initial commit with v3.6.7
[linux-3.6.7-moxart.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
blob3de0406735f6b7347b46cdf2305e413aaa17256d
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 const unsigned int word, const u8 value)
61 u32 reg;
63 mutex_lock(&rt2x00dev->csr_mutex);
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
79 mutex_unlock(&rt2x00dev->csr_mutex);
82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 const unsigned int word, u8 *value)
85 u32 reg;
87 mutex_lock(&rt2x00dev->csr_mutex);
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
105 WAIT_FOR_BBP(rt2x00dev, &reg);
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
110 mutex_unlock(&rt2x00dev->csr_mutex);
113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 const unsigned int word, const u32 value)
116 u32 reg;
118 mutex_lock(&rt2x00dev->csr_mutex);
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
135 mutex_unlock(&rt2x00dev->csr_mutex);
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
182 .word_base = EEPROM_BASE,
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
186 .bbp = {
187 .read = rt2500pci_bbp_read,
188 .write = rt2500pci_bbp_write,
189 .word_base = BBP_BASE,
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2500pci_rf_write,
196 .word_base = RF_BASE,
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 u32 reg;
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213 enum led_brightness brightness)
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
218 u32 reg;
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
243 return 0;
246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2500pci_brightness_set;
253 led->led_dev.blink_set = rt2500pci_blink_set;
254 led->flags = LED_INITIALIZED;
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
259 * Configuration handlers.
261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
264 u32 reg;
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * and broadcast frames will always be accepted since
270 * there is no filter for it at this time.
272 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 !(filter_flags & FIF_FCSFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 !(filter_flags & FIF_PLCPFAIL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 !(filter_flags & FIF_CONTROL));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 !(filter_flags & FIF_PROMISC_IN_BSS));
281 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282 !(filter_flags & FIF_PROMISC_IN_BSS) &&
283 !rt2x00dev->intf_ap_count);
284 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286 !(filter_flags & FIF_ALLMULTI));
287 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292 struct rt2x00_intf *intf,
293 struct rt2x00intf_conf *conf,
294 const unsigned int flags)
296 struct data_queue *queue = rt2x00dev->bcn;
297 unsigned int bcn_preload;
298 u32 reg;
300 if (flags & CONFIG_UPDATE_TYPE) {
302 * Enable beacon config
304 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
311 * Enable synchronisation.
313 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
318 if (flags & CONFIG_UPDATE_MAC)
319 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
320 conf->mac, sizeof(conf->mac));
322 if (flags & CONFIG_UPDATE_BSSID)
323 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
324 conf->bssid, sizeof(conf->bssid));
327 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
328 struct rt2x00lib_erp *erp,
329 u32 changed)
331 int preamble_mask;
332 u32 reg;
335 * When short preamble is enabled, we should set bit 0x08
337 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
338 preamble_mask = erp->short_preamble << 3;
340 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
342 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
343 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
347 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
351 GET_DURATION(ACK_SIZE, 10));
352 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
354 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
355 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
356 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
357 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
358 GET_DURATION(ACK_SIZE, 20));
359 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
361 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
362 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
363 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
364 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
365 GET_DURATION(ACK_SIZE, 55));
366 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
368 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
369 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
370 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
371 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
372 GET_DURATION(ACK_SIZE, 110));
373 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
376 if (changed & BSS_CHANGED_BASIC_RATES)
377 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
379 if (changed & BSS_CHANGED_ERP_SLOT) {
380 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
381 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
382 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
384 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
385 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
386 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
387 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
389 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
390 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
391 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
392 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
395 if (changed & BSS_CHANGED_BEACON_INT) {
396 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
397 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
398 erp->beacon_int * 16);
399 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
400 erp->beacon_int * 16);
401 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
406 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
407 struct antenna_setup *ant)
409 u32 reg;
410 u8 r14;
411 u8 r2;
414 * We should never come here because rt2x00lib is supposed
415 * to catch this and send us the correct antenna explicitely.
417 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
418 ant->tx == ANTENNA_SW_DIVERSITY);
420 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
421 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
422 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
425 * Configure the TX antenna.
427 switch (ant->tx) {
428 case ANTENNA_A:
429 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
430 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
431 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
432 break;
433 case ANTENNA_B:
434 default:
435 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
436 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
437 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
438 break;
442 * Configure the RX antenna.
444 switch (ant->rx) {
445 case ANTENNA_A:
446 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
447 break;
448 case ANTENNA_B:
449 default:
450 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
451 break;
455 * RT2525E and RT5222 need to flip TX I/Q
457 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
458 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
459 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
460 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
463 * RT2525E does not need RX I/Q Flip.
465 if (rt2x00_rf(rt2x00dev, RF2525E))
466 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
467 } else {
468 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
469 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
472 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
473 rt2500pci_bbp_write(rt2x00dev, 14, r14);
474 rt2500pci_bbp_write(rt2x00dev, 2, r2);
477 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
478 struct rf_channel *rf, const int txpower)
480 u8 r70;
483 * Set TXpower.
485 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
488 * Switch on tuning bits.
489 * For RT2523 devices we do not need to update the R1 register.
491 if (!rt2x00_rf(rt2x00dev, RF2523))
492 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
493 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
496 * For RT2525 we should first set the channel to half band higher.
498 if (rt2x00_rf(rt2x00dev, RF2525)) {
499 static const u32 vals[] = {
500 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
501 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
502 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
503 0x00080d2e, 0x00080d3a
506 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
507 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
508 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
509 if (rf->rf4)
510 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
513 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
514 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
515 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
516 if (rf->rf4)
517 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
520 * Channel 14 requires the Japan filter bit to be set.
522 r70 = 0x46;
523 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
524 rt2500pci_bbp_write(rt2x00dev, 70, r70);
526 msleep(1);
529 * Switch off tuning bits.
530 * For RT2523 devices we do not need to update the R1 register.
532 if (!rt2x00_rf(rt2x00dev, RF2523)) {
533 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
534 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
537 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
538 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
541 * Clear false CRC during channel switch.
543 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
546 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
547 const int txpower)
549 u32 rf3;
551 rt2x00_rf_read(rt2x00dev, 3, &rf3);
552 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
553 rt2500pci_rf_write(rt2x00dev, 3, rf3);
556 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
557 struct rt2x00lib_conf *libconf)
559 u32 reg;
561 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
562 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
563 libconf->conf->long_frame_max_tx_count);
564 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
565 libconf->conf->short_frame_max_tx_count);
566 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
569 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
570 struct rt2x00lib_conf *libconf)
572 enum dev_state state =
573 (libconf->conf->flags & IEEE80211_CONF_PS) ?
574 STATE_SLEEP : STATE_AWAKE;
575 u32 reg;
577 if (state == STATE_SLEEP) {
578 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
579 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
580 (rt2x00dev->beacon_int - 20) * 16);
581 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
582 libconf->conf->listen_interval - 1);
584 /* We must first disable autowake before it can be enabled */
585 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
586 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
588 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
589 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
590 } else {
591 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
592 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
593 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
596 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
599 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
600 struct rt2x00lib_conf *libconf,
601 const unsigned int flags)
603 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
604 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
605 libconf->conf->power_level);
606 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
607 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
608 rt2500pci_config_txpower(rt2x00dev,
609 libconf->conf->power_level);
610 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
611 rt2500pci_config_retry_limit(rt2x00dev, libconf);
612 if (flags & IEEE80211_CONF_CHANGE_PS)
613 rt2500pci_config_ps(rt2x00dev, libconf);
617 * Link tuning
619 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
620 struct link_qual *qual)
622 u32 reg;
625 * Update FCS error count from register.
627 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
628 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
631 * Update False CCA count from register.
633 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
634 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
637 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
638 struct link_qual *qual, u8 vgc_level)
640 if (qual->vgc_level_reg != vgc_level) {
641 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
642 qual->vgc_level = vgc_level;
643 qual->vgc_level_reg = vgc_level;
647 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
648 struct link_qual *qual)
650 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
653 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
654 struct link_qual *qual, const u32 count)
657 * To prevent collisions with MAC ASIC on chipsets
658 * up to version C the link tuning should halt after 20
659 * seconds while being associated.
661 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
662 rt2x00dev->intf_associated && count > 20)
663 return;
666 * Chipset versions C and lower should directly continue
667 * to the dynamic CCA tuning. Chipset version D and higher
668 * should go straight to dynamic CCA tuning when they
669 * are not associated.
671 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
672 !rt2x00dev->intf_associated)
673 goto dynamic_cca_tune;
676 * A too low RSSI will cause too much false CCA which will
677 * then corrupt the R17 tuning. To remidy this the tuning should
678 * be stopped (While making sure the R17 value will not exceed limits)
680 if (qual->rssi < -80 && count > 20) {
681 if (qual->vgc_level_reg >= 0x41)
682 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
683 return;
687 * Special big-R17 for short distance
689 if (qual->rssi >= -58) {
690 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
691 return;
695 * Special mid-R17 for middle distance
697 if (qual->rssi >= -74) {
698 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
699 return;
703 * Leave short or middle distance condition, restore r17
704 * to the dynamic tuning range.
706 if (qual->vgc_level_reg >= 0x41) {
707 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
708 return;
711 dynamic_cca_tune:
714 * R17 is inside the dynamic tuning range,
715 * start tuning the link based on the false cca counter.
717 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
718 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
719 else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
720 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
724 * Queue handlers.
726 static void rt2500pci_start_queue(struct data_queue *queue)
728 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
729 u32 reg;
731 switch (queue->qid) {
732 case QID_RX:
733 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
734 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
735 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
736 break;
737 case QID_BEACON:
738 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
739 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
740 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
741 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
742 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
743 break;
744 default:
745 break;
749 static void rt2500pci_kick_queue(struct data_queue *queue)
751 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
752 u32 reg;
754 switch (queue->qid) {
755 case QID_AC_VO:
756 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
757 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
758 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
759 break;
760 case QID_AC_VI:
761 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
762 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
763 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
764 break;
765 case QID_ATIM:
766 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
767 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
768 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
769 break;
770 default:
771 break;
775 static void rt2500pci_stop_queue(struct data_queue *queue)
777 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
778 u32 reg;
780 switch (queue->qid) {
781 case QID_AC_VO:
782 case QID_AC_VI:
783 case QID_ATIM:
784 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
785 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
786 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
787 break;
788 case QID_RX:
789 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
790 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
791 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
792 break;
793 case QID_BEACON:
794 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
795 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
796 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
797 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
798 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
801 * Wait for possibly running tbtt tasklets.
803 tasklet_kill(&rt2x00dev->tbtt_tasklet);
804 break;
805 default:
806 break;
811 * Initialization functions.
813 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
815 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
816 u32 word;
818 if (entry->queue->qid == QID_RX) {
819 rt2x00_desc_read(entry_priv->desc, 0, &word);
821 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
822 } else {
823 rt2x00_desc_read(entry_priv->desc, 0, &word);
825 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
826 rt2x00_get_field32(word, TXD_W0_VALID));
830 static void rt2500pci_clear_entry(struct queue_entry *entry)
832 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
833 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
834 u32 word;
836 if (entry->queue->qid == QID_RX) {
837 rt2x00_desc_read(entry_priv->desc, 1, &word);
838 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
839 rt2x00_desc_write(entry_priv->desc, 1, word);
841 rt2x00_desc_read(entry_priv->desc, 0, &word);
842 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
843 rt2x00_desc_write(entry_priv->desc, 0, word);
844 } else {
845 rt2x00_desc_read(entry_priv->desc, 0, &word);
846 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
847 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
848 rt2x00_desc_write(entry_priv->desc, 0, word);
852 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
854 struct queue_entry_priv_pci *entry_priv;
855 u32 reg;
858 * Initialize registers.
860 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
861 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
862 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
863 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
864 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
865 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
867 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
868 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
869 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
870 entry_priv->desc_dma);
871 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
873 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
874 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
875 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
876 entry_priv->desc_dma);
877 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
879 entry_priv = rt2x00dev->atim->entries[0].priv_data;
880 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
881 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
882 entry_priv->desc_dma);
883 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
885 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
886 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
887 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
888 entry_priv->desc_dma);
889 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
891 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
892 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
893 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
894 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
896 entry_priv = rt2x00dev->rx->entries[0].priv_data;
897 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
898 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
899 entry_priv->desc_dma);
900 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
902 return 0;
905 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
907 u32 reg;
909 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
910 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
911 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
912 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
914 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
915 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
916 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
917 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
918 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
920 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
921 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
922 rt2x00dev->rx->data_size / 128);
923 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
926 * Always use CWmin and CWmax set in descriptor.
928 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
929 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
930 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
932 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
933 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
934 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
935 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
936 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
937 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
938 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
939 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
940 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
941 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
943 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
945 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
946 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
947 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
948 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
949 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
950 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
951 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
952 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
953 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
954 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
956 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
957 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
958 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
959 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
960 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
961 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
963 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
964 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
965 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
966 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
967 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
968 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
970 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
971 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
972 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
973 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
974 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
975 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
977 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
978 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
979 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
980 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
981 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
982 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
983 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
984 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
985 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
986 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
988 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
989 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
990 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
991 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
992 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
993 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
994 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
995 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
996 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
998 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
1000 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1001 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1003 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1004 return -EBUSY;
1006 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1007 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1009 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1010 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1011 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1013 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1014 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1015 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1016 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1017 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1018 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1019 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1020 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1022 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1024 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1026 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1027 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1028 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1029 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1030 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1032 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1033 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1034 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1035 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1038 * We must clear the FCS and FIFO error count.
1039 * These registers are cleared on read,
1040 * so we may pass a useless variable to store the value.
1042 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1043 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1045 return 0;
1048 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1050 unsigned int i;
1051 u8 value;
1053 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054 rt2500pci_bbp_read(rt2x00dev, 0, &value);
1055 if ((value != 0xff) && (value != 0x00))
1056 return 0;
1057 udelay(REGISTER_BUSY_DELAY);
1060 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1061 return -EACCES;
1064 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1066 unsigned int i;
1067 u16 eeprom;
1068 u8 reg_id;
1069 u8 value;
1071 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1072 return -EACCES;
1074 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1075 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1076 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1077 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1078 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1079 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1080 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1081 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1082 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1083 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1084 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1085 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1086 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1087 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1088 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1089 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1090 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1091 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1092 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1093 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1094 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1095 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1096 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1097 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1098 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1099 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1100 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1101 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1102 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1103 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1105 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1106 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1108 if (eeprom != 0xffff && eeprom != 0x0000) {
1109 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1110 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1111 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1115 return 0;
1119 * Device state switch handlers.
1121 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1122 enum dev_state state)
1124 int mask = (state == STATE_RADIO_IRQ_OFF);
1125 u32 reg;
1126 unsigned long flags;
1129 * When interrupts are being enabled, the interrupt registers
1130 * should clear the register to assure a clean state.
1132 if (state == STATE_RADIO_IRQ_ON) {
1133 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1134 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1138 * Only toggle the interrupts bits we are going to use.
1139 * Non-checked interrupt bits are disabled by default.
1141 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1143 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1144 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1145 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1146 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1147 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1148 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1149 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1151 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1153 if (state == STATE_RADIO_IRQ_OFF) {
1155 * Ensure that all tasklets are finished.
1157 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1158 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1159 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1163 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1166 * Initialize all registers.
1168 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1169 rt2500pci_init_registers(rt2x00dev) ||
1170 rt2500pci_init_bbp(rt2x00dev)))
1171 return -EIO;
1173 return 0;
1176 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1179 * Disable power
1181 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1184 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1185 enum dev_state state)
1187 u32 reg, reg2;
1188 unsigned int i;
1189 char put_to_sleep;
1190 char bbp_state;
1191 char rf_state;
1193 put_to_sleep = (state != STATE_AWAKE);
1195 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1196 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1197 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1198 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1199 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1200 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1203 * Device is not guaranteed to be in the requested state yet.
1204 * We must wait until the register indicates that the
1205 * device has entered the correct state.
1207 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1208 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1209 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1210 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1211 if (bbp_state == state && rf_state == state)
1212 return 0;
1213 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1214 msleep(10);
1217 return -EBUSY;
1220 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1221 enum dev_state state)
1223 int retval = 0;
1225 switch (state) {
1226 case STATE_RADIO_ON:
1227 retval = rt2500pci_enable_radio(rt2x00dev);
1228 break;
1229 case STATE_RADIO_OFF:
1230 rt2500pci_disable_radio(rt2x00dev);
1231 break;
1232 case STATE_RADIO_IRQ_ON:
1233 case STATE_RADIO_IRQ_OFF:
1234 rt2500pci_toggle_irq(rt2x00dev, state);
1235 break;
1236 case STATE_DEEP_SLEEP:
1237 case STATE_SLEEP:
1238 case STATE_STANDBY:
1239 case STATE_AWAKE:
1240 retval = rt2500pci_set_state(rt2x00dev, state);
1241 break;
1242 default:
1243 retval = -ENOTSUPP;
1244 break;
1247 if (unlikely(retval))
1248 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1249 state, retval);
1251 return retval;
1255 * TX descriptor initialization
1257 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1258 struct txentry_desc *txdesc)
1260 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1261 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1262 __le32 *txd = entry_priv->desc;
1263 u32 word;
1266 * Start writing the descriptor words.
1268 rt2x00_desc_read(txd, 1, &word);
1269 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1270 rt2x00_desc_write(txd, 1, word);
1272 rt2x00_desc_read(txd, 2, &word);
1273 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1274 rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1275 rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1276 rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1277 rt2x00_desc_write(txd, 2, word);
1279 rt2x00_desc_read(txd, 3, &word);
1280 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1281 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1282 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1283 txdesc->u.plcp.length_low);
1284 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1285 txdesc->u.plcp.length_high);
1286 rt2x00_desc_write(txd, 3, word);
1288 rt2x00_desc_read(txd, 10, &word);
1289 rt2x00_set_field32(&word, TXD_W10_RTS,
1290 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1291 rt2x00_desc_write(txd, 10, word);
1294 * Writing TXD word 0 must the last to prevent a race condition with
1295 * the device, whereby the device may take hold of the TXD before we
1296 * finished updating it.
1298 rt2x00_desc_read(txd, 0, &word);
1299 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1300 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1301 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1302 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1303 rt2x00_set_field32(&word, TXD_W0_ACK,
1304 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1305 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1306 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1307 rt2x00_set_field32(&word, TXD_W0_OFDM,
1308 (txdesc->rate_mode == RATE_MODE_OFDM));
1309 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1310 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1311 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1312 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1313 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1314 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1315 rt2x00_desc_write(txd, 0, word);
1318 * Register descriptor details in skb frame descriptor.
1320 skbdesc->desc = txd;
1321 skbdesc->desc_len = TXD_DESC_SIZE;
1325 * TX data initialization
1327 static void rt2500pci_write_beacon(struct queue_entry *entry,
1328 struct txentry_desc *txdesc)
1330 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1331 u32 reg;
1334 * Disable beaconing while we are reloading the beacon data,
1335 * otherwise we might be sending out invalid data.
1337 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1338 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1339 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1341 rt2x00queue_map_txskb(entry);
1344 * Write the TX descriptor for the beacon.
1346 rt2500pci_write_tx_desc(entry, txdesc);
1349 * Dump beacon to userspace through debugfs.
1351 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1354 * Enable beaconing again.
1356 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1357 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1361 * RX control handlers
1363 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1364 struct rxdone_entry_desc *rxdesc)
1366 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1367 u32 word0;
1368 u32 word2;
1370 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1371 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1373 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1374 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1375 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1376 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1379 * Obtain the status about this packet.
1380 * When frame was received with an OFDM bitrate,
1381 * the signal is the PLCP value. If it was received with
1382 * a CCK bitrate the signal is the rate in 100kbit/s.
1384 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1385 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1386 entry->queue->rt2x00dev->rssi_offset;
1387 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1389 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1390 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1391 else
1392 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1393 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1394 rxdesc->dev_flags |= RXDONE_MY_BSS;
1398 * Interrupt functions.
1400 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1401 const enum data_queue_qid queue_idx)
1403 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1404 struct queue_entry_priv_pci *entry_priv;
1405 struct queue_entry *entry;
1406 struct txdone_entry_desc txdesc;
1407 u32 word;
1409 while (!rt2x00queue_empty(queue)) {
1410 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1411 entry_priv = entry->priv_data;
1412 rt2x00_desc_read(entry_priv->desc, 0, &word);
1414 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1415 !rt2x00_get_field32(word, TXD_W0_VALID))
1416 break;
1419 * Obtain the status about this packet.
1421 txdesc.flags = 0;
1422 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1423 case 0: /* Success */
1424 case 1: /* Success with retry */
1425 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1426 break;
1427 case 2: /* Failure, excessive retries */
1428 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1429 /* Don't break, this is a failed frame! */
1430 default: /* Failure */
1431 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1433 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1435 rt2x00lib_txdone(entry, &txdesc);
1439 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1440 struct rt2x00_field32 irq_field)
1442 u32 reg;
1445 * Enable a single interrupt. The interrupt mask register
1446 * access needs locking.
1448 spin_lock_irq(&rt2x00dev->irqmask_lock);
1450 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1451 rt2x00_set_field32(&reg, irq_field, 0);
1452 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1454 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1457 static void rt2500pci_txstatus_tasklet(unsigned long data)
1459 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1460 u32 reg;
1463 * Handle all tx queues.
1465 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1466 rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1467 rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1470 * Enable all TXDONE interrupts again.
1472 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1473 spin_lock_irq(&rt2x00dev->irqmask_lock);
1475 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1476 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1477 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1478 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1479 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1481 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1485 static void rt2500pci_tbtt_tasklet(unsigned long data)
1487 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1488 rt2x00lib_beacondone(rt2x00dev);
1489 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1490 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1493 static void rt2500pci_rxdone_tasklet(unsigned long data)
1495 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1496 if (rt2x00pci_rxdone(rt2x00dev))
1497 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1498 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1499 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1502 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1504 struct rt2x00_dev *rt2x00dev = dev_instance;
1505 u32 reg, mask;
1508 * Get the interrupt sources & saved to local variable.
1509 * Write register value back to clear pending interrupts.
1511 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1512 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1514 if (!reg)
1515 return IRQ_NONE;
1517 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1518 return IRQ_HANDLED;
1520 mask = reg;
1523 * Schedule tasklets for interrupt handling.
1525 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1526 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1528 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1529 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1531 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1532 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1533 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1534 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1536 * Mask out all txdone interrupts.
1538 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1539 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1540 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1544 * Disable all interrupts for which a tasklet was scheduled right now,
1545 * the tasklet will reenable the appropriate interrupts.
1547 spin_lock(&rt2x00dev->irqmask_lock);
1549 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1550 reg |= mask;
1551 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1553 spin_unlock(&rt2x00dev->irqmask_lock);
1555 return IRQ_HANDLED;
1559 * Device probe functions.
1561 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1563 struct eeprom_93cx6 eeprom;
1564 u32 reg;
1565 u16 word;
1566 u8 *mac;
1568 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1570 eeprom.data = rt2x00dev;
1571 eeprom.register_read = rt2500pci_eepromregister_read;
1572 eeprom.register_write = rt2500pci_eepromregister_write;
1573 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1574 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1575 eeprom.reg_data_in = 0;
1576 eeprom.reg_data_out = 0;
1577 eeprom.reg_data_clock = 0;
1578 eeprom.reg_chip_select = 0;
1580 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1581 EEPROM_SIZE / sizeof(u16));
1584 * Start validation of the data that has been read.
1586 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1587 if (!is_valid_ether_addr(mac)) {
1588 eth_random_addr(mac);
1589 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1592 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1593 if (word == 0xffff) {
1594 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1595 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1596 ANTENNA_SW_DIVERSITY);
1597 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1598 ANTENNA_SW_DIVERSITY);
1599 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1600 LED_MODE_DEFAULT);
1601 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1602 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1603 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1604 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1605 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1608 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1609 if (word == 0xffff) {
1610 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1611 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1612 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1613 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1614 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1617 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1618 if (word == 0xffff) {
1619 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1620 DEFAULT_RSSI_OFFSET);
1621 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1622 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1625 return 0;
1628 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1630 u32 reg;
1631 u16 value;
1632 u16 eeprom;
1635 * Read EEPROM word for configuration.
1637 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1640 * Identify RF chipset.
1642 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1644 rt2x00_set_chip(rt2x00dev, RT2560, value,
1645 rt2x00_get_field32(reg, CSR0_REVISION));
1647 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1648 !rt2x00_rf(rt2x00dev, RF2523) &&
1649 !rt2x00_rf(rt2x00dev, RF2524) &&
1650 !rt2x00_rf(rt2x00dev, RF2525) &&
1651 !rt2x00_rf(rt2x00dev, RF2525E) &&
1652 !rt2x00_rf(rt2x00dev, RF5222)) {
1653 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1654 return -ENODEV;
1658 * Identify default antenna configuration.
1660 rt2x00dev->default_ant.tx =
1661 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1662 rt2x00dev->default_ant.rx =
1663 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1666 * Store led mode, for correct led behaviour.
1668 #ifdef CONFIG_RT2X00_LIB_LEDS
1669 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1671 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1672 if (value == LED_MODE_TXRX_ACTIVITY ||
1673 value == LED_MODE_DEFAULT ||
1674 value == LED_MODE_ASUS)
1675 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1676 LED_TYPE_ACTIVITY);
1677 #endif /* CONFIG_RT2X00_LIB_LEDS */
1680 * Detect if this device has an hardware controlled radio.
1682 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1683 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1686 * Check if the BBP tuning should be enabled.
1688 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1689 if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1690 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1693 * Read the RSSI <-> dBm offset information.
1695 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1696 rt2x00dev->rssi_offset =
1697 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1699 return 0;
1703 * RF value list for RF2522
1704 * Supports: 2.4 GHz
1706 static const struct rf_channel rf_vals_bg_2522[] = {
1707 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1708 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1709 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1710 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1711 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1712 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1713 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1714 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1715 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1716 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1717 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1718 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1719 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1720 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1724 * RF value list for RF2523
1725 * Supports: 2.4 GHz
1727 static const struct rf_channel rf_vals_bg_2523[] = {
1728 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1729 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1730 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1731 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1732 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1733 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1734 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1735 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1736 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1737 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1738 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1739 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1740 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1741 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1745 * RF value list for RF2524
1746 * Supports: 2.4 GHz
1748 static const struct rf_channel rf_vals_bg_2524[] = {
1749 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1750 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1751 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1752 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1753 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1754 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1755 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1756 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1757 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1758 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1759 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1760 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1761 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1762 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1766 * RF value list for RF2525
1767 * Supports: 2.4 GHz
1769 static const struct rf_channel rf_vals_bg_2525[] = {
1770 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1771 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1772 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1773 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1774 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1775 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1776 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1777 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1778 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1779 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1780 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1781 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1782 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1783 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1787 * RF value list for RF2525e
1788 * Supports: 2.4 GHz
1790 static const struct rf_channel rf_vals_bg_2525e[] = {
1791 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1792 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1793 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1794 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1795 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1796 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1797 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1798 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1799 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1800 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1801 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1802 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1803 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1804 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1808 * RF value list for RF5222
1809 * Supports: 2.4 GHz & 5.2 GHz
1811 static const struct rf_channel rf_vals_5222[] = {
1812 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1813 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1814 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1815 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1816 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1817 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1818 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1819 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1820 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1821 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1822 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1823 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1824 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1825 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1827 /* 802.11 UNI / HyperLan 2 */
1828 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1829 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1830 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1831 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1832 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1833 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1834 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1835 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1837 /* 802.11 HyperLan 2 */
1838 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1839 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1840 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1841 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1842 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1843 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1844 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1845 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1846 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1847 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1849 /* 802.11 UNII */
1850 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1851 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1852 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1853 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1854 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1857 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1859 struct hw_mode_spec *spec = &rt2x00dev->spec;
1860 struct channel_info *info;
1861 char *tx_power;
1862 unsigned int i;
1865 * Initialize all hw fields.
1867 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1868 IEEE80211_HW_SIGNAL_DBM |
1869 IEEE80211_HW_SUPPORTS_PS |
1870 IEEE80211_HW_PS_NULLFUNC_STACK;
1872 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1873 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1874 rt2x00_eeprom_addr(rt2x00dev,
1875 EEPROM_MAC_ADDR_0));
1878 * Initialize hw_mode information.
1880 spec->supported_bands = SUPPORT_BAND_2GHZ;
1881 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1883 if (rt2x00_rf(rt2x00dev, RF2522)) {
1884 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1885 spec->channels = rf_vals_bg_2522;
1886 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1887 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1888 spec->channels = rf_vals_bg_2523;
1889 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1890 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1891 spec->channels = rf_vals_bg_2524;
1892 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1893 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1894 spec->channels = rf_vals_bg_2525;
1895 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1896 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1897 spec->channels = rf_vals_bg_2525e;
1898 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1899 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1900 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1901 spec->channels = rf_vals_5222;
1905 * Create channel information array
1907 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1908 if (!info)
1909 return -ENOMEM;
1911 spec->channels_info = info;
1913 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1914 for (i = 0; i < 14; i++) {
1915 info[i].max_power = MAX_TXPOWER;
1916 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1919 if (spec->num_channels > 14) {
1920 for (i = 14; i < spec->num_channels; i++) {
1921 info[i].max_power = MAX_TXPOWER;
1922 info[i].default_power1 = DEFAULT_TXPOWER;
1926 return 0;
1929 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1931 int retval;
1932 u32 reg;
1935 * Allocate eeprom data.
1937 retval = rt2500pci_validate_eeprom(rt2x00dev);
1938 if (retval)
1939 return retval;
1941 retval = rt2500pci_init_eeprom(rt2x00dev);
1942 if (retval)
1943 return retval;
1946 * Enable rfkill polling by setting GPIO direction of the
1947 * rfkill switch GPIO pin correctly.
1949 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
1950 rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1951 rt2x00pci_register_write(rt2x00dev, GPIOCSR, reg);
1954 * Initialize hw specifications.
1956 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1957 if (retval)
1958 return retval;
1961 * This device requires the atim queue and DMA-mapped skbs.
1963 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1964 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1965 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1968 * Set the rssi offset.
1970 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1972 return 0;
1976 * IEEE80211 stack callback functions.
1978 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1979 struct ieee80211_vif *vif)
1981 struct rt2x00_dev *rt2x00dev = hw->priv;
1982 u64 tsf;
1983 u32 reg;
1985 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1986 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1987 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1988 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1990 return tsf;
1993 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1995 struct rt2x00_dev *rt2x00dev = hw->priv;
1996 u32 reg;
1998 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1999 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2002 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2003 .tx = rt2x00mac_tx,
2004 .start = rt2x00mac_start,
2005 .stop = rt2x00mac_stop,
2006 .add_interface = rt2x00mac_add_interface,
2007 .remove_interface = rt2x00mac_remove_interface,
2008 .config = rt2x00mac_config,
2009 .configure_filter = rt2x00mac_configure_filter,
2010 .sw_scan_start = rt2x00mac_sw_scan_start,
2011 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2012 .get_stats = rt2x00mac_get_stats,
2013 .bss_info_changed = rt2x00mac_bss_info_changed,
2014 .conf_tx = rt2x00mac_conf_tx,
2015 .get_tsf = rt2500pci_get_tsf,
2016 .tx_last_beacon = rt2500pci_tx_last_beacon,
2017 .rfkill_poll = rt2x00mac_rfkill_poll,
2018 .flush = rt2x00mac_flush,
2019 .set_antenna = rt2x00mac_set_antenna,
2020 .get_antenna = rt2x00mac_get_antenna,
2021 .get_ringparam = rt2x00mac_get_ringparam,
2022 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2025 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2026 .irq_handler = rt2500pci_interrupt,
2027 .txstatus_tasklet = rt2500pci_txstatus_tasklet,
2028 .tbtt_tasklet = rt2500pci_tbtt_tasklet,
2029 .rxdone_tasklet = rt2500pci_rxdone_tasklet,
2030 .probe_hw = rt2500pci_probe_hw,
2031 .initialize = rt2x00pci_initialize,
2032 .uninitialize = rt2x00pci_uninitialize,
2033 .get_entry_state = rt2500pci_get_entry_state,
2034 .clear_entry = rt2500pci_clear_entry,
2035 .set_device_state = rt2500pci_set_device_state,
2036 .rfkill_poll = rt2500pci_rfkill_poll,
2037 .link_stats = rt2500pci_link_stats,
2038 .reset_tuner = rt2500pci_reset_tuner,
2039 .link_tuner = rt2500pci_link_tuner,
2040 .start_queue = rt2500pci_start_queue,
2041 .kick_queue = rt2500pci_kick_queue,
2042 .stop_queue = rt2500pci_stop_queue,
2043 .flush_queue = rt2x00pci_flush_queue,
2044 .write_tx_desc = rt2500pci_write_tx_desc,
2045 .write_beacon = rt2500pci_write_beacon,
2046 .fill_rxdone = rt2500pci_fill_rxdone,
2047 .config_filter = rt2500pci_config_filter,
2048 .config_intf = rt2500pci_config_intf,
2049 .config_erp = rt2500pci_config_erp,
2050 .config_ant = rt2500pci_config_ant,
2051 .config = rt2500pci_config,
2054 static const struct data_queue_desc rt2500pci_queue_rx = {
2055 .entry_num = 32,
2056 .data_size = DATA_FRAME_SIZE,
2057 .desc_size = RXD_DESC_SIZE,
2058 .priv_size = sizeof(struct queue_entry_priv_pci),
2061 static const struct data_queue_desc rt2500pci_queue_tx = {
2062 .entry_num = 32,
2063 .data_size = DATA_FRAME_SIZE,
2064 .desc_size = TXD_DESC_SIZE,
2065 .priv_size = sizeof(struct queue_entry_priv_pci),
2068 static const struct data_queue_desc rt2500pci_queue_bcn = {
2069 .entry_num = 1,
2070 .data_size = MGMT_FRAME_SIZE,
2071 .desc_size = TXD_DESC_SIZE,
2072 .priv_size = sizeof(struct queue_entry_priv_pci),
2075 static const struct data_queue_desc rt2500pci_queue_atim = {
2076 .entry_num = 8,
2077 .data_size = DATA_FRAME_SIZE,
2078 .desc_size = TXD_DESC_SIZE,
2079 .priv_size = sizeof(struct queue_entry_priv_pci),
2082 static const struct rt2x00_ops rt2500pci_ops = {
2083 .name = KBUILD_MODNAME,
2084 .max_sta_intf = 1,
2085 .max_ap_intf = 1,
2086 .eeprom_size = EEPROM_SIZE,
2087 .rf_size = RF_SIZE,
2088 .tx_queues = NUM_TX_QUEUES,
2089 .extra_tx_headroom = 0,
2090 .rx = &rt2500pci_queue_rx,
2091 .tx = &rt2500pci_queue_tx,
2092 .bcn = &rt2500pci_queue_bcn,
2093 .atim = &rt2500pci_queue_atim,
2094 .lib = &rt2500pci_rt2x00_ops,
2095 .hw = &rt2500pci_mac80211_ops,
2096 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2097 .debugfs = &rt2500pci_rt2x00debug,
2098 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2102 * RT2500pci module information.
2104 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2105 { PCI_DEVICE(0x1814, 0x0201) },
2106 { 0, }
2109 MODULE_AUTHOR(DRV_PROJECT);
2110 MODULE_VERSION(DRV_VERSION);
2111 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2112 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2113 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2114 MODULE_LICENSE("GPL");
2116 static int rt2500pci_probe(struct pci_dev *pci_dev,
2117 const struct pci_device_id *id)
2119 return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2122 static struct pci_driver rt2500pci_driver = {
2123 .name = KBUILD_MODNAME,
2124 .id_table = rt2500pci_device_table,
2125 .probe = rt2500pci_probe,
2126 .remove = __devexit_p(rt2x00pci_remove),
2127 .suspend = rt2x00pci_suspend,
2128 .resume = rt2x00pci_resume,
2131 module_pci_driver(rt2500pci_driver);