2 * Copyright (C) 2001-2004 by David Brownell
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 /* this file is part of ehci-hcd.c */
21 /*-------------------------------------------------------------------------*/
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
41 /*-------------------------------------------------------------------------*/
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
46 qtd_fill(struct ehci_hcd
*ehci
, struct ehci_qtd
*qtd
, dma_addr_t buf
,
47 size_t len
, int token
, int maxpacket
)
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd
->hw_buf
[0] = cpu_to_hc32(ehci
, (u32
)addr
);
54 qtd
->hw_buf_hi
[0] = cpu_to_hc32(ehci
, (u32
)(addr
>> 32));
55 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
56 if (likely (len
< count
)) /* ... iff needed */
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i
= 1; count
< len
&& i
< 5; i
++) {
65 qtd
->hw_buf
[i
] = cpu_to_hc32(ehci
, (u32
)addr
);
66 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(ehci
,
69 if ((count
+ 0x1000) < len
)
75 /* short packets may only terminate transfers */
77 count
-= (count
% maxpacket
);
79 qtd
->hw_token
= cpu_to_hc32(ehci
, (count
<< 16) | token
);
85 /*-------------------------------------------------------------------------*/
88 qh_update (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
90 struct ehci_qh_hw
*hw
= qh
->hw
;
92 /* writes to an active overlay are unsafe */
93 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
95 hw
->hw_qtd_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
96 hw
->hw_alt_next
= EHCI_LIST_END(ehci
);
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
103 if (!(hw
->hw_info1
& cpu_to_hc32(ehci
, QH_TOGGLE_CTL
))) {
104 unsigned is_out
, epnum
;
107 epnum
= (hc32_to_cpup(ehci
, &hw
->hw_info1
) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh
->dev
, epnum
, is_out
))) {
109 hw
->hw_token
&= ~cpu_to_hc32(ehci
, QTD_TOGGLE
);
110 usb_settoggle (qh
->dev
, epnum
, is_out
, 1);
114 hw
->hw_token
&= cpu_to_hc32(ehci
, QTD_TOGGLE
| QTD_STS_PING
);
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
122 qh_refresh (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
124 struct ehci_qtd
*qtd
;
126 if (list_empty (&qh
->qtd_list
))
129 qtd
= list_entry (qh
->qtd_list
.next
,
130 struct ehci_qtd
, qtd_list
);
132 * first qtd may already be partially processed.
133 * If we come here during unlink, the QH overlay region
134 * might have reference to the just unlinked qtd. The
135 * qtd is updated in qh_completions(). Update the QH
138 if (cpu_to_hc32(ehci
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
139 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
145 qh_update (ehci
, qh
, qtd
);
148 /*-------------------------------------------------------------------------*/
150 static void qh_link_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
152 static void ehci_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
153 struct usb_host_endpoint
*ep
)
155 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
156 struct ehci_qh
*qh
= ep
->hcpriv
;
159 spin_lock_irqsave(&ehci
->lock
, flags
);
161 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
162 && ehci
->rh_state
== EHCI_RH_RUNNING
)
163 qh_link_async(ehci
, qh
);
164 spin_unlock_irqrestore(&ehci
->lock
, flags
);
167 static void ehci_clear_tt_buffer(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
,
168 struct urb
*urb
, u32 token
)
171 /* If an async split transaction gets an error or is unlinked,
172 * the TT buffer may be left in an indeterminate state. We
173 * have to clear the TT buffer.
175 * Note: this routine is never called for Isochronous transfers.
177 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
179 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
181 "clear tt buffer port %d, a%d ep%d t%08x\n",
182 urb
->dev
->ttport
, urb
->dev
->devnum
,
183 usb_pipeendpoint(urb
->pipe
), token
);
185 if (!ehci_is_TDI(ehci
)
186 || urb
->dev
->tt
->hub
!=
187 ehci_to_hcd(ehci
)->self
.root_hub
) {
188 if (usb_hub_clear_tt_buffer(urb
) == 0)
192 /* REVISIT ARC-derived cores don't clear the root
193 * hub TT buffer in this way...
199 static int qtd_copy_status (
200 struct ehci_hcd
*ehci
,
206 int status
= -EINPROGRESS
;
208 /* count IN/OUT bytes, not SETUP (even short packets) */
209 if (likely (QTD_PID (token
) != 2))
210 urb
->actual_length
+= length
- QTD_LENGTH (token
);
212 /* don't modify error codes */
213 if (unlikely(urb
->unlinked
))
216 /* force cleanup after short read; not always an error */
217 if (unlikely (IS_SHORT_READ (token
)))
220 /* serious "can't proceed" faults reported by the hardware */
221 if (token
& QTD_STS_HALT
) {
222 if (token
& QTD_STS_BABBLE
) {
223 /* FIXME "must" disable babbling device's port too */
225 /* CERR nonzero + halt --> stall */
226 } else if (QTD_CERR(token
)) {
229 /* In theory, more than one of the following bits can be set
230 * since they are sticky and the transaction is retried.
231 * Which to test first is rather arbitrary.
233 } else if (token
& QTD_STS_MMF
) {
234 /* fs/ls interrupt xfer missed the complete-split */
236 } else if (token
& QTD_STS_DBE
) {
237 status
= (QTD_PID (token
) == 1) /* IN ? */
238 ? -ENOSR
/* hc couldn't read data */
239 : -ECOMM
; /* hc couldn't write data */
240 } else if (token
& QTD_STS_XACT
) {
241 /* timeout, bad CRC, wrong PID, etc */
242 ehci_dbg(ehci
, "devpath %s ep%d%s 3strikes\n",
244 usb_pipeendpoint(urb
->pipe
),
245 usb_pipein(urb
->pipe
) ? "in" : "out");
247 } else { /* unknown */
252 "dev%d ep%d%s qtd token %08x --> status %d\n",
253 usb_pipedevice (urb
->pipe
),
254 usb_pipeendpoint (urb
->pipe
),
255 usb_pipein (urb
->pipe
) ? "in" : "out",
263 ehci_urb_done(struct ehci_hcd
*ehci
, struct urb
*urb
, int status
)
264 __releases(ehci
->lock
)
265 __acquires(ehci
->lock
)
267 if (likely (urb
->hcpriv
!= NULL
)) {
268 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
270 /* S-mask in a QH means it's an interrupt urb */
271 if ((qh
->hw
->hw_info2
& cpu_to_hc32(ehci
, QH_SMASK
)) != 0) {
273 /* ... update hc-wide periodic stats (for usbfs) */
274 ehci_to_hcd(ehci
)->self
.bandwidth_int_reqs
--;
278 if (unlikely(urb
->unlinked
)) {
279 COUNT(ehci
->stats
.unlink
);
281 /* report non-error and short read status as zero */
282 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
284 COUNT(ehci
->stats
.complete
);
287 #ifdef EHCI_URB_TRACE
289 "%s %s urb %p ep%d%s status %d len %d/%d\n",
290 __func__
, urb
->dev
->devpath
, urb
,
291 usb_pipeendpoint (urb
->pipe
),
292 usb_pipein (urb
->pipe
) ? "in" : "out",
294 urb
->actual_length
, urb
->transfer_buffer_length
);
297 /* complete() can reenter this HCD */
298 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
299 spin_unlock (&ehci
->lock
);
300 usb_hcd_giveback_urb(ehci_to_hcd(ehci
), urb
, status
);
301 spin_lock (&ehci
->lock
);
304 static int qh_schedule (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
307 * Process and free completed qtds for a qh, returning URBs to drivers.
308 * Chases up to qh->hw_current. Returns number of completions called,
309 * indicating how much "real" work we did.
312 qh_completions (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
314 struct ehci_qtd
*last
, *end
= qh
->dummy
;
315 struct list_head
*entry
, *tmp
;
320 struct ehci_qh_hw
*hw
= qh
->hw
;
322 if (unlikely (list_empty (&qh
->qtd_list
)))
325 /* completions (or tasks on other cpus) must never clobber HALT
326 * till we've gone through and cleaned everything up, even when
327 * they add urbs to this qh's queue or mark them for unlinking.
329 * NOTE: unlinking expects to be done in queue order.
331 * It's a bug for qh->qh_state to be anything other than
332 * QH_STATE_IDLE, unless our caller is scan_async() or
335 state
= qh
->qh_state
;
336 qh
->qh_state
= QH_STATE_COMPLETING
;
337 stopped
= (state
== QH_STATE_IDLE
);
341 last_status
= -EINPROGRESS
;
342 qh
->needs_rescan
= 0;
344 /* remove de-activated QTDs from front of queue.
345 * after faults (including short reads), cleanup this urb
346 * then let the queue advance.
347 * if queue is stopped, handles unlinks.
349 list_for_each_safe (entry
, tmp
, &qh
->qtd_list
) {
350 struct ehci_qtd
*qtd
;
354 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
357 /* clean up any state from previous QTD ...*/
359 if (likely (last
->urb
!= urb
)) {
360 ehci_urb_done(ehci
, last
->urb
, last_status
);
362 last_status
= -EINPROGRESS
;
364 ehci_qtd_free (ehci
, last
);
368 /* ignore urbs submitted during completions we reported */
372 /* hardware copies qtd out of qh overlay */
374 token
= hc32_to_cpu(ehci
, qtd
->hw_token
);
376 /* always clean up qtds the hc de-activated */
378 if ((token
& QTD_STS_ACTIVE
) == 0) {
380 /* Report Data Buffer Error: non-fatal but useful */
381 if (token
& QTD_STS_DBE
)
383 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
385 usb_endpoint_num(&urb
->ep
->desc
),
386 usb_endpoint_dir_in(&urb
->ep
->desc
) ? "in" : "out",
387 urb
->transfer_buffer_length
,
391 /* on STALL, error, and short reads this urb must
392 * complete and all its qtds must be recycled.
394 if ((token
& QTD_STS_HALT
) != 0) {
396 /* retry transaction errors until we
397 * reach the software xacterr limit
399 if ((token
& QTD_STS_XACT
) &&
400 QTD_CERR(token
) == 0 &&
401 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
404 "detected XactErr len %zu/%zu retry %d\n",
405 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
407 /* reset the token in the qtd and the
408 * qh overlay (which still contains
409 * the qtd) so that we pick up from
412 token
&= ~QTD_STS_HALT
;
413 token
|= QTD_STS_ACTIVE
|
414 (EHCI_TUNE_CERR
<< 10);
415 qtd
->hw_token
= cpu_to_hc32(ehci
,
418 hw
->hw_token
= cpu_to_hc32(ehci
,
424 /* magic dummy for some short reads; qh won't advance.
425 * that silicon quirk can kick in with this dummy too.
427 * other short reads won't stop the queue, including
428 * control transfers (status stage handles that) or
429 * most other single-qtd reads ... the queue stops if
430 * URB_SHORT_NOT_OK was set so the driver submitting
431 * the urbs could clean it up.
433 } else if (IS_SHORT_READ (token
)
434 && !(qtd
->hw_alt_next
435 & EHCI_LIST_END(ehci
))) {
439 /* stop scanning when we reach qtds the hc is using */
440 } else if (likely (!stopped
441 && ehci
->rh_state
>= EHCI_RH_RUNNING
)) {
444 /* scan the whole queue for unlinks whenever it stops */
448 /* cancel everything if we halt, suspend, etc */
449 if (ehci
->rh_state
< EHCI_RH_RUNNING
)
450 last_status
= -ESHUTDOWN
;
452 /* this qtd is active; skip it unless a previous qtd
453 * for its urb faulted, or its urb was canceled.
455 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
458 /* qh unlinked; token in overlay may be most current */
459 if (state
== QH_STATE_IDLE
460 && cpu_to_hc32(ehci
, qtd
->qtd_dma
)
462 token
= hc32_to_cpu(ehci
, hw
->hw_token
);
464 /* An unlink may leave an incomplete
465 * async transaction in the TT buffer.
466 * We have to clear it.
468 ehci_clear_tt_buffer(ehci
, qh
, urb
, token
);
472 /* unless we already know the urb's status, collect qtd status
473 * and update count of bytes transferred. in common short read
474 * cases with only one data qtd (including control transfers),
475 * queue processing won't halt. but with two or more qtds (for
476 * example, with a 32 KB transfer), when the first qtd gets a
477 * short read the second must be removed by hand.
479 if (last_status
== -EINPROGRESS
) {
480 last_status
= qtd_copy_status(ehci
, urb
,
482 if (last_status
== -EREMOTEIO
484 & EHCI_LIST_END(ehci
)))
485 last_status
= -EINPROGRESS
;
487 /* As part of low/full-speed endpoint-halt processing
488 * we must clear the TT buffer (11.17.5).
490 if (unlikely(last_status
!= -EINPROGRESS
&&
491 last_status
!= -EREMOTEIO
)) {
492 /* The TT's in some hubs malfunction when they
493 * receive this request following a STALL (they
494 * stop sending isochronous packets). Since a
495 * STALL can't leave the TT buffer in a busy
496 * state (if you believe Figures 11-48 - 11-51
497 * in the USB 2.0 spec), we won't clear the TT
498 * buffer in this case. Strictly speaking this
499 * is a violation of the spec.
501 if (last_status
!= -EPIPE
)
502 ehci_clear_tt_buffer(ehci
, qh
, urb
,
507 /* if we're removing something not at the queue head,
508 * patch the hardware queue pointer.
510 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
511 last
= list_entry (qtd
->qtd_list
.prev
,
512 struct ehci_qtd
, qtd_list
);
513 last
->hw_next
= qtd
->hw_next
;
516 /* remove qtd; it's recycled after possible urb completion */
517 list_del (&qtd
->qtd_list
);
520 /* reinit the xacterr counter for the next qtd */
524 /* last urb's completion might still need calling */
525 if (likely (last
!= NULL
)) {
526 ehci_urb_done(ehci
, last
->urb
, last_status
);
528 ehci_qtd_free (ehci
, last
);
531 /* Do we need to rescan for URBs dequeued during a giveback? */
532 if (unlikely(qh
->needs_rescan
)) {
533 /* If the QH is already unlinked, do the rescan now. */
534 if (state
== QH_STATE_IDLE
)
537 /* Otherwise we have to wait until the QH is fully unlinked.
538 * Our caller will start an unlink if qh->needs_rescan is
539 * set. But if an unlink has already started, nothing needs
542 if (state
!= QH_STATE_LINKED
)
543 qh
->needs_rescan
= 0;
546 /* restore original state; caller must unlink or relink */
547 qh
->qh_state
= state
;
549 /* be sure the hardware's done with the qh before refreshing
550 * it after fault cleanup, or recovering from silicon wrongly
551 * overlaying the dummy qtd (which reduces DMA chatter).
553 if (stopped
!= 0 || hw
->hw_qtd_next
== EHCI_LIST_END(ehci
)) {
556 qh_refresh(ehci
, qh
);
558 case QH_STATE_LINKED
:
559 /* We won't refresh a QH that's linked (after the HC
560 * stopped the queue). That avoids a race:
561 * - HC reads first part of QH;
562 * - CPU updates that first part and the token;
563 * - HC reads rest of that QH, including token
564 * Result: HC gets an inconsistent image, and then
565 * DMAs to/from the wrong memory (corrupting it).
567 * That should be rare for interrupt transfers,
568 * except maybe high bandwidth ...
571 /* Tell the caller to start an unlink */
572 qh
->needs_rescan
= 1;
574 /* otherwise, unlink already started */
581 /*-------------------------------------------------------------------------*/
583 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
584 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
585 // ... and packet size, for any kind of endpoint descriptor
586 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
589 * reverse of qh_urb_transaction: free a list of TDs.
590 * used for cleanup after errors, before HC sees an URB's TDs.
592 static void qtd_list_free (
593 struct ehci_hcd
*ehci
,
595 struct list_head
*qtd_list
597 struct list_head
*entry
, *temp
;
599 list_for_each_safe (entry
, temp
, qtd_list
) {
600 struct ehci_qtd
*qtd
;
602 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
603 list_del (&qtd
->qtd_list
);
604 ehci_qtd_free (ehci
, qtd
);
609 * create a list of filled qtds for this URB; won't link into qh.
611 static struct list_head
*
613 struct ehci_hcd
*ehci
,
615 struct list_head
*head
,
618 struct ehci_qtd
*qtd
, *qtd_prev
;
620 int len
, this_sg_len
, maxpacket
;
624 struct scatterlist
*sg
;
627 * URBs map to sequences of QTDs: one logical transaction
629 qtd
= ehci_qtd_alloc (ehci
, flags
);
632 list_add_tail (&qtd
->qtd_list
, head
);
635 token
= QTD_STS_ACTIVE
;
636 token
|= (EHCI_TUNE_CERR
<< 10);
637 /* for split transactions, SplitXState initialized to zero */
639 len
= urb
->transfer_buffer_length
;
640 is_input
= usb_pipein (urb
->pipe
);
641 if (usb_pipecontrol (urb
->pipe
)) {
643 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
644 sizeof (struct usb_ctrlrequest
),
645 token
| (2 /* "setup" */ << 8), 8);
647 /* ... and always at least one more pid */
650 qtd
= ehci_qtd_alloc (ehci
, flags
);
654 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
655 list_add_tail (&qtd
->qtd_list
, head
);
657 /* for zero length DATA stages, STATUS is always IN */
659 token
|= (1 /* "in" */ << 8);
663 * data transfer stage: buffer setup
665 i
= urb
->num_mapped_sgs
;
666 if (len
> 0 && i
> 0) {
668 buf
= sg_dma_address(sg
);
670 /* urb->transfer_buffer_length may be smaller than the
671 * size of the scatterlist (or vice versa)
673 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
676 buf
= urb
->transfer_dma
;
681 token
|= (1 /* "in" */ << 8);
682 /* else it's already initted to "out" pid (0 << 8) */
684 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
687 * buffer gets wrapped in one or more qtds;
688 * last one may be "short" (including zero len)
689 * and may serve as a control status ack
694 this_qtd_len
= qtd_fill(ehci
, qtd
, buf
, this_sg_len
, token
,
696 this_sg_len
-= this_qtd_len
;
701 * short reads advance to a "magic" dummy instead of the next
702 * qtd ... that forces the queue to stop, for manual cleanup.
703 * (this will usually be overridden later.)
706 qtd
->hw_alt_next
= ehci
->async
->hw
->hw_alt_next
;
708 /* qh makes control packets use qtd toggle; maybe switch it */
709 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
712 if (likely(this_sg_len
<= 0)) {
713 if (--i
<= 0 || len
<= 0)
716 buf
= sg_dma_address(sg
);
717 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
721 qtd
= ehci_qtd_alloc (ehci
, flags
);
725 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
726 list_add_tail (&qtd
->qtd_list
, head
);
730 * unless the caller requires manual cleanup after short reads,
731 * have the alt_next mechanism keep the queue running after the
732 * last data qtd (the only one, for control and most other cases).
734 if (likely ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
735 || usb_pipecontrol (urb
->pipe
)))
736 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
739 * control requests may need a terminating data "status" ack;
740 * other OUT ones may need a terminating short packet
743 if (likely (urb
->transfer_buffer_length
!= 0)) {
746 if (usb_pipecontrol (urb
->pipe
)) {
748 token
^= 0x0100; /* "in" <--> "out" */
749 token
|= QTD_TOGGLE
; /* force DATA1 */
750 } else if (usb_pipeout(urb
->pipe
)
751 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
752 && !(urb
->transfer_buffer_length
% maxpacket
)) {
757 qtd
= ehci_qtd_alloc (ehci
, flags
);
761 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
762 list_add_tail (&qtd
->qtd_list
, head
);
764 /* never any data in such packets */
765 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
769 /* by default, enable interrupt on urb completion */
770 if (likely (!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
771 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
775 qtd_list_free (ehci
, urb
, head
);
779 /*-------------------------------------------------------------------------*/
781 // Would be best to create all qh's from config descriptors,
782 // when each interface/altsetting is established. Unlink
783 // any previous qh and cancel its urbs first; endpoints are
784 // implicitly reset then (data toggle too).
785 // That'd mean updating how usbcore talks to HCDs. (2.7?)
789 * Each QH holds a qtd list; a QH is used for everything except iso.
791 * For interrupt urbs, the scheduler must set the microframe scheduling
792 * mask(s) each time the QH gets scheduled. For highspeed, that's
793 * just one microframe in the s-mask. For split interrupt transactions
794 * there are additional complications: c-mask, maybe FSTNs.
796 static struct ehci_qh
*
798 struct ehci_hcd
*ehci
,
802 struct ehci_qh
*qh
= ehci_qh_alloc (ehci
, flags
);
803 u32 info1
= 0, info2
= 0;
806 struct usb_tt
*tt
= urb
->dev
->tt
;
807 struct ehci_qh_hw
*hw
;
813 * init endpoint/device data for this QH
815 info1
|= usb_pipeendpoint (urb
->pipe
) << 8;
816 info1
|= usb_pipedevice (urb
->pipe
) << 0;
818 is_input
= usb_pipein (urb
->pipe
);
819 type
= usb_pipetype (urb
->pipe
);
820 maxp
= usb_maxpacket (urb
->dev
, urb
->pipe
, !is_input
);
822 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
823 * acts like up to 3KB, but is built from smaller packets.
825 if (max_packet(maxp
) > 1024) {
826 ehci_dbg(ehci
, "bogus qh maxpacket %d\n", max_packet(maxp
));
830 /* Compute interrupt scheduling parameters just once, and save.
831 * - allowing for high bandwidth, how many nsec/uframe are used?
832 * - split transactions need a second CSPLIT uframe; same question
833 * - splits also need a schedule gap (for full/low speed I/O)
834 * - qh has a polling interval
836 * For control/bulk requests, the HC or TT handles these.
838 if (type
== PIPE_INTERRUPT
) {
839 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
841 hb_mult(maxp
) * max_packet(maxp
)));
842 qh
->start
= NO_FRAME
;
844 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
848 qh
->period
= urb
->interval
>> 3;
849 if (qh
->period
== 0 && urb
->interval
!= 1) {
850 /* NOTE interval 2 or 4 uframes could work.
851 * But interval 1 scheduling is simpler, and
852 * includes high bandwidth.
855 } else if (qh
->period
> ehci
->periodic_size
) {
856 qh
->period
= ehci
->periodic_size
;
857 urb
->interval
= qh
->period
<< 3;
862 /* gap is f(FS/LS transfer times) */
863 qh
->gap_uf
= 1 + usb_calc_bus_time (urb
->dev
->speed
,
864 is_input
, 0, maxp
) / (125 * 1000);
866 /* FIXME this just approximates SPLIT/CSPLIT times */
867 if (is_input
) { // SPLIT, gap, CSPLIT+DATA
868 qh
->c_usecs
= qh
->usecs
+ HS_USECS (0);
869 qh
->usecs
= HS_USECS (1);
870 } else { // SPLIT+DATA, gap, CSPLIT
871 qh
->usecs
+= HS_USECS (1);
872 qh
->c_usecs
= HS_USECS (0);
875 think_time
= tt
? tt
->think_time
: 0;
876 qh
->tt_usecs
= NS_TO_US (think_time
+
877 usb_calc_bus_time (urb
->dev
->speed
,
878 is_input
, 0, max_packet (maxp
)));
879 qh
->period
= urb
->interval
;
880 if (qh
->period
> ehci
->periodic_size
) {
881 qh
->period
= ehci
->periodic_size
;
882 urb
->interval
= qh
->period
;
887 /* support for tt scheduling, and access to toggles */
891 switch (urb
->dev
->speed
) {
893 info1
|= QH_LOW_SPEED
;
897 /* EPS 0 means "full" */
898 if (type
!= PIPE_INTERRUPT
)
899 info1
|= (EHCI_TUNE_RL_TT
<< 28);
900 if (type
== PIPE_CONTROL
) {
901 info1
|= QH_CONTROL_EP
; /* for TT */
902 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
906 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
908 /* Some Freescale processors have an erratum in which the
909 * port number in the queue head was 0..N-1 instead of 1..N.
911 if (ehci_has_fsl_portno_bug(ehci
))
912 info2
|= (urb
->dev
->ttport
-1) << 23;
914 info2
|= urb
->dev
->ttport
<< 23;
916 /* set the address of the TT; for TDI's integrated
917 * root hub tt, leave it zeroed.
919 if (tt
&& tt
->hub
!= ehci_to_hcd(ehci
)->self
.root_hub
)
920 info2
|= tt
->hub
->devnum
<< 16;
922 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
926 case USB_SPEED_HIGH
: /* no TT involved */
927 info1
|= QH_HIGH_SPEED
;
928 if (type
== PIPE_CONTROL
) {
929 info1
|= (EHCI_TUNE_RL_HS
<< 28);
930 info1
|= 64 << 16; /* usb2 fixed maxpacket */
931 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
932 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
933 } else if (type
== PIPE_BULK
) {
934 info1
|= (EHCI_TUNE_RL_HS
<< 28);
935 /* The USB spec says that high speed bulk endpoints
936 * always use 512 byte maxpacket. But some device
937 * vendors decided to ignore that, and MSFT is happy
938 * to help them do so. So now people expect to use
939 * such nonconformant devices with Linux too; sigh.
941 info1
|= max_packet(maxp
) << 16;
942 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
943 } else { /* PIPE_INTERRUPT */
944 info1
|= max_packet (maxp
) << 16;
945 info2
|= hb_mult (maxp
) << 30;
949 ehci_dbg(ehci
, "bogus dev %p speed %d\n", urb
->dev
,
952 qh_destroy(ehci
, qh
);
956 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
958 /* init as live, toggle clear, advance to dummy */
959 qh
->qh_state
= QH_STATE_IDLE
;
961 hw
->hw_info1
= cpu_to_hc32(ehci
, info1
);
962 hw
->hw_info2
= cpu_to_hc32(ehci
, info2
);
963 qh
->is_out
= !is_input
;
964 usb_settoggle (urb
->dev
, usb_pipeendpoint (urb
->pipe
), !is_input
, 1);
965 qh_refresh (ehci
, qh
);
969 /*-------------------------------------------------------------------------*/
971 static void enable_async(struct ehci_hcd
*ehci
)
973 if (ehci
->async_count
++)
976 /* Stop waiting to turn off the async schedule */
977 ehci
->enabled_hrtimer_events
&= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC
);
979 /* Don't start the schedule until ASS is 0 */
981 turn_on_io_watchdog(ehci
);
984 static void disable_async(struct ehci_hcd
*ehci
)
986 if (--ehci
->async_count
)
989 /* The async schedule and async_unlink list are supposed to be empty */
990 WARN_ON(ehci
->async
->qh_next
.qh
|| ehci
->async_unlink
);
992 /* Don't turn off the schedule until ASS is 1 */
996 /* move qh (and its qtds) onto async queue; maybe enable queue. */
998 static void qh_link_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1000 __hc32 dma
= QH_NEXT(ehci
, qh
->qh_dma
);
1001 struct ehci_qh
*head
;
1003 /* Don't link a QH if there's a Clear-TT-Buffer pending */
1004 if (unlikely(qh
->clearing_tt
))
1007 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
1009 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1010 qh_refresh(ehci
, qh
);
1012 /* splice right after start */
1014 qh
->qh_next
= head
->qh_next
;
1015 qh
->hw
->hw_next
= head
->hw
->hw_next
;
1018 head
->qh_next
.qh
= qh
;
1019 head
->hw
->hw_next
= dma
;
1022 qh
->qh_state
= QH_STATE_LINKED
;
1023 /* qtd completions reported later by interrupt */
1028 /*-------------------------------------------------------------------------*/
1031 * For control/bulk/interrupt, return QH with these TDs appended.
1032 * Allocates and initializes the QH if necessary.
1033 * Returns null if it can't allocate a QH it needs to.
1034 * If the QH has TDs (urbs) already, that's great.
1036 static struct ehci_qh
*qh_append_tds (
1037 struct ehci_hcd
*ehci
,
1039 struct list_head
*qtd_list
,
1044 struct ehci_qh
*qh
= NULL
;
1045 __hc32 qh_addr_mask
= cpu_to_hc32(ehci
, 0x7f);
1047 qh
= (struct ehci_qh
*) *ptr
;
1048 if (unlikely (qh
== NULL
)) {
1049 /* can't sleep here, we have ehci->lock... */
1050 qh
= qh_make (ehci
, urb
, GFP_ATOMIC
);
1053 if (likely (qh
!= NULL
)) {
1054 struct ehci_qtd
*qtd
;
1056 if (unlikely (list_empty (qtd_list
)))
1059 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
,
1062 /* control qh may need patching ... */
1063 if (unlikely (epnum
== 0)) {
1065 /* usb_reset_device() briefly reverts to address 0 */
1066 if (usb_pipedevice (urb
->pipe
) == 0)
1067 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
1070 /* just one way to queue requests: swap with the dummy qtd.
1071 * only hc or qh_refresh() ever modify the overlay.
1073 if (likely (qtd
!= NULL
)) {
1074 struct ehci_qtd
*dummy
;
1078 /* to avoid racing the HC, use the dummy td instead of
1079 * the first td of our list (becomes new dummy). both
1080 * tds stay deactivated until we're done, when the
1081 * HC is allowed to fetch the old dummy (4.10.2).
1083 token
= qtd
->hw_token
;
1084 qtd
->hw_token
= HALT_BIT(ehci
);
1088 dma
= dummy
->qtd_dma
;
1090 dummy
->qtd_dma
= dma
;
1092 list_del (&qtd
->qtd_list
);
1093 list_add (&dummy
->qtd_list
, qtd_list
);
1094 list_splice_tail(qtd_list
, &qh
->qtd_list
);
1096 ehci_qtd_init(ehci
, qtd
, qtd
->qtd_dma
);
1099 /* hc must see the new dummy at list end */
1101 qtd
= list_entry (qh
->qtd_list
.prev
,
1102 struct ehci_qtd
, qtd_list
);
1103 qtd
->hw_next
= QTD_NEXT(ehci
, dma
);
1105 /* let the hc process these next qtds */
1107 dummy
->hw_token
= token
;
1115 /*-------------------------------------------------------------------------*/
1119 struct ehci_hcd
*ehci
,
1121 struct list_head
*qtd_list
,
1125 unsigned long flags
;
1126 struct ehci_qh
*qh
= NULL
;
1129 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1131 #ifdef EHCI_URB_TRACE
1133 struct ehci_qtd
*qtd
;
1134 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1136 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1137 __func__
, urb
->dev
->devpath
, urb
,
1138 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1139 urb
->transfer_buffer_length
,
1140 qtd
, urb
->ep
->hcpriv
);
1144 spin_lock_irqsave (&ehci
->lock
, flags
);
1145 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci
)))) {
1149 rc
= usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci
), urb
);
1153 qh
= qh_append_tds(ehci
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1154 if (unlikely(qh
== NULL
)) {
1155 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
1160 /* Control/bulk operations through TTs don't need scheduling,
1161 * the HC and TT handle it when the TT has a buffer ready.
1163 if (likely (qh
->qh_state
== QH_STATE_IDLE
))
1164 qh_link_async(ehci
, qh
);
1166 spin_unlock_irqrestore (&ehci
->lock
, flags
);
1167 if (unlikely (qh
== NULL
))
1168 qtd_list_free (ehci
, urb
, qtd_list
);
1172 /*-------------------------------------------------------------------------*/
1174 static void single_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1176 struct ehci_qh
*prev
;
1178 /* Add to the end of the list of QHs waiting for the next IAAD */
1179 qh
->qh_state
= QH_STATE_UNLINK
;
1180 if (ehci
->async_unlink
)
1181 ehci
->async_unlink_last
->unlink_next
= qh
;
1183 ehci
->async_unlink
= qh
;
1184 ehci
->async_unlink_last
= qh
;
1186 /* Unlink it from the schedule */
1188 while (prev
->qh_next
.qh
!= qh
)
1189 prev
= prev
->qh_next
.qh
;
1191 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
1192 prev
->qh_next
= qh
->qh_next
;
1193 if (ehci
->qh_scan_next
== qh
)
1194 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1197 static void start_iaa_cycle(struct ehci_hcd
*ehci
, bool nested
)
1200 * Do nothing if an IAA cycle is already running or
1201 * if one will be started shortly.
1203 if (ehci
->async_iaa
|| ehci
->async_unlinking
)
1206 /* Do all the waiting QHs at once */
1207 ehci
->async_iaa
= ehci
->async_unlink
;
1208 ehci
->async_unlink
= NULL
;
1210 /* If the controller isn't running, we don't have to wait for it */
1211 if (unlikely(ehci
->rh_state
< EHCI_RH_RUNNING
)) {
1212 if (!nested
) /* Avoid recursion */
1213 end_unlink_async(ehci
);
1215 /* Otherwise start a new IAA cycle */
1216 } else if (likely(ehci
->rh_state
== EHCI_RH_RUNNING
)) {
1217 /* Make sure the unlinks are all visible to the hardware */
1220 ehci_writel(ehci
, ehci
->command
| CMD_IAAD
,
1221 &ehci
->regs
->command
);
1222 ehci_readl(ehci
, &ehci
->regs
->command
);
1223 ehci_enable_event(ehci
, EHCI_HRTIMER_IAA_WATCHDOG
, true);
1227 /* the async qh for the qtds being unlinked are now gone from the HC */
1229 static void end_unlink_async(struct ehci_hcd
*ehci
)
1233 if (ehci
->has_synopsys_hc_bug
)
1234 ehci_writel(ehci
, (u32
) ehci
->async
->qh_dma
,
1235 &ehci
->regs
->async_next
);
1237 /* Process the idle QHs */
1239 ehci
->async_unlinking
= true;
1240 while (ehci
->async_iaa
) {
1241 qh
= ehci
->async_iaa
;
1242 ehci
->async_iaa
= qh
->unlink_next
;
1243 qh
->unlink_next
= NULL
;
1245 qh
->qh_state
= QH_STATE_IDLE
;
1246 qh
->qh_next
.qh
= NULL
;
1248 qh_completions(ehci
, qh
);
1249 if (!list_empty(&qh
->qtd_list
) &&
1250 ehci
->rh_state
== EHCI_RH_RUNNING
)
1251 qh_link_async(ehci
, qh
);
1252 disable_async(ehci
);
1254 ehci
->async_unlinking
= false;
1256 /* Start a new IAA cycle if any QHs are waiting for it */
1257 if (ehci
->async_unlink
) {
1258 start_iaa_cycle(ehci
, true);
1259 if (unlikely(ehci
->rh_state
< EHCI_RH_RUNNING
))
1264 static void unlink_empty_async(struct ehci_hcd
*ehci
)
1266 struct ehci_qh
*qh
, *next
;
1267 bool stopped
= (ehci
->rh_state
< EHCI_RH_RUNNING
);
1268 bool check_unlinks_later
= false;
1270 /* Unlink all the async QHs that have been empty for a timer cycle */
1271 next
= ehci
->async
->qh_next
.qh
;
1274 next
= qh
->qh_next
.qh
;
1276 if (list_empty(&qh
->qtd_list
) &&
1277 qh
->qh_state
== QH_STATE_LINKED
) {
1278 if (!stopped
&& qh
->unlink_cycle
==
1279 ehci
->async_unlink_cycle
)
1280 check_unlinks_later
= true;
1282 single_unlink_async(ehci
, qh
);
1286 /* Start a new IAA cycle if any QHs are waiting for it */
1287 if (ehci
->async_unlink
)
1288 start_iaa_cycle(ehci
, false);
1290 /* QHs that haven't been empty for long enough will be handled later */
1291 if (check_unlinks_later
) {
1292 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1293 ++ehci
->async_unlink_cycle
;
1297 /* makes sure the async qh will become idle */
1298 /* caller must own ehci->lock */
1300 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1303 * If the QH isn't linked then there's nothing we can do
1304 * unless we were called during a giveback, in which case
1305 * qh_completions() has to deal with it.
1307 if (qh
->qh_state
!= QH_STATE_LINKED
) {
1308 if (qh
->qh_state
== QH_STATE_COMPLETING
)
1309 qh
->needs_rescan
= 1;
1313 single_unlink_async(ehci
, qh
);
1314 start_iaa_cycle(ehci
, false);
1317 /*-------------------------------------------------------------------------*/
1319 static void scan_async (struct ehci_hcd
*ehci
)
1322 bool check_unlinks_later
= false;
1324 ehci
->qh_scan_next
= ehci
->async
->qh_next
.qh
;
1325 while (ehci
->qh_scan_next
) {
1326 qh
= ehci
->qh_scan_next
;
1327 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1329 /* clean any finished work for this qh */
1330 if (!list_empty(&qh
->qtd_list
)) {
1334 * Unlinks could happen here; completion reporting
1335 * drops the lock. That's why ehci->qh_scan_next
1336 * always holds the next qh to scan; if the next qh
1337 * gets unlinked then ehci->qh_scan_next is adjusted
1338 * in single_unlink_async().
1340 temp
= qh_completions(ehci
, qh
);
1341 if (qh
->needs_rescan
) {
1342 start_unlink_async(ehci
, qh
);
1343 } else if (list_empty(&qh
->qtd_list
)
1344 && qh
->qh_state
== QH_STATE_LINKED
) {
1345 qh
->unlink_cycle
= ehci
->async_unlink_cycle
;
1346 check_unlinks_later
= true;
1347 } else if (temp
!= 0)
1353 * Unlink empty entries, reducing DMA usage as well
1354 * as HCD schedule-scanning costs. Delay for any qh
1355 * we just scanned, there's a not-unusual case that it
1356 * doesn't stay idle for long.
1358 if (check_unlinks_later
&& ehci
->rh_state
== EHCI_RH_RUNNING
&&
1359 !(ehci
->enabled_hrtimer_events
&
1360 BIT(EHCI_HRTIMER_ASYNC_UNLINKS
))) {
1361 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1362 ++ehci
->async_unlink_cycle
;