
1393 map->unlock(map);
1395 return ret;
1397 EXPORT_SYMBOL_GPL(regmap_register_patch);
1400 * regmap_get_val_bytes(): Report the size of a register value
1402 * Report the size of a register value, mainly intended to for use by
1403 * generic infrastructure built on top of regmap.
1405 int regmap_get_val_bytes(struct regmap *map)
1407 if (map->format.format_write)
1408 return -EINVAL;
1410 return map->format.val_bytes;
1412 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1414 static int __init regmap_initcall(void)
1416 regmap_debugfs_initcall();
1418 return 0;
1420 postcore_initcall(regmap_initcall);