2 * linux/drivers/net/irda/sa1100_ir.c
4 * Copyright (C) 2000-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * Infra-red driver for the StrongARM SA1100 embedded microprocessor
12 * Note that we don't have to worry about the SA1111's DMA bugs in here,
13 * so we use the straight forward dma_map_* functions with a null pointer.
15 * This driver takes one kernel command line parameter, sa1100ir=, with
16 * the following options:
17 * max_rate:baudrate - set the maximum baud rate
18 * power_level:level - set the transmitter power level
19 * tx_lpm:0|1 - set transmit low power mode
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/types.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/slab.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34 #include <linux/sa11x0-dma.h>
36 #include <net/irda/irda.h>
37 #include <net/irda/wrapper.h>
38 #include <net/irda/irda_device.h>
40 #include <mach/hardware.h>
41 #include <asm/mach/irda.h>
43 static int power_level
= 3;
45 static int max_rate
= 4000000;
50 struct scatterlist sg
;
51 struct dma_chan
*chan
;
63 struct sa1100_buf dma_rx
;
64 struct sa1100_buf dma_tx
;
67 struct irda_platform_data
*pdata
;
68 struct irlap_cb
*irlap
;
74 int (*tx_start
)(struct sk_buff
*, struct net_device
*, struct sa1100_irda
*);
75 irqreturn_t (*irq
)(struct net_device
*, struct sa1100_irda
*);
78 static int sa1100_irda_set_speed(struct sa1100_irda
*, int);
80 #define IS_FIR(si) ((si)->speed >= 4000000)
82 #define HPSIR_MAX_RXLEN 2047
84 static struct dma_slave_config sa1100_irda_sir_tx
= {
85 .direction
= DMA_TO_DEVICE
,
86 .dst_addr
= __PREG(Ser2UTDR
),
87 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
91 static struct dma_slave_config sa1100_irda_fir_rx
= {
92 .direction
= DMA_FROM_DEVICE
,
93 .src_addr
= __PREG(Ser2HSDR
),
94 .src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
98 static struct dma_slave_config sa1100_irda_fir_tx
= {
99 .direction
= DMA_TO_DEVICE
,
100 .dst_addr
= __PREG(Ser2HSDR
),
101 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
105 static unsigned sa1100_irda_dma_xferred(struct sa1100_buf
*buf
)
107 struct dma_chan
*chan
= buf
->chan
;
108 struct dma_tx_state state
;
109 enum dma_status status
;
111 status
= chan
->device
->device_tx_status(chan
, buf
->cookie
, &state
);
112 if (status
!= DMA_PAUSED
)
115 return sg_dma_len(&buf
->sg
) - state
.residue
;
118 static int sa1100_irda_dma_request(struct device
*dev
, struct sa1100_buf
*buf
,
119 const char *name
, struct dma_slave_config
*cfg
)
125 dma_cap_set(DMA_SLAVE
, m
);
127 buf
->chan
= dma_request_channel(m
, sa11x0_dma_filter_fn
, (void *)name
);
129 dev_err(dev
, "unable to request DMA channel for %s\n",
134 ret
= dmaengine_slave_config(buf
->chan
, cfg
);
136 dev_warn(dev
, "DMA slave_config for %s returned %d\n",
139 buf
->dev
= buf
->chan
->device
->dev
;
144 static void sa1100_irda_dma_start(struct sa1100_buf
*buf
,
145 enum dma_transfer_direction dir
, dma_async_tx_callback cb
, void *cb_p
)
147 struct dma_async_tx_descriptor
*desc
;
148 struct dma_chan
*chan
= buf
->chan
;
150 desc
= dmaengine_prep_slave_sg(chan
, &buf
->sg
, 1, dir
,
151 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
154 desc
->callback_param
= cb_p
;
155 buf
->cookie
= dmaengine_submit(desc
);
156 dma_async_issue_pending(chan
);
161 * Allocate and map the receive buffer, unless it is already allocated.
163 static int sa1100_irda_rx_alloc(struct sa1100_irda
*si
)
168 si
->dma_rx
.skb
= alloc_skb(HPSIR_MAX_RXLEN
+ 1, GFP_ATOMIC
);
169 if (!si
->dma_rx
.skb
) {
170 printk(KERN_ERR
"sa1100_ir: out of memory for RX SKB\n");
175 * Align any IP headers that may be contained
178 skb_reserve(si
->dma_rx
.skb
, 1);
180 sg_set_buf(&si
->dma_rx
.sg
, si
->dma_rx
.skb
->data
, HPSIR_MAX_RXLEN
);
181 if (dma_map_sg(si
->dma_rx
.dev
, &si
->dma_rx
.sg
, 1, DMA_FROM_DEVICE
) == 0) {
182 dev_kfree_skb_any(si
->dma_rx
.skb
);
190 * We want to get here as soon as possible, and get the receiver setup.
191 * We use the existing buffer.
193 static void sa1100_irda_rx_dma_start(struct sa1100_irda
*si
)
195 if (!si
->dma_rx
.skb
) {
196 printk(KERN_ERR
"sa1100_ir: rx buffer went missing\n");
201 * First empty receive FIFO
203 Ser2HSCR0
= HSCR0_HSSP
;
206 * Enable the DMA, receiver and receive interrupt.
208 dmaengine_terminate_all(si
->dma_rx
.chan
);
209 sa1100_irda_dma_start(&si
->dma_rx
, DMA_DEV_TO_MEM
, NULL
, NULL
);
211 Ser2HSCR0
= HSCR0_HSSP
| HSCR0_RXE
;
214 static void sa1100_irda_check_speed(struct sa1100_irda
*si
)
217 sa1100_irda_set_speed(si
, si
->newspeed
);
223 * HP-SIR format support.
225 static void sa1100_irda_sirtxdma_irq(void *id
)
227 struct net_device
*dev
= id
;
228 struct sa1100_irda
*si
= netdev_priv(dev
);
230 dma_unmap_sg(si
->dma_tx
.dev
, &si
->dma_tx
.sg
, 1, DMA_TO_DEVICE
);
231 dev_kfree_skb(si
->dma_tx
.skb
);
232 si
->dma_tx
.skb
= NULL
;
234 dev
->stats
.tx_packets
++;
235 dev
->stats
.tx_bytes
+= sg_dma_len(&si
->dma_tx
.sg
);
237 /* We need to ensure that the transmitter has finished. */
240 while (Ser2UTSR1
& UTSR1_TBY
);
243 * Ok, we've finished transmitting. Now enable the receiver.
244 * Sometimes we get a receive IRQ immediately after a transmit...
246 Ser2UTSR0
= UTSR0_REB
| UTSR0_RBB
| UTSR0_RID
;
247 Ser2UTCR3
= UTCR3_RIE
| UTCR3_RXE
| UTCR3_TXE
;
249 sa1100_irda_check_speed(si
);
252 netif_wake_queue(dev
);
255 static int sa1100_irda_sir_tx_start(struct sk_buff
*skb
, struct net_device
*dev
,
256 struct sa1100_irda
*si
)
258 si
->tx_buff
.data
= si
->tx_buff
.head
;
259 si
->tx_buff
.len
= async_wrap_skb(skb
, si
->tx_buff
.data
,
260 si
->tx_buff
.truesize
);
262 si
->dma_tx
.skb
= skb
;
263 sg_set_buf(&si
->dma_tx
.sg
, si
->tx_buff
.data
, si
->tx_buff
.len
);
264 if (dma_map_sg(si
->dma_tx
.dev
, &si
->dma_tx
.sg
, 1, DMA_TO_DEVICE
) == 0) {
265 si
->dma_tx
.skb
= NULL
;
266 netif_wake_queue(dev
);
267 dev
->stats
.tx_dropped
++;
271 sa1100_irda_dma_start(&si
->dma_tx
, DMA_MEM_TO_DEV
, sa1100_irda_sirtxdma_irq
, dev
);
274 * The mean turn-around time is enforced by XBOF padding,
275 * so we don't have to do anything special here.
277 Ser2UTCR3
= UTCR3_TXE
;
282 static irqreturn_t
sa1100_irda_sir_irq(struct net_device
*dev
, struct sa1100_irda
*si
)
289 * Deal with any receive errors first. The bytes in error may be
290 * the only bytes in the receive FIFO, so we do this first.
292 while (status
& UTSR0_EIF
) {
298 if (stat
& (UTSR1_FRE
| UTSR1_ROR
)) {
299 dev
->stats
.rx_errors
++;
300 if (stat
& UTSR1_FRE
)
301 dev
->stats
.rx_frame_errors
++;
302 if (stat
& UTSR1_ROR
)
303 dev
->stats
.rx_fifo_errors
++;
305 async_unwrap_char(dev
, &dev
->stats
, &si
->rx_buff
, data
);
311 * We must clear certain bits.
313 Ser2UTSR0
= status
& (UTSR0_RID
| UTSR0_RBB
| UTSR0_REB
);
315 if (status
& UTSR0_RFS
) {
317 * There are at least 4 bytes in the FIFO. Read 3 bytes
318 * and leave the rest to the block below.
320 async_unwrap_char(dev
, &dev
->stats
, &si
->rx_buff
, Ser2UTDR
);
321 async_unwrap_char(dev
, &dev
->stats
, &si
->rx_buff
, Ser2UTDR
);
322 async_unwrap_char(dev
, &dev
->stats
, &si
->rx_buff
, Ser2UTDR
);
325 if (status
& (UTSR0_RFS
| UTSR0_RID
)) {
327 * Fifo contains more than 1 character.
330 async_unwrap_char(dev
, &dev
->stats
, &si
->rx_buff
,
332 } while (Ser2UTSR1
& UTSR1_RNE
);
340 * FIR format support.
342 static void sa1100_irda_firtxdma_irq(void *id
)
344 struct net_device
*dev
= id
;
345 struct sa1100_irda
*si
= netdev_priv(dev
);
349 * Wait for the transmission to complete. Unfortunately,
350 * the hardware doesn't give us an interrupt to indicate
355 while (!(Ser2HSSR0
& HSSR0_TUR
) || Ser2HSSR1
& HSSR1_TBY
);
358 * Clear the transmit underrun bit.
360 Ser2HSSR0
= HSSR0_TUR
;
363 * Do we need to change speed? Note that we're lazy
364 * here - we don't free the old dma_rx.skb. We don't need
365 * to allocate a buffer either.
367 sa1100_irda_check_speed(si
);
370 * Start reception. This disables the transmitter for
371 * us. This will be using the existing RX buffer.
373 sa1100_irda_rx_dma_start(si
);
375 /* Account and free the packet. */
376 skb
= si
->dma_tx
.skb
;
378 dma_unmap_sg(si
->dma_tx
.dev
, &si
->dma_tx
.sg
, 1,
380 dev
->stats
.tx_packets
++;
381 dev
->stats
.tx_bytes
+= skb
->len
;
382 dev_kfree_skb_irq(skb
);
383 si
->dma_tx
.skb
= NULL
;
387 * Make sure that the TX queue is available for sending
388 * (for retries). TX has priority over RX at all times.
390 netif_wake_queue(dev
);
393 static int sa1100_irda_fir_tx_start(struct sk_buff
*skb
, struct net_device
*dev
,
394 struct sa1100_irda
*si
)
396 int mtt
= irda_get_mtt(skb
);
398 si
->dma_tx
.skb
= skb
;
399 sg_set_buf(&si
->dma_tx
.sg
, skb
->data
, skb
->len
);
400 if (dma_map_sg(si
->dma_tx
.dev
, &si
->dma_tx
.sg
, 1, DMA_TO_DEVICE
) == 0) {
401 si
->dma_tx
.skb
= NULL
;
402 netif_wake_queue(dev
);
403 dev
->stats
.tx_dropped
++;
408 sa1100_irda_dma_start(&si
->dma_tx
, DMA_MEM_TO_DEV
, sa1100_irda_firtxdma_irq
, dev
);
411 * If we have a mean turn-around time, impose the specified
412 * specified delay. We could shorten this by timing from
413 * the point we received the packet.
418 Ser2HSCR0
= HSCR0_HSSP
| HSCR0_TXE
;
423 static void sa1100_irda_fir_error(struct sa1100_irda
*si
, struct net_device
*dev
)
425 struct sk_buff
*skb
= si
->dma_rx
.skb
;
426 unsigned int len
, stat
, data
;
429 printk(KERN_ERR
"sa1100_ir: SKB is NULL!\n");
434 * Get the current data position.
436 len
= sa1100_irda_dma_xferred(&si
->dma_rx
);
437 if (len
> HPSIR_MAX_RXLEN
)
438 len
= HPSIR_MAX_RXLEN
;
439 dma_unmap_sg(si
->dma_rx
.dev
, &si
->dma_rx
.sg
, 1, DMA_FROM_DEVICE
);
443 * Read Status, and then Data.
449 if (stat
& (HSSR1_CRE
| HSSR1_ROR
)) {
450 dev
->stats
.rx_errors
++;
451 if (stat
& HSSR1_CRE
)
452 dev
->stats
.rx_crc_errors
++;
453 if (stat
& HSSR1_ROR
)
454 dev
->stats
.rx_frame_errors
++;
456 skb
->data
[len
++] = data
;
459 * If we hit the end of frame, there's
460 * no point in continuing.
462 if (stat
& HSSR1_EOF
)
464 } while (Ser2HSSR0
& HSSR0_EIF
);
466 if (stat
& HSSR1_EOF
) {
467 si
->dma_rx
.skb
= NULL
;
471 skb_reset_mac_header(skb
);
472 skb
->protocol
= htons(ETH_P_IRDA
);
473 dev
->stats
.rx_packets
++;
474 dev
->stats
.rx_bytes
+= len
;
477 * Before we pass the buffer up, allocate a new one.
479 sa1100_irda_rx_alloc(si
);
484 * Remap the buffer - it was previously mapped, and we
485 * hope that this succeeds.
487 dma_map_sg(si
->dma_rx
.dev
, &si
->dma_rx
.sg
, 1, DMA_FROM_DEVICE
);
492 * We only have to handle RX events here; transmit events go via the TX
493 * DMA handler. We disable RX, process, and the restart RX.
495 static irqreturn_t
sa1100_irda_fir_irq(struct net_device
*dev
, struct sa1100_irda
*si
)
500 dmaengine_pause(si
->dma_rx
.chan
);
503 * Framing error - we throw away the packet completely.
504 * Clearing RXE flushes the error conditions and data
507 if (Ser2HSSR0
& (HSSR0_FRE
| HSSR0_RAB
)) {
508 dev
->stats
.rx_errors
++;
510 if (Ser2HSSR0
& HSSR0_FRE
)
511 dev
->stats
.rx_frame_errors
++;
514 * Clear out the DMA...
516 Ser2HSCR0
= HSCR0_HSSP
;
519 * Clear selected status bits now, so we
520 * don't miss them next time around.
522 Ser2HSSR0
= HSSR0_FRE
| HSSR0_RAB
;
526 * Deal with any receive errors. The any of the lowest
527 * 8 bytes in the FIFO may contain an error. We must read
528 * them one by one. The "error" could even be the end of
531 if (Ser2HSSR0
& HSSR0_EIF
)
532 sa1100_irda_fir_error(si
, dev
);
535 * No matter what happens, we must restart reception.
537 sa1100_irda_rx_dma_start(si
);
543 * Set the IrDA communications speed.
545 static int sa1100_irda_set_speed(struct sa1100_irda
*si
, int speed
)
548 int brd
, ret
= -EINVAL
;
551 case 9600: case 19200: case 38400:
552 case 57600: case 115200:
553 brd
= 3686400 / (16 * speed
) - 1;
555 /* Stop the receive DMA, and configure transmit. */
557 dmaengine_terminate_all(si
->dma_rx
.chan
);
558 dmaengine_slave_config(si
->dma_tx
.chan
,
559 &sa1100_irda_sir_tx
);
562 local_irq_save(flags
);
565 Ser2HSCR0
= HSCR0_UART
;
567 Ser2UTCR1
= brd
>> 8;
571 * Clear status register
573 Ser2UTSR0
= UTSR0_REB
| UTSR0_RBB
| UTSR0_RID
;
574 Ser2UTCR3
= UTCR3_RIE
| UTCR3_RXE
| UTCR3_TXE
;
576 if (si
->pdata
->set_speed
)
577 si
->pdata
->set_speed(si
->dev
, speed
);
580 si
->tx_start
= sa1100_irda_sir_tx_start
;
581 si
->irq
= sa1100_irda_sir_irq
;
583 local_irq_restore(flags
);
589 dmaengine_slave_config(si
->dma_tx
.chan
,
590 &sa1100_irda_fir_tx
);
592 local_irq_save(flags
);
595 Ser2HSCR0
= HSCR0_HSSP
;
599 si
->tx_start
= sa1100_irda_fir_tx_start
;
600 si
->irq
= sa1100_irda_fir_irq
;
602 if (si
->pdata
->set_speed
)
603 si
->pdata
->set_speed(si
->dev
, speed
);
605 sa1100_irda_rx_alloc(si
);
606 sa1100_irda_rx_dma_start(si
);
608 local_irq_restore(flags
);
620 * Control the power state of the IrDA transmitter.
623 * 1 - short range, lowest power
624 * 2 - medium range, medium power
625 * 3 - maximum range, high power
627 * Currently, only assabet is known to support this.
630 __sa1100_irda_set_power(struct sa1100_irda
*si
, unsigned int state
)
633 if (si
->pdata
->set_power
)
634 ret
= si
->pdata
->set_power(si
->dev
, state
);
639 sa1100_set_power(struct sa1100_irda
*si
, unsigned int state
)
643 ret
= __sa1100_irda_set_power(si
, state
);
650 static irqreturn_t
sa1100_irda_irq(int irq
, void *dev_id
)
652 struct net_device
*dev
= dev_id
;
653 struct sa1100_irda
*si
= netdev_priv(dev
);
655 return si
->irq(dev
, si
);
658 static int sa1100_irda_hard_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
660 struct sa1100_irda
*si
= netdev_priv(dev
);
661 int speed
= irda_get_next_speed(skb
);
664 * Does this packet contain a request to change the interface
665 * speed? If so, remember it until we complete the transmission
668 if (speed
!= si
->speed
&& speed
!= -1)
669 si
->newspeed
= speed
;
671 /* If this is an empty frame, we can bypass a lot. */
673 sa1100_irda_check_speed(si
);
678 netif_stop_queue(dev
);
680 /* We must not already have a skb to transmit... */
681 BUG_ON(si
->dma_tx
.skb
);
683 return si
->tx_start(skb
, dev
, si
);
687 sa1100_irda_ioctl(struct net_device
*dev
, struct ifreq
*ifreq
, int cmd
)
689 struct if_irda_req
*rq
= (struct if_irda_req
*)ifreq
;
690 struct sa1100_irda
*si
= netdev_priv(dev
);
691 int ret
= -EOPNOTSUPP
;
695 if (capable(CAP_NET_ADMIN
)) {
697 * We are unable to set the speed if the
698 * device is not running.
701 ret
= sa1100_irda_set_speed(si
,
704 printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
712 if (capable(CAP_NET_ADMIN
)) {
713 irda_device_set_media_busy(dev
, TRUE
);
719 rq
->ifr_receiving
= IS_FIR(si
) ? 0
720 : si
->rx_buff
.state
!= OUTSIDE_FRAME
;
730 static int sa1100_irda_startup(struct sa1100_irda
*si
)
735 * Ensure that the ports for this device are setup correctly.
737 if (si
->pdata
->startup
) {
738 ret
= si
->pdata
->startup(si
->dev
);
744 * Configure PPC for IRDA - we want to drive TXD2 low.
745 * We also want to drive this pin low during sleep.
752 * Enable HP-SIR modulation, and ensure that the port is disabled.
755 Ser2HSCR0
= HSCR0_UART
;
756 Ser2UTCR4
= si
->utcr4
;
757 Ser2UTCR0
= UTCR0_8BitData
;
758 Ser2HSCR2
= HSCR2_TrDataH
| HSCR2_RcDataL
;
761 * Clear status register
763 Ser2UTSR0
= UTSR0_REB
| UTSR0_RBB
| UTSR0_RID
;
765 ret
= sa1100_irda_set_speed(si
, si
->speed
= 9600);
770 if (si
->pdata
->shutdown
)
771 si
->pdata
->shutdown(si
->dev
);
777 static void sa1100_irda_shutdown(struct sa1100_irda
*si
)
780 * Stop all DMA activity.
782 dmaengine_terminate_all(si
->dma_rx
.chan
);
783 dmaengine_terminate_all(si
->dma_tx
.chan
);
785 /* Disable the port. */
789 if (si
->pdata
->shutdown
)
790 si
->pdata
->shutdown(si
->dev
);
793 static int sa1100_irda_start(struct net_device
*dev
)
795 struct sa1100_irda
*si
= netdev_priv(dev
);
800 err
= sa1100_irda_dma_request(si
->dev
, &si
->dma_rx
, "Ser2ICPRc",
801 &sa1100_irda_fir_rx
);
805 err
= sa1100_irda_dma_request(si
->dev
, &si
->dma_tx
, "Ser2ICPTr",
806 &sa1100_irda_sir_tx
);
811 * Setup the serial port for the specified speed.
813 err
= sa1100_irda_startup(si
);
818 * Open a new IrLAP layer instance.
820 si
->irlap
= irlap_open(dev
, &si
->qos
, "sa1100");
825 err
= request_irq(dev
->irq
, sa1100_irda_irq
, 0, dev
->name
, dev
);
830 * Now enable the interrupt and start the queue
833 sa1100_set_power(si
, power_level
); /* low power mode */
835 netif_start_queue(dev
);
839 irlap_close(si
->irlap
);
842 sa1100_irda_shutdown(si
);
844 dma_release_channel(si
->dma_tx
.chan
);
846 dma_release_channel(si
->dma_rx
.chan
);
851 static int sa1100_irda_stop(struct net_device
*dev
)
853 struct sa1100_irda
*si
= netdev_priv(dev
);
856 netif_stop_queue(dev
);
859 sa1100_irda_shutdown(si
);
862 * If we have been doing any DMA activity, make sure we
863 * tidy that up cleanly.
865 skb
= si
->dma_rx
.skb
;
867 dma_unmap_sg(si
->dma_rx
.dev
, &si
->dma_rx
.sg
, 1,
870 si
->dma_rx
.skb
= NULL
;
873 skb
= si
->dma_tx
.skb
;
875 dma_unmap_sg(si
->dma_tx
.dev
, &si
->dma_tx
.sg
, 1,
878 si
->dma_tx
.skb
= NULL
;
883 irlap_close(si
->irlap
);
890 dma_release_channel(si
->dma_tx
.chan
);
891 dma_release_channel(si
->dma_rx
.chan
);
892 free_irq(dev
->irq
, dev
);
894 sa1100_set_power(si
, 0);
899 static int sa1100_irda_init_iobuf(iobuff_t
*io
, int size
)
901 io
->head
= kmalloc(size
, GFP_KERNEL
| GFP_DMA
);
902 if (io
->head
!= NULL
) {
904 io
->in_frame
= FALSE
;
905 io
->state
= OUTSIDE_FRAME
;
908 return io
->head
? 0 : -ENOMEM
;
911 static const struct net_device_ops sa1100_irda_netdev_ops
= {
912 .ndo_open
= sa1100_irda_start
,
913 .ndo_stop
= sa1100_irda_stop
,
914 .ndo_start_xmit
= sa1100_irda_hard_xmit
,
915 .ndo_do_ioctl
= sa1100_irda_ioctl
,
918 static int sa1100_irda_probe(struct platform_device
*pdev
)
920 struct net_device
*dev
;
921 struct sa1100_irda
*si
;
922 unsigned int baudrate_mask
;
925 if (!pdev
->dev
.platform_data
)
928 irq
= platform_get_irq(pdev
, 0);
930 return irq
< 0 ? irq
: -ENXIO
;
932 err
= request_mem_region(__PREG(Ser2UTCR0
), 0x24, "IrDA") ? 0 : -EBUSY
;
935 err
= request_mem_region(__PREG(Ser2HSCR0
), 0x1c, "IrDA") ? 0 : -EBUSY
;
938 err
= request_mem_region(__PREG(Ser2HSCR2
), 0x04, "IrDA") ? 0 : -EBUSY
;
942 dev
= alloc_irdadev(sizeof(struct sa1100_irda
));
946 SET_NETDEV_DEV(dev
, &pdev
->dev
);
948 si
= netdev_priv(dev
);
949 si
->dev
= &pdev
->dev
;
950 si
->pdata
= pdev
->dev
.platform_data
;
952 sg_init_table(&si
->dma_rx
.sg
, 1);
953 sg_init_table(&si
->dma_tx
.sg
, 1);
956 * Initialise the HP-SIR buffers
958 err
= sa1100_irda_init_iobuf(&si
->rx_buff
, 14384);
961 err
= sa1100_irda_init_iobuf(&si
->tx_buff
, IRDA_SIR_MAX_FRAME
);
965 dev
->netdev_ops
= &sa1100_irda_netdev_ops
;
968 irda_init_max_qos_capabilies(&si
->qos
);
971 * We support original IRDA up to 115k2. (we don't currently
972 * support 4Mbps). Min Turn Time set to 1ms or greater.
974 baudrate_mask
= IR_9600
;
977 case 4000000: baudrate_mask
|= IR_4000000
<< 8;
978 case 115200: baudrate_mask
|= IR_115200
;
979 case 57600: baudrate_mask
|= IR_57600
;
980 case 38400: baudrate_mask
|= IR_38400
;
981 case 19200: baudrate_mask
|= IR_19200
;
984 si
->qos
.baud_rate
.bits
&= baudrate_mask
;
985 si
->qos
.min_turn_time
.bits
= 7;
987 irda_qos_bits_to_value(&si
->qos
);
989 si
->utcr4
= UTCR4_HPSIR
;
991 si
->utcr4
|= UTCR4_Z1_6us
;
994 * Initially enable HP-SIR modulation, and ensure that the port
998 Ser2UTCR4
= si
->utcr4
;
999 Ser2HSCR0
= HSCR0_UART
;
1001 err
= register_netdev(dev
);
1003 platform_set_drvdata(pdev
, dev
);
1007 kfree(si
->tx_buff
.head
);
1008 kfree(si
->rx_buff
.head
);
1011 release_mem_region(__PREG(Ser2HSCR2
), 0x04);
1013 release_mem_region(__PREG(Ser2HSCR0
), 0x1c);
1015 release_mem_region(__PREG(Ser2UTCR0
), 0x24);
1021 static int sa1100_irda_remove(struct platform_device
*pdev
)
1023 struct net_device
*dev
= platform_get_drvdata(pdev
);
1026 struct sa1100_irda
*si
= netdev_priv(dev
);
1027 unregister_netdev(dev
);
1028 kfree(si
->tx_buff
.head
);
1029 kfree(si
->rx_buff
.head
);
1033 release_mem_region(__PREG(Ser2HSCR2
), 0x04);
1034 release_mem_region(__PREG(Ser2HSCR0
), 0x1c);
1035 release_mem_region(__PREG(Ser2UTCR0
), 0x24);
1042 * Suspend the IrDA interface.
1044 static int sa1100_irda_suspend(struct platform_device
*pdev
, pm_message_t state
)
1046 struct net_device
*dev
= platform_get_drvdata(pdev
);
1047 struct sa1100_irda
*si
;
1052 si
= netdev_priv(dev
);
1055 * Stop the transmit queue
1057 netif_device_detach(dev
);
1058 disable_irq(dev
->irq
);
1059 sa1100_irda_shutdown(si
);
1060 __sa1100_irda_set_power(si
, 0);
1067 * Resume the IrDA interface.
1069 static int sa1100_irda_resume(struct platform_device
*pdev
)
1071 struct net_device
*dev
= platform_get_drvdata(pdev
);
1072 struct sa1100_irda
*si
;
1077 si
= netdev_priv(dev
);
1080 * If we missed a speed change, initialise at the new speed
1081 * directly. It is debatable whether this is actually
1082 * required, but in the interests of continuing from where
1083 * we left off it is desirable. The converse argument is
1084 * that we should re-negotiate at 9600 baud again.
1087 si
->speed
= si
->newspeed
;
1091 sa1100_irda_startup(si
);
1092 __sa1100_irda_set_power(si
, si
->power
);
1093 enable_irq(dev
->irq
);
1096 * This automatically wakes up the queue
1098 netif_device_attach(dev
);
1104 #define sa1100_irda_suspend NULL
1105 #define sa1100_irda_resume NULL
1108 static struct platform_driver sa1100ir_driver
= {
1109 .probe
= sa1100_irda_probe
,
1110 .remove
= sa1100_irda_remove
,
1111 .suspend
= sa1100_irda_suspend
,
1112 .resume
= sa1100_irda_resume
,
1114 .name
= "sa11x0-ir",
1115 .owner
= THIS_MODULE
,
1119 static int __init
sa1100_irda_init(void)
1122 * Limit power level a sensible range.
1124 if (power_level
< 1)
1126 if (power_level
> 3)
1129 return platform_driver_register(&sa1100ir_driver
);
1132 static void __exit
sa1100_irda_exit(void)
1134 platform_driver_unregister(&sa1100ir_driver
);
1137 module_init(sa1100_irda_init
);
1138 module_exit(sa1100_irda_exit
);
1139 module_param(power_level
, int, 0);
1140 module_param(tx_lpm
, int, 0);
1141 module_param(max_rate
, int, 0);
1143 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1144 MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1145 MODULE_LICENSE("GPL");
1146 MODULE_PARM_DESC(power_level
, "IrDA power level, 1 (low) to 3 (high)");
1147 MODULE_PARM_DESC(tx_lpm
, "Enable transmitter low power (1.6us) mode");
1148 MODULE_PARM_DESC(max_rate
, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1149 MODULE_ALIAS("platform:sa11x0-ir");