1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * tmis program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * Tme full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include <linux/export.h>
34 static const u8 MAX_PGPKT_SIZE
= 9;
35 static const u8 PGPKT_DATA_SIZE
= 8;
36 static const int EFUSE_MAX_SIZE
= 512;
38 static const u8 EFUSE_OOB_PROTECT_BYTES
= 15;
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE
[] = {
56 static void efuse_shadow_read_1byte(struct ieee80211_hw
*hw
, u16 offset
,
58 static void efuse_shadow_read_2byte(struct ieee80211_hw
*hw
, u16 offset
,
60 static void efuse_shadow_read_4byte(struct ieee80211_hw
*hw
, u16 offset
,
62 static void efuse_shadow_write_1byte(struct ieee80211_hw
*hw
, u16 offset
,
64 static void efuse_shadow_write_2byte(struct ieee80211_hw
*hw
, u16 offset
,
66 static void efuse_shadow_write_4byte(struct ieee80211_hw
*hw
, u16 offset
,
68 static int efuse_one_byte_read(struct ieee80211_hw
*hw
, u16 addr
,
70 static int efuse_one_byte_write(struct ieee80211_hw
*hw
, u16 addr
,
72 static void efuse_read_all_map(struct ieee80211_hw
*hw
, u8
*efuse
);
73 static int efuse_pg_packet_read(struct ieee80211_hw
*hw
, u8 offset
,
75 static int efuse_pg_packet_write(struct ieee80211_hw
*hw
, u8 offset
,
76 u8 word_en
, u8
*data
);
77 static void efuse_word_enable_data_read(u8 word_en
, u8
*sourdata
,
79 static u8
efuse_word_enable_data_write(struct ieee80211_hw
*hw
,
80 u16 efuse_addr
, u8 word_en
, u8
*data
);
81 static void efuse_power_switch(struct ieee80211_hw
*hw
, u8 write
,
83 static u16
efuse_get_current_size(struct ieee80211_hw
*hw
);
84 static u8
efuse_calculate_word_cnts(u8 word_en
);
86 void efuse_initialize(struct ieee80211_hw
*hw
)
88 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
92 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
] + 1);
93 temp
= bytetemp
| 0x20;
94 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_FUNC_EN
] + 1, temp
);
96 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
] + 1);
97 temp
= bytetemp
& 0xFE;
98 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
] + 1, temp
);
100 bytetemp
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3);
101 temp
= bytetemp
| 0x80;
102 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3, temp
);
104 rtl_write_byte(rtlpriv
, 0x2F8, 0x3);
106 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0x72);
110 u8
efuse_read_1byte(struct ieee80211_hw
*hw
, u16 address
)
112 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
117 const u32 efuse_len
=
118 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
120 if (address
< efuse_len
) {
121 temp
= address
& 0xFF;
122 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
124 bytetemp
= rtl_read_byte(rtlpriv
,
125 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
126 temp
= ((address
>> 8) & 0x03) | (bytetemp
& 0xFC);
127 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
130 bytetemp
= rtl_read_byte(rtlpriv
,
131 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
132 temp
= bytetemp
& 0x7F;
133 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3,
136 bytetemp
= rtl_read_byte(rtlpriv
,
137 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
138 while (!(bytetemp
& 0x80)) {
139 bytetemp
= rtl_read_byte(rtlpriv
,
141 maps
[EFUSE_CTRL
] + 3);
148 data
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
154 EXPORT_SYMBOL(efuse_read_1byte
);
156 void efuse_write_1byte(struct ieee80211_hw
*hw
, u16 address
, u8 value
)
158 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
162 const u32 efuse_len
=
163 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
165 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "Addr=%x Data =%x\n",
168 if (address
< efuse_len
) {
169 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
], value
);
171 temp
= address
& 0xFF;
172 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
174 bytetemp
= rtl_read_byte(rtlpriv
,
175 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
177 temp
= ((address
>> 8) & 0x03) | (bytetemp
& 0xFC);
178 rtl_write_byte(rtlpriv
,
179 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2, temp
);
181 bytetemp
= rtl_read_byte(rtlpriv
,
182 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
183 temp
= bytetemp
| 0x80;
184 rtl_write_byte(rtlpriv
,
185 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, temp
);
187 bytetemp
= rtl_read_byte(rtlpriv
,
188 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
190 while (bytetemp
& 0x80) {
191 bytetemp
= rtl_read_byte(rtlpriv
,
193 maps
[EFUSE_CTRL
] + 3);
204 void read_efuse_byte(struct ieee80211_hw
*hw
, u16 _offset
, u8
*pbuf
)
206 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
211 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
213 readbyte
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2);
214 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
215 ((_offset
>> 8) & 0x03) | (readbyte
& 0xfc));
217 readbyte
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3);
218 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3,
222 value32
= rtl_read_dword(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
223 while (!(((value32
>> 24) & 0xff) & 0x80) && (retry
< 10000)) {
224 value32
= rtl_read_dword(rtlpriv
,
225 rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
230 value32
= rtl_read_dword(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
232 *pbuf
= (u8
) (value32
& 0xff);
235 void read_efuse(struct ieee80211_hw
*hw
, u16 _offset
, u16 _size_byte
, u8
*pbuf
)
237 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
238 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
245 const u16 efuse_max_section
=
246 rtlpriv
->cfg
->maps
[EFUSE_MAX_SECTION_MAP
];
247 const u32 efuse_len
=
248 rtlpriv
->cfg
->maps
[EFUSE_REAL_CONTENT_SIZE
];
250 u16 efuse_utilized
= 0;
253 if ((_offset
+ _size_byte
) > rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]) {
254 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
255 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256 _offset
, _size_byte
);
260 /* allocate memory for efuse_tbl and efuse_word */
261 efuse_tbl
= kmalloc(rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
] *
262 sizeof(u8
), GFP_ATOMIC
);
265 efuse_word
= kmalloc(EFUSE_MAX_WORD_UNIT
* sizeof(u16
*), GFP_ATOMIC
);
268 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++) {
269 efuse_word
[i
] = kmalloc(efuse_max_section
* sizeof(u16
),
275 for (i
= 0; i
< efuse_max_section
; i
++)
276 for (j
= 0; j
< EFUSE_MAX_WORD_UNIT
; j
++)
277 efuse_word
[j
][i
] = 0xFFFF;
279 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
280 if (*rtemp8
!= 0xFF) {
282 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
283 "Addr=%d\n", efuse_addr
);
287 while ((*rtemp8
!= 0xFF) && (efuse_addr
< efuse_len
)) {
288 offset
= ((*rtemp8
>> 4) & 0x0f);
290 if (offset
< efuse_max_section
) {
291 wren
= (*rtemp8
& 0x0f);
292 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
293 "offset-%d Worden=%x\n", offset
, wren
);
295 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++) {
296 if (!(wren
& 0x01)) {
297 RTPRINT(rtlpriv
, FEEPROM
,
299 "Addr=%d\n", efuse_addr
);
301 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
304 efuse_word
[i
][offset
] =
307 if (efuse_addr
>= efuse_len
)
310 RTPRINT(rtlpriv
, FEEPROM
,
312 "Addr=%d\n", efuse_addr
);
314 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
317 efuse_word
[i
][offset
] |=
318 (((u16
)*rtemp8
<< 8) & 0xff00);
320 if (efuse_addr
>= efuse_len
)
328 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_READ_ALL
,
329 "Addr=%d\n", efuse_addr
);
330 read_efuse_byte(hw
, efuse_addr
, rtemp8
);
331 if (*rtemp8
!= 0xFF && (efuse_addr
< efuse_len
)) {
337 for (i
= 0; i
< efuse_max_section
; i
++) {
338 for (j
= 0; j
< EFUSE_MAX_WORD_UNIT
; j
++) {
339 efuse_tbl
[(i
* 8) + (j
* 2)] =
340 (efuse_word
[j
][i
] & 0xff);
341 efuse_tbl
[(i
* 8) + ((j
* 2) + 1)] =
342 ((efuse_word
[j
][i
] >> 8) & 0xff);
346 for (i
= 0; i
< _size_byte
; i
++)
347 pbuf
[i
] = efuse_tbl
[_offset
+ i
];
349 rtlefuse
->efuse_usedbytes
= efuse_utilized
;
350 efuse_usage
= (u8
) ((efuse_utilized
* 100) / efuse_len
);
351 rtlefuse
->efuse_usedpercentage
= efuse_usage
;
352 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_EFUSE_BYTES
,
353 (u8
*)&efuse_utilized
);
354 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_EFUSE_USAGE
,
357 for (i
= 0; i
< EFUSE_MAX_WORD_UNIT
; i
++)
358 kfree(efuse_word
[i
]);
363 bool efuse_shadow_update_chk(struct ieee80211_hw
*hw
)
365 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
366 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
367 u8 section_idx
, i
, Base
;
368 u16 words_need
= 0, hdr_num
= 0, totalbytes
, efuse_used
;
369 bool wordchanged
, result
= true;
371 for (section_idx
= 0; section_idx
< 16; section_idx
++) {
372 Base
= section_idx
* 8;
375 for (i
= 0; i
< 8; i
= i
+ 2) {
376 if ((rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][Base
+ i
] !=
377 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][Base
+ i
]) ||
378 (rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][Base
+ i
+ 1] !=
379 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][Base
+ i
+
390 totalbytes
= hdr_num
+ words_need
* 2;
391 efuse_used
= rtlefuse
->efuse_usedbytes
;
393 if ((totalbytes
+ efuse_used
) >=
394 (EFUSE_MAX_SIZE
- EFUSE_OOB_PROTECT_BYTES
))
397 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
398 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399 totalbytes
, hdr_num
, words_need
, efuse_used
);
404 void efuse_shadow_read(struct ieee80211_hw
*hw
, u8 type
,
405 u16 offset
, u32
*value
)
408 efuse_shadow_read_1byte(hw
, offset
, (u8
*) value
);
410 efuse_shadow_read_2byte(hw
, offset
, (u16
*) value
);
412 efuse_shadow_read_4byte(hw
, offset
, value
);
416 void efuse_shadow_write(struct ieee80211_hw
*hw
, u8 type
, u16 offset
,
420 efuse_shadow_write_1byte(hw
, offset
, (u8
) value
);
422 efuse_shadow_write_2byte(hw
, offset
, (u16
) value
);
424 efuse_shadow_write_4byte(hw
, offset
, value
);
428 bool efuse_shadow_update(struct ieee80211_hw
*hw
)
430 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
431 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
436 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "--->\n");
438 if (!efuse_shadow_update_chk(hw
)) {
439 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
440 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
441 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
442 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
444 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
445 "<---efuse out of capacity!!\n");
448 efuse_power_switch(hw
, true, true);
450 for (offset
= 0; offset
< 16; offset
++) {
455 for (i
= 0; i
< 8; i
++) {
458 word_en
&= ~(BIT(i
/ 2));
460 rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] =
461 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
];
464 if (rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] !=
465 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
]) {
466 word_en
&= ~(BIT(i
/ 2));
468 rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][base
+ i
] =
469 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
+ i
];
474 if (word_en
!= 0x0F) {
477 &rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][base
],
479 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_LOUD
,
480 "U-efuse", tmpdata
, 8);
482 if (!efuse_pg_packet_write(hw
, (u8
) offset
, word_en
,
484 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
485 "PG section(%#x) fail!!\n", offset
);
492 efuse_power_switch(hw
, true, false);
493 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
495 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
496 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
497 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
499 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "<---\n");
503 void rtl_efuse_shadow_map_update(struct ieee80211_hw
*hw
)
505 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
506 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
508 if (rtlefuse
->autoload_failflag
)
509 memset(&rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0], 0xFF,
510 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
512 efuse_read_all_map(hw
, &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0]);
514 memcpy(&rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][0],
515 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
516 rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
]);
519 EXPORT_SYMBOL(rtl_efuse_shadow_map_update
);
521 void efuse_force_write_vendor_Id(struct ieee80211_hw
*hw
)
523 u8 tmpdata
[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
525 efuse_power_switch(hw
, true, true);
527 efuse_pg_packet_write(hw
, 1, 0xD, tmpdata
);
529 efuse_power_switch(hw
, true, false);
533 void efuse_re_pg_section(struct ieee80211_hw
*hw
, u8 section_idx
)
537 static void efuse_shadow_read_1byte(struct ieee80211_hw
*hw
,
538 u16 offset
, u8
*value
)
540 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
541 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
544 static void efuse_shadow_read_2byte(struct ieee80211_hw
*hw
,
545 u16 offset
, u16
*value
)
547 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
549 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
550 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] << 8;
554 static void efuse_shadow_read_4byte(struct ieee80211_hw
*hw
,
555 u16 offset
, u32
*value
)
557 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
559 *value
= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
];
560 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] << 8;
561 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 2] << 16;
562 *value
|= rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 3] << 24;
565 static void efuse_shadow_write_1byte(struct ieee80211_hw
*hw
,
566 u16 offset
, u8 value
)
568 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
570 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] = value
;
573 static void efuse_shadow_write_2byte(struct ieee80211_hw
*hw
,
574 u16 offset
, u16 value
)
576 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
578 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] = value
& 0x00FF;
579 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] = value
>> 8;
583 static void efuse_shadow_write_4byte(struct ieee80211_hw
*hw
,
584 u16 offset
, u32 value
)
586 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
588 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
] =
589 (u8
) (value
& 0x000000FF);
590 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 1] =
591 (u8
) ((value
>> 8) & 0x0000FF);
592 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 2] =
593 (u8
) ((value
>> 16) & 0x00FF);
594 rtlefuse
->efuse_map
[EFUSE_MODIFY_MAP
][offset
+ 3] =
595 (u8
) ((value
>> 24) & 0xFF);
599 static int efuse_one_byte_read(struct ieee80211_hw
*hw
, u16 addr
, u8
*data
)
601 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
605 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1,
607 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
608 ((u8
) ((addr
>> 8) & 0x03)) |
609 (rtl_read_byte(rtlpriv
,
610 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2) &
613 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0x72);
615 while (!(0x80 & rtl_read_byte(rtlpriv
,
616 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3))
622 *data
= rtl_read_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
]);
631 static int efuse_one_byte_write(struct ieee80211_hw
*hw
, u16 addr
, u8 data
)
633 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
636 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "Addr = %x Data=%x\n",
639 rtl_write_byte(rtlpriv
,
640 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 1, (u8
) (addr
& 0xff));
641 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 2,
642 (rtl_read_byte(rtlpriv
,
643 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] +
644 2) & 0xFC) | (u8
) ((addr
>> 8) & 0x03));
646 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
], data
);
647 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3, 0xF2);
649 while ((0x80 & rtl_read_byte(rtlpriv
,
650 rtlpriv
->cfg
->maps
[EFUSE_CTRL
] + 3))
661 static void efuse_read_all_map(struct ieee80211_hw
*hw
, u8
* efuse
)
663 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
664 efuse_power_switch(hw
, false, true);
665 read_efuse(hw
, 0, rtlpriv
->cfg
->maps
[EFUSE_HWSET_MAX_SIZE
], efuse
);
666 efuse_power_switch(hw
, false, false);
669 static void efuse_read_data_case1(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
670 u8 efuse_data
, u8 offset
, u8
*tmpdata
,
673 bool dataempty
= true;
679 hoffset
= (efuse_data
>> 4) & 0x0F;
680 hworden
= efuse_data
& 0x0F;
681 word_cnts
= efuse_calculate_word_cnts(hworden
);
683 if (hoffset
== offset
) {
684 for (tmpidx
= 0; tmpidx
< word_cnts
* 2; tmpidx
++) {
685 if (efuse_one_byte_read(hw
, *efuse_addr
+ 1 + tmpidx
,
687 tmpdata
[tmpidx
] = efuse_data
;
688 if (efuse_data
!= 0xff)
694 *readstate
= PG_STATE_DATA
;
696 *efuse_addr
= *efuse_addr
+ (word_cnts
* 2) + 1;
697 *readstate
= PG_STATE_HEADER
;
701 *efuse_addr
= *efuse_addr
+ (word_cnts
* 2) + 1;
702 *readstate
= PG_STATE_HEADER
;
706 static int efuse_pg_packet_read(struct ieee80211_hw
*hw
, u8 offset
, u8
*data
)
708 u8 readstate
= PG_STATE_HEADER
;
709 bool continual
= true;
710 u8 efuse_data
, word_cnts
= 0;
719 memset(data
, 0xff, PGPKT_DATA_SIZE
* sizeof(u8
));
720 memset(tmpdata
, 0xff, PGPKT_DATA_SIZE
* sizeof(u8
));
722 while (continual
&& (efuse_addr
< EFUSE_MAX_SIZE
)) {
723 if (readstate
& PG_STATE_HEADER
) {
724 if (efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
)
725 && (efuse_data
!= 0xFF))
726 efuse_read_data_case1(hw
, &efuse_addr
,
732 } else if (readstate
& PG_STATE_DATA
) {
733 efuse_word_enable_data_read(0, tmpdata
, data
);
734 efuse_addr
= efuse_addr
+ (word_cnts
* 2) + 1;
735 readstate
= PG_STATE_HEADER
;
740 if ((data
[0] == 0xff) && (data
[1] == 0xff) &&
741 (data
[2] == 0xff) && (data
[3] == 0xff) &&
742 (data
[4] == 0xff) && (data
[5] == 0xff) &&
743 (data
[6] == 0xff) && (data
[7] == 0xff))
750 static void efuse_write_data_case1(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
751 u8 efuse_data
, u8 offset
, int *continual
,
752 u8
*write_state
, struct pgpkt_struct
*target_pkt
,
753 int *repeat_times
, int *result
, u8 word_en
)
755 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
756 struct pgpkt_struct tmp_pkt
;
757 bool dataempty
= true;
758 u8 originaldata
[8 * sizeof(u8
)];
760 u8 match_word_en
, tmp_word_en
;
762 u8 tmp_header
= efuse_data
;
765 tmp_pkt
.offset
= (tmp_header
>> 4) & 0x0F;
766 tmp_pkt
.word_en
= tmp_header
& 0x0F;
767 tmp_word_cnts
= efuse_calculate_word_cnts(tmp_pkt
.word_en
);
769 if (tmp_pkt
.offset
!= target_pkt
->offset
) {
770 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
771 *write_state
= PG_STATE_HEADER
;
773 for (tmpindex
= 0; tmpindex
< (tmp_word_cnts
* 2); tmpindex
++) {
774 u16 address
= *efuse_addr
+ 1 + tmpindex
;
775 if (efuse_one_byte_read(hw
, address
,
776 &efuse_data
) && (efuse_data
!= 0xFF))
781 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
782 *write_state
= PG_STATE_HEADER
;
784 match_word_en
= 0x0F;
785 if (!((target_pkt
->word_en
& BIT(0)) |
786 (tmp_pkt
.word_en
& BIT(0))))
787 match_word_en
&= (~BIT(0));
789 if (!((target_pkt
->word_en
& BIT(1)) |
790 (tmp_pkt
.word_en
& BIT(1))))
791 match_word_en
&= (~BIT(1));
793 if (!((target_pkt
->word_en
& BIT(2)) |
794 (tmp_pkt
.word_en
& BIT(2))))
795 match_word_en
&= (~BIT(2));
797 if (!((target_pkt
->word_en
& BIT(3)) |
798 (tmp_pkt
.word_en
& BIT(3))))
799 match_word_en
&= (~BIT(3));
801 if ((match_word_en
& 0x0F) != 0x0F) {
802 badworden
= efuse_word_enable_data_write(
807 if (0x0F != (badworden
& 0x0F)) {
808 u8 reorg_offset
= offset
;
809 u8 reorg_worden
= badworden
;
810 efuse_pg_packet_write(hw
, reorg_offset
,
816 if ((target_pkt
->word_en
& BIT(0)) ^
817 (match_word_en
& BIT(0)))
818 tmp_word_en
&= (~BIT(0));
820 if ((target_pkt
->word_en
& BIT(1)) ^
821 (match_word_en
& BIT(1)))
822 tmp_word_en
&= (~BIT(1));
824 if ((target_pkt
->word_en
& BIT(2)) ^
825 (match_word_en
& BIT(2)))
826 tmp_word_en
&= (~BIT(2));
828 if ((target_pkt
->word_en
& BIT(3)) ^
829 (match_word_en
& BIT(3)))
830 tmp_word_en
&= (~BIT(3));
832 if ((tmp_word_en
& 0x0F) != 0x0F) {
833 *efuse_addr
= efuse_get_current_size(hw
);
834 target_pkt
->offset
= offset
;
835 target_pkt
->word_en
= tmp_word_en
;
839 *write_state
= PG_STATE_HEADER
;
841 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
846 *efuse_addr
+= (2 * tmp_word_cnts
) + 1;
847 target_pkt
->offset
= offset
;
848 target_pkt
->word_en
= word_en
;
849 *write_state
= PG_STATE_HEADER
;
853 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
, "efuse PG_STATE_HEADER-1\n");
856 static void efuse_write_data_case2(struct ieee80211_hw
*hw
, u16
*efuse_addr
,
857 int *continual
, u8
*write_state
,
858 struct pgpkt_struct target_pkt
,
859 int *repeat_times
, int *result
)
861 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
862 struct pgpkt_struct tmp_pkt
;
865 u8 originaldata
[8 * sizeof(u8
)];
869 pg_header
= ((target_pkt
.offset
<< 4) & 0xf0) | target_pkt
.word_en
;
870 efuse_one_byte_write(hw
, *efuse_addr
, pg_header
);
871 efuse_one_byte_read(hw
, *efuse_addr
, &tmp_header
);
873 if (tmp_header
== pg_header
) {
874 *write_state
= PG_STATE_DATA
;
875 } else if (tmp_header
== 0xFF) {
876 *write_state
= PG_STATE_HEADER
;
878 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
883 tmp_pkt
.offset
= (tmp_header
>> 4) & 0x0F;
884 tmp_pkt
.word_en
= tmp_header
& 0x0F;
886 tmp_word_cnts
= efuse_calculate_word_cnts(tmp_pkt
.word_en
);
888 memset(originaldata
, 0xff, 8 * sizeof(u8
));
890 if (efuse_pg_packet_read(hw
, tmp_pkt
.offset
, originaldata
)) {
891 badworden
= efuse_word_enable_data_write(hw
,
892 *efuse_addr
+ 1, tmp_pkt
.word_en
,
895 if (0x0F != (badworden
& 0x0F)) {
896 u8 reorg_offset
= tmp_pkt
.offset
;
897 u8 reorg_worden
= badworden
;
898 efuse_pg_packet_write(hw
, reorg_offset
,
901 *efuse_addr
= efuse_get_current_size(hw
);
903 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2)
907 *efuse_addr
= *efuse_addr
+ (tmp_word_cnts
* 2) + 1;
910 *write_state
= PG_STATE_HEADER
;
912 if (*repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
917 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
918 "efuse PG_STATE_HEADER-2\n");
922 static int efuse_pg_packet_write(struct ieee80211_hw
*hw
,
923 u8 offset
, u8 word_en
, u8
*data
)
925 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
926 struct pgpkt_struct target_pkt
;
927 u8 write_state
= PG_STATE_HEADER
;
928 int continual
= true, result
= true;
931 u8 target_word_cnts
= 0;
933 static int repeat_times
;
935 if (efuse_get_current_size(hw
) >=
936 (EFUSE_MAX_SIZE
- EFUSE_OOB_PROTECT_BYTES
)) {
937 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
938 "efuse_pg_packet_write error\n");
942 target_pkt
.offset
= offset
;
943 target_pkt
.word_en
= word_en
;
945 memset(target_pkt
.data
, 0xFF, 8 * sizeof(u8
));
947 efuse_word_enable_data_read(word_en
, data
, target_pkt
.data
);
948 target_word_cnts
= efuse_calculate_word_cnts(target_pkt
.word_en
);
950 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
, "efuse Power ON\n");
952 while (continual
&& (efuse_addr
<
953 (EFUSE_MAX_SIZE
- EFUSE_OOB_PROTECT_BYTES
))) {
955 if (write_state
== PG_STATE_HEADER
) {
957 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
958 "efuse PG_STATE_HEADER\n");
960 if (efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
) &&
961 (efuse_data
!= 0xFF))
962 efuse_write_data_case1(hw
, &efuse_addr
,
965 &write_state
, &target_pkt
,
966 &repeat_times
, &result
,
969 efuse_write_data_case2(hw
, &efuse_addr
,
976 } else if (write_state
== PG_STATE_DATA
) {
977 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
978 "efuse PG_STATE_DATA\n");
980 efuse_word_enable_data_write(hw
, efuse_addr
+ 1,
984 if ((badworden
& 0x0F) == 0x0F) {
987 efuse_addr
+= (2 * target_word_cnts
) + 1;
989 target_pkt
.offset
= offset
;
990 target_pkt
.word_en
= badworden
;
992 efuse_calculate_word_cnts(target_pkt
.
994 write_state
= PG_STATE_HEADER
;
996 if (repeat_times
> EFUSE_REPEAT_THRESHOLD_
) {
1000 RTPRINT(rtlpriv
, FEEPROM
, EFUSE_PG
,
1001 "efuse PG_STATE_HEADER-3\n");
1006 if (efuse_addr
>= (EFUSE_MAX_SIZE
- EFUSE_OOB_PROTECT_BYTES
)) {
1007 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
,
1008 "efuse_addr(%#x) Out of size!!\n", efuse_addr
);
1014 static void efuse_word_enable_data_read(u8 word_en
,
1015 u8
*sourdata
, u8
*targetdata
)
1017 if (!(word_en
& BIT(0))) {
1018 targetdata
[0] = sourdata
[0];
1019 targetdata
[1] = sourdata
[1];
1022 if (!(word_en
& BIT(1))) {
1023 targetdata
[2] = sourdata
[2];
1024 targetdata
[3] = sourdata
[3];
1027 if (!(word_en
& BIT(2))) {
1028 targetdata
[4] = sourdata
[4];
1029 targetdata
[5] = sourdata
[5];
1032 if (!(word_en
& BIT(3))) {
1033 targetdata
[6] = sourdata
[6];
1034 targetdata
[7] = sourdata
[7];
1038 static u8
efuse_word_enable_data_write(struct ieee80211_hw
*hw
,
1039 u16 efuse_addr
, u8 word_en
, u8
*data
)
1041 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1043 u16 start_addr
= efuse_addr
;
1044 u8 badworden
= 0x0F;
1047 memset(tmpdata
, 0xff, PGPKT_DATA_SIZE
);
1048 RT_TRACE(rtlpriv
, COMP_EFUSE
, DBG_LOUD
, "word_en = %x efuse_addr=%x\n",
1049 word_en
, efuse_addr
);
1051 if (!(word_en
& BIT(0))) {
1052 tmpaddr
= start_addr
;
1053 efuse_one_byte_write(hw
, start_addr
++, data
[0]);
1054 efuse_one_byte_write(hw
, start_addr
++, data
[1]);
1056 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[0]);
1057 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[1]);
1058 if ((data
[0] != tmpdata
[0]) || (data
[1] != tmpdata
[1]))
1059 badworden
&= (~BIT(0));
1062 if (!(word_en
& BIT(1))) {
1063 tmpaddr
= start_addr
;
1064 efuse_one_byte_write(hw
, start_addr
++, data
[2]);
1065 efuse_one_byte_write(hw
, start_addr
++, data
[3]);
1067 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[2]);
1068 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[3]);
1069 if ((data
[2] != tmpdata
[2]) || (data
[3] != tmpdata
[3]))
1070 badworden
&= (~BIT(1));
1073 if (!(word_en
& BIT(2))) {
1074 tmpaddr
= start_addr
;
1075 efuse_one_byte_write(hw
, start_addr
++, data
[4]);
1076 efuse_one_byte_write(hw
, start_addr
++, data
[5]);
1078 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[4]);
1079 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[5]);
1080 if ((data
[4] != tmpdata
[4]) || (data
[5] != tmpdata
[5]))
1081 badworden
&= (~BIT(2));
1084 if (!(word_en
& BIT(3))) {
1085 tmpaddr
= start_addr
;
1086 efuse_one_byte_write(hw
, start_addr
++, data
[6]);
1087 efuse_one_byte_write(hw
, start_addr
++, data
[7]);
1089 efuse_one_byte_read(hw
, tmpaddr
, &tmpdata
[6]);
1090 efuse_one_byte_read(hw
, tmpaddr
+ 1, &tmpdata
[7]);
1091 if ((data
[6] != tmpdata
[6]) || (data
[7] != tmpdata
[7]))
1092 badworden
&= (~BIT(3));
1098 static void efuse_power_switch(struct ieee80211_hw
*hw
, u8 write
, u8 pwrstate
)
1100 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1101 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1105 if (pwrstate
&& (rtlhal
->hw_type
!=
1106 HARDWARE_TYPE_RTL8192SE
)) {
1107 tmpV16
= rtl_read_word(rtlpriv
,
1108 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
]);
1109 if (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_PWC_EV12V
])) {
1110 tmpV16
|= rtlpriv
->cfg
->maps
[EFUSE_PWC_EV12V
];
1111 rtl_write_word(rtlpriv
,
1112 rtlpriv
->cfg
->maps
[SYS_ISO_CTRL
],
1116 tmpV16
= rtl_read_word(rtlpriv
,
1117 rtlpriv
->cfg
->maps
[SYS_FUNC_EN
]);
1118 if (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_FEN_ELDR
])) {
1119 tmpV16
|= rtlpriv
->cfg
->maps
[EFUSE_FEN_ELDR
];
1120 rtl_write_word(rtlpriv
,
1121 rtlpriv
->cfg
->maps
[SYS_FUNC_EN
], tmpV16
);
1124 tmpV16
= rtl_read_word(rtlpriv
, rtlpriv
->cfg
->maps
[SYS_CLK
]);
1125 if ((!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_LOADER_CLK_EN
])) ||
1126 (!(tmpV16
& rtlpriv
->cfg
->maps
[EFUSE_ANA8M
]))) {
1127 tmpV16
|= (rtlpriv
->cfg
->maps
[EFUSE_LOADER_CLK_EN
] |
1128 rtlpriv
->cfg
->maps
[EFUSE_ANA8M
]);
1129 rtl_write_word(rtlpriv
,
1130 rtlpriv
->cfg
->maps
[SYS_CLK
], tmpV16
);
1136 tempval
= rtl_read_byte(rtlpriv
,
1137 rtlpriv
->cfg
->maps
[EFUSE_TEST
] +
1140 if (rtlhal
->hw_type
!= HARDWARE_TYPE_RTL8192SE
) {
1142 tempval
|= (VOLTAGE_V25
<< 4);
1145 rtl_write_byte(rtlpriv
,
1146 rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3,
1150 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8192SE
) {
1151 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CLK
],
1157 tempval
= rtl_read_byte(rtlpriv
,
1158 rtlpriv
->cfg
->maps
[EFUSE_TEST
] +
1160 rtl_write_byte(rtlpriv
,
1161 rtlpriv
->cfg
->maps
[EFUSE_TEST
] + 3,
1165 if (rtlhal
->hw_type
== HARDWARE_TYPE_RTL8192SE
) {
1166 rtl_write_byte(rtlpriv
, rtlpriv
->cfg
->maps
[EFUSE_CLK
],
1174 static u16
efuse_get_current_size(struct ieee80211_hw
*hw
)
1176 int continual
= true;
1179 u8 efuse_data
, word_cnts
;
1181 while (continual
&& efuse_one_byte_read(hw
, efuse_addr
, &efuse_data
)
1182 && (efuse_addr
< EFUSE_MAX_SIZE
)) {
1183 if (efuse_data
!= 0xFF) {
1184 hworden
= efuse_data
& 0x0F;
1185 word_cnts
= efuse_calculate_word_cnts(hworden
);
1186 efuse_addr
= efuse_addr
+ (word_cnts
* 2) + 1;
1195 static u8
efuse_calculate_word_cnts(u8 word_en
)
1198 if (!(word_en
& BIT(0)))
1200 if (!(word_en
& BIT(1)))
1202 if (!(word_en
& BIT(2)))
1204 if (!(word_en
& BIT(3)))