2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_trace.h"
49 kmem_zone_t
*xfs_ifork_zone
;
50 kmem_zone_t
*xfs_inode_zone
;
53 * Used in xfs_itruncate_extents(). This is the maximum number of extents
54 * freed from a file in a single transaction.
56 #define XFS_ITRUNC_MAX_EXTENTS 2
58 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
59 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
60 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
61 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
64 * helper function to extract extent size hint from inode
70 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
71 return ip
->i_d
.di_extsize
;
72 if (XFS_IS_REALTIME_INODE(ip
))
73 return ip
->i_mount
->m_sb
.sb_rextsize
;
79 * Make sure that the extents in the given memory buffer
89 xfs_bmbt_rec_host_t rec
;
92 for (i
= 0; i
< nrecs
; i
++) {
93 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
94 rec
.l0
= get_unaligned(&ep
->l0
);
95 rec
.l1
= get_unaligned(&ep
->l1
);
96 xfs_bmbt_get_all(&rec
, &irec
);
97 if (fmt
== XFS_EXTFMT_NOSTATE
)
98 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
102 #define xfs_validate_extents(ifp, nrecs, fmt)
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
119 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
121 for (i
= 0; i
< j
; i
++) {
122 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
123 i
* mp
->m_sb
.sb_inodesize
);
124 if (!dip
->di_next_unlinked
) {
126 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
128 ASSERT(dip
->di_next_unlinked
);
135 * This routine is called to map an inode to the buffer containing the on-disk
136 * version of the inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
138 * pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and dipp are
145 struct xfs_mount
*mp
,
146 struct xfs_trans
*tp
,
147 struct xfs_imap
*imap
,
148 struct xfs_dinode
**dipp
,
149 struct xfs_buf
**bpp
,
158 buf_flags
|= XBF_UNMAPPED
;
159 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
160 (int)imap
->im_len
, buf_flags
, &bp
);
162 if (error
!= EAGAIN
) {
164 "%s: xfs_trans_read_buf() returned error %d.",
167 ASSERT(buf_flags
& XBF_TRYLOCK
);
173 * Validate the magic number and version of every inode in the buffer
174 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
177 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
178 #else /* usual case */
182 for (i
= 0; i
< ni
; i
++) {
186 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
187 (i
<< mp
->m_sb
.sb_inodelog
));
188 di_ok
= dip
->di_magic
== cpu_to_be16(XFS_DINODE_MAGIC
) &&
189 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
190 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
191 XFS_ERRTAG_ITOBP_INOTOBP
,
192 XFS_RANDOM_ITOBP_INOTOBP
))) {
193 if (iget_flags
& XFS_IGET_UNTRUSTED
) {
194 xfs_trans_brelse(tp
, bp
);
195 return XFS_ERROR(EINVAL
);
197 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_HIGH
,
201 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
202 (unsigned long long)imap
->im_blkno
, i
,
203 be16_to_cpu(dip
->di_magic
));
206 xfs_trans_brelse(tp
, bp
);
207 return XFS_ERROR(EFSCORRUPTED
);
211 xfs_inobp_check(mp
, bp
);
214 *dipp
= (struct xfs_dinode
*)xfs_buf_offset(bp
, imap
->im_boffset
);
219 * Move inode type and inode format specific information from the
220 * on-disk inode to the in-core inode. For fifos, devs, and sockets
221 * this means set if_rdev to the proper value. For files, directories,
222 * and symlinks this means to bring in the in-line data or extent
223 * pointers. For a file in B-tree format, only the root is immediately
224 * brought in-core. The rest will be in-lined in if_extents when it
225 * is first referenced (see xfs_iread_extents()).
232 xfs_attr_shortform_t
*atp
;
237 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
238 be16_to_cpu(dip
->di_anextents
) >
239 be64_to_cpu(dip
->di_nblocks
))) {
240 xfs_warn(ip
->i_mount
,
241 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
242 (unsigned long long)ip
->i_ino
,
243 (int)(be32_to_cpu(dip
->di_nextents
) +
244 be16_to_cpu(dip
->di_anextents
)),
246 be64_to_cpu(dip
->di_nblocks
));
247 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
249 return XFS_ERROR(EFSCORRUPTED
);
252 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
253 xfs_warn(ip
->i_mount
, "corrupt dinode %Lu, forkoff = 0x%x.",
254 (unsigned long long)ip
->i_ino
,
256 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
258 return XFS_ERROR(EFSCORRUPTED
);
261 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
262 !ip
->i_mount
->m_rtdev_targp
)) {
263 xfs_warn(ip
->i_mount
,
264 "corrupt dinode %Lu, has realtime flag set.",
266 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
267 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
268 return XFS_ERROR(EFSCORRUPTED
);
271 switch (ip
->i_d
.di_mode
& S_IFMT
) {
276 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
277 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
279 return XFS_ERROR(EFSCORRUPTED
);
282 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
288 switch (dip
->di_format
) {
289 case XFS_DINODE_FMT_LOCAL
:
291 * no local regular files yet
293 if (unlikely(S_ISREG(be16_to_cpu(dip
->di_mode
)))) {
294 xfs_warn(ip
->i_mount
,
295 "corrupt inode %Lu (local format for regular file).",
296 (unsigned long long) ip
->i_ino
);
297 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
300 return XFS_ERROR(EFSCORRUPTED
);
303 di_size
= be64_to_cpu(dip
->di_size
);
304 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
305 xfs_warn(ip
->i_mount
,
306 "corrupt inode %Lu (bad size %Ld for local inode).",
307 (unsigned long long) ip
->i_ino
,
308 (long long) di_size
);
309 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
312 return XFS_ERROR(EFSCORRUPTED
);
316 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
318 case XFS_DINODE_FMT_EXTENTS
:
319 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
321 case XFS_DINODE_FMT_BTREE
:
322 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
325 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
327 return XFS_ERROR(EFSCORRUPTED
);
332 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
333 return XFS_ERROR(EFSCORRUPTED
);
338 if (!XFS_DFORK_Q(dip
))
341 ASSERT(ip
->i_afp
== NULL
);
342 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
| KM_NOFS
);
344 switch (dip
->di_aformat
) {
345 case XFS_DINODE_FMT_LOCAL
:
346 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
347 size
= be16_to_cpu(atp
->hdr
.totsize
);
349 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
350 xfs_warn(ip
->i_mount
,
351 "corrupt inode %Lu (bad attr fork size %Ld).",
352 (unsigned long long) ip
->i_ino
,
354 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
357 return XFS_ERROR(EFSCORRUPTED
);
360 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
362 case XFS_DINODE_FMT_EXTENTS
:
363 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
365 case XFS_DINODE_FMT_BTREE
:
366 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
369 error
= XFS_ERROR(EFSCORRUPTED
);
373 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
375 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
381 * The file is in-lined in the on-disk inode.
382 * If it fits into if_inline_data, then copy
383 * it there, otherwise allocate a buffer for it
384 * and copy the data there. Either way, set
385 * if_data to point at the data.
386 * If we allocate a buffer for the data, make
387 * sure that its size is a multiple of 4 and
388 * record the real size in i_real_bytes.
401 * If the size is unreasonable, then something
402 * is wrong and we just bail out rather than crash in
403 * kmem_alloc() or memcpy() below.
405 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
406 xfs_warn(ip
->i_mount
,
407 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
408 (unsigned long long) ip
->i_ino
, size
,
409 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
410 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
412 return XFS_ERROR(EFSCORRUPTED
);
414 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
417 ifp
->if_u1
.if_data
= NULL
;
418 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
419 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
421 real_size
= roundup(size
, 4);
422 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
| KM_NOFS
);
424 ifp
->if_bytes
= size
;
425 ifp
->if_real_bytes
= real_size
;
427 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
428 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
429 ifp
->if_flags
|= XFS_IFINLINE
;
434 * The file consists of a set of extents all
435 * of which fit into the on-disk inode.
436 * If there are few enough extents to fit into
437 * the if_inline_ext, then copy them there.
438 * Otherwise allocate a buffer for them and copy
439 * them into it. Either way, set if_extents
440 * to point at the extents.
454 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
455 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
456 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
459 * If the number of extents is unreasonable, then something
460 * is wrong and we just bail out rather than crash in
461 * kmem_alloc() or memcpy() below.
463 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
464 xfs_warn(ip
->i_mount
, "corrupt inode %Lu ((a)extents = %d).",
465 (unsigned long long) ip
->i_ino
, nex
);
466 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
468 return XFS_ERROR(EFSCORRUPTED
);
471 ifp
->if_real_bytes
= 0;
473 ifp
->if_u1
.if_extents
= NULL
;
474 else if (nex
<= XFS_INLINE_EXTS
)
475 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
477 xfs_iext_add(ifp
, 0, nex
);
479 ifp
->if_bytes
= size
;
481 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
482 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
483 for (i
= 0; i
< nex
; i
++, dp
++) {
484 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
485 ep
->l0
= get_unaligned_be64(&dp
->l0
);
486 ep
->l1
= get_unaligned_be64(&dp
->l1
);
488 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
489 if (whichfork
!= XFS_DATA_FORK
||
490 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
491 if (unlikely(xfs_check_nostate_extents(
493 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
496 return XFS_ERROR(EFSCORRUPTED
);
499 ifp
->if_flags
|= XFS_IFEXTENTS
;
504 * The file has too many extents to fit into
505 * the inode, so they are in B-tree format.
506 * Allocate a buffer for the root of the B-tree
507 * and copy the root into it. The i_extents
508 * field will remain NULL until all of the
509 * extents are read in (when they are needed).
517 xfs_bmdr_block_t
*dfp
;
523 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
524 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
525 size
= XFS_BMAP_BROOT_SPACE(dfp
);
526 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
529 * blow out if -- fork has less extents than can fit in
530 * fork (fork shouldn't be a btree format), root btree
531 * block has more records than can fit into the fork,
532 * or the number of extents is greater than the number of
535 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <=
536 XFS_IFORK_MAXEXT(ip
, whichfork
) ||
537 XFS_BMDR_SPACE_CALC(nrecs
) >
538 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
) ||
539 XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
540 xfs_warn(ip
->i_mount
, "corrupt inode %Lu (btree).",
541 (unsigned long long) ip
->i_ino
);
542 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
544 return XFS_ERROR(EFSCORRUPTED
);
547 ifp
->if_broot_bytes
= size
;
548 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
| KM_NOFS
);
549 ASSERT(ifp
->if_broot
!= NULL
);
551 * Copy and convert from the on-disk structure
552 * to the in-memory structure.
554 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
555 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
556 ifp
->if_broot
, size
);
557 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
558 ifp
->if_flags
|= XFS_IFBROOT
;
564 xfs_dinode_from_disk(
568 to
->di_magic
= be16_to_cpu(from
->di_magic
);
569 to
->di_mode
= be16_to_cpu(from
->di_mode
);
570 to
->di_version
= from
->di_version
;
571 to
->di_format
= from
->di_format
;
572 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
573 to
->di_uid
= be32_to_cpu(from
->di_uid
);
574 to
->di_gid
= be32_to_cpu(from
->di_gid
);
575 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
576 to
->di_projid_lo
= be16_to_cpu(from
->di_projid_lo
);
577 to
->di_projid_hi
= be16_to_cpu(from
->di_projid_hi
);
578 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
579 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
580 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
581 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
582 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
583 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
584 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
585 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
586 to
->di_size
= be64_to_cpu(from
->di_size
);
587 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
588 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
589 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
590 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
591 to
->di_forkoff
= from
->di_forkoff
;
592 to
->di_aformat
= from
->di_aformat
;
593 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
594 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
595 to
->di_flags
= be16_to_cpu(from
->di_flags
);
596 to
->di_gen
= be32_to_cpu(from
->di_gen
);
602 xfs_icdinode_t
*from
)
604 to
->di_magic
= cpu_to_be16(from
->di_magic
);
605 to
->di_mode
= cpu_to_be16(from
->di_mode
);
606 to
->di_version
= from
->di_version
;
607 to
->di_format
= from
->di_format
;
608 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
609 to
->di_uid
= cpu_to_be32(from
->di_uid
);
610 to
->di_gid
= cpu_to_be32(from
->di_gid
);
611 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
612 to
->di_projid_lo
= cpu_to_be16(from
->di_projid_lo
);
613 to
->di_projid_hi
= cpu_to_be16(from
->di_projid_hi
);
614 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
615 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
616 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
617 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
618 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
619 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
620 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
621 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
622 to
->di_size
= cpu_to_be64(from
->di_size
);
623 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
624 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
625 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
626 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
627 to
->di_forkoff
= from
->di_forkoff
;
628 to
->di_aformat
= from
->di_aformat
;
629 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
630 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
631 to
->di_flags
= cpu_to_be16(from
->di_flags
);
632 to
->di_gen
= cpu_to_be32(from
->di_gen
);
641 if (di_flags
& XFS_DIFLAG_ANY
) {
642 if (di_flags
& XFS_DIFLAG_REALTIME
)
643 flags
|= XFS_XFLAG_REALTIME
;
644 if (di_flags
& XFS_DIFLAG_PREALLOC
)
645 flags
|= XFS_XFLAG_PREALLOC
;
646 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
647 flags
|= XFS_XFLAG_IMMUTABLE
;
648 if (di_flags
& XFS_DIFLAG_APPEND
)
649 flags
|= XFS_XFLAG_APPEND
;
650 if (di_flags
& XFS_DIFLAG_SYNC
)
651 flags
|= XFS_XFLAG_SYNC
;
652 if (di_flags
& XFS_DIFLAG_NOATIME
)
653 flags
|= XFS_XFLAG_NOATIME
;
654 if (di_flags
& XFS_DIFLAG_NODUMP
)
655 flags
|= XFS_XFLAG_NODUMP
;
656 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
657 flags
|= XFS_XFLAG_RTINHERIT
;
658 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
659 flags
|= XFS_XFLAG_PROJINHERIT
;
660 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
661 flags
|= XFS_XFLAG_NOSYMLINKS
;
662 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
663 flags
|= XFS_XFLAG_EXTSIZE
;
664 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
665 flags
|= XFS_XFLAG_EXTSZINHERIT
;
666 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
667 flags
|= XFS_XFLAG_NODEFRAG
;
668 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
669 flags
|= XFS_XFLAG_FILESTREAM
;
679 xfs_icdinode_t
*dic
= &ip
->i_d
;
681 return _xfs_dic2xflags(dic
->di_flags
) |
682 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
689 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
690 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
694 * Read the disk inode attributes into the in-core inode structure.
708 * Fill in the location information in the in-core inode.
710 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
715 * Get pointers to the on-disk inode and the buffer containing it.
717 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &bp
, 0, iget_flags
);
722 * If we got something that isn't an inode it means someone
723 * (nfs or dmi) has a stale handle.
725 if (dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
)) {
728 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
729 __func__
, be16_to_cpu(dip
->di_magic
), XFS_DINODE_MAGIC
);
731 error
= XFS_ERROR(EINVAL
);
736 * If the on-disk inode is already linked to a directory
737 * entry, copy all of the inode into the in-core inode.
738 * xfs_iformat() handles copying in the inode format
739 * specific information.
740 * Otherwise, just get the truly permanent information.
743 xfs_dinode_from_disk(&ip
->i_d
, dip
);
744 error
= xfs_iformat(ip
, dip
);
747 xfs_alert(mp
, "%s: xfs_iformat() returned error %d",
753 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
754 ip
->i_d
.di_version
= dip
->di_version
;
755 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
756 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
758 * Make sure to pull in the mode here as well in
759 * case the inode is released without being used.
760 * This ensures that xfs_inactive() will see that
761 * the inode is already free and not try to mess
762 * with the uninitialized part of it.
768 * The inode format changed when we moved the link count and
769 * made it 32 bits long. If this is an old format inode,
770 * convert it in memory to look like a new one. If it gets
771 * flushed to disk we will convert back before flushing or
772 * logging it. We zero out the new projid field and the old link
773 * count field. We'll handle clearing the pad field (the remains
774 * of the old uuid field) when we actually convert the inode to
775 * the new format. We don't change the version number so that we
776 * can distinguish this from a real new format inode.
778 if (ip
->i_d
.di_version
== 1) {
779 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
780 ip
->i_d
.di_onlink
= 0;
781 xfs_set_projid(ip
, 0);
784 ip
->i_delayed_blks
= 0;
787 * Mark the buffer containing the inode as something to keep
788 * around for a while. This helps to keep recently accessed
789 * meta-data in-core longer.
791 xfs_buf_set_ref(bp
, XFS_INO_REF
);
794 * Use xfs_trans_brelse() to release the buffer containing the
795 * on-disk inode, because it was acquired with xfs_trans_read_buf()
796 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
797 * brelse(). If we're within a transaction, then xfs_trans_brelse()
798 * will only release the buffer if it is not dirty within the
799 * transaction. It will be OK to release the buffer in this case,
800 * because inodes on disk are never destroyed and we will be
801 * locking the new in-core inode before putting it in the hash
802 * table where other processes can find it. Thus we don't have
803 * to worry about the inode being changed just because we released
807 xfs_trans_brelse(tp
, bp
);
812 * Read in extents from a btree-format inode.
813 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
823 xfs_extnum_t nextents
;
825 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
826 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
828 return XFS_ERROR(EFSCORRUPTED
);
830 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
831 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
834 * We know that the size is valid (it's checked in iformat_btree)
836 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
837 ifp
->if_flags
|= XFS_IFEXTENTS
;
838 xfs_iext_add(ifp
, 0, nextents
);
839 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
841 xfs_iext_destroy(ifp
);
842 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
845 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
850 * Allocate an inode on disk and return a copy of its in-core version.
851 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
852 * appropriately within the inode. The uid and gid for the inode are
853 * set according to the contents of the given cred structure.
855 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
856 * has a free inode available, call xfs_iget()
857 * to obtain the in-core version of the allocated inode. Finally,
858 * fill in the inode and log its initial contents. In this case,
859 * ialloc_context would be set to NULL and call_again set to false.
861 * If xfs_dialloc() does not have an available inode,
862 * it will replenish its supply by doing an allocation. Since we can
863 * only do one allocation within a transaction without deadlocks, we
864 * must commit the current transaction before returning the inode itself.
865 * In this case, therefore, we will set call_again to true and return.
866 * The caller should then commit the current transaction, start a new
867 * transaction, and call xfs_ialloc() again to actually get the inode.
869 * To ensure that some other process does not grab the inode that
870 * was allocated during the first call to xfs_ialloc(), this routine
871 * also returns the [locked] bp pointing to the head of the freelist
872 * as ialloc_context. The caller should hold this buffer across
873 * the commit and pass it back into this routine on the second call.
875 * If we are allocating quota inodes, we do not have a parent inode
876 * to attach to or associate with (i.e. pip == NULL) because they
877 * are not linked into the directory structure - they are attached
878 * directly to the superblock - and so have no parent.
889 xfs_buf_t
**ialloc_context
,
900 * Call the space management code to pick
901 * the on-disk inode to be allocated.
903 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
904 ialloc_context
, &ino
);
907 if (*ialloc_context
|| ino
== NULLFSINO
) {
911 ASSERT(*ialloc_context
== NULL
);
914 * Get the in-core inode with the lock held exclusively.
915 * This is because we're setting fields here we need
916 * to prevent others from looking at until we're done.
918 error
= xfs_iget(tp
->t_mountp
, tp
, ino
, XFS_IGET_CREATE
,
919 XFS_ILOCK_EXCL
, &ip
);
924 ip
->i_d
.di_mode
= mode
;
925 ip
->i_d
.di_onlink
= 0;
926 ip
->i_d
.di_nlink
= nlink
;
927 ASSERT(ip
->i_d
.di_nlink
== nlink
);
928 ip
->i_d
.di_uid
= current_fsuid();
929 ip
->i_d
.di_gid
= current_fsgid();
930 xfs_set_projid(ip
, prid
);
931 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
934 * If the superblock version is up to where we support new format
935 * inodes and this is currently an old format inode, then change
936 * the inode version number now. This way we only do the conversion
937 * here rather than here and in the flush/logging code.
939 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
940 ip
->i_d
.di_version
== 1) {
941 ip
->i_d
.di_version
= 2;
943 * We've already zeroed the old link count, the projid field,
949 * Project ids won't be stored on disk if we are using a version 1 inode.
951 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
952 xfs_bump_ino_vers2(tp
, ip
);
954 if (pip
&& XFS_INHERIT_GID(pip
)) {
955 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
956 if ((pip
->i_d
.di_mode
& S_ISGID
) && S_ISDIR(mode
)) {
957 ip
->i_d
.di_mode
|= S_ISGID
;
962 * If the group ID of the new file does not match the effective group
963 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
964 * (and only if the irix_sgid_inherit compatibility variable is set).
966 if ((irix_sgid_inherit
) &&
967 (ip
->i_d
.di_mode
& S_ISGID
) &&
968 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
969 ip
->i_d
.di_mode
&= ~S_ISGID
;
973 ip
->i_d
.di_nextents
= 0;
974 ASSERT(ip
->i_d
.di_nblocks
== 0);
977 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
978 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
979 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
980 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
983 * di_gen will have been taken care of in xfs_iread.
985 ip
->i_d
.di_extsize
= 0;
986 ip
->i_d
.di_dmevmask
= 0;
987 ip
->i_d
.di_dmstate
= 0;
988 ip
->i_d
.di_flags
= 0;
989 flags
= XFS_ILOG_CORE
;
990 switch (mode
& S_IFMT
) {
995 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
996 ip
->i_df
.if_u2
.if_rdev
= rdev
;
997 ip
->i_df
.if_flags
= 0;
998 flags
|= XFS_ILOG_DEV
;
1002 * we can't set up filestreams until after the VFS inode
1003 * is set up properly.
1005 if (pip
&& xfs_inode_is_filestream(pip
))
1009 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1012 if (S_ISDIR(mode
)) {
1013 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1014 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1015 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1016 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1017 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1019 } else if (S_ISREG(mode
)) {
1020 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1021 di_flags
|= XFS_DIFLAG_REALTIME
;
1022 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1023 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1024 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1027 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1028 xfs_inherit_noatime
)
1029 di_flags
|= XFS_DIFLAG_NOATIME
;
1030 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1032 di_flags
|= XFS_DIFLAG_NODUMP
;
1033 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1035 di_flags
|= XFS_DIFLAG_SYNC
;
1036 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1037 xfs_inherit_nosymlinks
)
1038 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1039 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1040 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1041 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1042 xfs_inherit_nodefrag
)
1043 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1044 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1045 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1046 ip
->i_d
.di_flags
|= di_flags
;
1050 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1051 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1052 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1053 ip
->i_df
.if_u1
.if_extents
= NULL
;
1059 * Attribute fork settings for new inode.
1061 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1062 ip
->i_d
.di_anextents
= 0;
1065 * Log the new values stuffed into the inode.
1067 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
1068 xfs_trans_log_inode(tp
, ip
, flags
);
1070 /* now that we have an i_mode we can setup inode ops and unlock */
1071 xfs_setup_inode(ip
);
1073 /* now we have set up the vfs inode we can associate the filestream */
1075 error
= xfs_filestream_associate(pip
, ip
);
1079 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1087 * Free up the underlying blocks past new_size. The new size must be smaller
1088 * than the current size. This routine can be used both for the attribute and
1089 * data fork, and does not modify the inode size, which is left to the caller.
1091 * The transaction passed to this routine must have made a permanent log
1092 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1093 * given transaction and start new ones, so make sure everything involved in
1094 * the transaction is tidy before calling here. Some transaction will be
1095 * returned to the caller to be committed. The incoming transaction must
1096 * already include the inode, and both inode locks must be held exclusively.
1097 * The inode must also be "held" within the transaction. On return the inode
1098 * will be "held" within the returned transaction. This routine does NOT
1099 * require any disk space to be reserved for it within the transaction.
1101 * If we get an error, we must return with the inode locked and linked into the
1102 * current transaction. This keeps things simple for the higher level code,
1103 * because it always knows that the inode is locked and held in the transaction
1104 * that returns to it whether errors occur or not. We don't mark the inode
1105 * dirty on error so that transactions can be easily aborted if possible.
1108 xfs_itruncate_extents(
1109 struct xfs_trans
**tpp
,
1110 struct xfs_inode
*ip
,
1112 xfs_fsize_t new_size
)
1114 struct xfs_mount
*mp
= ip
->i_mount
;
1115 struct xfs_trans
*tp
= *tpp
;
1116 struct xfs_trans
*ntp
;
1117 xfs_bmap_free_t free_list
;
1118 xfs_fsblock_t first_block
;
1119 xfs_fileoff_t first_unmap_block
;
1120 xfs_fileoff_t last_block
;
1121 xfs_filblks_t unmap_len
;
1126 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1127 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1128 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1129 ASSERT(new_size
<= XFS_ISIZE(ip
));
1130 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1131 ASSERT(ip
->i_itemp
!= NULL
);
1132 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1133 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1135 trace_xfs_itruncate_extents_start(ip
, new_size
);
1138 * Since it is possible for space to become allocated beyond
1139 * the end of the file (in a crash where the space is allocated
1140 * but the inode size is not yet updated), simply remove any
1141 * blocks which show up between the new EOF and the maximum
1142 * possible file size. If the first block to be removed is
1143 * beyond the maximum file size (ie it is the same as last_block),
1144 * then there is nothing to do.
1146 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1147 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1148 if (first_unmap_block
== last_block
)
1151 ASSERT(first_unmap_block
< last_block
);
1152 unmap_len
= last_block
- first_unmap_block
+ 1;
1154 xfs_bmap_init(&free_list
, &first_block
);
1155 error
= xfs_bunmapi(tp
, ip
,
1156 first_unmap_block
, unmap_len
,
1157 xfs_bmapi_aflag(whichfork
),
1158 XFS_ITRUNC_MAX_EXTENTS
,
1159 &first_block
, &free_list
,
1162 goto out_bmap_cancel
;
1165 * Duplicate the transaction that has the permanent
1166 * reservation and commit the old transaction.
1168 error
= xfs_bmap_finish(&tp
, &free_list
, &committed
);
1170 xfs_trans_ijoin(tp
, ip
, 0);
1172 goto out_bmap_cancel
;
1176 * Mark the inode dirty so it will be logged and
1177 * moved forward in the log as part of every commit.
1179 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1182 ntp
= xfs_trans_dup(tp
);
1183 error
= xfs_trans_commit(tp
, 0);
1186 xfs_trans_ijoin(tp
, ip
, 0);
1192 * Transaction commit worked ok so we can drop the extra ticket
1193 * reference that we gained in xfs_trans_dup()
1195 xfs_log_ticket_put(tp
->t_ticket
);
1196 error
= xfs_trans_reserve(tp
, 0,
1197 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1198 XFS_TRANS_PERM_LOG_RES
,
1199 XFS_ITRUNCATE_LOG_COUNT
);
1205 * Always re-log the inode so that our permanent transaction can keep
1206 * on rolling it forward in the log.
1208 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1210 trace_xfs_itruncate_extents_end(ip
, new_size
);
1217 * If the bunmapi call encounters an error, return to the caller where
1218 * the transaction can be properly aborted. We just need to make sure
1219 * we're not holding any resources that we were not when we came in.
1221 xfs_bmap_cancel(&free_list
);
1226 * This is called when the inode's link count goes to 0.
1227 * We place the on-disk inode on a list in the AGI. It
1228 * will be pulled from this list when the inode is freed.
1245 ASSERT(ip
->i_d
.di_nlink
== 0);
1246 ASSERT(ip
->i_d
.di_mode
!= 0);
1251 * Get the agi buffer first. It ensures lock ordering
1254 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1257 agi
= XFS_BUF_TO_AGI(agibp
);
1260 * Get the index into the agi hash table for the
1261 * list this inode will go on.
1263 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1265 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1266 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1267 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1269 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1271 * There is already another inode in the bucket we need
1272 * to add ourselves to. Add us at the front of the list.
1273 * Here we put the head pointer into our next pointer,
1274 * and then we fall through to point the head at us.
1276 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1281 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1282 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1283 offset
= ip
->i_imap
.im_boffset
+
1284 offsetof(xfs_dinode_t
, di_next_unlinked
);
1285 xfs_trans_inode_buf(tp
, ibp
);
1286 xfs_trans_log_buf(tp
, ibp
, offset
,
1287 (offset
+ sizeof(xfs_agino_t
) - 1));
1288 xfs_inobp_check(mp
, ibp
);
1292 * Point the bucket head pointer at the inode being inserted.
1295 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1296 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1297 (sizeof(xfs_agino_t
) * bucket_index
);
1298 xfs_trans_log_buf(tp
, agibp
, offset
,
1299 (offset
+ sizeof(xfs_agino_t
) - 1));
1304 * Pull the on-disk inode from the AGI unlinked list.
1317 xfs_agnumber_t agno
;
1319 xfs_agino_t next_agino
;
1320 xfs_buf_t
*last_ibp
;
1321 xfs_dinode_t
*last_dip
= NULL
;
1323 int offset
, last_offset
= 0;
1327 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1330 * Get the agi buffer first. It ensures lock ordering
1333 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1337 agi
= XFS_BUF_TO_AGI(agibp
);
1340 * Get the index into the agi hash table for the
1341 * list this inode will go on.
1343 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1345 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1346 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
1347 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1349 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1351 * We're at the head of the list. Get the inode's on-disk
1352 * buffer to see if there is anyone after us on the list.
1353 * Only modify our next pointer if it is not already NULLAGINO.
1354 * This saves us the overhead of dealing with the buffer when
1355 * there is no need to change it.
1357 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1360 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
1364 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1365 ASSERT(next_agino
!= 0);
1366 if (next_agino
!= NULLAGINO
) {
1367 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1368 offset
= ip
->i_imap
.im_boffset
+
1369 offsetof(xfs_dinode_t
, di_next_unlinked
);
1370 xfs_trans_inode_buf(tp
, ibp
);
1371 xfs_trans_log_buf(tp
, ibp
, offset
,
1372 (offset
+ sizeof(xfs_agino_t
) - 1));
1373 xfs_inobp_check(mp
, ibp
);
1375 xfs_trans_brelse(tp
, ibp
);
1378 * Point the bucket head pointer at the next inode.
1380 ASSERT(next_agino
!= 0);
1381 ASSERT(next_agino
!= agino
);
1382 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1383 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1384 (sizeof(xfs_agino_t
) * bucket_index
);
1385 xfs_trans_log_buf(tp
, agibp
, offset
,
1386 (offset
+ sizeof(xfs_agino_t
) - 1));
1389 * We need to search the list for the inode being freed.
1391 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1393 while (next_agino
!= agino
) {
1394 struct xfs_imap imap
;
1397 xfs_trans_brelse(tp
, last_ibp
);
1400 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1402 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
1405 "%s: xfs_imap returned error %d.",
1410 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
1414 "%s: xfs_imap_to_bp returned error %d.",
1419 last_offset
= imap
.im_boffset
;
1420 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1421 ASSERT(next_agino
!= NULLAGINO
);
1422 ASSERT(next_agino
!= 0);
1426 * Now last_ibp points to the buffer previous to us on the
1427 * unlinked list. Pull us from the list.
1429 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1432 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
1436 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1437 ASSERT(next_agino
!= 0);
1438 ASSERT(next_agino
!= agino
);
1439 if (next_agino
!= NULLAGINO
) {
1440 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1441 offset
= ip
->i_imap
.im_boffset
+
1442 offsetof(xfs_dinode_t
, di_next_unlinked
);
1443 xfs_trans_inode_buf(tp
, ibp
);
1444 xfs_trans_log_buf(tp
, ibp
, offset
,
1445 (offset
+ sizeof(xfs_agino_t
) - 1));
1446 xfs_inobp_check(mp
, ibp
);
1448 xfs_trans_brelse(tp
, ibp
);
1451 * Point the previous inode on the list to the next inode.
1453 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1454 ASSERT(next_agino
!= 0);
1455 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1456 xfs_trans_inode_buf(tp
, last_ibp
);
1457 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1458 (offset
+ sizeof(xfs_agino_t
) - 1));
1459 xfs_inobp_check(mp
, last_ibp
);
1465 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1466 * inodes that are in memory - they all must be marked stale and attached to
1467 * the cluster buffer.
1471 xfs_inode_t
*free_ip
,
1475 xfs_mount_t
*mp
= free_ip
->i_mount
;
1476 int blks_per_cluster
;
1483 xfs_inode_log_item_t
*iip
;
1484 xfs_log_item_t
*lip
;
1485 struct xfs_perag
*pag
;
1487 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
1488 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1489 blks_per_cluster
= 1;
1490 ninodes
= mp
->m_sb
.sb_inopblock
;
1491 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1493 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1494 mp
->m_sb
.sb_blocksize
;
1495 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1496 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1499 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1500 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1501 XFS_INO_TO_AGBNO(mp
, inum
));
1504 * We obtain and lock the backing buffer first in the process
1505 * here, as we have to ensure that any dirty inode that we
1506 * can't get the flush lock on is attached to the buffer.
1507 * If we scan the in-memory inodes first, then buffer IO can
1508 * complete before we get a lock on it, and hence we may fail
1509 * to mark all the active inodes on the buffer stale.
1511 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
1512 mp
->m_bsize
* blks_per_cluster
, 0);
1517 * Walk the inodes already attached to the buffer and mark them
1518 * stale. These will all have the flush locks held, so an
1519 * in-memory inode walk can't lock them. By marking them all
1520 * stale first, we will not attempt to lock them in the loop
1521 * below as the XFS_ISTALE flag will be set.
1525 if (lip
->li_type
== XFS_LI_INODE
) {
1526 iip
= (xfs_inode_log_item_t
*)lip
;
1527 ASSERT(iip
->ili_logged
== 1);
1528 lip
->li_cb
= xfs_istale_done
;
1529 xfs_trans_ail_copy_lsn(mp
->m_ail
,
1530 &iip
->ili_flush_lsn
,
1531 &iip
->ili_item
.li_lsn
);
1532 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
1534 lip
= lip
->li_bio_list
;
1539 * For each inode in memory attempt to add it to the inode
1540 * buffer and set it up for being staled on buffer IO
1541 * completion. This is safe as we've locked out tail pushing
1542 * and flushing by locking the buffer.
1544 * We have already marked every inode that was part of a
1545 * transaction stale above, which means there is no point in
1546 * even trying to lock them.
1548 for (i
= 0; i
< ninodes
; i
++) {
1551 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1552 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1554 /* Inode not in memory, nothing to do */
1561 * because this is an RCU protected lookup, we could
1562 * find a recently freed or even reallocated inode
1563 * during the lookup. We need to check under the
1564 * i_flags_lock for a valid inode here. Skip it if it
1565 * is not valid, the wrong inode or stale.
1567 spin_lock(&ip
->i_flags_lock
);
1568 if (ip
->i_ino
!= inum
+ i
||
1569 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
1570 spin_unlock(&ip
->i_flags_lock
);
1574 spin_unlock(&ip
->i_flags_lock
);
1577 * Don't try to lock/unlock the current inode, but we
1578 * _cannot_ skip the other inodes that we did not find
1579 * in the list attached to the buffer and are not
1580 * already marked stale. If we can't lock it, back off
1583 if (ip
!= free_ip
&&
1584 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
1592 xfs_iflags_set(ip
, XFS_ISTALE
);
1595 * we don't need to attach clean inodes or those only
1596 * with unlogged changes (which we throw away, anyway).
1599 if (!iip
|| xfs_inode_clean(ip
)) {
1600 ASSERT(ip
!= free_ip
);
1602 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1606 iip
->ili_last_fields
= iip
->ili_fields
;
1607 iip
->ili_fields
= 0;
1608 iip
->ili_logged
= 1;
1609 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
1610 &iip
->ili_item
.li_lsn
);
1612 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
1616 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1619 xfs_trans_stale_inode_buf(tp
, bp
);
1620 xfs_trans_binval(tp
, bp
);
1628 * This is called to return an inode to the inode free list.
1629 * The inode should already be truncated to 0 length and have
1630 * no pages associated with it. This routine also assumes that
1631 * the inode is already a part of the transaction.
1633 * The on-disk copy of the inode will have been added to the list
1634 * of unlinked inodes in the AGI. We need to remove the inode from
1635 * that list atomically with respect to freeing it here.
1641 xfs_bmap_free_t
*flist
)
1645 xfs_ino_t first_ino
;
1649 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1650 ASSERT(ip
->i_d
.di_nlink
== 0);
1651 ASSERT(ip
->i_d
.di_nextents
== 0);
1652 ASSERT(ip
->i_d
.di_anextents
== 0);
1653 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(ip
->i_d
.di_mode
));
1654 ASSERT(ip
->i_d
.di_nblocks
== 0);
1657 * Pull the on-disk inode from the AGI unlinked list.
1659 error
= xfs_iunlink_remove(tp
, ip
);
1664 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
1668 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
1669 ip
->i_d
.di_flags
= 0;
1670 ip
->i_d
.di_dmevmask
= 0;
1671 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
1672 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1673 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1675 * Bump the generation count so no one will be confused
1676 * by reincarnations of this inode.
1680 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1682 error
= xfs_imap_to_bp(ip
->i_mount
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1688 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1689 * from picking up this inode when it is reclaimed (its incore state
1690 * initialzed but not flushed to disk yet). The in-core di_mode is
1691 * already cleared and a corresponding transaction logged.
1692 * The hack here just synchronizes the in-core to on-disk
1693 * di_mode value in advance before the actual inode sync to disk.
1694 * This is OK because the inode is already unlinked and would never
1695 * change its di_mode again for this inode generation.
1696 * This is a temporary hack that would require a proper fix
1702 error
= xfs_ifree_cluster(ip
, tp
, first_ino
);
1709 * Reallocate the space for if_broot based on the number of records
1710 * being added or deleted as indicated in rec_diff. Move the records
1711 * and pointers in if_broot to fit the new size. When shrinking this
1712 * will eliminate holes between the records and pointers created by
1713 * the caller. When growing this will create holes to be filled in
1716 * The caller must not request to add more records than would fit in
1717 * the on-disk inode root. If the if_broot is currently NULL, then
1718 * if we adding records one will be allocated. The caller must also
1719 * not request that the number of records go below zero, although
1720 * it can go to zero.
1722 * ip -- the inode whose if_broot area is changing
1723 * ext_diff -- the change in the number of records, positive or negative,
1724 * requested for the if_broot array.
1732 struct xfs_mount
*mp
= ip
->i_mount
;
1735 struct xfs_btree_block
*new_broot
;
1742 * Handle the degenerate case quietly.
1744 if (rec_diff
== 0) {
1748 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1751 * If there wasn't any memory allocated before, just
1752 * allocate it now and get out.
1754 if (ifp
->if_broot_bytes
== 0) {
1755 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
1756 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
1757 ifp
->if_broot_bytes
= (int)new_size
;
1762 * If there is already an existing if_broot, then we need
1763 * to realloc() it and shift the pointers to their new
1764 * location. The records don't change location because
1765 * they are kept butted up against the btree block header.
1767 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
1768 new_max
= cur_max
+ rec_diff
;
1769 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
1770 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
1771 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
1772 KM_SLEEP
| KM_NOFS
);
1773 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1774 ifp
->if_broot_bytes
);
1775 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1777 ifp
->if_broot_bytes
= (int)new_size
;
1778 ASSERT(ifp
->if_broot_bytes
<=
1779 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
1780 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
1785 * rec_diff is less than 0. In this case, we are shrinking the
1786 * if_broot buffer. It must already exist. If we go to zero
1787 * records, just get rid of the root and clear the status bit.
1789 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
1790 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
1791 new_max
= cur_max
+ rec_diff
;
1792 ASSERT(new_max
>= 0);
1794 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
1798 new_broot
= kmem_alloc(new_size
, KM_SLEEP
| KM_NOFS
);
1800 * First copy over the btree block header.
1802 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
1805 ifp
->if_flags
&= ~XFS_IFBROOT
;
1809 * Only copy the records and pointers if there are any.
1813 * First copy the records.
1815 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
1816 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
1817 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
1820 * Then copy the pointers.
1822 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
1823 ifp
->if_broot_bytes
);
1824 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
1826 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
1828 kmem_free(ifp
->if_broot
);
1829 ifp
->if_broot
= new_broot
;
1830 ifp
->if_broot_bytes
= (int)new_size
;
1831 ASSERT(ifp
->if_broot_bytes
<=
1832 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
1838 * This is called when the amount of space needed for if_data
1839 * is increased or decreased. The change in size is indicated by
1840 * the number of bytes that need to be added or deleted in the
1841 * byte_diff parameter.
1843 * If the amount of space needed has decreased below the size of the
1844 * inline buffer, then switch to using the inline buffer. Otherwise,
1845 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1846 * to what is needed.
1848 * ip -- the inode whose if_data area is changing
1849 * byte_diff -- the change in the number of bytes, positive or negative,
1850 * requested for the if_data array.
1862 if (byte_diff
== 0) {
1866 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1867 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
1868 ASSERT(new_size
>= 0);
1870 if (new_size
== 0) {
1871 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
1872 kmem_free(ifp
->if_u1
.if_data
);
1874 ifp
->if_u1
.if_data
= NULL
;
1876 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
1878 * If the valid extents/data can fit in if_inline_ext/data,
1879 * copy them from the malloc'd vector and free it.
1881 if (ifp
->if_u1
.if_data
== NULL
) {
1882 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
1883 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
1884 ASSERT(ifp
->if_real_bytes
!= 0);
1885 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
1887 kmem_free(ifp
->if_u1
.if_data
);
1888 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
1893 * Stuck with malloc/realloc.
1894 * For inline data, the underlying buffer must be
1895 * a multiple of 4 bytes in size so that it can be
1896 * logged and stay on word boundaries. We enforce
1899 real_size
= roundup(new_size
, 4);
1900 if (ifp
->if_u1
.if_data
== NULL
) {
1901 ASSERT(ifp
->if_real_bytes
== 0);
1902 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
1903 KM_SLEEP
| KM_NOFS
);
1904 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
1906 * Only do the realloc if the underlying size
1907 * is really changing.
1909 if (ifp
->if_real_bytes
!= real_size
) {
1910 ifp
->if_u1
.if_data
=
1911 kmem_realloc(ifp
->if_u1
.if_data
,
1914 KM_SLEEP
| KM_NOFS
);
1917 ASSERT(ifp
->if_real_bytes
== 0);
1918 ifp
->if_u1
.if_data
= kmem_alloc(real_size
,
1919 KM_SLEEP
| KM_NOFS
);
1920 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
1924 ifp
->if_real_bytes
= real_size
;
1925 ifp
->if_bytes
= new_size
;
1926 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
1936 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1937 if (ifp
->if_broot
!= NULL
) {
1938 kmem_free(ifp
->if_broot
);
1939 ifp
->if_broot
= NULL
;
1943 * If the format is local, then we can't have an extents
1944 * array so just look for an inline data array. If we're
1945 * not local then we may or may not have an extents list,
1946 * so check and free it up if we do.
1948 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
1949 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
1950 (ifp
->if_u1
.if_data
!= NULL
)) {
1951 ASSERT(ifp
->if_real_bytes
!= 0);
1952 kmem_free(ifp
->if_u1
.if_data
);
1953 ifp
->if_u1
.if_data
= NULL
;
1954 ifp
->if_real_bytes
= 0;
1956 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
1957 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
1958 ((ifp
->if_u1
.if_extents
!= NULL
) &&
1959 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
1960 ASSERT(ifp
->if_real_bytes
!= 0);
1961 xfs_iext_destroy(ifp
);
1963 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
1964 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
1965 ASSERT(ifp
->if_real_bytes
== 0);
1966 if (whichfork
== XFS_ATTR_FORK
) {
1967 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
1973 * This is called to unpin an inode. The caller must have the inode locked
1974 * in at least shared mode so that the buffer cannot be subsequently pinned
1975 * once someone is waiting for it to be unpinned.
1979 struct xfs_inode
*ip
)
1981 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
1983 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
1985 /* Give the log a push to start the unpinning I/O */
1986 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
1992 struct xfs_inode
*ip
)
1994 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
1995 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2000 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2001 if (xfs_ipincount(ip
))
2003 } while (xfs_ipincount(ip
));
2004 finish_wait(wq
, &wait
.wait
);
2009 struct xfs_inode
*ip
)
2011 if (xfs_ipincount(ip
))
2012 __xfs_iunpin_wait(ip
);
2016 * xfs_iextents_copy()
2018 * This is called to copy the REAL extents (as opposed to the delayed
2019 * allocation extents) from the inode into the given buffer. It
2020 * returns the number of bytes copied into the buffer.
2022 * If there are no delayed allocation extents, then we can just
2023 * memcpy() the extents into the buffer. Otherwise, we need to
2024 * examine each extent in turn and skip those which are delayed.
2036 xfs_fsblock_t start_block
;
2038 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2039 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2040 ASSERT(ifp
->if_bytes
> 0);
2042 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2043 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2047 * There are some delayed allocation extents in the
2048 * inode, so copy the extents one at a time and skip
2049 * the delayed ones. There must be at least one
2050 * non-delayed extent.
2053 for (i
= 0; i
< nrecs
; i
++) {
2054 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2055 start_block
= xfs_bmbt_get_startblock(ep
);
2056 if (isnullstartblock(start_block
)) {
2058 * It's a delayed allocation extent, so skip it.
2063 /* Translate to on disk format */
2064 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2065 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2069 ASSERT(copied
!= 0);
2070 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2072 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2076 * Each of the following cases stores data into the same region
2077 * of the on-disk inode, so only one of them can be valid at
2078 * any given time. While it is possible to have conflicting formats
2079 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2080 * in EXTENTS format, this can only happen when the fork has
2081 * changed formats after being modified but before being flushed.
2082 * In these cases, the format always takes precedence, because the
2083 * format indicates the current state of the fork.
2090 xfs_inode_log_item_t
*iip
,
2097 #ifdef XFS_TRANS_DEBUG
2100 static const short brootflag
[2] =
2101 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2102 static const short dataflag
[2] =
2103 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2104 static const short extflag
[2] =
2105 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2109 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2111 * This can happen if we gave up in iformat in an error path,
2112 * for the attribute fork.
2115 ASSERT(whichfork
== XFS_ATTR_FORK
);
2118 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2120 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2121 case XFS_DINODE_FMT_LOCAL
:
2122 if ((iip
->ili_fields
& dataflag
[whichfork
]) &&
2123 (ifp
->if_bytes
> 0)) {
2124 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2125 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2126 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2130 case XFS_DINODE_FMT_EXTENTS
:
2131 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2132 !(iip
->ili_fields
& extflag
[whichfork
]));
2133 if ((iip
->ili_fields
& extflag
[whichfork
]) &&
2134 (ifp
->if_bytes
> 0)) {
2135 ASSERT(xfs_iext_get_ext(ifp
, 0));
2136 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2137 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2142 case XFS_DINODE_FMT_BTREE
:
2143 if ((iip
->ili_fields
& brootflag
[whichfork
]) &&
2144 (ifp
->if_broot_bytes
> 0)) {
2145 ASSERT(ifp
->if_broot
!= NULL
);
2146 ASSERT(ifp
->if_broot_bytes
<=
2147 (XFS_IFORK_SIZE(ip
, whichfork
) +
2148 XFS_BROOT_SIZE_ADJ
));
2149 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2150 (xfs_bmdr_block_t
*)cp
,
2151 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2155 case XFS_DINODE_FMT_DEV
:
2156 if (iip
->ili_fields
& XFS_ILOG_DEV
) {
2157 ASSERT(whichfork
== XFS_DATA_FORK
);
2158 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2162 case XFS_DINODE_FMT_UUID
:
2163 if (iip
->ili_fields
& XFS_ILOG_UUID
) {
2164 ASSERT(whichfork
== XFS_DATA_FORK
);
2165 memcpy(XFS_DFORK_DPTR(dip
),
2166 &ip
->i_df
.if_u2
.if_uuid
,
2182 xfs_mount_t
*mp
= ip
->i_mount
;
2183 struct xfs_perag
*pag
;
2184 unsigned long first_index
, mask
;
2185 unsigned long inodes_per_cluster
;
2187 xfs_inode_t
**ilist
;
2194 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
2196 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2197 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2198 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2202 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2203 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2205 /* really need a gang lookup range call here */
2206 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2207 first_index
, inodes_per_cluster
);
2211 for (i
= 0; i
< nr_found
; i
++) {
2217 * because this is an RCU protected lookup, we could find a
2218 * recently freed or even reallocated inode during the lookup.
2219 * We need to check under the i_flags_lock for a valid inode
2220 * here. Skip it if it is not valid or the wrong inode.
2222 spin_lock(&ip
->i_flags_lock
);
2224 (XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
) {
2225 spin_unlock(&ip
->i_flags_lock
);
2228 spin_unlock(&ip
->i_flags_lock
);
2231 * Do an un-protected check to see if the inode is dirty and
2232 * is a candidate for flushing. These checks will be repeated
2233 * later after the appropriate locks are acquired.
2235 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2239 * Try to get locks. If any are unavailable or it is pinned,
2240 * then this inode cannot be flushed and is skipped.
2243 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2245 if (!xfs_iflock_nowait(iq
)) {
2246 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2249 if (xfs_ipincount(iq
)) {
2251 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2256 * arriving here means that this inode can be flushed. First
2257 * re-check that it's dirty before flushing.
2259 if (!xfs_inode_clean(iq
)) {
2261 error
= xfs_iflush_int(iq
, bp
);
2263 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2264 goto cluster_corrupt_out
;
2270 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2274 XFS_STATS_INC(xs_icluster_flushcnt
);
2275 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2286 cluster_corrupt_out
:
2288 * Corruption detected in the clustering loop. Invalidate the
2289 * inode buffer and shut down the filesystem.
2293 * Clean up the buffer. If it was delwri, just release it --
2294 * brelse can handle it with no problems. If not, shut down the
2295 * filesystem before releasing the buffer.
2297 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
2301 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2303 if (!bufwasdelwri
) {
2305 * Just like incore_relse: if we have b_iodone functions,
2306 * mark the buffer as an error and call them. Otherwise
2307 * mark it as stale and brelse.
2312 xfs_buf_ioerror(bp
, EIO
);
2313 xfs_buf_ioend(bp
, 0);
2321 * Unlocks the flush lock
2323 xfs_iflush_abort(iq
, false);
2326 return XFS_ERROR(EFSCORRUPTED
);
2330 * Flush dirty inode metadata into the backing buffer.
2332 * The caller must have the inode lock and the inode flush lock held. The
2333 * inode lock will still be held upon return to the caller, and the inode
2334 * flush lock will be released after the inode has reached the disk.
2336 * The caller must write out the buffer returned in *bpp and release it.
2340 struct xfs_inode
*ip
,
2341 struct xfs_buf
**bpp
)
2343 struct xfs_mount
*mp
= ip
->i_mount
;
2345 struct xfs_dinode
*dip
;
2348 XFS_STATS_INC(xs_iflush_count
);
2350 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2351 ASSERT(xfs_isiflocked(ip
));
2352 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2353 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
2357 xfs_iunpin_wait(ip
);
2360 * For stale inodes we cannot rely on the backing buffer remaining
2361 * stale in cache for the remaining life of the stale inode and so
2362 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2363 * inodes below. We have to check this after ensuring the inode is
2364 * unpinned so that it is safe to reclaim the stale inode after the
2367 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
2373 * This may have been unpinned because the filesystem is shutting
2374 * down forcibly. If that's the case we must not write this inode
2375 * to disk, because the log record didn't make it to disk.
2377 * We also have to remove the log item from the AIL in this case,
2378 * as we wait for an empty AIL as part of the unmount process.
2380 if (XFS_FORCED_SHUTDOWN(mp
)) {
2381 error
= XFS_ERROR(EIO
);
2386 * Get the buffer containing the on-disk inode.
2388 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
2396 * First flush out the inode that xfs_iflush was called with.
2398 error
= xfs_iflush_int(ip
, bp
);
2403 * If the buffer is pinned then push on the log now so we won't
2404 * get stuck waiting in the write for too long.
2406 if (xfs_buf_ispinned(bp
))
2407 xfs_log_force(mp
, 0);
2411 * see if other inodes can be gathered into this write
2413 error
= xfs_iflush_cluster(ip
, bp
);
2415 goto cluster_corrupt_out
;
2422 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2423 cluster_corrupt_out
:
2424 error
= XFS_ERROR(EFSCORRUPTED
);
2427 * Unlocks the flush lock
2429 xfs_iflush_abort(ip
, false);
2439 xfs_inode_log_item_t
*iip
;
2442 #ifdef XFS_TRANS_DEBUG
2446 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2447 ASSERT(xfs_isiflocked(ip
));
2448 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2449 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
2454 /* set *dip = inode's place in the buffer */
2455 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
2457 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
2458 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
2459 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2460 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2461 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
2464 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
2465 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
2466 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2467 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2468 __func__
, ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
2471 if (S_ISREG(ip
->i_d
.di_mode
)) {
2473 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2474 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
2475 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
2476 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2477 "%s: Bad regular inode %Lu, ptr 0x%p",
2478 __func__
, ip
->i_ino
, ip
);
2481 } else if (S_ISDIR(ip
->i_d
.di_mode
)) {
2483 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2484 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
2485 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
2486 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
2487 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2488 "%s: Bad directory inode %Lu, ptr 0x%p",
2489 __func__
, ip
->i_ino
, ip
);
2493 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
2494 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
2495 XFS_RANDOM_IFLUSH_5
)) {
2496 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2497 "%s: detected corrupt incore inode %Lu, "
2498 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2499 __func__
, ip
->i_ino
,
2500 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
2501 ip
->i_d
.di_nblocks
, ip
);
2504 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
2505 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
2506 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
2507 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2508 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
2512 * bump the flush iteration count, used to detect flushes which
2513 * postdate a log record during recovery.
2516 ip
->i_d
.di_flushiter
++;
2519 * Copy the dirty parts of the inode into the on-disk
2520 * inode. We always copy out the core of the inode,
2521 * because if the inode is dirty at all the core must
2524 xfs_dinode_to_disk(dip
, &ip
->i_d
);
2526 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2527 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
2528 ip
->i_d
.di_flushiter
= 0;
2531 * If this is really an old format inode and the superblock version
2532 * has not been updated to support only new format inodes, then
2533 * convert back to the old inode format. If the superblock version
2534 * has been updated, then make the conversion permanent.
2536 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
2537 if (ip
->i_d
.di_version
== 1) {
2538 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
2542 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
2543 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
2546 * The superblock version has already been bumped,
2547 * so just make the conversion to the new inode
2550 ip
->i_d
.di_version
= 2;
2551 dip
->di_version
= 2;
2552 ip
->i_d
.di_onlink
= 0;
2554 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
2555 memset(&(dip
->di_pad
[0]), 0,
2556 sizeof(dip
->di_pad
));
2557 ASSERT(xfs_get_projid(ip
) == 0);
2561 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
2562 if (XFS_IFORK_Q(ip
))
2563 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
2564 xfs_inobp_check(mp
, bp
);
2567 * We've recorded everything logged in the inode, so we'd like to clear
2568 * the ili_fields bits so we don't log and flush things unnecessarily.
2569 * However, we can't stop logging all this information until the data
2570 * we've copied into the disk buffer is written to disk. If we did we
2571 * might overwrite the copy of the inode in the log with all the data
2572 * after re-logging only part of it, and in the face of a crash we
2573 * wouldn't have all the data we need to recover.
2575 * What we do is move the bits to the ili_last_fields field. When
2576 * logging the inode, these bits are moved back to the ili_fields field.
2577 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2578 * know that the information those bits represent is permanently on
2579 * disk. As long as the flush completes before the inode is logged
2580 * again, then both ili_fields and ili_last_fields will be cleared.
2582 * We can play with the ili_fields bits here, because the inode lock
2583 * must be held exclusively in order to set bits there and the flush
2584 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2585 * done routine can tell whether or not to look in the AIL. Also, store
2586 * the current LSN of the inode so that we can tell whether the item has
2587 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2588 * need the AIL lock, because it is a 64 bit value that cannot be read
2591 if (iip
!= NULL
&& iip
->ili_fields
!= 0) {
2592 iip
->ili_last_fields
= iip
->ili_fields
;
2593 iip
->ili_fields
= 0;
2594 iip
->ili_logged
= 1;
2596 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2597 &iip
->ili_item
.li_lsn
);
2600 * Attach the function xfs_iflush_done to the inode's
2601 * buffer. This will remove the inode from the AIL
2602 * and unlock the inode's flush lock when the inode is
2603 * completely written to disk.
2605 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
2607 ASSERT(bp
->b_fspriv
!= NULL
);
2608 ASSERT(bp
->b_iodone
!= NULL
);
2611 * We're flushing an inode which is not in the AIL and has
2612 * not been logged. For this case we can immediately drop
2613 * the inode flush lock because we can avoid the whole
2614 * AIL state thing. It's OK to drop the flush lock now,
2615 * because we've already locked the buffer and to do anything
2616 * you really need both.
2619 ASSERT(iip
->ili_logged
== 0);
2620 ASSERT(iip
->ili_last_fields
== 0);
2621 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
2629 return XFS_ERROR(EFSCORRUPTED
);
2633 * Return a pointer to the extent record at file index idx.
2635 xfs_bmbt_rec_host_t
*
2637 xfs_ifork_t
*ifp
, /* inode fork pointer */
2638 xfs_extnum_t idx
) /* index of target extent */
2641 ASSERT(idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
2643 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
2644 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
2645 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2646 xfs_ext_irec_t
*erp
; /* irec pointer */
2647 int erp_idx
= 0; /* irec index */
2648 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
2650 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
2651 return &erp
->er_extbuf
[page_idx
];
2652 } else if (ifp
->if_bytes
) {
2653 return &ifp
->if_u1
.if_extents
[idx
];
2660 * Insert new item(s) into the extent records for incore inode
2661 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2665 xfs_inode_t
*ip
, /* incore inode pointer */
2666 xfs_extnum_t idx
, /* starting index of new items */
2667 xfs_extnum_t count
, /* number of inserted items */
2668 xfs_bmbt_irec_t
*new, /* items to insert */
2669 int state
) /* type of extent conversion */
2671 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
2672 xfs_extnum_t i
; /* extent record index */
2674 trace_xfs_iext_insert(ip
, idx
, new, state
, _RET_IP_
);
2676 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
2677 xfs_iext_add(ifp
, idx
, count
);
2678 for (i
= idx
; i
< idx
+ count
; i
++, new++)
2679 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
2683 * This is called when the amount of space required for incore file
2684 * extents needs to be increased. The ext_diff parameter stores the
2685 * number of new extents being added and the idx parameter contains
2686 * the extent index where the new extents will be added. If the new
2687 * extents are being appended, then we just need to (re)allocate and
2688 * initialize the space. Otherwise, if the new extents are being
2689 * inserted into the middle of the existing entries, a bit more work
2690 * is required to make room for the new extents to be inserted. The
2691 * caller is responsible for filling in the new extent entries upon
2696 xfs_ifork_t
*ifp
, /* inode fork pointer */
2697 xfs_extnum_t idx
, /* index to begin adding exts */
2698 int ext_diff
) /* number of extents to add */
2700 int byte_diff
; /* new bytes being added */
2701 int new_size
; /* size of extents after adding */
2702 xfs_extnum_t nextents
; /* number of extents in file */
2704 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2705 ASSERT((idx
>= 0) && (idx
<= nextents
));
2706 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
2707 new_size
= ifp
->if_bytes
+ byte_diff
;
2709 * If the new number of extents (nextents + ext_diff)
2710 * fits inside the inode, then continue to use the inline
2713 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
2714 if (idx
< nextents
) {
2715 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
2716 &ifp
->if_u2
.if_inline_ext
[idx
],
2717 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
2718 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
2720 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
2721 ifp
->if_real_bytes
= 0;
2724 * Otherwise use a linear (direct) extent list.
2725 * If the extents are currently inside the inode,
2726 * xfs_iext_realloc_direct will switch us from
2727 * inline to direct extent allocation mode.
2729 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
2730 xfs_iext_realloc_direct(ifp
, new_size
);
2731 if (idx
< nextents
) {
2732 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
2733 &ifp
->if_u1
.if_extents
[idx
],
2734 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
2735 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
2738 /* Indirection array */
2740 xfs_ext_irec_t
*erp
;
2744 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
2745 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2746 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
2748 xfs_iext_irec_init(ifp
);
2749 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
2750 erp
= ifp
->if_u1
.if_ext_irec
;
2752 /* Extents fit in target extent page */
2753 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
2754 if (page_idx
< erp
->er_extcount
) {
2755 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
2756 &erp
->er_extbuf
[page_idx
],
2757 (erp
->er_extcount
- page_idx
) *
2758 sizeof(xfs_bmbt_rec_t
));
2759 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
2761 erp
->er_extcount
+= ext_diff
;
2762 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2764 /* Insert a new extent page */
2766 xfs_iext_add_indirect_multi(ifp
,
2767 erp_idx
, page_idx
, ext_diff
);
2770 * If extent(s) are being appended to the last page in
2771 * the indirection array and the new extent(s) don't fit
2772 * in the page, then erp is NULL and erp_idx is set to
2773 * the next index needed in the indirection array.
2776 int count
= ext_diff
;
2779 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2780 erp
->er_extcount
= count
;
2781 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
2788 ifp
->if_bytes
= new_size
;
2792 * This is called when incore extents are being added to the indirection
2793 * array and the new extents do not fit in the target extent list. The
2794 * erp_idx parameter contains the irec index for the target extent list
2795 * in the indirection array, and the idx parameter contains the extent
2796 * index within the list. The number of extents being added is stored
2797 * in the count parameter.
2799 * |-------| |-------|
2800 * | | | | idx - number of extents before idx
2802 * | | | | count - number of extents being inserted at idx
2803 * |-------| |-------|
2804 * | count | | nex2 | nex2 - number of extents after idx + count
2805 * |-------| |-------|
2808 xfs_iext_add_indirect_multi(
2809 xfs_ifork_t
*ifp
, /* inode fork pointer */
2810 int erp_idx
, /* target extent irec index */
2811 xfs_extnum_t idx
, /* index within target list */
2812 int count
) /* new extents being added */
2814 int byte_diff
; /* new bytes being added */
2815 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
2816 xfs_extnum_t ext_diff
; /* number of extents to add */
2817 xfs_extnum_t ext_cnt
; /* new extents still needed */
2818 xfs_extnum_t nex2
; /* extents after idx + count */
2819 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
2820 int nlists
; /* number of irec's (lists) */
2822 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
2823 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
2824 nex2
= erp
->er_extcount
- idx
;
2825 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
2828 * Save second part of target extent list
2829 * (all extents past */
2831 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
2832 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
2833 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
2834 erp
->er_extcount
-= nex2
;
2835 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
2836 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
2840 * Add the new extents to the end of the target
2841 * list, then allocate new irec record(s) and
2842 * extent buffer(s) as needed to store the rest
2843 * of the new extents.
2846 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
2848 erp
->er_extcount
+= ext_diff
;
2849 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2850 ext_cnt
-= ext_diff
;
2854 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2855 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
2856 erp
->er_extcount
= ext_diff
;
2857 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
2858 ext_cnt
-= ext_diff
;
2861 /* Add nex2 extents back to indirection array */
2863 xfs_extnum_t ext_avail
;
2866 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
2867 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
2870 * If nex2 extents fit in the current page, append
2871 * nex2_ep after the new extents.
2873 if (nex2
<= ext_avail
) {
2874 i
= erp
->er_extcount
;
2877 * Otherwise, check if space is available in the
2880 else if ((erp_idx
< nlists
- 1) &&
2881 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
2882 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
2885 /* Create a hole for nex2 extents */
2886 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
2887 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
2890 * Final choice, create a new extent page for
2895 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
2897 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
2899 erp
->er_extcount
+= nex2
;
2900 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
2905 * This is called when the amount of space required for incore file
2906 * extents needs to be decreased. The ext_diff parameter stores the
2907 * number of extents to be removed and the idx parameter contains
2908 * the extent index where the extents will be removed from.
2910 * If the amount of space needed has decreased below the linear
2911 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2912 * extent array. Otherwise, use kmem_realloc() to adjust the
2913 * size to what is needed.
2917 xfs_inode_t
*ip
, /* incore inode pointer */
2918 xfs_extnum_t idx
, /* index to begin removing exts */
2919 int ext_diff
, /* number of extents to remove */
2920 int state
) /* type of extent conversion */
2922 xfs_ifork_t
*ifp
= (state
& BMAP_ATTRFORK
) ? ip
->i_afp
: &ip
->i_df
;
2923 xfs_extnum_t nextents
; /* number of extents in file */
2924 int new_size
; /* size of extents after removal */
2926 trace_xfs_iext_remove(ip
, idx
, state
, _RET_IP_
);
2928 ASSERT(ext_diff
> 0);
2929 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2930 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
2932 if (new_size
== 0) {
2933 xfs_iext_destroy(ifp
);
2934 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
2935 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
2936 } else if (ifp
->if_real_bytes
) {
2937 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
2939 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
2941 ifp
->if_bytes
= new_size
;
2945 * This removes ext_diff extents from the inline buffer, beginning
2946 * at extent index idx.
2949 xfs_iext_remove_inline(
2950 xfs_ifork_t
*ifp
, /* inode fork pointer */
2951 xfs_extnum_t idx
, /* index to begin removing exts */
2952 int ext_diff
) /* number of extents to remove */
2954 int nextents
; /* number of extents in file */
2956 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
2957 ASSERT(idx
< XFS_INLINE_EXTS
);
2958 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2959 ASSERT(((nextents
- ext_diff
) > 0) &&
2960 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
2962 if (idx
+ ext_diff
< nextents
) {
2963 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
2964 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
2965 (nextents
- (idx
+ ext_diff
)) *
2966 sizeof(xfs_bmbt_rec_t
));
2967 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
2968 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
2970 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
2971 ext_diff
* sizeof(xfs_bmbt_rec_t
));
2976 * This removes ext_diff extents from a linear (direct) extent list,
2977 * beginning at extent index idx. If the extents are being removed
2978 * from the end of the list (ie. truncate) then we just need to re-
2979 * allocate the list to remove the extra space. Otherwise, if the
2980 * extents are being removed from the middle of the existing extent
2981 * entries, then we first need to move the extent records beginning
2982 * at idx + ext_diff up in the list to overwrite the records being
2983 * removed, then remove the extra space via kmem_realloc.
2986 xfs_iext_remove_direct(
2987 xfs_ifork_t
*ifp
, /* inode fork pointer */
2988 xfs_extnum_t idx
, /* index to begin removing exts */
2989 int ext_diff
) /* number of extents to remove */
2991 xfs_extnum_t nextents
; /* number of extents in file */
2992 int new_size
; /* size of extents after removal */
2994 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
2995 new_size
= ifp
->if_bytes
-
2996 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
2997 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2999 if (new_size
== 0) {
3000 xfs_iext_destroy(ifp
);
3003 /* Move extents up in the list (if needed) */
3004 if (idx
+ ext_diff
< nextents
) {
3005 memmove(&ifp
->if_u1
.if_extents
[idx
],
3006 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3007 (nextents
- (idx
+ ext_diff
)) *
3008 sizeof(xfs_bmbt_rec_t
));
3010 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3011 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3013 * Reallocate the direct extent list. If the extents
3014 * will fit inside the inode then xfs_iext_realloc_direct
3015 * will switch from direct to inline extent allocation
3018 xfs_iext_realloc_direct(ifp
, new_size
);
3019 ifp
->if_bytes
= new_size
;
3023 * This is called when incore extents are being removed from the
3024 * indirection array and the extents being removed span multiple extent
3025 * buffers. The idx parameter contains the file extent index where we
3026 * want to begin removing extents, and the count parameter contains
3027 * how many extents need to be removed.
3029 * |-------| |-------|
3030 * | nex1 | | | nex1 - number of extents before idx
3031 * |-------| | count |
3032 * | | | | count - number of extents being removed at idx
3033 * | count | |-------|
3034 * | | | nex2 | nex2 - number of extents after idx + count
3035 * |-------| |-------|
3038 xfs_iext_remove_indirect(
3039 xfs_ifork_t
*ifp
, /* inode fork pointer */
3040 xfs_extnum_t idx
, /* index to begin removing extents */
3041 int count
) /* number of extents to remove */
3043 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3044 int erp_idx
= 0; /* indirection array index */
3045 xfs_extnum_t ext_cnt
; /* extents left to remove */
3046 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3047 xfs_extnum_t nex1
; /* number of extents before idx */
3048 xfs_extnum_t nex2
; /* extents after idx + count */
3049 int page_idx
= idx
; /* index in target extent list */
3051 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3052 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3053 ASSERT(erp
!= NULL
);
3057 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3058 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3060 * Check for deletion of entire list;
3061 * xfs_iext_irec_remove() updates extent offsets.
3063 if (ext_diff
== erp
->er_extcount
) {
3064 xfs_iext_irec_remove(ifp
, erp_idx
);
3065 ext_cnt
-= ext_diff
;
3068 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3070 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3077 /* Move extents up (if needed) */
3079 memmove(&erp
->er_extbuf
[nex1
],
3080 &erp
->er_extbuf
[nex1
+ ext_diff
],
3081 nex2
* sizeof(xfs_bmbt_rec_t
));
3083 /* Zero out rest of page */
3084 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3085 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3086 /* Update remaining counters */
3087 erp
->er_extcount
-= ext_diff
;
3088 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3089 ext_cnt
-= ext_diff
;
3094 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3095 xfs_iext_irec_compact(ifp
);
3099 * Create, destroy, or resize a linear (direct) block of extents.
3102 xfs_iext_realloc_direct(
3103 xfs_ifork_t
*ifp
, /* inode fork pointer */
3104 int new_size
) /* new size of extents */
3106 int rnew_size
; /* real new size of extents */
3108 rnew_size
= new_size
;
3110 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3111 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3112 (new_size
!= ifp
->if_real_bytes
)));
3114 /* Free extent records */
3115 if (new_size
== 0) {
3116 xfs_iext_destroy(ifp
);
3118 /* Resize direct extent list and zero any new bytes */
3119 else if (ifp
->if_real_bytes
) {
3120 /* Check if extents will fit inside the inode */
3121 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3122 xfs_iext_direct_to_inline(ifp
, new_size
/
3123 (uint
)sizeof(xfs_bmbt_rec_t
));
3124 ifp
->if_bytes
= new_size
;
3127 if (!is_power_of_2(new_size
)){
3128 rnew_size
= roundup_pow_of_two(new_size
);
3130 if (rnew_size
!= ifp
->if_real_bytes
) {
3131 ifp
->if_u1
.if_extents
=
3132 kmem_realloc(ifp
->if_u1
.if_extents
,
3134 ifp
->if_real_bytes
, KM_NOFS
);
3136 if (rnew_size
> ifp
->if_real_bytes
) {
3137 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3138 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3139 rnew_size
- ifp
->if_real_bytes
);
3143 * Switch from the inline extent buffer to a direct
3144 * extent list. Be sure to include the inline extent
3145 * bytes in new_size.
3148 new_size
+= ifp
->if_bytes
;
3149 if (!is_power_of_2(new_size
)) {
3150 rnew_size
= roundup_pow_of_two(new_size
);
3152 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3154 ifp
->if_real_bytes
= rnew_size
;
3155 ifp
->if_bytes
= new_size
;
3159 * Switch from linear (direct) extent records to inline buffer.
3162 xfs_iext_direct_to_inline(
3163 xfs_ifork_t
*ifp
, /* inode fork pointer */
3164 xfs_extnum_t nextents
) /* number of extents in file */
3166 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3167 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3169 * The inline buffer was zeroed when we switched
3170 * from inline to direct extent allocation mode,
3171 * so we don't need to clear it here.
3173 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3174 nextents
* sizeof(xfs_bmbt_rec_t
));
3175 kmem_free(ifp
->if_u1
.if_extents
);
3176 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3177 ifp
->if_real_bytes
= 0;
3181 * Switch from inline buffer to linear (direct) extent records.
3182 * new_size should already be rounded up to the next power of 2
3183 * by the caller (when appropriate), so use new_size as it is.
3184 * However, since new_size may be rounded up, we can't update
3185 * if_bytes here. It is the caller's responsibility to update
3186 * if_bytes upon return.
3189 xfs_iext_inline_to_direct(
3190 xfs_ifork_t
*ifp
, /* inode fork pointer */
3191 int new_size
) /* number of extents in file */
3193 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3194 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3195 if (ifp
->if_bytes
) {
3196 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3198 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3199 sizeof(xfs_bmbt_rec_t
));
3201 ifp
->if_real_bytes
= new_size
;
3205 * Resize an extent indirection array to new_size bytes.
3208 xfs_iext_realloc_indirect(
3209 xfs_ifork_t
*ifp
, /* inode fork pointer */
3210 int new_size
) /* new indirection array size */
3212 int nlists
; /* number of irec's (ex lists) */
3213 int size
; /* current indirection array size */
3215 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3216 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3217 size
= nlists
* sizeof(xfs_ext_irec_t
);
3218 ASSERT(ifp
->if_real_bytes
);
3219 ASSERT((new_size
>= 0) && (new_size
!= size
));
3220 if (new_size
== 0) {
3221 xfs_iext_destroy(ifp
);
3223 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3224 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3225 new_size
, size
, KM_NOFS
);
3230 * Switch from indirection array to linear (direct) extent allocations.
3233 xfs_iext_indirect_to_direct(
3234 xfs_ifork_t
*ifp
) /* inode fork pointer */
3236 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3237 xfs_extnum_t nextents
; /* number of extents in file */
3238 int size
; /* size of file extents */
3240 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3241 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3242 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3243 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3245 xfs_iext_irec_compact_pages(ifp
);
3246 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3248 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3249 kmem_free(ifp
->if_u1
.if_ext_irec
);
3250 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3251 ifp
->if_u1
.if_extents
= ep
;
3252 ifp
->if_bytes
= size
;
3253 if (nextents
< XFS_LINEAR_EXTS
) {
3254 xfs_iext_realloc_direct(ifp
, size
);
3259 * Free incore file extents.
3263 xfs_ifork_t
*ifp
) /* inode fork pointer */
3265 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3269 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3270 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3271 xfs_iext_irec_remove(ifp
, erp_idx
);
3273 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3274 } else if (ifp
->if_real_bytes
) {
3275 kmem_free(ifp
->if_u1
.if_extents
);
3276 } else if (ifp
->if_bytes
) {
3277 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3278 sizeof(xfs_bmbt_rec_t
));
3280 ifp
->if_u1
.if_extents
= NULL
;
3281 ifp
->if_real_bytes
= 0;
3286 * Return a pointer to the extent record for file system block bno.
3288 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3289 xfs_iext_bno_to_ext(
3290 xfs_ifork_t
*ifp
, /* inode fork pointer */
3291 xfs_fileoff_t bno
, /* block number to search for */
3292 xfs_extnum_t
*idxp
) /* index of target extent */
3294 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3295 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3296 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3297 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3298 int high
; /* upper boundary in search */
3299 xfs_extnum_t idx
= 0; /* index of target extent */
3300 int low
; /* lower boundary in search */
3301 xfs_extnum_t nextents
; /* number of file extents */
3302 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3304 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3305 if (nextents
== 0) {
3310 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3311 /* Find target extent list */
3313 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3314 base
= erp
->er_extbuf
;
3315 high
= erp
->er_extcount
- 1;
3317 base
= ifp
->if_u1
.if_extents
;
3318 high
= nextents
- 1;
3320 /* Binary search extent records */
3321 while (low
<= high
) {
3322 idx
= (low
+ high
) >> 1;
3324 startoff
= xfs_bmbt_get_startoff(ep
);
3325 blockcount
= xfs_bmbt_get_blockcount(ep
);
3326 if (bno
< startoff
) {
3328 } else if (bno
>= startoff
+ blockcount
) {
3331 /* Convert back to file-based extent index */
3332 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3333 idx
+= erp
->er_extoff
;
3339 /* Convert back to file-based extent index */
3340 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3341 idx
+= erp
->er_extoff
;
3343 if (bno
>= startoff
+ blockcount
) {
3344 if (++idx
== nextents
) {
3347 ep
= xfs_iext_get_ext(ifp
, idx
);
3355 * Return a pointer to the indirection array entry containing the
3356 * extent record for filesystem block bno. Store the index of the
3357 * target irec in *erp_idxp.
3359 xfs_ext_irec_t
* /* pointer to found extent record */
3360 xfs_iext_bno_to_irec(
3361 xfs_ifork_t
*ifp
, /* inode fork pointer */
3362 xfs_fileoff_t bno
, /* block number to search for */
3363 int *erp_idxp
) /* irec index of target ext list */
3365 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3366 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3367 int erp_idx
; /* indirection array index */
3368 int nlists
; /* number of extent irec's (lists) */
3369 int high
; /* binary search upper limit */
3370 int low
; /* binary search lower limit */
3372 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3373 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3377 while (low
<= high
) {
3378 erp_idx
= (low
+ high
) >> 1;
3379 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3380 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3381 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3383 } else if (erp_next
&& bno
>=
3384 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3390 *erp_idxp
= erp_idx
;
3395 * Return a pointer to the indirection array entry containing the
3396 * extent record at file extent index *idxp. Store the index of the
3397 * target irec in *erp_idxp and store the page index of the target
3398 * extent record in *idxp.
3401 xfs_iext_idx_to_irec(
3402 xfs_ifork_t
*ifp
, /* inode fork pointer */
3403 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
3404 int *erp_idxp
, /* pointer to target irec */
3405 int realloc
) /* new bytes were just added */
3407 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
3408 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
3409 int erp_idx
; /* indirection array index */
3410 int nlists
; /* number of irec's (ex lists) */
3411 int high
; /* binary search upper limit */
3412 int low
; /* binary search lower limit */
3413 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
3415 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3416 ASSERT(page_idx
>= 0);
3417 ASSERT(page_idx
<= ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
));
3418 ASSERT(page_idx
< ifp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) || realloc
);
3420 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3425 /* Binary search extent irec's */
3426 while (low
<= high
) {
3427 erp_idx
= (low
+ high
) >> 1;
3428 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3429 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
3430 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
3431 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
3433 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
3434 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3437 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
3438 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
3442 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
3445 page_idx
-= erp
->er_extoff
;
3450 *erp_idxp
= erp_idx
;
3455 * Allocate and initialize an indirection array once the space needed
3456 * for incore extents increases above XFS_IEXT_BUFSZ.
3460 xfs_ifork_t
*ifp
) /* inode fork pointer */
3462 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3463 xfs_extnum_t nextents
; /* number of extents in file */
3465 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3466 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3467 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3469 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
3471 if (nextents
== 0) {
3472 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3473 } else if (!ifp
->if_real_bytes
) {
3474 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
3475 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
3476 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
3478 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
3479 erp
->er_extcount
= nextents
;
3482 ifp
->if_flags
|= XFS_IFEXTIREC
;
3483 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
3484 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
3485 ifp
->if_u1
.if_ext_irec
= erp
;
3491 * Allocate and initialize a new entry in the indirection array.
3495 xfs_ifork_t
*ifp
, /* inode fork pointer */
3496 int erp_idx
) /* index for new irec */
3498 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3499 int i
; /* loop counter */
3500 int nlists
; /* number of irec's (ex lists) */
3502 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3503 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3505 /* Resize indirection array */
3506 xfs_iext_realloc_indirect(ifp
, ++nlists
*
3507 sizeof(xfs_ext_irec_t
));
3509 * Move records down in the array so the
3510 * new page can use erp_idx.
3512 erp
= ifp
->if_u1
.if_ext_irec
;
3513 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
3514 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
3516 ASSERT(i
== erp_idx
);
3518 /* Initialize new extent record */
3519 erp
= ifp
->if_u1
.if_ext_irec
;
3520 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
3521 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3522 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
3523 erp
[erp_idx
].er_extcount
= 0;
3524 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
3525 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
3526 return (&erp
[erp_idx
]);
3530 * Remove a record from the indirection array.
3533 xfs_iext_irec_remove(
3534 xfs_ifork_t
*ifp
, /* inode fork pointer */
3535 int erp_idx
) /* irec index to remove */
3537 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3538 int i
; /* loop counter */
3539 int nlists
; /* number of irec's (ex lists) */
3541 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3542 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3543 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3544 if (erp
->er_extbuf
) {
3545 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
3547 kmem_free(erp
->er_extbuf
);
3549 /* Compact extent records */
3550 erp
= ifp
->if_u1
.if_ext_irec
;
3551 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
3552 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
3555 * Manually free the last extent record from the indirection
3556 * array. A call to xfs_iext_realloc_indirect() with a size
3557 * of zero would result in a call to xfs_iext_destroy() which
3558 * would in turn call this function again, creating a nasty
3562 xfs_iext_realloc_indirect(ifp
,
3563 nlists
* sizeof(xfs_ext_irec_t
));
3565 kmem_free(ifp
->if_u1
.if_ext_irec
);
3567 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
3571 * This is called to clean up large amounts of unused memory allocated
3572 * by the indirection array. Before compacting anything though, verify
3573 * that the indirection array is still needed and switch back to the
3574 * linear extent list (or even the inline buffer) if possible. The
3575 * compaction policy is as follows:
3577 * Full Compaction: Extents fit into a single page (or inline buffer)
3578 * Partial Compaction: Extents occupy less than 50% of allocated space
3579 * No Compaction: Extents occupy at least 50% of allocated space
3582 xfs_iext_irec_compact(
3583 xfs_ifork_t
*ifp
) /* inode fork pointer */
3585 xfs_extnum_t nextents
; /* number of extents in file */
3586 int nlists
; /* number of irec's (ex lists) */
3588 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3589 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3590 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3592 if (nextents
== 0) {
3593 xfs_iext_destroy(ifp
);
3594 } else if (nextents
<= XFS_INLINE_EXTS
) {
3595 xfs_iext_indirect_to_direct(ifp
);
3596 xfs_iext_direct_to_inline(ifp
, nextents
);
3597 } else if (nextents
<= XFS_LINEAR_EXTS
) {
3598 xfs_iext_indirect_to_direct(ifp
);
3599 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
3600 xfs_iext_irec_compact_pages(ifp
);
3605 * Combine extents from neighboring extent pages.
3608 xfs_iext_irec_compact_pages(
3609 xfs_ifork_t
*ifp
) /* inode fork pointer */
3611 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
3612 int erp_idx
= 0; /* indirection array index */
3613 int nlists
; /* number of irec's (ex lists) */
3615 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3616 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3617 while (erp_idx
< nlists
- 1) {
3618 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3620 if (erp_next
->er_extcount
<=
3621 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
3622 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
3623 erp_next
->er_extbuf
, erp_next
->er_extcount
*
3624 sizeof(xfs_bmbt_rec_t
));
3625 erp
->er_extcount
+= erp_next
->er_extcount
;
3627 * Free page before removing extent record
3628 * so er_extoffs don't get modified in
3629 * xfs_iext_irec_remove.
3631 kmem_free(erp_next
->er_extbuf
);
3632 erp_next
->er_extbuf
= NULL
;
3633 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
3634 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3642 * This is called to update the er_extoff field in the indirection
3643 * array when extents have been added or removed from one of the
3644 * extent lists. erp_idx contains the irec index to begin updating
3645 * at and ext_diff contains the number of extents that were added
3649 xfs_iext_irec_update_extoffs(
3650 xfs_ifork_t
*ifp
, /* inode fork pointer */
3651 int erp_idx
, /* irec index to update */
3652 int ext_diff
) /* number of new extents */
3654 int i
; /* loop counter */
3655 int nlists
; /* number of irec's (ex lists */
3657 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3658 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3659 for (i
= erp_idx
; i
< nlists
; i
++) {
3660 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;