1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
26 static char version
[] __devinitdata
=
27 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
29 static int mtu
[MAX_UNITS
];
30 static int vlan
[MAX_UNITS
];
31 static int jumbo
[MAX_UNITS
];
32 static char *media
[MAX_UNITS
];
33 static int tx_flow
=-1;
34 static int rx_flow
=-1;
35 static int copy_thresh
;
36 static int rx_coalesce
=10; /* Rx frame count each interrupt */
37 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu
, int, NULL
, 0);
45 module_param_array(media
, charp
, NULL
, 0);
46 module_param_array(vlan
, int, NULL
, 0);
47 module_param_array(jumbo
, int, NULL
, 0);
48 module_param(tx_flow
, int, 0);
49 module_param(rx_flow
, int, 0);
50 module_param(copy_thresh
, int, 0);
51 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
60 static void dl2k_enable_int(struct netdev_private
*np
)
62 void __iomem
*ioaddr
= np
->ioaddr
;
64 dw16(IntEnable
, DEFAULT_INTR
);
67 static const int max_intrloop
= 50;
68 static const int multicast_filter_limit
= 0x40;
70 static int rio_open (struct net_device
*dev
);
71 static void rio_timer (unsigned long data
);
72 static void rio_tx_timeout (struct net_device
*dev
);
73 static void alloc_list (struct net_device
*dev
);
74 static netdev_tx_t
start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
75 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
76 static void rio_free_tx (struct net_device
*dev
, int irq
);
77 static void tx_error (struct net_device
*dev
, int tx_status
);
78 static int receive_packet (struct net_device
*dev
);
79 static void rio_error (struct net_device
*dev
, int int_status
);
80 static int change_mtu (struct net_device
*dev
, int new_mtu
);
81 static void set_multicast (struct net_device
*dev
);
82 static struct net_device_stats
*get_stats (struct net_device
*dev
);
83 static int clear_stats (struct net_device
*dev
);
84 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
85 static int rio_close (struct net_device
*dev
);
86 static int find_miiphy (struct net_device
*dev
);
87 static int parse_eeprom (struct net_device
*dev
);
88 static int read_eeprom (struct netdev_private
*, int eep_addr
);
89 static int mii_wait_link (struct net_device
*dev
, int wait
);
90 static int mii_set_media (struct net_device
*dev
);
91 static int mii_get_media (struct net_device
*dev
);
92 static int mii_set_media_pcs (struct net_device
*dev
);
93 static int mii_get_media_pcs (struct net_device
*dev
);
94 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
95 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
98 static const struct ethtool_ops ethtool_ops
;
100 static const struct net_device_ops netdev_ops
= {
101 .ndo_open
= rio_open
,
102 .ndo_start_xmit
= start_xmit
,
103 .ndo_stop
= rio_close
,
104 .ndo_get_stats
= get_stats
,
105 .ndo_validate_addr
= eth_validate_addr
,
106 .ndo_set_mac_address
= eth_mac_addr
,
107 .ndo_set_rx_mode
= set_multicast
,
108 .ndo_do_ioctl
= rio_ioctl
,
109 .ndo_tx_timeout
= rio_tx_timeout
,
110 .ndo_change_mtu
= change_mtu
,
114 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
116 struct net_device
*dev
;
117 struct netdev_private
*np
;
119 int chip_idx
= ent
->driver_data
;
121 void __iomem
*ioaddr
;
122 static int version_printed
;
126 if (!version_printed
++)
127 printk ("%s", version
);
129 err
= pci_enable_device (pdev
);
134 err
= pci_request_regions (pdev
, "dl2k");
136 goto err_out_disable
;
138 pci_set_master (pdev
);
142 dev
= alloc_etherdev (sizeof (*np
));
145 SET_NETDEV_DEV(dev
, &pdev
->dev
);
147 np
= netdev_priv(dev
);
149 /* IO registers range. */
150 ioaddr
= pci_iomap(pdev
, 0, 0);
153 np
->eeprom_addr
= ioaddr
;
156 /* MM registers range. */
157 ioaddr
= pci_iomap(pdev
, 1, 0);
159 goto err_out_iounmap
;
162 np
->chip_id
= chip_idx
;
164 spin_lock_init (&np
->tx_lock
);
165 spin_lock_init (&np
->rx_lock
);
167 /* Parse manual configuration */
170 if (card_idx
< MAX_UNITS
) {
171 if (media
[card_idx
] != NULL
) {
173 if (strcmp (media
[card_idx
], "auto") == 0 ||
174 strcmp (media
[card_idx
], "autosense") == 0 ||
175 strcmp (media
[card_idx
], "0") == 0 ) {
177 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
178 strcmp (media
[card_idx
], "4") == 0) {
181 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0 ||
182 strcmp (media
[card_idx
], "3") == 0) {
185 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
186 strcmp (media
[card_idx
], "2") == 0) {
189 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
190 strcmp (media
[card_idx
], "1") == 0) {
193 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
194 strcmp (media
[card_idx
], "6") == 0) {
197 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
198 strcmp (media
[card_idx
], "5") == 0) {
205 if (jumbo
[card_idx
] != 0) {
207 dev
->mtu
= MAX_JUMBO
;
210 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
211 dev
->mtu
= mtu
[card_idx
];
213 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
215 if (rx_coalesce
> 0 && rx_timeout
> 0) {
216 np
->rx_coalesce
= rx_coalesce
;
217 np
->rx_timeout
= rx_timeout
;
220 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
221 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
225 else if (tx_coalesce
> TX_RING_SIZE
-1)
226 tx_coalesce
= TX_RING_SIZE
- 1;
228 dev
->netdev_ops
= &netdev_ops
;
229 dev
->watchdog_timeo
= TX_TIMEOUT
;
230 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
232 dev
->features
= NETIF_F_IP_CSUM
;
234 pci_set_drvdata (pdev
, dev
);
236 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
238 goto err_out_iounmap
;
239 np
->tx_ring
= ring_space
;
240 np
->tx_ring_dma
= ring_dma
;
242 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
244 goto err_out_unmap_tx
;
245 np
->rx_ring
= ring_space
;
246 np
->rx_ring_dma
= ring_dma
;
248 /* Parse eeprom data */
251 /* Find PHY address */
252 err
= find_miiphy (dev
);
254 goto err_out_unmap_rx
;
257 np
->phy_media
= (dr16(ASICCtrl
) & PhyMedia
) ? 1 : 0;
259 /* Set media and reset PHY */
261 /* default Auto-Negotiation for fiber deivices */
262 if (np
->an_enable
== 2) {
265 mii_set_media_pcs (dev
);
267 /* Auto-Negotiation is mandatory for 1000BASE-T,
268 IEEE 802.3ab Annex 28D page 14 */
269 if (np
->speed
== 1000)
274 err
= register_netdev (dev
);
276 goto err_out_unmap_rx
;
280 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
281 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
283 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
287 "rx_coalesce:\t%d packets\n"
288 "rx_timeout: \t%d ns\n",
289 np
->rx_coalesce
, np
->rx_timeout
*640);
291 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
295 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
297 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
300 pci_iounmap(pdev
, np
->ioaddr
);
302 pci_iounmap(pdev
, np
->eeprom_addr
);
306 pci_release_regions (pdev
);
308 pci_disable_device (pdev
);
313 find_miiphy (struct net_device
*dev
)
315 struct netdev_private
*np
= netdev_priv(dev
);
316 int i
, phy_found
= 0;
317 np
= netdev_priv(dev
);
320 for (i
= 31; i
>= 0; i
--) {
321 int mii_status
= mii_read (dev
, i
, 1);
322 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
328 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
335 parse_eeprom (struct net_device
*dev
)
337 struct netdev_private
*np
= netdev_priv(dev
);
338 void __iomem
*ioaddr
= np
->ioaddr
;
343 PSROM_t psrom
= (PSROM_t
) sromdata
;
347 for (i
= 0; i
< 128; i
++)
348 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom(np
, i
));
350 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
352 crc
= ~ether_crc_le (256 - 4, sromdata
);
353 if (psrom
->crc
!= cpu_to_le32(crc
)) {
354 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
360 /* Set MAC address */
361 for (i
= 0; i
< 6; i
++)
362 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
364 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
368 /* Parse Software Information Block */
370 psib
= (u8
*) sromdata
;
374 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
375 printk (KERN_ERR
"Cell data error\n");
379 case 0: /* Format version */
381 case 1: /* End of cell */
383 case 2: /* Duplex Polarity */
384 np
->duplex_polarity
= psib
[i
];
385 dw8(PhyCtrl
, dr8(PhyCtrl
) | psib
[i
]);
387 case 3: /* Wake Polarity */
388 np
->wake_polarity
= psib
[i
];
390 case 9: /* Adapter description */
391 j
= (next
- i
> 255) ? 255 : next
- i
;
392 memcpy (np
->name
, &(psib
[i
]), j
);
398 case 8: /* Reversed */
400 default: /* Unknown cell */
410 rio_open (struct net_device
*dev
)
412 struct netdev_private
*np
= netdev_priv(dev
);
413 void __iomem
*ioaddr
= np
->ioaddr
;
414 const int irq
= np
->pdev
->irq
;
418 i
= request_irq(irq
, rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
422 /* Reset all logic functions */
424 GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
);
427 /* DebugCtrl bit 4, 5, 9 must set */
428 dw32(DebugCtrl
, dr32(DebugCtrl
) | 0x0230);
432 dw16(MaxFrameSize
, MAX_JUMBO
+14);
436 /* Get station address */
437 for (i
= 0; i
< 6; i
++)
438 dw8(StationAddr0
+ i
, dev
->dev_addr
[i
]);
442 dw32(RxDMAIntCtrl
, np
->rx_coalesce
| np
->rx_timeout
<< 16);
444 /* Set RIO to poll every N*320nsec. */
445 dw8(RxDMAPollPeriod
, 0x20);
446 dw8(TxDMAPollPeriod
, 0xff);
447 dw8(RxDMABurstThresh
, 0x30);
448 dw8(RxDMAUrgentThresh
, 0x30);
449 dw32(RmonStatMask
, 0x0007ffff);
450 /* clear statistics */
455 /* priority field in RxDMAIntCtrl */
456 dw32(RxDMAIntCtrl
, dr32(RxDMAIntCtrl
) | 0x7 << 10);
458 dw16(VLANId
, np
->vlan
);
459 /* Length/Type should be 0x8100 */
460 dw32(VLANTag
, 0x8100 << 16 | np
->vlan
);
461 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 VLAN information tagged by TFC' VID, CFI fields. */
463 dw32(MACCtrl
, dr32(MACCtrl
) | AutoVLANuntagging
);
466 init_timer (&np
->timer
);
467 np
->timer
.expires
= jiffies
+ 1*HZ
;
468 np
->timer
.data
= (unsigned long) dev
;
469 np
->timer
.function
= rio_timer
;
470 add_timer (&np
->timer
);
473 dw32(MACCtrl
, dr32(MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
);
476 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
477 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
478 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
479 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
480 dw16(MACCtrl
, macctrl
);
482 netif_start_queue (dev
);
489 rio_timer (unsigned long data
)
491 struct net_device
*dev
= (struct net_device
*)data
;
492 struct netdev_private
*np
= netdev_priv(dev
);
494 int next_tick
= 1*HZ
;
497 spin_lock_irqsave(&np
->rx_lock
, flags
);
498 /* Recover rx ring exhausted error */
499 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
500 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
501 /* Re-allocate skbuffs to fill the descriptor ring */
502 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
504 entry
= np
->old_rx
% RX_RING_SIZE
;
505 /* Dropped packets don't need to re-allocate */
506 if (np
->rx_skbuff
[entry
] == NULL
) {
507 skb
= netdev_alloc_skb_ip_align(dev
,
510 np
->rx_ring
[entry
].fraginfo
= 0;
512 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
516 np
->rx_skbuff
[entry
] = skb
;
517 np
->rx_ring
[entry
].fraginfo
=
518 cpu_to_le64 (pci_map_single
519 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
520 PCI_DMA_FROMDEVICE
));
522 np
->rx_ring
[entry
].fraginfo
|=
523 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
524 np
->rx_ring
[entry
].status
= 0;
527 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
528 np
->timer
.expires
= jiffies
+ next_tick
;
529 add_timer(&np
->timer
);
533 rio_tx_timeout (struct net_device
*dev
)
535 struct netdev_private
*np
= netdev_priv(dev
);
536 void __iomem
*ioaddr
= np
->ioaddr
;
538 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev
->name
, dr32(TxStatus
));
542 dev
->trans_start
= jiffies
; /* prevent tx timeout */
545 /* allocate and initialize Tx and Rx descriptors */
547 alloc_list (struct net_device
*dev
)
549 struct netdev_private
*np
= netdev_priv(dev
);
550 void __iomem
*ioaddr
= np
->ioaddr
;
553 np
->cur_rx
= np
->cur_tx
= 0;
554 np
->old_rx
= np
->old_tx
= 0;
555 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
557 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
558 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
559 np
->tx_skbuff
[i
] = NULL
;
560 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
561 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
562 ((i
+1)%TX_RING_SIZE
) *
563 sizeof (struct netdev_desc
));
566 /* Initialize Rx descriptors */
567 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
568 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
569 ((i
+ 1) % RX_RING_SIZE
) *
570 sizeof (struct netdev_desc
));
571 np
->rx_ring
[i
].status
= 0;
572 np
->rx_ring
[i
].fraginfo
= 0;
573 np
->rx_skbuff
[i
] = NULL
;
576 /* Allocate the rx buffers */
577 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
578 /* Allocated fixed size of skbuff */
581 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
582 np
->rx_skbuff
[i
] = skb
;
585 "%s: alloc_list: allocate Rx buffer error! ",
589 /* Rubicon now supports 40 bits of addressing space. */
590 np
->rx_ring
[i
].fraginfo
=
591 cpu_to_le64 ( pci_map_single (
592 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
593 PCI_DMA_FROMDEVICE
));
594 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
598 dw32(RFDListPtr0
, np
->rx_ring_dma
);
599 dw32(RFDListPtr1
, 0);
603 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
605 struct netdev_private
*np
= netdev_priv(dev
);
606 void __iomem
*ioaddr
= np
->ioaddr
;
607 struct netdev_desc
*txdesc
;
609 u64 tfc_vlan_tag
= 0;
611 if (np
->link_status
== 0) { /* Link Down */
615 entry
= np
->cur_tx
% TX_RING_SIZE
;
616 np
->tx_skbuff
[entry
] = skb
;
617 txdesc
= &np
->tx_ring
[entry
];
620 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
622 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
627 tfc_vlan_tag
= VLANTagInsert
|
628 ((u64
)np
->vlan
<< 32) |
629 ((u64
)skb
->priority
<< 45);
631 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
634 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
636 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
637 * Work around: Always use 1 descriptor in 10Mbps mode */
638 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
639 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
642 (1 << FragCountShift
));
644 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
646 (1 << FragCountShift
));
649 dw32(DMACtrl
, dr32(DMACtrl
) | 0x00001000);
651 dw32(CountDown
, 10000);
652 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
653 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
654 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
656 } else if (!netif_queue_stopped(dev
)) {
657 netif_stop_queue (dev
);
660 /* The first TFDListPtr */
661 if (!dr32(TFDListPtr0
)) {
662 dw32(TFDListPtr0
, np
->tx_ring_dma
+
663 entry
* sizeof (struct netdev_desc
));
664 dw32(TFDListPtr1
, 0);
671 rio_interrupt (int irq
, void *dev_instance
)
673 struct net_device
*dev
= dev_instance
;
674 struct netdev_private
*np
= netdev_priv(dev
);
675 void __iomem
*ioaddr
= np
->ioaddr
;
677 int cnt
= max_intrloop
;
681 int_status
= dr16(IntStatus
);
682 dw16(IntStatus
, int_status
);
683 int_status
&= DEFAULT_INTR
;
684 if (int_status
== 0 || --cnt
< 0)
687 /* Processing received packets */
688 if (int_status
& RxDMAComplete
)
689 receive_packet (dev
);
690 /* TxDMAComplete interrupt */
691 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
693 tx_status
= dr32(TxStatus
);
694 if (tx_status
& 0x01)
695 tx_error (dev
, tx_status
);
696 /* Free used tx skbuffs */
697 rio_free_tx (dev
, 1);
700 /* Handle uncommon events */
702 (HostError
| LinkEvent
| UpdateStats
))
703 rio_error (dev
, int_status
);
705 if (np
->cur_tx
!= np
->old_tx
)
706 dw32(CountDown
, 100);
707 return IRQ_RETVAL(handled
);
710 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
712 return le64_to_cpu(desc
->fraginfo
) & DMA_BIT_MASK(48);
716 rio_free_tx (struct net_device
*dev
, int irq
)
718 struct netdev_private
*np
= netdev_priv(dev
);
719 int entry
= np
->old_tx
% TX_RING_SIZE
;
721 unsigned long flag
= 0;
724 spin_lock(&np
->tx_lock
);
726 spin_lock_irqsave(&np
->tx_lock
, flag
);
728 /* Free used tx skbuffs */
729 while (entry
!= np
->cur_tx
) {
732 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
734 skb
= np
->tx_skbuff
[entry
];
735 pci_unmap_single (np
->pdev
,
736 desc_to_dma(&np
->tx_ring
[entry
]),
737 skb
->len
, PCI_DMA_TODEVICE
);
739 dev_kfree_skb_irq (skb
);
743 np
->tx_skbuff
[entry
] = NULL
;
744 entry
= (entry
+ 1) % TX_RING_SIZE
;
748 spin_unlock(&np
->tx_lock
);
750 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
753 /* If the ring is no longer full, clear tx_full and
754 call netif_wake_queue() */
756 if (netif_queue_stopped(dev
) &&
757 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
758 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
759 netif_wake_queue (dev
);
764 tx_error (struct net_device
*dev
, int tx_status
)
766 struct netdev_private
*np
= netdev_priv(dev
);
767 void __iomem
*ioaddr
= np
->ioaddr
;
771 frame_id
= (tx_status
& 0xffff0000);
772 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
773 dev
->name
, tx_status
, frame_id
);
774 np
->stats
.tx_errors
++;
775 /* Ttransmit Underrun */
776 if (tx_status
& 0x10) {
777 np
->stats
.tx_fifo_errors
++;
778 dw16(TxStartThresh
, dr16(TxStartThresh
) + 0x10);
779 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
781 TxReset
| DMAReset
| FIFOReset
| NetworkReset
);
782 /* Wait for ResetBusy bit clear */
783 for (i
= 50; i
> 0; i
--) {
784 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
788 rio_free_tx (dev
, 1);
789 /* Reset TFDListPtr */
790 dw32(TFDListPtr0
, np
->tx_ring_dma
+
791 np
->old_tx
* sizeof (struct netdev_desc
));
792 dw32(TFDListPtr1
, 0);
794 /* Let TxStartThresh stay default value */
797 if (tx_status
& 0x04) {
798 np
->stats
.tx_fifo_errors
++;
799 /* TxReset and clear FIFO */
800 dw16(ASICCtrl
+ 2, TxReset
| FIFOReset
);
801 /* Wait reset done */
802 for (i
= 50; i
> 0; i
--) {
803 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
807 /* Let TxStartThresh stay default value */
809 /* Maximum Collisions */
811 if (tx_status
& 0x08)
812 np
->stats
.collisions16
++;
814 if (tx_status
& 0x08)
815 np
->stats
.collisions
++;
818 dw32(MACCtrl
, dr16(MACCtrl
) | TxEnable
);
822 receive_packet (struct net_device
*dev
)
824 struct netdev_private
*np
= netdev_priv(dev
);
825 int entry
= np
->cur_rx
% RX_RING_SIZE
;
828 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
830 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
834 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
835 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
836 !(desc
->status
& cpu_to_le64(FrameEnd
)))
839 /* Chip omits the CRC. */
840 frame_status
= le64_to_cpu(desc
->status
);
841 pkt_len
= frame_status
& 0xffff;
844 /* Update rx error statistics, drop packet. */
845 if (frame_status
& RFS_Errors
) {
846 np
->stats
.rx_errors
++;
847 if (frame_status
& (RxRuntFrame
| RxLengthError
))
848 np
->stats
.rx_length_errors
++;
849 if (frame_status
& RxFCSError
)
850 np
->stats
.rx_crc_errors
++;
851 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
852 np
->stats
.rx_frame_errors
++;
853 if (frame_status
& RxFIFOOverrun
)
854 np
->stats
.rx_fifo_errors
++;
858 /* Small skbuffs for short packets */
859 if (pkt_len
> copy_thresh
) {
860 pci_unmap_single (np
->pdev
,
864 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
865 np
->rx_skbuff
[entry
] = NULL
;
866 } else if ((skb
= netdev_alloc_skb_ip_align(dev
, pkt_len
))) {
867 pci_dma_sync_single_for_cpu(np
->pdev
,
871 skb_copy_to_linear_data (skb
,
872 np
->rx_skbuff
[entry
]->data
,
874 skb_put (skb
, pkt_len
);
875 pci_dma_sync_single_for_device(np
->pdev
,
880 skb
->protocol
= eth_type_trans (skb
, dev
);
882 /* Checksum done by hw, but csum value unavailable. */
883 if (np
->pdev
->pci_rev_id
>= 0x0c &&
884 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
885 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
890 entry
= (entry
+ 1) % RX_RING_SIZE
;
892 spin_lock(&np
->rx_lock
);
894 /* Re-allocate skbuffs to fill the descriptor ring */
896 while (entry
!= np
->cur_rx
) {
898 /* Dropped packets don't need to re-allocate */
899 if (np
->rx_skbuff
[entry
] == NULL
) {
900 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
902 np
->rx_ring
[entry
].fraginfo
= 0;
904 "%s: receive_packet: "
905 "Unable to re-allocate Rx skbuff.#%d\n",
909 np
->rx_skbuff
[entry
] = skb
;
910 np
->rx_ring
[entry
].fraginfo
=
911 cpu_to_le64 (pci_map_single
912 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
913 PCI_DMA_FROMDEVICE
));
915 np
->rx_ring
[entry
].fraginfo
|=
916 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
917 np
->rx_ring
[entry
].status
= 0;
918 entry
= (entry
+ 1) % RX_RING_SIZE
;
921 spin_unlock(&np
->rx_lock
);
926 rio_error (struct net_device
*dev
, int int_status
)
928 struct netdev_private
*np
= netdev_priv(dev
);
929 void __iomem
*ioaddr
= np
->ioaddr
;
932 /* Link change event */
933 if (int_status
& LinkEvent
) {
934 if (mii_wait_link (dev
, 10) == 0) {
935 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
937 mii_get_media_pcs (dev
);
940 if (np
->speed
== 1000)
941 np
->tx_coalesce
= tx_coalesce
;
945 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
946 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
947 macctrl
|= (np
->tx_flow
) ?
948 TxFlowControlEnable
: 0;
949 macctrl
|= (np
->rx_flow
) ?
950 RxFlowControlEnable
: 0;
951 dw16(MACCtrl
, macctrl
);
953 netif_carrier_on(dev
);
955 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
957 netif_carrier_off(dev
);
961 /* UpdateStats statistics registers */
962 if (int_status
& UpdateStats
) {
966 /* PCI Error, a catastronphic error related to the bus interface
967 occurs, set GlobalReset and HostReset to reset. */
968 if (int_status
& HostError
) {
969 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
970 dev
->name
, int_status
);
971 dw16(ASICCtrl
+ 2, GlobalReset
| HostReset
);
976 static struct net_device_stats
*
977 get_stats (struct net_device
*dev
)
979 struct netdev_private
*np
= netdev_priv(dev
);
980 void __iomem
*ioaddr
= np
->ioaddr
;
984 unsigned int stat_reg
;
986 /* All statistics registers need to be acknowledged,
987 else statistic overflow could cause problems */
989 np
->stats
.rx_packets
+= dr32(FramesRcvOk
);
990 np
->stats
.tx_packets
+= dr32(FramesXmtOk
);
991 np
->stats
.rx_bytes
+= dr32(OctetRcvOk
);
992 np
->stats
.tx_bytes
+= dr32(OctetXmtOk
);
994 np
->stats
.multicast
= dr32(McstFramesRcvdOk
);
995 np
->stats
.collisions
+= dr32(SingleColFrames
)
996 + dr32(MultiColFrames
);
998 /* detailed tx errors */
999 stat_reg
= dr16(FramesAbortXSColls
);
1000 np
->stats
.tx_aborted_errors
+= stat_reg
;
1001 np
->stats
.tx_errors
+= stat_reg
;
1003 stat_reg
= dr16(CarrierSenseErrors
);
1004 np
->stats
.tx_carrier_errors
+= stat_reg
;
1005 np
->stats
.tx_errors
+= stat_reg
;
1007 /* Clear all other statistic register. */
1008 dr32(McstOctetXmtOk
);
1009 dr16(BcstFramesXmtdOk
);
1010 dr32(McstFramesXmtdOk
);
1011 dr16(BcstFramesRcvdOk
);
1012 dr16(MacControlFramesRcvd
);
1013 dr16(FrameTooLongErrors
);
1014 dr16(InRangeLengthErrors
);
1015 dr16(FramesCheckSeqErrors
);
1016 dr16(FramesLostRxErrors
);
1017 dr32(McstOctetXmtOk
);
1018 dr32(BcstOctetXmtOk
);
1019 dr32(McstFramesXmtdOk
);
1020 dr32(FramesWDeferredXmt
);
1021 dr32(LateCollisions
);
1022 dr16(BcstFramesXmtdOk
);
1023 dr16(MacControlFramesXmtd
);
1024 dr16(FramesWEXDeferal
);
1027 for (i
= 0x100; i
<= 0x150; i
+= 4)
1030 dr16(TxJumboFrames
);
1031 dr16(RxJumboFrames
);
1032 dr16(TCPCheckSumErrors
);
1033 dr16(UDPCheckSumErrors
);
1034 dr16(IPCheckSumErrors
);
1039 clear_stats (struct net_device
*dev
)
1041 struct netdev_private
*np
= netdev_priv(dev
);
1042 void __iomem
*ioaddr
= np
->ioaddr
;
1047 /* All statistics registers need to be acknowledged,
1048 else statistic overflow could cause problems */
1054 dr32(McstFramesRcvdOk
);
1055 dr32(SingleColFrames
);
1056 dr32(MultiColFrames
);
1057 dr32(LateCollisions
);
1058 /* detailed rx errors */
1059 dr16(FrameTooLongErrors
);
1060 dr16(InRangeLengthErrors
);
1061 dr16(FramesCheckSeqErrors
);
1062 dr16(FramesLostRxErrors
);
1064 /* detailed tx errors */
1065 dr16(FramesAbortXSColls
);
1066 dr16(CarrierSenseErrors
);
1068 /* Clear all other statistic register. */
1069 dr32(McstOctetXmtOk
);
1070 dr16(BcstFramesXmtdOk
);
1071 dr32(McstFramesXmtdOk
);
1072 dr16(BcstFramesRcvdOk
);
1073 dr16(MacControlFramesRcvd
);
1074 dr32(McstOctetXmtOk
);
1075 dr32(BcstOctetXmtOk
);
1076 dr32(McstFramesXmtdOk
);
1077 dr32(FramesWDeferredXmt
);
1078 dr16(BcstFramesXmtdOk
);
1079 dr16(MacControlFramesXmtd
);
1080 dr16(FramesWEXDeferal
);
1082 for (i
= 0x100; i
<= 0x150; i
+= 4)
1085 dr16(TxJumboFrames
);
1086 dr16(RxJumboFrames
);
1087 dr16(TCPCheckSumErrors
);
1088 dr16(UDPCheckSumErrors
);
1089 dr16(IPCheckSumErrors
);
1095 change_mtu (struct net_device
*dev
, int new_mtu
)
1097 struct netdev_private
*np
= netdev_priv(dev
);
1098 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1100 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1110 set_multicast (struct net_device
*dev
)
1112 struct netdev_private
*np
= netdev_priv(dev
);
1113 void __iomem
*ioaddr
= np
->ioaddr
;
1117 hash_table
[0] = hash_table
[1] = 0;
1118 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1119 hash_table
[1] |= 0x02000000;
1120 if (dev
->flags
& IFF_PROMISC
) {
1121 /* Receive all frames promiscuously. */
1122 rx_mode
= ReceiveAllFrames
;
1123 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1124 (netdev_mc_count(dev
) > multicast_filter_limit
)) {
1125 /* Receive broadcast and multicast frames */
1126 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1127 } else if (!netdev_mc_empty(dev
)) {
1128 struct netdev_hw_addr
*ha
;
1129 /* Receive broadcast frames and multicast frames filtering
1132 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1133 netdev_for_each_mc_addr(ha
, dev
) {
1135 int crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1136 /* The inverted high significant 6 bits of CRC are
1137 used as an index to hashtable */
1138 for (bit
= 0; bit
< 6; bit
++)
1139 if (crc
& (1 << (31 - bit
)))
1140 index
|= (1 << bit
);
1141 hash_table
[index
/ 32] |= (1 << (index
% 32));
1144 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1147 /* ReceiveVLANMatch field in ReceiveMode */
1148 rx_mode
|= ReceiveVLANMatch
;
1151 dw32(HashTable0
, hash_table
[0]);
1152 dw32(HashTable1
, hash_table
[1]);
1153 dw16(ReceiveMode
, rx_mode
);
1156 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1158 struct netdev_private
*np
= netdev_priv(dev
);
1159 strcpy(info
->driver
, "dl2k");
1160 strcpy(info
->version
, DRV_VERSION
);
1161 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1164 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1166 struct netdev_private
*np
= netdev_priv(dev
);
1167 if (np
->phy_media
) {
1169 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1170 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1171 cmd
->port
= PORT_FIBRE
;
1172 cmd
->transceiver
= XCVR_INTERNAL
;
1175 cmd
->supported
= SUPPORTED_10baseT_Half
|
1176 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1177 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1178 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1179 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1180 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1181 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1182 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1183 cmd
->port
= PORT_MII
;
1184 cmd
->transceiver
= XCVR_INTERNAL
;
1186 if ( np
->link_status
) {
1187 ethtool_cmd_speed_set(cmd
, np
->speed
);
1188 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1190 ethtool_cmd_speed_set(cmd
, -1);
1194 cmd
->autoneg
= AUTONEG_ENABLE
;
1196 cmd
->autoneg
= AUTONEG_DISABLE
;
1198 cmd
->phy_address
= np
->phy_addr
;
1202 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1204 struct netdev_private
*np
= netdev_priv(dev
);
1205 netif_carrier_off(dev
);
1206 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1216 if (np
->speed
== 1000) {
1217 ethtool_cmd_speed_set(cmd
, SPEED_100
);
1218 cmd
->duplex
= DUPLEX_FULL
;
1219 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1221 switch (ethtool_cmd_speed(cmd
)) {
1224 np
->full_duplex
= (cmd
->duplex
== DUPLEX_FULL
);
1228 np
->full_duplex
= (cmd
->duplex
== DUPLEX_FULL
);
1230 case SPEED_1000
: /* not supported */
1239 static u32
rio_get_link(struct net_device
*dev
)
1241 struct netdev_private
*np
= netdev_priv(dev
);
1242 return np
->link_status
;
1245 static const struct ethtool_ops ethtool_ops
= {
1246 .get_drvinfo
= rio_get_drvinfo
,
1247 .get_settings
= rio_get_settings
,
1248 .set_settings
= rio_set_settings
,
1249 .get_link
= rio_get_link
,
1253 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1256 struct netdev_private
*np
= netdev_priv(dev
);
1257 struct mii_ioctl_data
*miidata
= if_mii(rq
);
1259 phy_addr
= np
->phy_addr
;
1262 miidata
->phy_id
= phy_addr
;
1265 miidata
->val_out
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1268 if (!capable(CAP_NET_ADMIN
))
1270 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->val_in
);
1278 #define EEP_READ 0x0200
1279 #define EEP_BUSY 0x8000
1280 /* Read the EEPROM word */
1281 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1282 static int read_eeprom(struct netdev_private
*np
, int eep_addr
)
1284 void __iomem
*ioaddr
= np
->eeprom_addr
;
1287 dw16(EepromCtrl
, EEP_READ
| (eep_addr
& 0xff));
1289 if (!(dr16(EepromCtrl
) & EEP_BUSY
))
1290 return dr16(EepromData
);
1295 enum phy_ctrl_bits
{
1296 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1300 #define mii_delay() dr8(PhyCtrl)
1302 mii_sendbit (struct net_device
*dev
, u32 data
)
1304 struct netdev_private
*np
= netdev_priv(dev
);
1305 void __iomem
*ioaddr
= np
->ioaddr
;
1307 data
= ((data
) ? MII_DATA1
: 0) | (dr8(PhyCtrl
) & 0xf8) | MII_WRITE
;
1310 dw8(PhyCtrl
, data
| MII_CLK
);
1315 mii_getbit (struct net_device
*dev
)
1317 struct netdev_private
*np
= netdev_priv(dev
);
1318 void __iomem
*ioaddr
= np
->ioaddr
;
1321 data
= (dr8(PhyCtrl
) & 0xf8) | MII_READ
;
1324 dw8(PhyCtrl
, data
| MII_CLK
);
1326 return (dr8(PhyCtrl
) >> 1) & 1;
1330 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1334 for (i
= len
- 1; i
>= 0; i
--) {
1335 mii_sendbit (dev
, data
& (1 << i
));
1340 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1347 mii_send_bits (dev
, 0xffffffff, 32);
1348 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1349 /* ST,OP = 0110'b for read operation */
1350 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1351 mii_send_bits (dev
, cmd
, 14);
1353 if (mii_getbit (dev
))
1356 for (i
= 0; i
< 16; i
++) {
1357 retval
|= mii_getbit (dev
);
1362 return (retval
>> 1) & 0xffff;
1368 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1373 mii_send_bits (dev
, 0xffffffff, 32);
1374 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1375 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1376 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1377 mii_send_bits (dev
, cmd
, 32);
1383 mii_wait_link (struct net_device
*dev
, int wait
)
1387 struct netdev_private
*np
;
1389 np
= netdev_priv(dev
);
1390 phy_addr
= np
->phy_addr
;
1393 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1394 if (bmsr
& BMSR_LSTATUS
)
1397 } while (--wait
> 0);
1401 mii_get_media (struct net_device
*dev
)
1408 struct netdev_private
*np
;
1410 np
= netdev_priv(dev
);
1411 phy_addr
= np
->phy_addr
;
1413 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1414 if (np
->an_enable
) {
1415 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1416 /* Auto-Negotiation not completed */
1419 negotiate
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1420 mii_read (dev
, phy_addr
, MII_LPA
);
1421 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1422 mssr
= mii_read (dev
, phy_addr
, MII_STAT1000
);
1423 if (mscr
& ADVERTISE_1000FULL
&& mssr
& LPA_1000FULL
) {
1425 np
->full_duplex
= 1;
1426 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1427 } else if (mscr
& ADVERTISE_1000HALF
&& mssr
& LPA_1000HALF
) {
1429 np
->full_duplex
= 0;
1430 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1431 } else if (negotiate
& ADVERTISE_100FULL
) {
1433 np
->full_duplex
= 1;
1434 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1435 } else if (negotiate
& ADVERTISE_100HALF
) {
1437 np
->full_duplex
= 0;
1438 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1439 } else if (negotiate
& ADVERTISE_10FULL
) {
1441 np
->full_duplex
= 1;
1442 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1443 } else if (negotiate
& ADVERTISE_10HALF
) {
1445 np
->full_duplex
= 0;
1446 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1448 if (negotiate
& ADVERTISE_PAUSE_CAP
) {
1451 } else if (negotiate
& ADVERTISE_PAUSE_ASYM
) {
1455 /* else tx_flow, rx_flow = user select */
1457 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1458 switch (bmcr
& (BMCR_SPEED100
| BMCR_SPEED1000
)) {
1459 case BMCR_SPEED1000
:
1460 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1463 printk (KERN_INFO
"Operating at 100 Mbps, ");
1466 printk (KERN_INFO
"Operating at 10 Mbps, ");
1468 if (bmcr
& BMCR_FULLDPLX
) {
1469 printk (KERN_CONT
"Full duplex\n");
1471 printk (KERN_CONT
"Half duplex\n");
1475 printk(KERN_INFO
"Enable Tx Flow Control\n");
1477 printk(KERN_INFO
"Disable Tx Flow Control\n");
1479 printk(KERN_INFO
"Enable Rx Flow Control\n");
1481 printk(KERN_INFO
"Disable Rx Flow Control\n");
1487 mii_set_media (struct net_device
*dev
)
1494 struct netdev_private
*np
;
1495 np
= netdev_priv(dev
);
1496 phy_addr
= np
->phy_addr
;
1498 /* Does user set speed? */
1499 if (np
->an_enable
) {
1500 /* Advertise capabilities */
1501 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1502 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1503 ~(ADVERTISE_100FULL
| ADVERTISE_10FULL
|
1504 ADVERTISE_100HALF
| ADVERTISE_10HALF
|
1505 ADVERTISE_100BASE4
);
1506 if (bmsr
& BMSR_100FULL
)
1507 anar
|= ADVERTISE_100FULL
;
1508 if (bmsr
& BMSR_100HALF
)
1509 anar
|= ADVERTISE_100HALF
;
1510 if (bmsr
& BMSR_100BASE4
)
1511 anar
|= ADVERTISE_100BASE4
;
1512 if (bmsr
& BMSR_10FULL
)
1513 anar
|= ADVERTISE_10FULL
;
1514 if (bmsr
& BMSR_10HALF
)
1515 anar
|= ADVERTISE_10HALF
;
1516 anar
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1517 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1519 /* Enable Auto crossover */
1520 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1521 pscr
|= 3 << 5; /* 11'b */
1522 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1524 /* Soft reset PHY */
1525 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1526 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1527 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1530 /* Force speed setting */
1531 /* 1) Disable Auto crossover */
1532 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1534 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1537 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1539 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1542 bmcr
= 0x1940; /* must be 0x1940 */
1543 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1544 mdelay (100); /* wait a certain time */
1546 /* 4) Advertise nothing */
1547 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1549 /* 5) Set media and Power Up */
1551 if (np
->speed
== 100) {
1552 bmcr
|= BMCR_SPEED100
;
1553 printk (KERN_INFO
"Manual 100 Mbps, ");
1554 } else if (np
->speed
== 10) {
1555 printk (KERN_INFO
"Manual 10 Mbps, ");
1557 if (np
->full_duplex
) {
1558 bmcr
|= BMCR_FULLDPLX
;
1559 printk (KERN_CONT
"Full duplex\n");
1561 printk (KERN_CONT
"Half duplex\n");
1564 /* Set 1000BaseT Master/Slave setting */
1565 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1566 mscr
|= MII_MSCR_CFG_ENABLE
;
1567 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1569 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1576 mii_get_media_pcs (struct net_device
*dev
)
1581 struct netdev_private
*np
;
1583 np
= netdev_priv(dev
);
1584 phy_addr
= np
->phy_addr
;
1586 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1587 if (np
->an_enable
) {
1588 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1589 /* Auto-Negotiation not completed */
1592 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1593 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1595 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1596 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1597 np
->full_duplex
= 1;
1599 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1600 np
->full_duplex
= 0;
1602 if (negotiate
& PCS_ANAR_PAUSE
) {
1605 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1609 /* else tx_flow, rx_flow = user select */
1611 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1612 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1613 if (bmcr
& BMCR_FULLDPLX
) {
1614 printk (KERN_CONT
"Full duplex\n");
1616 printk (KERN_CONT
"Half duplex\n");
1620 printk(KERN_INFO
"Enable Tx Flow Control\n");
1622 printk(KERN_INFO
"Disable Tx Flow Control\n");
1624 printk(KERN_INFO
"Enable Rx Flow Control\n");
1626 printk(KERN_INFO
"Disable Rx Flow Control\n");
1632 mii_set_media_pcs (struct net_device
*dev
)
1638 struct netdev_private
*np
;
1639 np
= netdev_priv(dev
);
1640 phy_addr
= np
->phy_addr
;
1642 /* Auto-Negotiation? */
1643 if (np
->an_enable
) {
1644 /* Advertise capabilities */
1645 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1646 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1647 ~PCS_ANAR_HALF_DUPLEX
&
1648 ~PCS_ANAR_FULL_DUPLEX
;
1649 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1650 anar
|= PCS_ANAR_HALF_DUPLEX
;
1651 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1652 anar
|= PCS_ANAR_FULL_DUPLEX
;
1653 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1654 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1656 /* Soft reset PHY */
1657 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1658 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1659 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1662 /* Force speed setting */
1665 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1667 if (np
->full_duplex
) {
1668 bmcr
= BMCR_FULLDPLX
;
1669 printk (KERN_INFO
"Manual full duplex\n");
1672 printk (KERN_INFO
"Manual half duplex\n");
1674 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1677 /* Advertise nothing */
1678 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1685 rio_close (struct net_device
*dev
)
1687 struct netdev_private
*np
= netdev_priv(dev
);
1688 void __iomem
*ioaddr
= np
->ioaddr
;
1690 struct pci_dev
*pdev
= np
->pdev
;
1691 struct sk_buff
*skb
;
1694 netif_stop_queue (dev
);
1696 /* Disable interrupts */
1699 /* Stop Tx and Rx logics */
1700 dw32(MACCtrl
, TxDisable
| RxDisable
| StatsDisable
);
1702 free_irq(pdev
->irq
, dev
);
1703 del_timer_sync (&np
->timer
);
1705 /* Free all the skbuffs in the queue. */
1706 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1707 skb
= np
->rx_skbuff
[i
];
1709 pci_unmap_single(pdev
, desc_to_dma(&np
->rx_ring
[i
]),
1710 skb
->len
, PCI_DMA_FROMDEVICE
);
1711 dev_kfree_skb (skb
);
1712 np
->rx_skbuff
[i
] = NULL
;
1714 np
->rx_ring
[i
].status
= 0;
1715 np
->rx_ring
[i
].fraginfo
= 0;
1717 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1718 skb
= np
->tx_skbuff
[i
];
1720 pci_unmap_single(pdev
, desc_to_dma(&np
->tx_ring
[i
]),
1721 skb
->len
, PCI_DMA_TODEVICE
);
1722 dev_kfree_skb (skb
);
1723 np
->tx_skbuff
[i
] = NULL
;
1730 static void __devexit
1731 rio_remove1 (struct pci_dev
*pdev
)
1733 struct net_device
*dev
= pci_get_drvdata (pdev
);
1736 struct netdev_private
*np
= netdev_priv(dev
);
1738 unregister_netdev (dev
);
1739 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1741 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1744 pci_iounmap(pdev
, np
->ioaddr
);
1746 pci_iounmap(pdev
, np
->eeprom_addr
);
1748 pci_release_regions (pdev
);
1749 pci_disable_device (pdev
);
1751 pci_set_drvdata (pdev
, NULL
);
1754 static struct pci_driver rio_driver
= {
1756 .id_table
= rio_pci_tbl
,
1757 .probe
= rio_probe1
,
1758 .remove
= __devexit_p(rio_remove1
),
1764 return pci_register_driver(&rio_driver
);
1770 pci_unregister_driver (&rio_driver
);
1773 module_init (rio_init
);
1774 module_exit (rio_exit
);
1780 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1782 Read Documentation/networking/dl2k.txt for details.