2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
39 #include "dbx500-prcmu-regs.h"
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE 0x2FC
46 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
60 #define PRCM_AVS_VOLTAGE 0
61 #define PRCM_AVS_VOLTAGE_MASK 0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP 6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE 7
65 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
67 #define PRCM_BOOT_STATUS 0xFFF
68 #define PRCM_ROMCODE_A2P 0xFFE
69 #define PRCM_ROMCODE_P2A 0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
74 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS 0
101 #define MB0H_CONFIG_WAKEUPS_EXE 1
102 #define MB0H_READ_WAKEUP_ACK 3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
109 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF 0x1
138 #define PLL_SOC0_ON 0x2
139 #define PLL_SOC1_OFF 0x4
140 #define PLL_SOC1_ON 0x8
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
148 /* Mailbox 2 headers */
150 #define MB2H_AUTO_PWR 0x1
153 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
168 /* Mailbox 3 headers */
170 #define MB3H_SIDETONE 0x1
171 #define MB3H_SYSCLK 0xE
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT 0x0
184 #define MB4H_MEM_ST 0x1
185 #define MB4H_HOTDOG 0x12
186 #define MB4H_HOTMON 0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN 0x17
190 #define MB4H_A9WDOG_DIS 0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW BIT(0)
204 #define HOTMON_CONFIG_HIGH BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS 0
211 #define A9WDOG_ID_MASK 0xf
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN BIT(3)
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
270 struct prcmu_fw_version version
;
274 * This vector maps irq numbers to the bits in the bit field used in
275 * communication with the PRCMU firmware.
277 * The reason for having this is to keep the irq numbers contiguous even though
278 * the bits in the bit field are not. (The bits also have a tendency to move
279 * around, to further complicate matters.)
281 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
295 IRQ_ENTRY(HOTMON_LOW
),
296 IRQ_ENTRY(HOTMON_HIGH
),
297 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
309 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
319 WAKEUP_ENTRY(ABB_FIFO
),
324 * mb0_transfer - state needed for mailbox 0 communication.
325 * @lock: The transaction lock.
326 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
328 * @mask_work: Work structure used for (un)masking wakeup interrupts.
329 * @req: Request data that need to persist between requests.
333 spinlock_t dbb_irqs_lock
;
334 struct work_struct mask_work
;
335 struct mutex ac_wake_lock
;
336 struct completion ac_wake_work
;
345 * mb1_transfer - state needed for mailbox 1 communication.
346 * @lock: The transaction lock.
347 * @work: The transaction completion structure.
348 * @ape_opp: The current APE OPP.
349 * @ack: Reply ("acknowledge") data.
353 struct completion work
;
359 u8 ape_voltage_status
;
364 * mb2_transfer - state needed for mailbox 2 communication.
365 * @lock: The transaction lock.
366 * @work: The transaction completion structure.
367 * @auto_pm_lock: The autonomous power management configuration lock.
368 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369 * @req: Request data that need to persist between requests.
370 * @ack: Reply ("acknowledge") data.
374 struct completion work
;
375 spinlock_t auto_pm_lock
;
376 bool auto_pm_enabled
;
383 * mb3_transfer - state needed for mailbox 3 communication.
384 * @lock: The request lock.
385 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
386 * @sysclk_work: Work structure used for sysclk requests.
390 struct mutex sysclk_lock
;
391 struct completion sysclk_work
;
395 * mb4_transfer - state needed for mailbox 4 communication.
396 * @lock: The transaction lock.
397 * @work: The transaction completion structure.
401 struct completion work
;
405 * mb5_transfer - state needed for mailbox 5 communication.
406 * @lock: The transaction lock.
407 * @work: The transaction completion structure.
408 * @ack: Reply ("acknowledge") data.
412 struct completion work
;
419 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
422 static DEFINE_SPINLOCK(prcmu_lock
);
423 static DEFINE_SPINLOCK(clkout_lock
);
425 /* Global var to runtime determine TCDM base for v2 or v1 */
426 static __iomem
void *tcdm_base
;
441 static DEFINE_SPINLOCK(clk_mgt_lock
);
443 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
444 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
445 struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
446 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
447 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
448 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
449 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
450 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
451 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
452 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
453 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
454 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
455 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
456 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
457 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
458 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
459 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
460 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
461 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
462 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
463 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
464 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
465 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
466 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
467 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
468 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
469 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
470 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
471 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
472 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
483 static struct dsiclk dsiclk
[2] = {
485 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
486 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
487 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
490 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
491 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
492 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
502 static struct dsiescclk dsiescclk
[3] = {
504 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
505 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
506 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
509 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
510 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
511 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
514 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
515 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
516 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
521 * Used by MCDE to setup all necessary PRCMU registers
523 #define PRCMU_RESET_DSIPLL 0x00004000
524 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
526 #define PRCMU_CLK_PLL_DIV_SHIFT 0
527 #define PRCMU_CLK_PLL_SW_SHIFT 5
528 #define PRCMU_CLK_38 (1 << 9)
529 #define PRCMU_CLK_38_SRC (1 << 10)
530 #define PRCMU_CLK_38_DIV (1 << 11)
532 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
533 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
535 /* DPI 50000000 Hz */
536 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
537 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
538 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
540 /* D=101, N=1, R=4, SELDIV2=0 */
541 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
543 #define PRCMU_ENABLE_PLLDSI 0x00000001
544 #define PRCMU_DISABLE_PLLDSI 0x00000000
545 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
546 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
547 /* ESC clk, div0=1, div1=1, div2=3 */
548 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
549 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
550 #define PRCMU_DSI_RESET_SW 0x00000007
552 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
554 int db8500_prcmu_enable_dsipll(void)
558 /* Clear DSIPLL_RESETN */
559 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_CLR
);
560 /* Unclamp DSIPLL in/out */
561 writel(PRCMU_UNCLAMP_DSIPLL
, PRCM_MMIP_LS_CLAMP_CLR
);
563 /* Set DSI PLL FREQ */
564 writel(PRCMU_PLLDSI_FREQ_SETTING
, PRCM_PLLDSI_FREQ
);
565 writel(PRCMU_DSI_PLLOUT_SEL_SETTING
, PRCM_DSI_PLLOUT_SEL
);
566 /* Enable Escape clocks */
567 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
570 writel(PRCMU_ENABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
572 writel(PRCMU_DSI_RESET_SW
, PRCM_DSI_SW_RESET
);
573 for (i
= 0; i
< 10; i
++) {
574 if ((readl(PRCM_PLLDSI_LOCKP
) & PRCMU_PLLDSI_LOCKP_LOCKED
)
575 == PRCMU_PLLDSI_LOCKP_LOCKED
)
579 /* Set DSIPLL_RESETN */
580 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_SET
);
584 int db8500_prcmu_disable_dsipll(void)
586 /* Disable dsi pll */
587 writel(PRCMU_DISABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
588 /* Disable escapeclock */
589 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
593 int db8500_prcmu_set_display_clocks(void)
597 spin_lock_irqsave(&clk_mgt_lock
, flags
);
599 /* Grab the HW semaphore. */
600 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
603 writel(PRCMU_DSI_CLOCK_SETTING
, PRCM_HDMICLK_MGT
);
604 writel(PRCMU_DSI_LP_CLOCK_SETTING
, PRCM_TVCLK_MGT
);
605 writel(PRCMU_DPI_CLOCK_SETTING
, PRCM_LCDCLK_MGT
);
607 /* Release the HW semaphore. */
610 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
615 u32
db8500_prcmu_read(unsigned int reg
)
617 return readl(_PRCMU_BASE
+ reg
);
620 void db8500_prcmu_write(unsigned int reg
, u32 value
)
624 spin_lock_irqsave(&prcmu_lock
, flags
);
625 writel(value
, (_PRCMU_BASE
+ reg
));
626 spin_unlock_irqrestore(&prcmu_lock
, flags
);
629 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
634 spin_lock_irqsave(&prcmu_lock
, flags
);
635 val
= readl(_PRCMU_BASE
+ reg
);
636 val
= ((val
& ~mask
) | (value
& mask
));
637 writel(val
, (_PRCMU_BASE
+ reg
));
638 spin_unlock_irqrestore(&prcmu_lock
, flags
);
641 struct prcmu_fw_version
*prcmu_get_fw_version(void)
643 return fw_info
.valid
? &fw_info
.version
: NULL
;
646 bool prcmu_has_arm_maxopp(void)
648 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
649 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
653 * prcmu_get_boot_status - PRCMU boot status checking
654 * Returns: the current PRCMU boot status
656 int prcmu_get_boot_status(void)
658 return readb(tcdm_base
+ PRCM_BOOT_STATUS
);
662 * prcmu_set_rc_a2p - This function is used to run few power state sequences
663 * @val: Value to be set, i.e. transition requested
664 * Returns: 0 on success, -EINVAL on invalid argument
666 * This function is used to run the following power state sequences -
667 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
669 int prcmu_set_rc_a2p(enum romcode_write val
)
671 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
673 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
678 * prcmu_get_rc_p2a - This function is used to get power state sequences
679 * Returns: the power transition that has last happened
681 * This function can return the following transitions-
682 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684 enum romcode_read
prcmu_get_rc_p2a(void)
686 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
690 * prcmu_get_current_mode - Return the current XP70 power mode
691 * Returns: Returns the current AP(ARM) power mode: init,
692 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
694 enum ap_pwrst
prcmu_get_xp70_current_state(void)
696 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
700 * prcmu_config_clkout - Configure one of the programmable clock outputs.
701 * @clkout: The CLKOUT number (0 or 1).
702 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
703 * @div: The divider to be applied.
705 * Configures one of the programmable clock outputs (CLKOUTs).
706 * @div should be in the range [1,63] to request a configuration, or 0 to
707 * inform that the configuration is no longer requested.
709 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
711 static int requests
[2];
721 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
723 if (!div
&& !requests
[clkout
])
728 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
729 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
730 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
731 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
734 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
735 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
736 PRCM_CLKOCR_CLK1TYPE
);
737 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
738 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
743 spin_lock_irqsave(&clkout_lock
, flags
);
745 val
= readl(PRCM_CLKOCR
);
746 if (val
& div_mask
) {
748 if ((val
& mask
) != bits
) {
750 goto unlock_and_return
;
753 if ((val
& mask
& ~div_mask
) != bits
) {
755 goto unlock_and_return
;
759 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
760 requests
[clkout
] += (div
? 1 : -1);
763 spin_unlock_irqrestore(&clkout_lock
, flags
);
768 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
772 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
774 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
776 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
779 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
780 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
781 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
782 writeb((keep_ulp_clk
? 1 : 0),
783 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
784 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
785 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
787 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
792 u8
db8500_prcmu_get_power_state_result(void)
794 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
797 /* This function decouple the gic from the prcmu */
798 int db8500_prcmu_gic_decouple(void)
800 u32 val
= readl(PRCM_A9_MASK_REQ
);
802 /* Set bit 0 register value to 1 */
803 writel(val
| PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ
,
806 /* Make sure the register is updated */
807 readl(PRCM_A9_MASK_REQ
);
809 /* Wait a few cycles for the gic mask completion */
815 /* This function recouple the gic with the prcmu */
816 int db8500_prcmu_gic_recouple(void)
818 u32 val
= readl(PRCM_A9_MASK_REQ
);
820 /* Set bit 0 register value to 0 */
821 writel(val
& ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ
, PRCM_A9_MASK_REQ
);
826 #define PRCMU_GIC_NUMBER_REGS 5
829 * This function checks if there are pending irq on the gic. It only
830 * makes sense if the gic has been decoupled before with the
831 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
832 * disables the forwarding of the interrupt to any CPU interface. It
833 * does not prevent the interrupt from changing state, for example
834 * becoming pending, or active and pending if it is already
835 * active. Hence, we have to check the interrupt is pending *and* is
838 bool db8500_prcmu_gic_pending_irq(void)
840 u32 pr
; /* Pending register */
841 u32 er
; /* Enable register */
842 void __iomem
*dist_base
= __io_address(U8500_GIC_DIST_BASE
);
845 /* 5 registers. STI & PPI not skipped */
846 for (i
= 0; i
< PRCMU_GIC_NUMBER_REGS
; i
++) {
848 pr
= readl_relaxed(dist_base
+ GIC_DIST_PENDING_SET
+ i
* 4);
849 er
= readl_relaxed(dist_base
+ GIC_DIST_ENABLE_SET
+ i
* 4);
852 return true; /* There is a pending interrupt */
859 * This function checks if there are pending interrupt on the
860 * prcmu which has been delegated to monitor the irqs with the
861 * db8500_prcmu_copy_gic_settings function.
863 bool db8500_prcmu_pending_irq(void)
868 for (i
= 0; i
< PRCMU_GIC_NUMBER_REGS
- 1; i
++) {
869 it
= readl(PRCM_ARMITVAL31TO0
+ i
* 4);
870 im
= readl(PRCM_ARMITMSK31TO0
+ i
* 4);
872 return true; /* There is a pending interrupt */
879 * This function checks if the specified cpu is in in WFI. It's usage
880 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
881 * function. Of course passing smp_processor_id() to this function will
882 * always return false...
884 bool db8500_prcmu_is_cpu_in_wfi(int cpu
)
886 return readl(PRCM_ARM_WFI_STANDBY
) & cpu
? PRCM_ARM_WFI_STANDBY_WFI1
:
887 PRCM_ARM_WFI_STANDBY_WFI0
;
891 * This function copies the gic SPI settings to the prcmu in order to
892 * monitor them and abort/finish the retention/off sequence or state.
894 int db8500_prcmu_copy_gic_settings(void)
896 u32 er
; /* Enable register */
897 void __iomem
*dist_base
= __io_address(U8500_GIC_DIST_BASE
);
900 /* We skip the STI and PPI */
901 for (i
= 0; i
< PRCMU_GIC_NUMBER_REGS
- 1; i
++) {
902 er
= readl_relaxed(dist_base
+
903 GIC_DIST_ENABLE_SET
+ (i
+ 1) * 4);
904 writel(er
, PRCM_ARMITMSK31TO0
+ i
* 4);
910 /* This function should only be called while mb0_transfer.lock is held. */
911 static void config_wakeups(void)
913 const u8 header
[2] = {
914 MB0H_CONFIG_WAKEUPS_EXE
,
915 MB0H_CONFIG_WAKEUPS_SLEEP
917 static u32 last_dbb_events
;
918 static u32 last_abb_events
;
923 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
924 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
926 abb_events
= mb0_transfer
.req
.abb_events
;
928 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
931 for (i
= 0; i
< 2; i
++) {
932 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
934 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
935 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
936 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
937 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
939 last_dbb_events
= dbb_events
;
940 last_abb_events
= abb_events
;
943 void db8500_prcmu_enable_wakeups(u32 wakeups
)
949 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
951 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
952 if (wakeups
& BIT(i
))
953 bits
|= prcmu_wakeup_bit
[i
];
956 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
958 mb0_transfer
.req
.dbb_wakeups
= bits
;
961 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
964 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
968 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
970 mb0_transfer
.req
.abb_events
= abb_events
;
973 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
976 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
978 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
979 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
981 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
985 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
986 * @opp: The new ARM operating point to which transition is to be made
987 * Returns: 0 on success, non-zero on failure
989 * This function sets the the operating point of the ARM.
991 int db8500_prcmu_set_arm_opp(u8 opp
)
995 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
1000 mutex_lock(&mb1_transfer
.lock
);
1002 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1005 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1006 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1007 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1009 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1010 wait_for_completion(&mb1_transfer
.work
);
1012 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1013 (mb1_transfer
.ack
.arm_opp
!= opp
))
1016 mutex_unlock(&mb1_transfer
.lock
);
1022 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1024 * Returns: the current ARM OPP
1026 int db8500_prcmu_get_arm_opp(void)
1028 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
1032 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1034 * Returns: the current DDR OPP
1036 int db8500_prcmu_get_ddr_opp(void)
1038 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
1042 * db8500_set_ddr_opp - set the appropriate DDR OPP
1043 * @opp: The new DDR operating point to which transition is to be made
1044 * Returns: 0 on success, non-zero on failure
1046 * This function sets the operating point of the DDR.
1048 int db8500_prcmu_set_ddr_opp(u8 opp
)
1050 if (opp
< DDR_100_OPP
|| opp
> DDR_25_OPP
)
1052 /* Changing the DDR OPP can hang the hardware pre-v21 */
1053 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1054 writeb(opp
, PRCM_DDR_SUBSYS_APE_MINBW
);
1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060 static void request_even_slower_clocks(bool enable
)
1062 void __iomem
*clock_reg
[] = {
1066 unsigned long flags
;
1069 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1071 /* Grab the HW semaphore. */
1072 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1075 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
1079 val
= readl(clock_reg
[i
]);
1080 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
1082 if ((div
<= 1) || (div
> 15)) {
1083 pr_err("prcmu: Bad clock divider %d in %s\n",
1085 goto unlock_and_return
;
1090 goto unlock_and_return
;
1093 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
1094 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
1095 writel(val
, clock_reg
[i
]);
1099 /* Release the HW semaphore. */
1100 writel(0, PRCM_SEM
);
1102 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1106 * db8500_set_ape_opp - set the appropriate APE OPP
1107 * @opp: The new APE operating point to which transition is to be made
1108 * Returns: 0 on success, non-zero on failure
1110 * This function sets the operating point of the APE.
1112 int db8500_prcmu_set_ape_opp(u8 opp
)
1116 if (opp
== mb1_transfer
.ape_opp
)
1119 mutex_lock(&mb1_transfer
.lock
);
1121 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
1122 request_even_slower_clocks(false);
1124 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
1127 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1130 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1131 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1132 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
1133 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1135 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1136 wait_for_completion(&mb1_transfer
.work
);
1138 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1139 (mb1_transfer
.ack
.ape_opp
!= opp
))
1143 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
1144 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
1145 request_even_slower_clocks(true);
1147 mb1_transfer
.ape_opp
= opp
;
1149 mutex_unlock(&mb1_transfer
.lock
);
1155 * db8500_prcmu_get_ape_opp - get the current APE OPP
1157 * Returns: the current APE OPP
1159 int db8500_prcmu_get_ape_opp(void)
1161 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
1165 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1166 * @enable: true to request the higher voltage, false to drop a request.
1168 * Calls to this function to enable and disable requests must be balanced.
1170 int prcmu_request_ape_opp_100_voltage(bool enable
)
1174 static unsigned int requests
;
1176 mutex_lock(&mb1_transfer
.lock
);
1179 if (0 != requests
++)
1180 goto unlock_and_return
;
1181 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
1183 if (requests
== 0) {
1185 goto unlock_and_return
;
1186 } else if (1 != requests
--) {
1187 goto unlock_and_return
;
1189 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
1192 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1195 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1197 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1198 wait_for_completion(&mb1_transfer
.work
);
1200 if ((mb1_transfer
.ack
.header
!= header
) ||
1201 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1205 mutex_unlock(&mb1_transfer
.lock
);
1211 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1213 * This function releases the power state requirements of a USB wakeup.
1215 int prcmu_release_usb_wakeup_state(void)
1219 mutex_lock(&mb1_transfer
.lock
);
1221 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1224 writeb(MB1H_RELEASE_USB_WAKEUP
,
1225 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1227 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1228 wait_for_completion(&mb1_transfer
.work
);
1230 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1231 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1234 mutex_unlock(&mb1_transfer
.lock
);
1239 static int request_pll(u8 clock
, bool enable
)
1243 if (clock
== PRCMU_PLLSOC0
)
1244 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1245 else if (clock
== PRCMU_PLLSOC1
)
1246 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1250 mutex_lock(&mb1_transfer
.lock
);
1252 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1255 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1256 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1258 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1259 wait_for_completion(&mb1_transfer
.work
);
1261 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1264 mutex_unlock(&mb1_transfer
.lock
);
1270 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1271 * @epod_id: The EPOD to set
1272 * @epod_state: The new EPOD state
1274 * This function sets the state of a EPOD (power domain). It may not be called
1275 * from interrupt context.
1277 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1280 bool ram_retention
= false;
1283 /* check argument */
1284 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1286 /* set flag if retention is possible */
1288 case EPOD_ID_SVAMMDSP
:
1289 case EPOD_ID_SIAMMDSP
:
1290 case EPOD_ID_ESRAM12
:
1291 case EPOD_ID_ESRAM34
:
1292 ram_retention
= true;
1296 /* check argument */
1297 BUG_ON(epod_state
> EPOD_STATE_ON
);
1298 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1301 mutex_lock(&mb2_transfer
.lock
);
1303 /* wait for mailbox */
1304 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1307 /* fill in mailbox */
1308 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1309 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1310 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1312 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1314 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1317 * The current firmware version does not handle errors correctly,
1318 * and we cannot recover if there is an error.
1319 * This is expected to change when the firmware is updated.
1321 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1322 msecs_to_jiffies(20000))) {
1323 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1326 goto unlock_and_return
;
1329 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1333 mutex_unlock(&mb2_transfer
.lock
);
1338 * prcmu_configure_auto_pm - Configure autonomous power management.
1339 * @sleep: Configuration for ApSleep.
1340 * @idle: Configuration for ApIdle.
1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1343 struct prcmu_auto_pm_config
*idle
)
1347 unsigned long flags
;
1349 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1351 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1352 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1353 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1354 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1355 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1356 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1358 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1359 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1360 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1361 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1362 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1363 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1365 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1368 * The autonomous power management configuration is done through
1369 * fields in mailbox 2, but these fields are only used as shared
1370 * variables - i.e. there is no need to send a message.
1372 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1373 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1375 mb2_transfer
.auto_pm_enabled
=
1376 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1377 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1378 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1379 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1381 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1383 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1385 bool prcmu_is_auto_pm_enabled(void)
1387 return mb2_transfer
.auto_pm_enabled
;
1390 static int request_sysclk(bool enable
)
1393 unsigned long flags
;
1397 mutex_lock(&mb3_transfer
.sysclk_lock
);
1399 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1401 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1404 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1406 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1407 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1409 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1412 * The firmware only sends an ACK if we want to enable the
1413 * SysClk, and it succeeds.
1415 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1416 msecs_to_jiffies(20000))) {
1417 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1422 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1427 static int request_timclk(bool enable
)
1429 u32 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1432 val
|= PRCM_TCR_STOP_TIMERS
;
1433 writel(val
, PRCM_TCR
);
1438 static int request_clock(u8 clock
, bool enable
)
1441 unsigned long flags
;
1443 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1445 /* Grab the HW semaphore. */
1446 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1449 val
= readl(clk_mgt
[clock
].reg
);
1451 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1453 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1454 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1456 writel(val
, clk_mgt
[clock
].reg
);
1458 /* Release the HW semaphore. */
1459 writel(0, PRCM_SEM
);
1461 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1466 static int request_sga_clock(u8 clock
, bool enable
)
1472 val
= readl(PRCM_CGATING_BYPASS
);
1473 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1476 ret
= request_clock(clock
, enable
);
1478 if (!ret
&& !enable
) {
1479 val
= readl(PRCM_CGATING_BYPASS
);
1480 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1486 static inline bool plldsi_locked(void)
1488 return (readl(PRCM_PLLDSI_LOCKP
) &
1489 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1490 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1491 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1492 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1495 static int request_plldsi(bool enable
)
1500 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1501 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1502 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1504 val
= readl(PRCM_PLLDSI_ENABLE
);
1506 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1508 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1509 writel(val
, PRCM_PLLDSI_ENABLE
);
1513 bool locked
= plldsi_locked();
1515 for (i
= 10; !locked
&& (i
> 0); --i
) {
1517 locked
= plldsi_locked();
1520 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1521 PRCM_APE_RESETN_SET
);
1523 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1524 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1525 PRCM_MMIP_LS_CLAMP_SET
);
1526 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1527 writel(val
, PRCM_PLLDSI_ENABLE
);
1531 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1536 static int request_dsiclk(u8 n
, bool enable
)
1540 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1541 val
&= ~dsiclk
[n
].divsel_mask
;
1542 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1543 dsiclk
[n
].divsel_shift
);
1544 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1548 static int request_dsiescclk(u8 n
, bool enable
)
1552 val
= readl(PRCM_DSITVCLK_DIV
);
1553 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1554 writel(val
, PRCM_DSITVCLK_DIV
);
1559 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1560 * @clock: The clock for which the request is made.
1561 * @enable: Whether the clock should be enabled (true) or disabled (false).
1563 * This function should only be used by the clock implementation.
1564 * Do not use it from any other place!
1566 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1568 if (clock
== PRCMU_SGACLK
)
1569 return request_sga_clock(clock
, enable
);
1570 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1571 return request_clock(clock
, enable
);
1572 else if (clock
== PRCMU_TIMCLK
)
1573 return request_timclk(enable
);
1574 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1575 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1576 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1577 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1578 else if (clock
== PRCMU_PLLDSI
)
1579 return request_plldsi(enable
);
1580 else if (clock
== PRCMU_SYSCLK
)
1581 return request_sysclk(enable
);
1582 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1583 return request_pll(clock
, enable
);
1588 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1599 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1601 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1605 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1609 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1612 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1613 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1614 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1615 (reg
== PRCM_PLLDDR_FREQ
))))
1618 (void)do_div(rate
, div
);
1620 return (unsigned long)rate
;
1623 #define ROOT_CLOCK_RATE 38400000
1625 static unsigned long clock_rate(u8 clock
)
1629 unsigned long rate
= ROOT_CLOCK_RATE
;
1631 val
= readl(clk_mgt
[clock
].reg
);
1633 if (val
& PRCM_CLK_MGT_CLK38
) {
1634 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1639 val
|= clk_mgt
[clock
].pllsw
;
1640 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1642 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1643 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1644 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1645 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1646 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1647 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1651 if ((clock
== PRCMU_SGACLK
) &&
1652 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1653 u64 r
= (rate
* 10);
1655 (void)do_div(r
, 25);
1656 return (unsigned long)r
;
1658 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1665 static unsigned long dsiclk_rate(u8 n
)
1670 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1671 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1673 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1674 divsel
= dsiclk
[n
].divsel
;
1677 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1679 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1681 case PRCM_DSI_PLLOUT_SEL_PHI
:
1682 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1689 static unsigned long dsiescclk_rate(u8 n
)
1693 div
= readl(PRCM_DSITVCLK_DIV
);
1694 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1695 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1698 unsigned long prcmu_clock_rate(u8 clock
)
1700 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1701 return clock_rate(clock
);
1702 else if (clock
== PRCMU_TIMCLK
)
1703 return ROOT_CLOCK_RATE
/ 16;
1704 else if (clock
== PRCMU_SYSCLK
)
1705 return ROOT_CLOCK_RATE
;
1706 else if (clock
== PRCMU_PLLSOC0
)
1707 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1708 else if (clock
== PRCMU_PLLSOC1
)
1709 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1710 else if (clock
== PRCMU_PLLDDR
)
1711 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1712 else if (clock
== PRCMU_PLLDSI
)
1713 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1715 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1716 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1717 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1718 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1723 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1725 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1726 return ROOT_CLOCK_RATE
;
1727 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1728 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1729 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1730 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1731 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1732 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1733 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1738 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1742 div
= (src_rate
/ rate
);
1745 if (rate
< (src_rate
/ div
))
1750 static long round_clock_rate(u8 clock
, unsigned long rate
)
1754 unsigned long src_rate
;
1757 val
= readl(clk_mgt
[clock
].reg
);
1758 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1759 clk_mgt
[clock
].branch
);
1760 div
= clock_divider(src_rate
, rate
);
1761 if (val
& PRCM_CLK_MGT_CLK38
) {
1762 if (clk_mgt
[clock
].clk38div
) {
1768 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1769 u64 r
= (src_rate
* 10);
1771 (void)do_div(r
, 25);
1773 return (unsigned long)r
;
1775 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1777 return rounded_rate
;
1780 #define MIN_PLL_VCO_RATE 600000000ULL
1781 #define MAX_PLL_VCO_RATE 1680640000ULL
1783 static long round_plldsi_rate(unsigned long rate
)
1785 long rounded_rate
= 0;
1786 unsigned long src_rate
;
1790 src_rate
= clock_rate(PRCMU_HDMICLK
);
1793 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1797 (void)do_div(d
, src_rate
);
1803 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1804 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1808 if (rounded_rate
== 0)
1809 rounded_rate
= (long)d
;
1812 if ((rate
- d
) < rem
) {
1814 rounded_rate
= (long)d
;
1817 return rounded_rate
;
1820 static long round_dsiclk_rate(unsigned long rate
)
1823 unsigned long src_rate
;
1826 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1828 div
= clock_divider(src_rate
, rate
);
1829 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1831 return rounded_rate
;
1834 static long round_dsiescclk_rate(unsigned long rate
)
1837 unsigned long src_rate
;
1840 src_rate
= clock_rate(PRCMU_TVCLK
);
1841 div
= clock_divider(src_rate
, rate
);
1842 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1844 return rounded_rate
;
1847 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1849 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1850 return round_clock_rate(clock
, rate
);
1851 else if (clock
== PRCMU_PLLDSI
)
1852 return round_plldsi_rate(rate
);
1853 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1854 return round_dsiclk_rate(rate
);
1855 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1856 return round_dsiescclk_rate(rate
);
1858 return (long)prcmu_clock_rate(clock
);
1861 static void set_clock_rate(u8 clock
, unsigned long rate
)
1865 unsigned long src_rate
;
1866 unsigned long flags
;
1868 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1870 /* Grab the HW semaphore. */
1871 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1874 val
= readl(clk_mgt
[clock
].reg
);
1875 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1876 clk_mgt
[clock
].branch
);
1877 div
= clock_divider(src_rate
, rate
);
1878 if (val
& PRCM_CLK_MGT_CLK38
) {
1879 if (clk_mgt
[clock
].clk38div
) {
1881 val
|= PRCM_CLK_MGT_CLK38DIV
;
1883 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1885 } else if (clock
== PRCMU_SGACLK
) {
1886 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1887 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1889 u64 r
= (src_rate
* 10);
1891 (void)do_div(r
, 25);
1893 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1897 val
|= min(div
, (u32
)31);
1899 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1900 val
|= min(div
, (u32
)31);
1902 writel(val
, clk_mgt
[clock
].reg
);
1904 /* Release the HW semaphore. */
1905 writel(0, PRCM_SEM
);
1907 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1910 static int set_plldsi_rate(unsigned long rate
)
1912 unsigned long src_rate
;
1917 src_rate
= clock_rate(PRCMU_HDMICLK
);
1920 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1925 (void)do_div(d
, src_rate
);
1930 hwrate
= (d
* src_rate
);
1931 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1932 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1934 (void)do_div(hwrate
, r
);
1935 if (rate
< hwrate
) {
1937 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1938 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1941 if ((rate
- hwrate
) < rem
) {
1942 rem
= (rate
- hwrate
);
1943 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1944 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1950 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1951 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1956 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1961 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1962 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1964 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1965 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1966 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1968 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1969 val
&= ~dsiclk
[n
].divsel_mask
;
1970 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1971 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1974 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1979 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1980 val
= readl(PRCM_DSITVCLK_DIV
);
1981 val
&= ~dsiescclk
[n
].div_mask
;
1982 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1983 writel(val
, PRCM_DSITVCLK_DIV
);
1986 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1988 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1989 set_clock_rate(clock
, rate
);
1990 else if (clock
== PRCMU_PLLDSI
)
1991 return set_plldsi_rate(rate
);
1992 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1993 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1994 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1995 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1999 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
2001 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
2002 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
2005 mutex_lock(&mb4_transfer
.lock
);
2007 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2010 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2011 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
2012 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
2013 writeb(DDR_PWR_STATE_ON
,
2014 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
2015 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
2017 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2018 wait_for_completion(&mb4_transfer
.work
);
2020 mutex_unlock(&mb4_transfer
.lock
);
2025 int db8500_prcmu_config_hotdog(u8 threshold
)
2027 mutex_lock(&mb4_transfer
.lock
);
2029 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2032 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
2033 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2036 wait_for_completion(&mb4_transfer
.work
);
2038 mutex_unlock(&mb4_transfer
.lock
);
2043 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
2045 mutex_lock(&mb4_transfer
.lock
);
2047 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2050 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
2051 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
2052 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
2053 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
2054 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2056 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2057 wait_for_completion(&mb4_transfer
.work
);
2059 mutex_unlock(&mb4_transfer
.lock
);
2064 static int config_hot_period(u16 val
)
2066 mutex_lock(&mb4_transfer
.lock
);
2068 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2071 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
2072 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2074 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2075 wait_for_completion(&mb4_transfer
.work
);
2077 mutex_unlock(&mb4_transfer
.lock
);
2082 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2084 if (cycles32k
== 0xFFFF)
2087 return config_hot_period(cycles32k
);
2090 int db8500_prcmu_stop_temp_sense(void)
2092 return config_hot_period(0xFFFF);
2095 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2098 mutex_lock(&mb4_transfer
.lock
);
2100 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2103 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2104 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2105 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2106 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2108 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2110 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2111 wait_for_completion(&mb4_transfer
.work
);
2113 mutex_unlock(&mb4_transfer
.lock
);
2119 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2121 BUG_ON(num
== 0 || num
> 0xf);
2122 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2123 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2124 A9WDOG_AUTO_OFF_DIS
);
2127 int db8500_prcmu_enable_a9wdog(u8 id
)
2129 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2132 int db8500_prcmu_disable_a9wdog(u8 id
)
2134 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2137 int db8500_prcmu_kick_a9wdog(u8 id
)
2139 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2143 * timeout is 28 bit, in ms.
2145 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2147 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2148 (id
& A9WDOG_ID_MASK
) |
2150 * Put the lowest 28 bits of timeout at
2151 * offset 4. Four first bits are used for id.
2153 (u8
)((timeout
<< 4) & 0xf0),
2154 (u8
)((timeout
>> 4) & 0xff),
2155 (u8
)((timeout
>> 12) & 0xff),
2156 (u8
)((timeout
>> 20) & 0xff));
2160 * prcmu_abb_read() - Read register value(s) from the ABB.
2161 * @slave: The I2C slave address.
2162 * @reg: The (start) register address.
2163 * @value: The read out value(s).
2164 * @size: The number of registers to read.
2166 * Reads register value(s) from the ABB.
2167 * @size has to be 1 for the current firmware version.
2169 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2176 mutex_lock(&mb5_transfer
.lock
);
2178 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2181 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2182 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2183 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2184 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2185 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2187 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2189 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2190 msecs_to_jiffies(20000))) {
2191 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2195 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2199 *value
= mb5_transfer
.ack
.value
;
2201 mutex_unlock(&mb5_transfer
.lock
);
2207 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2208 * @slave: The I2C slave address.
2209 * @reg: The (start) register address.
2210 * @value: The value(s) to write.
2211 * @mask: The mask(s) to use.
2212 * @size: The number of registers to write.
2214 * Writes masked register value(s) to the ABB.
2215 * For each @value, only the bits set to 1 in the corresponding @mask
2216 * will be written. The other bits are not changed.
2217 * @size has to be 1 for the current firmware version.
2219 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2226 mutex_lock(&mb5_transfer
.lock
);
2228 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2231 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2232 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2233 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2234 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2235 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2237 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2239 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2240 msecs_to_jiffies(20000))) {
2241 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2245 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2248 mutex_unlock(&mb5_transfer
.lock
);
2254 * prcmu_abb_write() - Write register value(s) to the ABB.
2255 * @slave: The I2C slave address.
2256 * @reg: The (start) register address.
2257 * @value: The value(s) to write.
2258 * @size: The number of registers to write.
2260 * Writes register value(s) to the ABB.
2261 * @size has to be 1 for the current firmware version.
2263 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2267 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2271 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2273 int prcmu_ac_wake_req(void)
2278 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2280 val
= readl(PRCM_HOSTACCESS_REQ
);
2281 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2282 goto unlock_and_return
;
2284 atomic_set(&ac_wake_req_state
, 1);
2287 * Force Modem Wake-up before hostaccess_req ping-pong.
2288 * It prevents Modem to enter in Sleep while acking the hostaccess
2289 * request. The 31us delay has been calculated by HWI.
2291 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2292 writel(val
, PRCM_HOSTACCESS_REQ
);
2296 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2297 writel(val
, PRCM_HOSTACCESS_REQ
);
2299 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2300 msecs_to_jiffies(5000))) {
2301 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2302 db8500_prcmu_debug_dump(__func__
, true, true);
2304 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2310 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2315 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2317 void prcmu_ac_sleep_req()
2321 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2323 val
= readl(PRCM_HOSTACCESS_REQ
);
2324 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2325 goto unlock_and_return
;
2327 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2328 PRCM_HOSTACCESS_REQ
);
2330 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2331 msecs_to_jiffies(5000))) {
2332 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2336 atomic_set(&ac_wake_req_state
, 0);
2339 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2342 bool db8500_prcmu_is_ac_wake_requested(void)
2344 return (atomic_read(&ac_wake_req_state
) != 0);
2348 * db8500_prcmu_system_reset - System reset
2350 * Saves the reset reason code and then sets the APE_SOFTRST register which
2351 * fires interrupt to fw
2353 void db8500_prcmu_system_reset(u16 reset_code
)
2355 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2356 writel(1, PRCM_APE_SOFTRST
);
2360 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2362 * Retrieves the reset reason code stored by prcmu_system_reset() before
2365 u16
db8500_prcmu_get_reset_code(void)
2367 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2371 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2373 void db8500_prcmu_modem_reset(void)
2375 mutex_lock(&mb1_transfer
.lock
);
2377 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2380 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2381 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2382 wait_for_completion(&mb1_transfer
.work
);
2385 * No need to check return from PRCMU as modem should go in reset state
2386 * This state is already managed by upper layer
2389 mutex_unlock(&mb1_transfer
.lock
);
2392 static void ack_dbb_wakeup(void)
2394 unsigned long flags
;
2396 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2398 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2401 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2402 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2404 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2407 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2409 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2413 static bool read_mailbox_0(void)
2420 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2422 case MB0H_WAKEUP_EXE
:
2423 case MB0H_WAKEUP_SLEEP
:
2424 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2425 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2427 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2429 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2430 complete(&mb0_transfer
.ac_wake_work
);
2431 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2432 complete(&mb3_transfer
.sysclk_work
);
2434 ev
&= mb0_transfer
.req
.dbb_irqs
;
2436 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2437 if (ev
& prcmu_irq_bit
[n
])
2438 generic_handle_irq(IRQ_PRCMU_BASE
+ n
);
2443 print_unknown_header_warning(0, header
);
2447 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2451 static bool read_mailbox_1(void)
2453 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2454 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2455 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2456 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2457 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2458 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2459 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2460 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2461 complete(&mb1_transfer
.work
);
2465 static bool read_mailbox_2(void)
2467 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2468 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2469 complete(&mb2_transfer
.work
);
2473 static bool read_mailbox_3(void)
2475 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2479 static bool read_mailbox_4(void)
2482 bool do_complete
= true;
2484 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2489 case MB4H_HOT_PERIOD
:
2490 case MB4H_A9WDOG_CONF
:
2491 case MB4H_A9WDOG_EN
:
2492 case MB4H_A9WDOG_DIS
:
2493 case MB4H_A9WDOG_LOAD
:
2494 case MB4H_A9WDOG_KICK
:
2497 print_unknown_header_warning(4, header
);
2498 do_complete
= false;
2502 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2505 complete(&mb4_transfer
.work
);
2510 static bool read_mailbox_5(void)
2512 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2513 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2514 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2515 complete(&mb5_transfer
.work
);
2519 static bool read_mailbox_6(void)
2521 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2525 static bool read_mailbox_7(void)
2527 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2531 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2542 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2548 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2549 if (unlikely(!bits
))
2553 for (n
= 0; bits
; n
++) {
2554 if (bits
& MBOX_BIT(n
)) {
2555 bits
-= MBOX_BIT(n
);
2556 if (read_mailbox
[n
]())
2557 r
= IRQ_WAKE_THREAD
;
2563 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2569 static void prcmu_mask_work(struct work_struct
*work
)
2571 unsigned long flags
;
2573 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2577 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2580 static void prcmu_irq_mask(struct irq_data
*d
)
2582 unsigned long flags
;
2584 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2586 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->irq
- IRQ_PRCMU_BASE
];
2588 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2590 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2591 schedule_work(&mb0_transfer
.mask_work
);
2594 static void prcmu_irq_unmask(struct irq_data
*d
)
2596 unsigned long flags
;
2598 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2600 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->irq
- IRQ_PRCMU_BASE
];
2602 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2604 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2605 schedule_work(&mb0_transfer
.mask_work
);
2608 static void noop(struct irq_data
*d
)
2612 static struct irq_chip prcmu_irq_chip
= {
2614 .irq_disable
= prcmu_irq_mask
,
2616 .irq_mask
= prcmu_irq_mask
,
2617 .irq_unmask
= prcmu_irq_unmask
,
2620 static char *fw_project_name(u8 project
)
2623 case PRCMU_FW_PROJECT_U8500
:
2625 case PRCMU_FW_PROJECT_U8500_C2
:
2627 case PRCMU_FW_PROJECT_U9500
:
2629 case PRCMU_FW_PROJECT_U9500_C2
:
2631 case PRCMU_FW_PROJECT_U8520
:
2633 case PRCMU_FW_PROJECT_U8420
:
2640 void __init
db8500_prcmu_early_init(void)
2643 if (cpu_is_u8500v2()) {
2644 void *tcpm_base
= ioremap_nocache(U8500_PRCMU_TCPM_BASE
, SZ_4K
);
2646 if (tcpm_base
!= NULL
) {
2648 version
= readl(tcpm_base
+ PRCMU_FW_VERSION_OFFSET
);
2649 fw_info
.version
.project
= version
& 0xFF;
2650 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2651 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2652 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2653 fw_info
.valid
= true;
2654 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2655 fw_project_name(fw_info
.version
.project
),
2656 (version
>> 8) & 0xFF, (version
>> 16) & 0xFF,
2657 (version
>> 24) & 0xFF);
2661 tcdm_base
= __io_address(U8500_PRCMU_TCDM_BASE
);
2663 pr_err("prcmu: Unsupported chip version\n");
2667 spin_lock_init(&mb0_transfer
.lock
);
2668 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2669 mutex_init(&mb0_transfer
.ac_wake_lock
);
2670 init_completion(&mb0_transfer
.ac_wake_work
);
2671 mutex_init(&mb1_transfer
.lock
);
2672 init_completion(&mb1_transfer
.work
);
2673 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2674 mutex_init(&mb2_transfer
.lock
);
2675 init_completion(&mb2_transfer
.work
);
2676 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2677 spin_lock_init(&mb3_transfer
.lock
);
2678 mutex_init(&mb3_transfer
.sysclk_lock
);
2679 init_completion(&mb3_transfer
.sysclk_work
);
2680 mutex_init(&mb4_transfer
.lock
);
2681 init_completion(&mb4_transfer
.work
);
2682 mutex_init(&mb5_transfer
.lock
);
2683 init_completion(&mb5_transfer
.work
);
2685 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2687 /* Initalize irqs. */
2688 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++) {
2691 irq
= IRQ_PRCMU_BASE
+ i
;
2692 irq_set_chip_and_handler(irq
, &prcmu_irq_chip
,
2694 set_irq_flags(irq
, IRQF_VALID
);
2698 static void __init
init_prcm_registers(void)
2702 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2703 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2704 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2705 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2709 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2711 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2712 REGULATOR_SUPPLY("v-ape", NULL
),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718 /* "v-mmc" changed to "vcore" in the mainline kernel */
2719 REGULATOR_SUPPLY("vcore", "sdi0"),
2720 REGULATOR_SUPPLY("vcore", "sdi1"),
2721 REGULATOR_SUPPLY("vcore", "sdi2"),
2722 REGULATOR_SUPPLY("vcore", "sdi3"),
2723 REGULATOR_SUPPLY("vcore", "sdi4"),
2724 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726 /* "v-uart" changed to "vcore" in the mainline kernel */
2727 REGULATOR_SUPPLY("vcore", "uart0"),
2728 REGULATOR_SUPPLY("vcore", "uart1"),
2729 REGULATOR_SUPPLY("vcore", "uart2"),
2730 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2735 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2736 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737 /* AV8100 regulator */
2738 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2742 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743 REGULATOR_SUPPLY("vsupply", "mcde"),
2746 /* SVA MMDSP regulator switch */
2747 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2748 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2751 /* SVA pipe regulator switch */
2752 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2753 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2756 /* SIA MMDSP regulator switch */
2757 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2758 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2761 /* SIA pipe regulator switch */
2762 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2763 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2766 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2767 REGULATOR_SUPPLY("v-mali", NULL
),
2770 /* ESRAM1 and 2 regulator switch */
2771 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2772 REGULATOR_SUPPLY("esram12", "cm_control"),
2775 /* ESRAM3 and 4 regulator switch */
2776 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2777 REGULATOR_SUPPLY("v-esram34", "mcde"),
2778 REGULATOR_SUPPLY("esram34", "cm_control"),
2779 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2782 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2783 [DB8500_REGULATOR_VAPE
] = {
2785 .name
= "db8500-vape",
2786 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2789 .consumer_supplies
= db8500_vape_consumers
,
2790 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2792 [DB8500_REGULATOR_VARM
] = {
2794 .name
= "db8500-varm",
2795 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2798 [DB8500_REGULATOR_VMODEM
] = {
2800 .name
= "db8500-vmodem",
2801 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2804 [DB8500_REGULATOR_VPLL
] = {
2806 .name
= "db8500-vpll",
2807 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2810 [DB8500_REGULATOR_VSMPS1
] = {
2812 .name
= "db8500-vsmps1",
2813 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2816 [DB8500_REGULATOR_VSMPS2
] = {
2818 .name
= "db8500-vsmps2",
2819 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2821 .consumer_supplies
= db8500_vsmps2_consumers
,
2822 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2824 [DB8500_REGULATOR_VSMPS3
] = {
2826 .name
= "db8500-vsmps3",
2827 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2830 [DB8500_REGULATOR_VRF1
] = {
2832 .name
= "db8500-vrf1",
2833 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2836 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2837 /* dependency to u8500-vape is handled outside regulator framework */
2839 .name
= "db8500-sva-mmdsp",
2840 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2842 .consumer_supplies
= db8500_svammdsp_consumers
,
2843 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2845 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2847 /* "ret" means "retention" */
2848 .name
= "db8500-sva-mmdsp-ret",
2849 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2852 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2853 /* dependency to u8500-vape is handled outside regulator framework */
2855 .name
= "db8500-sva-pipe",
2856 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2858 .consumer_supplies
= db8500_svapipe_consumers
,
2859 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2861 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2862 /* dependency to u8500-vape is handled outside regulator framework */
2864 .name
= "db8500-sia-mmdsp",
2865 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2867 .consumer_supplies
= db8500_siammdsp_consumers
,
2868 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2870 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2872 .name
= "db8500-sia-mmdsp-ret",
2873 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2876 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2877 /* dependency to u8500-vape is handled outside regulator framework */
2879 .name
= "db8500-sia-pipe",
2880 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2882 .consumer_supplies
= db8500_siapipe_consumers
,
2883 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2885 [DB8500_REGULATOR_SWITCH_SGA
] = {
2886 .supply_regulator
= "db8500-vape",
2888 .name
= "db8500-sga",
2889 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2891 .consumer_supplies
= db8500_sga_consumers
,
2892 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2895 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2896 .supply_regulator
= "db8500-vape",
2898 .name
= "db8500-b2r2-mcde",
2899 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2901 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2902 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2904 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2906 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907 * no need to hold Vape
2910 .name
= "db8500-esram12",
2911 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2913 .consumer_supplies
= db8500_esram12_consumers
,
2914 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2916 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2918 .name
= "db8500-esram12-ret",
2919 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2922 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2924 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925 * no need to hold Vape
2928 .name
= "db8500-esram34",
2929 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2931 .consumer_supplies
= db8500_esram34_consumers
,
2932 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
2934 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
2936 .name
= "db8500-esram34-ret",
2937 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2942 static struct resource ab8500_resources
[] = {
2944 .start
= IRQ_DB8500_AB8500
,
2945 .end
= IRQ_DB8500_AB8500
,
2946 .flags
= IORESOURCE_IRQ
2950 static struct mfd_cell db8500_prcmu_devs
[] = {
2952 .name
= "db8500-prcmu-regulators",
2953 .of_compatible
= "stericsson,db8500-prcmu-regulator",
2954 .platform_data
= &db8500_regulators
,
2955 .pdata_size
= sizeof(db8500_regulators
),
2958 .name
= "cpufreq-u8500",
2959 .of_compatible
= "stericsson,cpufreq-u8500",
2962 .name
= "ab8500-core",
2963 .of_compatible
= "stericsson,ab8500",
2964 .num_resources
= ARRAY_SIZE(ab8500_resources
),
2965 .resources
= ab8500_resources
,
2966 .id
= AB8500_VERSION_AB8500
,
2971 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2974 static int __devinit
db8500_prcmu_probe(struct platform_device
*pdev
)
2976 struct ab8500_platform_data
*ab8500_platdata
= pdev
->dev
.platform_data
;
2977 struct device_node
*np
= pdev
->dev
.of_node
;
2978 int irq
= 0, err
= 0, i
;
2983 init_prcm_registers();
2985 /* Clean up the mailbox interrupts after pre-kernel code. */
2986 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
2989 irq
= platform_get_irq(pdev
, 0);
2991 if (!np
|| irq
<= 0)
2992 irq
= IRQ_DB8500_PRCMU1
;
2994 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
2995 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
2997 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3002 for (i
= 0; i
< ARRAY_SIZE(db8500_prcmu_devs
); i
++) {
3003 if (!strcmp(db8500_prcmu_devs
[i
].name
, "ab8500-core")) {
3004 db8500_prcmu_devs
[i
].platform_data
= ab8500_platdata
;
3005 db8500_prcmu_devs
[i
].pdata_size
= sizeof(struct ab8500_platform_data
);
3009 if (cpu_is_u8500v20_or_later())
3010 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3012 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3013 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0, NULL
);
3015 pr_err("prcmu: Failed to add subdevices\n");
3019 pr_info("DB8500 PRCMU initialized\n");
3024 static const struct of_device_id db8500_prcmu_match
[] = {
3025 { .compatible
= "stericsson,db8500-prcmu"},
3029 static struct platform_driver db8500_prcmu_driver
= {
3031 .name
= "db8500-prcmu",
3032 .owner
= THIS_MODULE
,
3033 .of_match_table
= db8500_prcmu_match
,
3035 .probe
= db8500_prcmu_probe
,
3038 static int __init
db8500_prcmu_init(void)
3040 return platform_driver_register(&db8500_prcmu_driver
);
3043 core_initcall(db8500_prcmu_init
);
3045 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3046 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3047 MODULE_LICENSE("GPL v2");