initial commit with v3.6.7
[linux-3.6.7-moxart.git] / drivers / net / ethernet / intel / igb / e1000_phy.c
blob7be98b6f105235f85446972378cfd24badfdf5f0
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
38 static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] =
42 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 (sizeof(e1000_m88_cable_length_table) / \
45 sizeof(e1000_m88_cable_length_table[0]))
47 static const u16 e1000_igp_2_cable_length_table[] =
48 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 (sizeof(e1000_igp_2_cable_length_table) / \
58 sizeof(e1000_igp_2_cable_length_table[0]))
60 /**
61 * igb_check_reset_block - Check if PHY reset is blocked
62 * @hw: pointer to the HW structure
64 * Read the PHY management control register and check whether a PHY reset
65 * is blocked. If a reset is not blocked return 0, otherwise
66 * return E1000_BLK_PHY_RESET (12).
67 **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
70 u32 manc;
72 manc = rd32(E1000_MANC);
74 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
75 E1000_BLK_PHY_RESET : 0;
78 /**
79 * igb_get_phy_id - Retrieve the PHY ID and revision
80 * @hw: pointer to the HW structure
82 * Reads the PHY registers and stores the PHY ID and possibly the PHY
83 * revision in the hardware structure.
84 **/
85 s32 igb_get_phy_id(struct e1000_hw *hw)
87 struct e1000_phy_info *phy = &hw->phy;
88 s32 ret_val = 0;
89 u16 phy_id;
91 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
92 if (ret_val)
93 goto out;
95 phy->id = (u32)(phy_id << 16);
96 udelay(20);
97 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
98 if (ret_val)
99 goto out;
101 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
102 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
104 out:
105 return ret_val;
109 * igb_phy_reset_dsp - Reset PHY DSP
110 * @hw: pointer to the HW structure
112 * Reset the digital signal processor.
114 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
116 s32 ret_val = 0;
118 if (!(hw->phy.ops.write_reg))
119 goto out;
121 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122 if (ret_val)
123 goto out;
125 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
127 out:
128 return ret_val;
132 * igb_read_phy_reg_mdic - Read MDI control register
133 * @hw: pointer to the HW structure
134 * @offset: register offset to be read
135 * @data: pointer to the read data
137 * Reads the MDI control regsiter in the PHY at offset and stores the
138 * information read to data.
140 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
142 struct e1000_phy_info *phy = &hw->phy;
143 u32 i, mdic = 0;
144 s32 ret_val = 0;
146 if (offset > MAX_PHY_REG_ADDRESS) {
147 hw_dbg("PHY Address %d is out of range\n", offset);
148 ret_val = -E1000_ERR_PARAM;
149 goto out;
153 * Set up Op-code, Phy Address, and register offset in the MDI
154 * Control register. The MAC will take care of interfacing with the
155 * PHY to retrieve the desired data.
157 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 (phy->addr << E1000_MDIC_PHY_SHIFT) |
159 (E1000_MDIC_OP_READ));
161 wr32(E1000_MDIC, mdic);
164 * Poll the ready bit to see if the MDI read completed
165 * Increasing the time out as testing showed failures with
166 * the lower time out
168 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
169 udelay(50);
170 mdic = rd32(E1000_MDIC);
171 if (mdic & E1000_MDIC_READY)
172 break;
174 if (!(mdic & E1000_MDIC_READY)) {
175 hw_dbg("MDI Read did not complete\n");
176 ret_val = -E1000_ERR_PHY;
177 goto out;
179 if (mdic & E1000_MDIC_ERROR) {
180 hw_dbg("MDI Error\n");
181 ret_val = -E1000_ERR_PHY;
182 goto out;
184 *data = (u16) mdic;
186 out:
187 return ret_val;
191 * igb_write_phy_reg_mdic - Write MDI control register
192 * @hw: pointer to the HW structure
193 * @offset: register offset to write to
194 * @data: data to write to register at offset
196 * Writes data to MDI control register in the PHY at offset.
198 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
200 struct e1000_phy_info *phy = &hw->phy;
201 u32 i, mdic = 0;
202 s32 ret_val = 0;
204 if (offset > MAX_PHY_REG_ADDRESS) {
205 hw_dbg("PHY Address %d is out of range\n", offset);
206 ret_val = -E1000_ERR_PARAM;
207 goto out;
211 * Set up Op-code, Phy Address, and register offset in the MDI
212 * Control register. The MAC will take care of interfacing with the
213 * PHY to retrieve the desired data.
215 mdic = (((u32)data) |
216 (offset << E1000_MDIC_REG_SHIFT) |
217 (phy->addr << E1000_MDIC_PHY_SHIFT) |
218 (E1000_MDIC_OP_WRITE));
220 wr32(E1000_MDIC, mdic);
223 * Poll the ready bit to see if the MDI read completed
224 * Increasing the time out as testing showed failures with
225 * the lower time out
227 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
228 udelay(50);
229 mdic = rd32(E1000_MDIC);
230 if (mdic & E1000_MDIC_READY)
231 break;
233 if (!(mdic & E1000_MDIC_READY)) {
234 hw_dbg("MDI Write did not complete\n");
235 ret_val = -E1000_ERR_PHY;
236 goto out;
238 if (mdic & E1000_MDIC_ERROR) {
239 hw_dbg("MDI Error\n");
240 ret_val = -E1000_ERR_PHY;
241 goto out;
244 out:
245 return ret_val;
249 * igb_read_phy_reg_i2c - Read PHY register using i2c
250 * @hw: pointer to the HW structure
251 * @offset: register offset to be read
252 * @data: pointer to the read data
254 * Reads the PHY register at offset using the i2c interface and stores the
255 * retrieved information in data.
257 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
259 struct e1000_phy_info *phy = &hw->phy;
260 u32 i, i2ccmd = 0;
264 * Set up Op-code, Phy Address, and register address in the I2CCMD
265 * register. The MAC will take care of interfacing with the
266 * PHY to retrieve the desired data.
268 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
269 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
270 (E1000_I2CCMD_OPCODE_READ));
272 wr32(E1000_I2CCMD, i2ccmd);
274 /* Poll the ready bit to see if the I2C read completed */
275 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
276 udelay(50);
277 i2ccmd = rd32(E1000_I2CCMD);
278 if (i2ccmd & E1000_I2CCMD_READY)
279 break;
281 if (!(i2ccmd & E1000_I2CCMD_READY)) {
282 hw_dbg("I2CCMD Read did not complete\n");
283 return -E1000_ERR_PHY;
285 if (i2ccmd & E1000_I2CCMD_ERROR) {
286 hw_dbg("I2CCMD Error bit set\n");
287 return -E1000_ERR_PHY;
290 /* Need to byte-swap the 16-bit value. */
291 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
293 return 0;
297 * igb_write_phy_reg_i2c - Write PHY register using i2c
298 * @hw: pointer to the HW structure
299 * @offset: register offset to write to
300 * @data: data to write at register offset
302 * Writes the data to PHY register at the offset using the i2c interface.
304 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
306 struct e1000_phy_info *phy = &hw->phy;
307 u32 i, i2ccmd = 0;
308 u16 phy_data_swapped;
310 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
311 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
312 hw_dbg("PHY I2C Address %d is out of range.\n",
313 hw->phy.addr);
314 return -E1000_ERR_CONFIG;
317 /* Swap the data bytes for the I2C interface */
318 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
321 * Set up Op-code, Phy Address, and register address in the I2CCMD
322 * register. The MAC will take care of interfacing with the
323 * PHY to retrieve the desired data.
325 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
326 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
327 E1000_I2CCMD_OPCODE_WRITE |
328 phy_data_swapped);
330 wr32(E1000_I2CCMD, i2ccmd);
332 /* Poll the ready bit to see if the I2C read completed */
333 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
334 udelay(50);
335 i2ccmd = rd32(E1000_I2CCMD);
336 if (i2ccmd & E1000_I2CCMD_READY)
337 break;
339 if (!(i2ccmd & E1000_I2CCMD_READY)) {
340 hw_dbg("I2CCMD Write did not complete\n");
341 return -E1000_ERR_PHY;
343 if (i2ccmd & E1000_I2CCMD_ERROR) {
344 hw_dbg("I2CCMD Error bit set\n");
345 return -E1000_ERR_PHY;
348 return 0;
352 * igb_read_phy_reg_igp - Read igp PHY register
353 * @hw: pointer to the HW structure
354 * @offset: register offset to be read
355 * @data: pointer to the read data
357 * Acquires semaphore, if necessary, then reads the PHY register at offset
358 * and storing the retrieved information in data. Release any acquired
359 * semaphores before exiting.
361 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
363 s32 ret_val = 0;
365 if (!(hw->phy.ops.acquire))
366 goto out;
368 ret_val = hw->phy.ops.acquire(hw);
369 if (ret_val)
370 goto out;
372 if (offset > MAX_PHY_MULTI_PAGE_REG) {
373 ret_val = igb_write_phy_reg_mdic(hw,
374 IGP01E1000_PHY_PAGE_SELECT,
375 (u16)offset);
376 if (ret_val) {
377 hw->phy.ops.release(hw);
378 goto out;
382 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
383 data);
385 hw->phy.ops.release(hw);
387 out:
388 return ret_val;
392 * igb_write_phy_reg_igp - Write igp PHY register
393 * @hw: pointer to the HW structure
394 * @offset: register offset to write to
395 * @data: data to write at register offset
397 * Acquires semaphore, if necessary, then writes the data to PHY register
398 * at the offset. Release any acquired semaphores before exiting.
400 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
402 s32 ret_val = 0;
404 if (!(hw->phy.ops.acquire))
405 goto out;
407 ret_val = hw->phy.ops.acquire(hw);
408 if (ret_val)
409 goto out;
411 if (offset > MAX_PHY_MULTI_PAGE_REG) {
412 ret_val = igb_write_phy_reg_mdic(hw,
413 IGP01E1000_PHY_PAGE_SELECT,
414 (u16)offset);
415 if (ret_val) {
416 hw->phy.ops.release(hw);
417 goto out;
421 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
422 data);
424 hw->phy.ops.release(hw);
426 out:
427 return ret_val;
431 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
432 * @hw: pointer to the HW structure
434 * Sets up Carrier-sense on Transmit and downshift values.
436 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
438 struct e1000_phy_info *phy = &hw->phy;
439 s32 ret_val;
440 u16 phy_data;
443 if (phy->reset_disable) {
444 ret_val = 0;
445 goto out;
448 if (phy->type == e1000_phy_82580) {
449 ret_val = hw->phy.ops.reset(hw);
450 if (ret_val) {
451 hw_dbg("Error resetting the PHY.\n");
452 goto out;
456 /* Enable CRS on TX. This must be set for half-duplex operation. */
457 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
458 if (ret_val)
459 goto out;
461 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
463 /* Enable downshift */
464 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
466 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
468 out:
469 return ret_val;
473 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
474 * @hw: pointer to the HW structure
476 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
477 * and downshift values are set also.
479 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
481 struct e1000_phy_info *phy = &hw->phy;
482 s32 ret_val;
483 u16 phy_data;
485 if (phy->reset_disable) {
486 ret_val = 0;
487 goto out;
490 /* Enable CRS on TX. This must be set for half-duplex operation. */
491 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
492 if (ret_val)
493 goto out;
495 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
498 * Options:
499 * MDI/MDI-X = 0 (default)
500 * 0 - Auto for all speeds
501 * 1 - MDI mode
502 * 2 - MDI-X mode
503 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
505 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
507 switch (phy->mdix) {
508 case 1:
509 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
510 break;
511 case 2:
512 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
513 break;
514 case 3:
515 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
516 break;
517 case 0:
518 default:
519 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
520 break;
524 * Options:
525 * disable_polarity_correction = 0 (default)
526 * Automatic Correction for Reversed Cable Polarity
527 * 0 - Disabled
528 * 1 - Enabled
530 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
531 if (phy->disable_polarity_correction == 1)
532 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
534 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
535 if (ret_val)
536 goto out;
538 if (phy->revision < E1000_REVISION_4) {
540 * Force TX_CLK in the Extended PHY Specific Control Register
541 * to 25MHz clock.
543 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
544 &phy_data);
545 if (ret_val)
546 goto out;
548 phy_data |= M88E1000_EPSCR_TX_CLK_25;
550 if ((phy->revision == E1000_REVISION_2) &&
551 (phy->id == M88E1111_I_PHY_ID)) {
552 /* 82573L PHY - set the downshift counter to 5x. */
553 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
554 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
555 } else {
556 /* Configure Master and Slave downshift values */
557 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
558 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
559 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
560 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
562 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
563 phy_data);
564 if (ret_val)
565 goto out;
568 /* Commit the changes. */
569 ret_val = igb_phy_sw_reset(hw);
570 if (ret_val) {
571 hw_dbg("Error committing the PHY changes\n");
572 goto out;
574 if (phy->type == e1000_phy_i210) {
575 ret_val = igb_set_master_slave_mode(hw);
576 if (ret_val)
577 return ret_val;
580 out:
581 return ret_val;
585 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
586 * @hw: pointer to the HW structure
588 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
589 * Also enables and sets the downshift parameters.
591 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
593 struct e1000_phy_info *phy = &hw->phy;
594 s32 ret_val;
595 u16 phy_data;
597 if (phy->reset_disable) {
598 ret_val = 0;
599 goto out;
602 /* Enable CRS on Tx. This must be set for half-duplex operation. */
603 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
604 if (ret_val)
605 goto out;
608 * Options:
609 * MDI/MDI-X = 0 (default)
610 * 0 - Auto for all speeds
611 * 1 - MDI mode
612 * 2 - MDI-X mode
613 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
615 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
617 switch (phy->mdix) {
618 case 1:
619 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
620 break;
621 case 2:
622 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
623 break;
624 case 3:
625 /* M88E1112 does not support this mode) */
626 if (phy->id != M88E1112_E_PHY_ID) {
627 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
628 break;
630 case 0:
631 default:
632 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
633 break;
637 * Options:
638 * disable_polarity_correction = 0 (default)
639 * Automatic Correction for Reversed Cable Polarity
640 * 0 - Disabled
641 * 1 - Enabled
643 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
644 if (phy->disable_polarity_correction == 1)
645 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
647 /* Enable downshift and setting it to X6 */
648 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
649 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
650 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
652 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
653 if (ret_val)
654 goto out;
656 /* Commit the changes. */
657 ret_val = igb_phy_sw_reset(hw);
658 if (ret_val) {
659 hw_dbg("Error committing the PHY changes\n");
660 goto out;
663 out:
664 return ret_val;
668 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
669 * @hw: pointer to the HW structure
671 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
672 * igp PHY's.
674 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
676 struct e1000_phy_info *phy = &hw->phy;
677 s32 ret_val;
678 u16 data;
680 if (phy->reset_disable) {
681 ret_val = 0;
682 goto out;
685 ret_val = phy->ops.reset(hw);
686 if (ret_val) {
687 hw_dbg("Error resetting the PHY.\n");
688 goto out;
692 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
693 * timeout issues when LFS is enabled.
695 msleep(100);
698 * The NVM settings will configure LPLU in D3 for
699 * non-IGP1 PHYs.
701 if (phy->type == e1000_phy_igp) {
702 /* disable lplu d3 during driver init */
703 if (phy->ops.set_d3_lplu_state)
704 ret_val = phy->ops.set_d3_lplu_state(hw, false);
705 if (ret_val) {
706 hw_dbg("Error Disabling LPLU D3\n");
707 goto out;
711 /* disable lplu d0 during driver init */
712 ret_val = phy->ops.set_d0_lplu_state(hw, false);
713 if (ret_val) {
714 hw_dbg("Error Disabling LPLU D0\n");
715 goto out;
717 /* Configure mdi-mdix settings */
718 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
719 if (ret_val)
720 goto out;
722 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
724 switch (phy->mdix) {
725 case 1:
726 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
727 break;
728 case 2:
729 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
730 break;
731 case 0:
732 default:
733 data |= IGP01E1000_PSCR_AUTO_MDIX;
734 break;
736 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
737 if (ret_val)
738 goto out;
740 /* set auto-master slave resolution settings */
741 if (hw->mac.autoneg) {
743 * when autonegotiation advertisement is only 1000Mbps then we
744 * should disable SmartSpeed and enable Auto MasterSlave
745 * resolution as hardware default.
747 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
748 /* Disable SmartSpeed */
749 ret_val = phy->ops.read_reg(hw,
750 IGP01E1000_PHY_PORT_CONFIG,
751 &data);
752 if (ret_val)
753 goto out;
755 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
756 ret_val = phy->ops.write_reg(hw,
757 IGP01E1000_PHY_PORT_CONFIG,
758 data);
759 if (ret_val)
760 goto out;
762 /* Set auto Master/Slave resolution process */
763 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
764 if (ret_val)
765 goto out;
767 data &= ~CR_1000T_MS_ENABLE;
768 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
769 if (ret_val)
770 goto out;
773 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
774 if (ret_val)
775 goto out;
777 /* load defaults for future use */
778 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
779 ((data & CR_1000T_MS_VALUE) ?
780 e1000_ms_force_master :
781 e1000_ms_force_slave) :
782 e1000_ms_auto;
784 switch (phy->ms_type) {
785 case e1000_ms_force_master:
786 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
787 break;
788 case e1000_ms_force_slave:
789 data |= CR_1000T_MS_ENABLE;
790 data &= ~(CR_1000T_MS_VALUE);
791 break;
792 case e1000_ms_auto:
793 data &= ~CR_1000T_MS_ENABLE;
794 default:
795 break;
797 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
798 if (ret_val)
799 goto out;
802 out:
803 return ret_val;
807 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
808 * @hw: pointer to the HW structure
810 * Performs initial bounds checking on autoneg advertisement parameter, then
811 * configure to advertise the full capability. Setup the PHY to autoneg
812 * and restart the negotiation process between the link partner. If
813 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
815 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
817 struct e1000_phy_info *phy = &hw->phy;
818 s32 ret_val;
819 u16 phy_ctrl;
822 * Perform some bounds checking on the autoneg advertisement
823 * parameter.
825 phy->autoneg_advertised &= phy->autoneg_mask;
828 * If autoneg_advertised is zero, we assume it was not defaulted
829 * by the calling code so we set to advertise full capability.
831 if (phy->autoneg_advertised == 0)
832 phy->autoneg_advertised = phy->autoneg_mask;
834 hw_dbg("Reconfiguring auto-neg advertisement params\n");
835 ret_val = igb_phy_setup_autoneg(hw);
836 if (ret_val) {
837 hw_dbg("Error Setting up Auto-Negotiation\n");
838 goto out;
840 hw_dbg("Restarting Auto-Neg\n");
843 * Restart auto-negotiation by setting the Auto Neg Enable bit and
844 * the Auto Neg Restart bit in the PHY control register.
846 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
847 if (ret_val)
848 goto out;
850 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
851 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
852 if (ret_val)
853 goto out;
856 * Does the user want to wait for Auto-Neg to complete here, or
857 * check at a later time (for example, callback routine).
859 if (phy->autoneg_wait_to_complete) {
860 ret_val = igb_wait_autoneg(hw);
861 if (ret_val) {
862 hw_dbg("Error while waiting for "
863 "autoneg to complete\n");
864 goto out;
868 hw->mac.get_link_status = true;
870 out:
871 return ret_val;
875 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
876 * @hw: pointer to the HW structure
878 * Reads the MII auto-neg advertisement register and/or the 1000T control
879 * register and if the PHY is already setup for auto-negotiation, then
880 * return successful. Otherwise, setup advertisement and flow control to
881 * the appropriate values for the wanted auto-negotiation.
883 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
885 struct e1000_phy_info *phy = &hw->phy;
886 s32 ret_val;
887 u16 mii_autoneg_adv_reg;
888 u16 mii_1000t_ctrl_reg = 0;
890 phy->autoneg_advertised &= phy->autoneg_mask;
892 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
893 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
894 if (ret_val)
895 goto out;
897 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
898 /* Read the MII 1000Base-T Control Register (Address 9). */
899 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
900 &mii_1000t_ctrl_reg);
901 if (ret_val)
902 goto out;
906 * Need to parse both autoneg_advertised and fc and set up
907 * the appropriate PHY registers. First we will parse for
908 * autoneg_advertised software override. Since we can advertise
909 * a plethora of combinations, we need to check each bit
910 * individually.
914 * First we clear all the 10/100 mb speed bits in the Auto-Neg
915 * Advertisement Register (Address 4) and the 1000 mb speed bits in
916 * the 1000Base-T Control Register (Address 9).
918 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
919 NWAY_AR_100TX_HD_CAPS |
920 NWAY_AR_10T_FD_CAPS |
921 NWAY_AR_10T_HD_CAPS);
922 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
924 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
926 /* Do we want to advertise 10 Mb Half Duplex? */
927 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
928 hw_dbg("Advertise 10mb Half duplex\n");
929 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
932 /* Do we want to advertise 10 Mb Full Duplex? */
933 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
934 hw_dbg("Advertise 10mb Full duplex\n");
935 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
938 /* Do we want to advertise 100 Mb Half Duplex? */
939 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
940 hw_dbg("Advertise 100mb Half duplex\n");
941 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
944 /* Do we want to advertise 100 Mb Full Duplex? */
945 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
946 hw_dbg("Advertise 100mb Full duplex\n");
947 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
950 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
951 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
952 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
954 /* Do we want to advertise 1000 Mb Full Duplex? */
955 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
956 hw_dbg("Advertise 1000mb Full duplex\n");
957 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
961 * Check for a software override of the flow control settings, and
962 * setup the PHY advertisement registers accordingly. If
963 * auto-negotiation is enabled, then software will have to set the
964 * "PAUSE" bits to the correct value in the Auto-Negotiation
965 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
966 * negotiation.
968 * The possible values of the "fc" parameter are:
969 * 0: Flow control is completely disabled
970 * 1: Rx flow control is enabled (we can receive pause frames
971 * but not send pause frames).
972 * 2: Tx flow control is enabled (we can send pause frames
973 * but we do not support receiving pause frames).
974 * 3: Both Rx and TX flow control (symmetric) are enabled.
975 * other: No software override. The flow control configuration
976 * in the EEPROM is used.
978 switch (hw->fc.current_mode) {
979 case e1000_fc_none:
981 * Flow control (RX & TX) is completely disabled by a
982 * software over-ride.
984 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
985 break;
986 case e1000_fc_rx_pause:
988 * RX Flow control is enabled, and TX Flow control is
989 * disabled, by a software over-ride.
991 * Since there really isn't a way to advertise that we are
992 * capable of RX Pause ONLY, we will advertise that we
993 * support both symmetric and asymmetric RX PAUSE. Later
994 * (in e1000_config_fc_after_link_up) we will disable the
995 * hw's ability to send PAUSE frames.
997 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
998 break;
999 case e1000_fc_tx_pause:
1001 * TX Flow control is enabled, and RX Flow control is
1002 * disabled, by a software over-ride.
1004 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1005 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1006 break;
1007 case e1000_fc_full:
1009 * Flow control (both RX and TX) is enabled by a software
1010 * over-ride.
1012 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1013 break;
1014 default:
1015 hw_dbg("Flow control param set incorrectly\n");
1016 ret_val = -E1000_ERR_CONFIG;
1017 goto out;
1020 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1021 if (ret_val)
1022 goto out;
1024 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1026 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1027 ret_val = phy->ops.write_reg(hw,
1028 PHY_1000T_CTRL,
1029 mii_1000t_ctrl_reg);
1030 if (ret_val)
1031 goto out;
1034 out:
1035 return ret_val;
1039 * igb_setup_copper_link - Configure copper link settings
1040 * @hw: pointer to the HW structure
1042 * Calls the appropriate function to configure the link for auto-neg or forced
1043 * speed and duplex. Then we check for link, once link is established calls
1044 * to configure collision distance and flow control are called. If link is
1045 * not established, we return -E1000_ERR_PHY (-2).
1047 s32 igb_setup_copper_link(struct e1000_hw *hw)
1049 s32 ret_val;
1050 bool link;
1053 if (hw->mac.autoneg) {
1055 * Setup autoneg and flow control advertisement and perform
1056 * autonegotiation.
1058 ret_val = igb_copper_link_autoneg(hw);
1059 if (ret_val)
1060 goto out;
1061 } else {
1063 * PHY will be set to 10H, 10F, 100H or 100F
1064 * depending on user settings.
1066 hw_dbg("Forcing Speed and Duplex\n");
1067 ret_val = hw->phy.ops.force_speed_duplex(hw);
1068 if (ret_val) {
1069 hw_dbg("Error Forcing Speed and Duplex\n");
1070 goto out;
1075 * Check link status. Wait up to 100 microseconds for link to become
1076 * valid.
1078 ret_val = igb_phy_has_link(hw,
1079 COPPER_LINK_UP_LIMIT,
1081 &link);
1082 if (ret_val)
1083 goto out;
1085 if (link) {
1086 hw_dbg("Valid link established!!!\n");
1087 igb_config_collision_dist(hw);
1088 ret_val = igb_config_fc_after_link_up(hw);
1089 } else {
1090 hw_dbg("Unable to establish link!!!\n");
1093 out:
1094 return ret_val;
1098 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1099 * @hw: pointer to the HW structure
1101 * Calls the PHY setup function to force speed and duplex. Clears the
1102 * auto-crossover to force MDI manually. Waits for link and returns
1103 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1105 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1107 struct e1000_phy_info *phy = &hw->phy;
1108 s32 ret_val;
1109 u16 phy_data;
1110 bool link;
1112 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1113 if (ret_val)
1114 goto out;
1116 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1118 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1119 if (ret_val)
1120 goto out;
1123 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1124 * forced whenever speed and duplex are forced.
1126 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1127 if (ret_val)
1128 goto out;
1130 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1131 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1133 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1134 if (ret_val)
1135 goto out;
1137 hw_dbg("IGP PSCR: %X\n", phy_data);
1139 udelay(1);
1141 if (phy->autoneg_wait_to_complete) {
1142 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1144 ret_val = igb_phy_has_link(hw,
1145 PHY_FORCE_LIMIT,
1146 100000,
1147 &link);
1148 if (ret_val)
1149 goto out;
1151 if (!link)
1152 hw_dbg("Link taking longer than expected.\n");
1154 /* Try once more */
1155 ret_val = igb_phy_has_link(hw,
1156 PHY_FORCE_LIMIT,
1157 100000,
1158 &link);
1159 if (ret_val)
1160 goto out;
1163 out:
1164 return ret_val;
1168 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1169 * @hw: pointer to the HW structure
1171 * Calls the PHY setup function to force speed and duplex. Clears the
1172 * auto-crossover to force MDI manually. Resets the PHY to commit the
1173 * changes. If time expires while waiting for link up, we reset the DSP.
1174 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1175 * successful completion, else return corresponding error code.
1177 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1179 struct e1000_phy_info *phy = &hw->phy;
1180 s32 ret_val;
1181 u16 phy_data;
1182 bool link;
1185 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1186 * forced whenever speed and duplex are forced.
1188 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1189 if (ret_val)
1190 goto out;
1192 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1193 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1194 if (ret_val)
1195 goto out;
1197 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1199 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1200 if (ret_val)
1201 goto out;
1203 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1205 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1206 if (ret_val)
1207 goto out;
1209 /* Reset the phy to commit changes. */
1210 ret_val = igb_phy_sw_reset(hw);
1211 if (ret_val)
1212 goto out;
1214 if (phy->autoneg_wait_to_complete) {
1215 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1217 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1218 if (ret_val)
1219 goto out;
1221 if (!link) {
1222 bool reset_dsp = true;
1224 switch (hw->phy.id) {
1225 case I347AT4_E_PHY_ID:
1226 case M88E1112_E_PHY_ID:
1227 case I210_I_PHY_ID:
1228 reset_dsp = false;
1229 break;
1230 default:
1231 if (hw->phy.type != e1000_phy_m88)
1232 reset_dsp = false;
1233 break;
1235 if (!reset_dsp)
1236 hw_dbg("Link taking longer than expected.\n");
1237 else {
1239 * We didn't get link.
1240 * Reset the DSP and cross our fingers.
1242 ret_val = phy->ops.write_reg(hw,
1243 M88E1000_PHY_PAGE_SELECT,
1244 0x001d);
1245 if (ret_val)
1246 goto out;
1247 ret_val = igb_phy_reset_dsp(hw);
1248 if (ret_val)
1249 goto out;
1253 /* Try once more */
1254 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1255 100000, &link);
1256 if (ret_val)
1257 goto out;
1260 if (hw->phy.type != e1000_phy_m88 ||
1261 hw->phy.id == I347AT4_E_PHY_ID ||
1262 hw->phy.id == M88E1112_E_PHY_ID ||
1263 hw->phy.id == I210_I_PHY_ID)
1264 goto out;
1266 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1267 if (ret_val)
1268 goto out;
1271 * Resetting the phy means we need to re-force TX_CLK in the
1272 * Extended PHY Specific Control Register to 25MHz clock from
1273 * the reset value of 2.5MHz.
1275 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1276 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1277 if (ret_val)
1278 goto out;
1281 * In addition, we must re-enable CRS on Tx for both half and full
1282 * duplex.
1284 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1285 if (ret_val)
1286 goto out;
1288 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1289 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1291 out:
1292 return ret_val;
1296 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1297 * @hw: pointer to the HW structure
1298 * @phy_ctrl: pointer to current value of PHY_CONTROL
1300 * Forces speed and duplex on the PHY by doing the following: disable flow
1301 * control, force speed/duplex on the MAC, disable auto speed detection,
1302 * disable auto-negotiation, configure duplex, configure speed, configure
1303 * the collision distance, write configuration to CTRL register. The
1304 * caller must write to the PHY_CONTROL register for these settings to
1305 * take affect.
1307 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1308 u16 *phy_ctrl)
1310 struct e1000_mac_info *mac = &hw->mac;
1311 u32 ctrl;
1313 /* Turn off flow control when forcing speed/duplex */
1314 hw->fc.current_mode = e1000_fc_none;
1316 /* Force speed/duplex on the mac */
1317 ctrl = rd32(E1000_CTRL);
1318 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1319 ctrl &= ~E1000_CTRL_SPD_SEL;
1321 /* Disable Auto Speed Detection */
1322 ctrl &= ~E1000_CTRL_ASDE;
1324 /* Disable autoneg on the phy */
1325 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1327 /* Forcing Full or Half Duplex? */
1328 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1329 ctrl &= ~E1000_CTRL_FD;
1330 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1331 hw_dbg("Half Duplex\n");
1332 } else {
1333 ctrl |= E1000_CTRL_FD;
1334 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1335 hw_dbg("Full Duplex\n");
1338 /* Forcing 10mb or 100mb? */
1339 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1340 ctrl |= E1000_CTRL_SPD_100;
1341 *phy_ctrl |= MII_CR_SPEED_100;
1342 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1343 hw_dbg("Forcing 100mb\n");
1344 } else {
1345 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1346 *phy_ctrl |= MII_CR_SPEED_10;
1347 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1348 hw_dbg("Forcing 10mb\n");
1351 igb_config_collision_dist(hw);
1353 wr32(E1000_CTRL, ctrl);
1357 * igb_set_d3_lplu_state - Sets low power link up state for D3
1358 * @hw: pointer to the HW structure
1359 * @active: boolean used to enable/disable lplu
1361 * Success returns 0, Failure returns 1
1363 * The low power link up (lplu) state is set to the power management level D3
1364 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1365 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1366 * is used during Dx states where the power conservation is most important.
1367 * During driver activity, SmartSpeed should be enabled so performance is
1368 * maintained.
1370 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1372 struct e1000_phy_info *phy = &hw->phy;
1373 s32 ret_val = 0;
1374 u16 data;
1376 if (!(hw->phy.ops.read_reg))
1377 goto out;
1379 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1380 if (ret_val)
1381 goto out;
1383 if (!active) {
1384 data &= ~IGP02E1000_PM_D3_LPLU;
1385 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1386 data);
1387 if (ret_val)
1388 goto out;
1390 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1391 * during Dx states where the power conservation is most
1392 * important. During driver activity we should enable
1393 * SmartSpeed, so performance is maintained.
1395 if (phy->smart_speed == e1000_smart_speed_on) {
1396 ret_val = phy->ops.read_reg(hw,
1397 IGP01E1000_PHY_PORT_CONFIG,
1398 &data);
1399 if (ret_val)
1400 goto out;
1402 data |= IGP01E1000_PSCFR_SMART_SPEED;
1403 ret_val = phy->ops.write_reg(hw,
1404 IGP01E1000_PHY_PORT_CONFIG,
1405 data);
1406 if (ret_val)
1407 goto out;
1408 } else if (phy->smart_speed == e1000_smart_speed_off) {
1409 ret_val = phy->ops.read_reg(hw,
1410 IGP01E1000_PHY_PORT_CONFIG,
1411 &data);
1412 if (ret_val)
1413 goto out;
1415 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1416 ret_val = phy->ops.write_reg(hw,
1417 IGP01E1000_PHY_PORT_CONFIG,
1418 data);
1419 if (ret_val)
1420 goto out;
1422 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1423 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1424 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1425 data |= IGP02E1000_PM_D3_LPLU;
1426 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1427 data);
1428 if (ret_val)
1429 goto out;
1431 /* When LPLU is enabled, we should disable SmartSpeed */
1432 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1433 &data);
1434 if (ret_val)
1435 goto out;
1437 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1438 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1439 data);
1442 out:
1443 return ret_val;
1447 * igb_check_downshift - Checks whether a downshift in speed occurred
1448 * @hw: pointer to the HW structure
1450 * Success returns 0, Failure returns 1
1452 * A downshift is detected by querying the PHY link health.
1454 s32 igb_check_downshift(struct e1000_hw *hw)
1456 struct e1000_phy_info *phy = &hw->phy;
1457 s32 ret_val;
1458 u16 phy_data, offset, mask;
1460 switch (phy->type) {
1461 case e1000_phy_i210:
1462 case e1000_phy_m88:
1463 case e1000_phy_gg82563:
1464 offset = M88E1000_PHY_SPEC_STATUS;
1465 mask = M88E1000_PSSR_DOWNSHIFT;
1466 break;
1467 case e1000_phy_igp_2:
1468 case e1000_phy_igp:
1469 case e1000_phy_igp_3:
1470 offset = IGP01E1000_PHY_LINK_HEALTH;
1471 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1472 break;
1473 default:
1474 /* speed downshift not supported */
1475 phy->speed_downgraded = false;
1476 ret_val = 0;
1477 goto out;
1480 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1482 if (!ret_val)
1483 phy->speed_downgraded = (phy_data & mask) ? true : false;
1485 out:
1486 return ret_val;
1490 * igb_check_polarity_m88 - Checks the polarity.
1491 * @hw: pointer to the HW structure
1493 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1495 * Polarity is determined based on the PHY specific status register.
1497 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1499 struct e1000_phy_info *phy = &hw->phy;
1500 s32 ret_val;
1501 u16 data;
1503 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1505 if (!ret_val)
1506 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1507 ? e1000_rev_polarity_reversed
1508 : e1000_rev_polarity_normal;
1510 return ret_val;
1514 * igb_check_polarity_igp - Checks the polarity.
1515 * @hw: pointer to the HW structure
1517 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1519 * Polarity is determined based on the PHY port status register, and the
1520 * current speed (since there is no polarity at 100Mbps).
1522 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1524 struct e1000_phy_info *phy = &hw->phy;
1525 s32 ret_val;
1526 u16 data, offset, mask;
1529 * Polarity is determined based on the speed of
1530 * our connection.
1532 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1533 if (ret_val)
1534 goto out;
1536 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1537 IGP01E1000_PSSR_SPEED_1000MBPS) {
1538 offset = IGP01E1000_PHY_PCS_INIT_REG;
1539 mask = IGP01E1000_PHY_POLARITY_MASK;
1540 } else {
1542 * This really only applies to 10Mbps since
1543 * there is no polarity for 100Mbps (always 0).
1545 offset = IGP01E1000_PHY_PORT_STATUS;
1546 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1549 ret_val = phy->ops.read_reg(hw, offset, &data);
1551 if (!ret_val)
1552 phy->cable_polarity = (data & mask)
1553 ? e1000_rev_polarity_reversed
1554 : e1000_rev_polarity_normal;
1556 out:
1557 return ret_val;
1561 * igb_wait_autoneg - Wait for auto-neg compeletion
1562 * @hw: pointer to the HW structure
1564 * Waits for auto-negotiation to complete or for the auto-negotiation time
1565 * limit to expire, which ever happens first.
1567 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1569 s32 ret_val = 0;
1570 u16 i, phy_status;
1572 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1573 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1574 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1575 if (ret_val)
1576 break;
1577 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1578 if (ret_val)
1579 break;
1580 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1581 break;
1582 msleep(100);
1586 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1587 * has completed.
1589 return ret_val;
1593 * igb_phy_has_link - Polls PHY for link
1594 * @hw: pointer to the HW structure
1595 * @iterations: number of times to poll for link
1596 * @usec_interval: delay between polling attempts
1597 * @success: pointer to whether polling was successful or not
1599 * Polls the PHY status register for link, 'iterations' number of times.
1601 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1602 u32 usec_interval, bool *success)
1604 s32 ret_val = 0;
1605 u16 i, phy_status;
1607 for (i = 0; i < iterations; i++) {
1609 * Some PHYs require the PHY_STATUS register to be read
1610 * twice due to the link bit being sticky. No harm doing
1611 * it across the board.
1613 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614 if (ret_val) {
1616 * If the first read fails, another entity may have
1617 * ownership of the resources, wait and try again to
1618 * see if they have relinquished the resources yet.
1620 udelay(usec_interval);
1622 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1623 if (ret_val)
1624 break;
1625 if (phy_status & MII_SR_LINK_STATUS)
1626 break;
1627 if (usec_interval >= 1000)
1628 mdelay(usec_interval/1000);
1629 else
1630 udelay(usec_interval);
1633 *success = (i < iterations) ? true : false;
1635 return ret_val;
1639 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1640 * @hw: pointer to the HW structure
1642 * Reads the PHY specific status register to retrieve the cable length
1643 * information. The cable length is determined by averaging the minimum and
1644 * maximum values to get the "average" cable length. The m88 PHY has four
1645 * possible cable length values, which are:
1646 * Register Value Cable Length
1647 * 0 < 50 meters
1648 * 1 50 - 80 meters
1649 * 2 80 - 110 meters
1650 * 3 110 - 140 meters
1651 * 4 > 140 meters
1653 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1655 struct e1000_phy_info *phy = &hw->phy;
1656 s32 ret_val;
1657 u16 phy_data, index;
1659 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1660 if (ret_val)
1661 goto out;
1663 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1664 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1665 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1666 ret_val = -E1000_ERR_PHY;
1667 goto out;
1670 phy->min_cable_length = e1000_m88_cable_length_table[index];
1671 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1673 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1675 out:
1676 return ret_val;
1679 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1681 struct e1000_phy_info *phy = &hw->phy;
1682 s32 ret_val;
1683 u16 phy_data, phy_data2, index, default_page, is_cm;
1685 switch (hw->phy.id) {
1686 case I210_I_PHY_ID:
1687 case I347AT4_E_PHY_ID:
1688 /* Remember the original page select and set it to 7 */
1689 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1690 &default_page);
1691 if (ret_val)
1692 goto out;
1694 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1695 if (ret_val)
1696 goto out;
1698 /* Get cable length from PHY Cable Diagnostics Control Reg */
1699 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1700 &phy_data);
1701 if (ret_val)
1702 goto out;
1704 /* Check if the unit of cable length is meters or cm */
1705 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1706 if (ret_val)
1707 goto out;
1709 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1711 /* Populate the phy structure with cable length in meters */
1712 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1713 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1714 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1716 /* Reset the page selec to its original value */
1717 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1718 default_page);
1719 if (ret_val)
1720 goto out;
1721 break;
1722 case M88E1112_E_PHY_ID:
1723 /* Remember the original page select and set it to 5 */
1724 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1725 &default_page);
1726 if (ret_val)
1727 goto out;
1729 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1730 if (ret_val)
1731 goto out;
1733 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1734 &phy_data);
1735 if (ret_val)
1736 goto out;
1738 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1739 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1740 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1741 ret_val = -E1000_ERR_PHY;
1742 goto out;
1745 phy->min_cable_length = e1000_m88_cable_length_table[index];
1746 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1748 phy->cable_length = (phy->min_cable_length +
1749 phy->max_cable_length) / 2;
1751 /* Reset the page select to its original value */
1752 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1753 default_page);
1754 if (ret_val)
1755 goto out;
1757 break;
1758 default:
1759 ret_val = -E1000_ERR_PHY;
1760 goto out;
1763 out:
1764 return ret_val;
1768 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1769 * @hw: pointer to the HW structure
1771 * The automatic gain control (agc) normalizes the amplitude of the
1772 * received signal, adjusting for the attenuation produced by the
1773 * cable. By reading the AGC registers, which represent the
1774 * combination of coarse and fine gain value, the value can be put
1775 * into a lookup table to obtain the approximate cable length
1776 * for each channel.
1778 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1780 struct e1000_phy_info *phy = &hw->phy;
1781 s32 ret_val = 0;
1782 u16 phy_data, i, agc_value = 0;
1783 u16 cur_agc_index, max_agc_index = 0;
1784 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1785 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1786 IGP02E1000_PHY_AGC_A,
1787 IGP02E1000_PHY_AGC_B,
1788 IGP02E1000_PHY_AGC_C,
1789 IGP02E1000_PHY_AGC_D
1792 /* Read the AGC registers for all channels */
1793 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1794 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1795 if (ret_val)
1796 goto out;
1799 * Getting bits 15:9, which represent the combination of
1800 * coarse and fine gain values. The result is a number
1801 * that can be put into the lookup table to obtain the
1802 * approximate cable length.
1804 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1805 IGP02E1000_AGC_LENGTH_MASK;
1807 /* Array index bound check. */
1808 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1809 (cur_agc_index == 0)) {
1810 ret_val = -E1000_ERR_PHY;
1811 goto out;
1814 /* Remove min & max AGC values from calculation. */
1815 if (e1000_igp_2_cable_length_table[min_agc_index] >
1816 e1000_igp_2_cable_length_table[cur_agc_index])
1817 min_agc_index = cur_agc_index;
1818 if (e1000_igp_2_cable_length_table[max_agc_index] <
1819 e1000_igp_2_cable_length_table[cur_agc_index])
1820 max_agc_index = cur_agc_index;
1822 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1825 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1826 e1000_igp_2_cable_length_table[max_agc_index]);
1827 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1829 /* Calculate cable length with the error range of +/- 10 meters. */
1830 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1831 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1832 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1834 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1836 out:
1837 return ret_val;
1841 * igb_get_phy_info_m88 - Retrieve PHY information
1842 * @hw: pointer to the HW structure
1844 * Valid for only copper links. Read the PHY status register (sticky read)
1845 * to verify that link is up. Read the PHY special control register to
1846 * determine the polarity and 10base-T extended distance. Read the PHY
1847 * special status register to determine MDI/MDIx and current speed. If
1848 * speed is 1000, then determine cable length, local and remote receiver.
1850 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1852 struct e1000_phy_info *phy = &hw->phy;
1853 s32 ret_val;
1854 u16 phy_data;
1855 bool link;
1857 if (phy->media_type != e1000_media_type_copper) {
1858 hw_dbg("Phy info is only valid for copper media\n");
1859 ret_val = -E1000_ERR_CONFIG;
1860 goto out;
1863 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1864 if (ret_val)
1865 goto out;
1867 if (!link) {
1868 hw_dbg("Phy info is only valid if link is up\n");
1869 ret_val = -E1000_ERR_CONFIG;
1870 goto out;
1873 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874 if (ret_val)
1875 goto out;
1877 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1878 ? true : false;
1880 ret_val = igb_check_polarity_m88(hw);
1881 if (ret_val)
1882 goto out;
1884 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1885 if (ret_val)
1886 goto out;
1888 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1890 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1891 ret_val = phy->ops.get_cable_length(hw);
1892 if (ret_val)
1893 goto out;
1895 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1896 if (ret_val)
1897 goto out;
1899 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1900 ? e1000_1000t_rx_status_ok
1901 : e1000_1000t_rx_status_not_ok;
1903 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1904 ? e1000_1000t_rx_status_ok
1905 : e1000_1000t_rx_status_not_ok;
1906 } else {
1907 /* Set values to "undefined" */
1908 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1909 phy->local_rx = e1000_1000t_rx_status_undefined;
1910 phy->remote_rx = e1000_1000t_rx_status_undefined;
1913 out:
1914 return ret_val;
1918 * igb_get_phy_info_igp - Retrieve igp PHY information
1919 * @hw: pointer to the HW structure
1921 * Read PHY status to determine if link is up. If link is up, then
1922 * set/determine 10base-T extended distance and polarity correction. Read
1923 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1924 * determine on the cable length, local and remote receiver.
1926 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1928 struct e1000_phy_info *phy = &hw->phy;
1929 s32 ret_val;
1930 u16 data;
1931 bool link;
1933 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1934 if (ret_val)
1935 goto out;
1937 if (!link) {
1938 hw_dbg("Phy info is only valid if link is up\n");
1939 ret_val = -E1000_ERR_CONFIG;
1940 goto out;
1943 phy->polarity_correction = true;
1945 ret_val = igb_check_polarity_igp(hw);
1946 if (ret_val)
1947 goto out;
1949 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1950 if (ret_val)
1951 goto out;
1953 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1955 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1956 IGP01E1000_PSSR_SPEED_1000MBPS) {
1957 ret_val = phy->ops.get_cable_length(hw);
1958 if (ret_val)
1959 goto out;
1961 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1962 if (ret_val)
1963 goto out;
1965 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1966 ? e1000_1000t_rx_status_ok
1967 : e1000_1000t_rx_status_not_ok;
1969 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1970 ? e1000_1000t_rx_status_ok
1971 : e1000_1000t_rx_status_not_ok;
1972 } else {
1973 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1974 phy->local_rx = e1000_1000t_rx_status_undefined;
1975 phy->remote_rx = e1000_1000t_rx_status_undefined;
1978 out:
1979 return ret_val;
1983 * igb_phy_sw_reset - PHY software reset
1984 * @hw: pointer to the HW structure
1986 * Does a software reset of the PHY by reading the PHY control register and
1987 * setting/write the control register reset bit to the PHY.
1989 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1991 s32 ret_val = 0;
1992 u16 phy_ctrl;
1994 if (!(hw->phy.ops.read_reg))
1995 goto out;
1997 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1998 if (ret_val)
1999 goto out;
2001 phy_ctrl |= MII_CR_RESET;
2002 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2003 if (ret_val)
2004 goto out;
2006 udelay(1);
2008 out:
2009 return ret_val;
2013 * igb_phy_hw_reset - PHY hardware reset
2014 * @hw: pointer to the HW structure
2016 * Verify the reset block is not blocking us from resetting. Acquire
2017 * semaphore (if necessary) and read/set/write the device control reset
2018 * bit in the PHY. Wait the appropriate delay time for the device to
2019 * reset and relase the semaphore (if necessary).
2021 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2023 struct e1000_phy_info *phy = &hw->phy;
2024 s32 ret_val;
2025 u32 ctrl;
2027 ret_val = igb_check_reset_block(hw);
2028 if (ret_val) {
2029 ret_val = 0;
2030 goto out;
2033 ret_val = phy->ops.acquire(hw);
2034 if (ret_val)
2035 goto out;
2037 ctrl = rd32(E1000_CTRL);
2038 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2039 wrfl();
2041 udelay(phy->reset_delay_us);
2043 wr32(E1000_CTRL, ctrl);
2044 wrfl();
2046 udelay(150);
2048 phy->ops.release(hw);
2050 ret_val = phy->ops.get_cfg_done(hw);
2052 out:
2053 return ret_val;
2057 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2058 * @hw: pointer to the HW structure
2060 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2062 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2064 hw_dbg("Running IGP 3 PHY init script\n");
2066 /* PHY init IGP 3 */
2067 /* Enable rise/fall, 10-mode work in class-A */
2068 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2069 /* Remove all caps from Replica path filter */
2070 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2071 /* Bias trimming for ADC, AFE and Driver (Default) */
2072 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2073 /* Increase Hybrid poly bias */
2074 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2075 /* Add 4% to TX amplitude in Giga mode */
2076 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2077 /* Disable trimming (TTT) */
2078 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2079 /* Poly DC correction to 94.6% + 2% for all channels */
2080 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2081 /* ABS DC correction to 95.9% */
2082 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2083 /* BG temp curve trim */
2084 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2085 /* Increasing ADC OPAMP stage 1 currents to max */
2086 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2087 /* Force 1000 ( required for enabling PHY regs configuration) */
2088 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2089 /* Set upd_freq to 6 */
2090 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2091 /* Disable NPDFE */
2092 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2093 /* Disable adaptive fixed FFE (Default) */
2094 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2095 /* Enable FFE hysteresis */
2096 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2097 /* Fixed FFE for short cable lengths */
2098 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2099 /* Fixed FFE for medium cable lengths */
2100 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2101 /* Fixed FFE for long cable lengths */
2102 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2103 /* Enable Adaptive Clip Threshold */
2104 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2105 /* AHT reset limit to 1 */
2106 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2107 /* Set AHT master delay to 127 msec */
2108 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2109 /* Set scan bits for AHT */
2110 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2111 /* Set AHT Preset bits */
2112 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2113 /* Change integ_factor of channel A to 3 */
2114 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2115 /* Change prop_factor of channels BCD to 8 */
2116 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2117 /* Change cg_icount + enable integbp for channels BCD */
2118 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2120 * Change cg_icount + enable integbp + change prop_factor_master
2121 * to 8 for channel A
2123 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2124 /* Disable AHT in Slave mode on channel A */
2125 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2127 * Enable LPLU and disable AN to 1000 in non-D0a states,
2128 * Enable SPD+B2B
2130 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2131 /* Enable restart AN on an1000_dis change */
2132 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2133 /* Enable wh_fifo read clock in 10/100 modes */
2134 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2135 /* Restart AN, Speed selection is 1000 */
2136 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2138 return 0;
2142 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2143 * @hw: pointer to the HW structure
2145 * In the case of a PHY power down to save power, or to turn off link during a
2146 * driver unload, restore the link to previous settings.
2148 void igb_power_up_phy_copper(struct e1000_hw *hw)
2150 u16 mii_reg = 0;
2151 u16 power_reg = 0;
2153 /* The PHY will retain its settings across a power down/up cycle */
2154 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2155 mii_reg &= ~MII_CR_POWER_DOWN;
2156 if (hw->phy.type == e1000_phy_i210) {
2157 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2158 power_reg &= ~GS40G_CS_POWER_DOWN;
2159 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2161 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2165 * igb_power_down_phy_copper - Power down copper PHY
2166 * @hw: pointer to the HW structure
2168 * Power down PHY to save power when interface is down and wake on lan
2169 * is not enabled.
2171 void igb_power_down_phy_copper(struct e1000_hw *hw)
2173 u16 mii_reg = 0;
2174 u16 power_reg = 0;
2176 /* The PHY will retain its settings across a power down/up cycle */
2177 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2178 mii_reg |= MII_CR_POWER_DOWN;
2180 /* i210 Phy requires an additional bit for power up/down */
2181 if (hw->phy.type == e1000_phy_i210) {
2182 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2183 power_reg |= GS40G_CS_POWER_DOWN;
2184 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2186 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2187 msleep(1);
2191 * igb_check_polarity_82580 - Checks the polarity.
2192 * @hw: pointer to the HW structure
2194 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2196 * Polarity is determined based on the PHY specific status register.
2198 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2200 struct e1000_phy_info *phy = &hw->phy;
2201 s32 ret_val;
2202 u16 data;
2205 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2207 if (!ret_val)
2208 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2209 ? e1000_rev_polarity_reversed
2210 : e1000_rev_polarity_normal;
2212 return ret_val;
2216 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2217 * @hw: pointer to the HW structure
2219 * Calls the PHY setup function to force speed and duplex. Clears the
2220 * auto-crossover to force MDI manually. Waits for link and returns
2221 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2223 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2225 struct e1000_phy_info *phy = &hw->phy;
2226 s32 ret_val;
2227 u16 phy_data;
2228 bool link;
2231 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2232 if (ret_val)
2233 goto out;
2235 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2237 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2238 if (ret_val)
2239 goto out;
2242 * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2243 * forced whenever speed and duplex are forced.
2245 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2246 if (ret_val)
2247 goto out;
2249 phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2250 phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2252 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2253 if (ret_val)
2254 goto out;
2256 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2258 udelay(1);
2260 if (phy->autoneg_wait_to_complete) {
2261 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2263 ret_val = igb_phy_has_link(hw,
2264 PHY_FORCE_LIMIT,
2265 100000,
2266 &link);
2267 if (ret_val)
2268 goto out;
2270 if (!link)
2271 hw_dbg("Link taking longer than expected.\n");
2273 /* Try once more */
2274 ret_val = igb_phy_has_link(hw,
2275 PHY_FORCE_LIMIT,
2276 100000,
2277 &link);
2278 if (ret_val)
2279 goto out;
2282 out:
2283 return ret_val;
2287 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2288 * @hw: pointer to the HW structure
2290 * Read PHY status to determine if link is up. If link is up, then
2291 * set/determine 10base-T extended distance and polarity correction. Read
2292 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2293 * determine on the cable length, local and remote receiver.
2295 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2297 struct e1000_phy_info *phy = &hw->phy;
2298 s32 ret_val;
2299 u16 data;
2300 bool link;
2303 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2304 if (ret_val)
2305 goto out;
2307 if (!link) {
2308 hw_dbg("Phy info is only valid if link is up\n");
2309 ret_val = -E1000_ERR_CONFIG;
2310 goto out;
2313 phy->polarity_correction = true;
2315 ret_val = igb_check_polarity_82580(hw);
2316 if (ret_val)
2317 goto out;
2319 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2320 if (ret_val)
2321 goto out;
2323 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2325 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2326 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2327 ret_val = hw->phy.ops.get_cable_length(hw);
2328 if (ret_val)
2329 goto out;
2331 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2332 if (ret_val)
2333 goto out;
2335 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2336 ? e1000_1000t_rx_status_ok
2337 : e1000_1000t_rx_status_not_ok;
2339 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2340 ? e1000_1000t_rx_status_ok
2341 : e1000_1000t_rx_status_not_ok;
2342 } else {
2343 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2344 phy->local_rx = e1000_1000t_rx_status_undefined;
2345 phy->remote_rx = e1000_1000t_rx_status_undefined;
2348 out:
2349 return ret_val;
2353 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2354 * @hw: pointer to the HW structure
2356 * Reads the diagnostic status register and verifies result is valid before
2357 * placing it in the phy_cable_length field.
2359 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2361 struct e1000_phy_info *phy = &hw->phy;
2362 s32 ret_val;
2363 u16 phy_data, length;
2366 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2367 if (ret_val)
2368 goto out;
2370 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2371 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2373 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2374 ret_val = -E1000_ERR_PHY;
2376 phy->cable_length = length;
2378 out:
2379 return ret_val;
2383 * igb_write_phy_reg_gs40g - Write GS40G PHY register
2384 * @hw: pointer to the HW structure
2385 * @offset: lower half is register offset to write to
2386 * upper half is page to use.
2387 * @data: data to write at register offset
2389 * Acquires semaphore, if necessary, then writes the data to PHY register
2390 * at the offset. Release any acquired semaphores before exiting.
2392 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2394 s32 ret_val;
2395 u16 page = offset >> GS40G_PAGE_SHIFT;
2397 offset = offset & GS40G_OFFSET_MASK;
2398 ret_val = hw->phy.ops.acquire(hw);
2399 if (ret_val)
2400 return ret_val;
2402 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2403 if (ret_val)
2404 goto release;
2405 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2407 release:
2408 hw->phy.ops.release(hw);
2409 return ret_val;
2413 * igb_read_phy_reg_gs40g - Read GS40G PHY register
2414 * @hw: pointer to the HW structure
2415 * @offset: lower half is register offset to read to
2416 * upper half is page to use.
2417 * @data: data to read at register offset
2419 * Acquires semaphore, if necessary, then reads the data in the PHY register
2420 * at the offset. Release any acquired semaphores before exiting.
2422 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2424 s32 ret_val;
2425 u16 page = offset >> GS40G_PAGE_SHIFT;
2427 offset = offset & GS40G_OFFSET_MASK;
2428 ret_val = hw->phy.ops.acquire(hw);
2429 if (ret_val)
2430 return ret_val;
2432 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2433 if (ret_val)
2434 goto release;
2435 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2437 release:
2438 hw->phy.ops.release(hw);
2439 return ret_val;
2443 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2444 * @hw: pointer to the HW structure
2446 * Sets up Master/slave mode
2448 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2450 s32 ret_val;
2451 u16 phy_data;
2453 /* Resolve Master/Slave mode */
2454 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2455 if (ret_val)
2456 return ret_val;
2458 /* load defaults for future use */
2459 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2460 ((phy_data & CR_1000T_MS_VALUE) ?
2461 e1000_ms_force_master :
2462 e1000_ms_force_slave) : e1000_ms_auto;
2464 switch (hw->phy.ms_type) {
2465 case e1000_ms_force_master:
2466 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2467 break;
2468 case e1000_ms_force_slave:
2469 phy_data |= CR_1000T_MS_ENABLE;
2470 phy_data &= ~(CR_1000T_MS_VALUE);
2471 break;
2472 case e1000_ms_auto:
2473 phy_data &= ~CR_1000T_MS_ENABLE;
2474 /* fall-through */
2475 default:
2476 break;
2479 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);