initial commit with v3.6.7
[linux-3.6.7-moxart.git] / fs / xfs / xfs_inode.c
blob2778258fcfa239e07dbc79edf6cb4750b7e13dd8
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_trace.h"
49 kmem_zone_t *xfs_ifork_zone;
50 kmem_zone_t *xfs_inode_zone;
53 * Used in xfs_itruncate_extents(). This is the maximum number of extents
54 * freed from a file in a single transaction.
56 #define XFS_ITRUNC_MAX_EXTENTS 2
58 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
59 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
60 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
61 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 * helper function to extract extent size hint from inode
66 xfs_extlen_t
67 xfs_get_extsz_hint(
68 struct xfs_inode *ip)
70 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
71 return ip->i_d.di_extsize;
72 if (XFS_IS_REALTIME_INODE(ip))
73 return ip->i_mount->m_sb.sb_rextsize;
74 return 0;
77 #ifdef DEBUG
79 * Make sure that the extents in the given memory buffer
80 * are valid.
82 STATIC void
83 xfs_validate_extents(
84 xfs_ifork_t *ifp,
85 int nrecs,
86 xfs_exntfmt_t fmt)
88 xfs_bmbt_irec_t irec;
89 xfs_bmbt_rec_host_t rec;
90 int i;
92 for (i = 0; i < nrecs; i++) {
93 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
94 rec.l0 = get_unaligned(&ep->l0);
95 rec.l1 = get_unaligned(&ep->l1);
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
101 #else /* DEBUG */
102 #define xfs_validate_extents(ifp, nrecs, fmt)
103 #endif /* DEBUG */
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
109 #if defined(DEBUG)
110 void
111 xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
115 int i;
116 int j;
117 xfs_dinode_t *dip;
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_alert(mp,
126 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
132 #endif
135 * This routine is called to map an inode to the buffer containing the on-disk
136 * version of the inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
138 * pointer to the on-disk inode within that buffer.
140 * If a non-zero error is returned, then the contents of bpp and dipp are
141 * undefined.
144 xfs_imap_to_bp(
145 struct xfs_mount *mp,
146 struct xfs_trans *tp,
147 struct xfs_imap *imap,
148 struct xfs_dinode **dipp,
149 struct xfs_buf **bpp,
150 uint buf_flags,
151 uint iget_flags)
153 struct xfs_buf *bp;
154 int error;
155 int i;
156 int ni;
158 buf_flags |= XBF_UNMAPPED;
159 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
160 (int)imap->im_len, buf_flags, &bp);
161 if (error) {
162 if (error != EAGAIN) {
163 xfs_warn(mp,
164 "%s: xfs_trans_read_buf() returned error %d.",
165 __func__, error);
166 } else {
167 ASSERT(buf_flags & XBF_TRYLOCK);
169 return error;
173 * Validate the magic number and version of every inode in the buffer
174 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
176 #ifdef DEBUG
177 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
178 #else /* usual case */
179 ni = 1;
180 #endif
182 for (i = 0; i < ni; i++) {
183 int di_ok;
184 xfs_dinode_t *dip;
186 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
187 (i << mp->m_sb.sb_inodelog));
188 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
189 XFS_DINODE_GOOD_VERSION(dip->di_version);
190 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
191 XFS_ERRTAG_ITOBP_INOTOBP,
192 XFS_RANDOM_ITOBP_INOTOBP))) {
193 if (iget_flags & XFS_IGET_UNTRUSTED) {
194 xfs_trans_brelse(tp, bp);
195 return XFS_ERROR(EINVAL);
197 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
198 mp, dip);
199 #ifdef DEBUG
200 xfs_emerg(mp,
201 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
202 (unsigned long long)imap->im_blkno, i,
203 be16_to_cpu(dip->di_magic));
204 ASSERT(0);
205 #endif
206 xfs_trans_brelse(tp, bp);
207 return XFS_ERROR(EFSCORRUPTED);
211 xfs_inobp_check(mp, bp);
213 *bpp = bp;
214 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
215 return 0;
219 * Move inode type and inode format specific information from the
220 * on-disk inode to the in-core inode. For fifos, devs, and sockets
221 * this means set if_rdev to the proper value. For files, directories,
222 * and symlinks this means to bring in the in-line data or extent
223 * pointers. For a file in B-tree format, only the root is immediately
224 * brought in-core. The rest will be in-lined in if_extents when it
225 * is first referenced (see xfs_iread_extents()).
227 STATIC int
228 xfs_iformat(
229 xfs_inode_t *ip,
230 xfs_dinode_t *dip)
232 xfs_attr_shortform_t *atp;
233 int size;
234 int error = 0;
235 xfs_fsize_t di_size;
237 if (unlikely(be32_to_cpu(dip->di_nextents) +
238 be16_to_cpu(dip->di_anextents) >
239 be64_to_cpu(dip->di_nblocks))) {
240 xfs_warn(ip->i_mount,
241 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
242 (unsigned long long)ip->i_ino,
243 (int)(be32_to_cpu(dip->di_nextents) +
244 be16_to_cpu(dip->di_anextents)),
245 (unsigned long long)
246 be64_to_cpu(dip->di_nblocks));
247 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
248 ip->i_mount, dip);
249 return XFS_ERROR(EFSCORRUPTED);
252 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
253 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
254 (unsigned long long)ip->i_ino,
255 dip->di_forkoff);
256 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
257 ip->i_mount, dip);
258 return XFS_ERROR(EFSCORRUPTED);
261 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
262 !ip->i_mount->m_rtdev_targp)) {
263 xfs_warn(ip->i_mount,
264 "corrupt dinode %Lu, has realtime flag set.",
265 ip->i_ino);
266 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
267 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
268 return XFS_ERROR(EFSCORRUPTED);
271 switch (ip->i_d.di_mode & S_IFMT) {
272 case S_IFIFO:
273 case S_IFCHR:
274 case S_IFBLK:
275 case S_IFSOCK:
276 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
277 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
278 ip->i_mount, dip);
279 return XFS_ERROR(EFSCORRUPTED);
281 ip->i_d.di_size = 0;
282 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
283 break;
285 case S_IFREG:
286 case S_IFLNK:
287 case S_IFDIR:
288 switch (dip->di_format) {
289 case XFS_DINODE_FMT_LOCAL:
291 * no local regular files yet
293 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
294 xfs_warn(ip->i_mount,
295 "corrupt inode %Lu (local format for regular file).",
296 (unsigned long long) ip->i_ino);
297 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
298 XFS_ERRLEVEL_LOW,
299 ip->i_mount, dip);
300 return XFS_ERROR(EFSCORRUPTED);
303 di_size = be64_to_cpu(dip->di_size);
304 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
305 xfs_warn(ip->i_mount,
306 "corrupt inode %Lu (bad size %Ld for local inode).",
307 (unsigned long long) ip->i_ino,
308 (long long) di_size);
309 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
310 XFS_ERRLEVEL_LOW,
311 ip->i_mount, dip);
312 return XFS_ERROR(EFSCORRUPTED);
315 size = (int)di_size;
316 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
317 break;
318 case XFS_DINODE_FMT_EXTENTS:
319 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
320 break;
321 case XFS_DINODE_FMT_BTREE:
322 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
323 break;
324 default:
325 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
326 ip->i_mount);
327 return XFS_ERROR(EFSCORRUPTED);
329 break;
331 default:
332 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
333 return XFS_ERROR(EFSCORRUPTED);
335 if (error) {
336 return error;
338 if (!XFS_DFORK_Q(dip))
339 return 0;
341 ASSERT(ip->i_afp == NULL);
342 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
344 switch (dip->di_aformat) {
345 case XFS_DINODE_FMT_LOCAL:
346 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
347 size = be16_to_cpu(atp->hdr.totsize);
349 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
350 xfs_warn(ip->i_mount,
351 "corrupt inode %Lu (bad attr fork size %Ld).",
352 (unsigned long long) ip->i_ino,
353 (long long) size);
354 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
355 XFS_ERRLEVEL_LOW,
356 ip->i_mount, dip);
357 return XFS_ERROR(EFSCORRUPTED);
360 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
361 break;
362 case XFS_DINODE_FMT_EXTENTS:
363 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
364 break;
365 case XFS_DINODE_FMT_BTREE:
366 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
367 break;
368 default:
369 error = XFS_ERROR(EFSCORRUPTED);
370 break;
372 if (error) {
373 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
374 ip->i_afp = NULL;
375 xfs_idestroy_fork(ip, XFS_DATA_FORK);
377 return error;
381 * The file is in-lined in the on-disk inode.
382 * If it fits into if_inline_data, then copy
383 * it there, otherwise allocate a buffer for it
384 * and copy the data there. Either way, set
385 * if_data to point at the data.
386 * If we allocate a buffer for the data, make
387 * sure that its size is a multiple of 4 and
388 * record the real size in i_real_bytes.
390 STATIC int
391 xfs_iformat_local(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip,
394 int whichfork,
395 int size)
397 xfs_ifork_t *ifp;
398 int real_size;
401 * If the size is unreasonable, then something
402 * is wrong and we just bail out rather than crash in
403 * kmem_alloc() or memcpy() below.
405 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
406 xfs_warn(ip->i_mount,
407 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
408 (unsigned long long) ip->i_ino, size,
409 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
410 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
411 ip->i_mount, dip);
412 return XFS_ERROR(EFSCORRUPTED);
414 ifp = XFS_IFORK_PTR(ip, whichfork);
415 real_size = 0;
416 if (size == 0)
417 ifp->if_u1.if_data = NULL;
418 else if (size <= sizeof(ifp->if_u2.if_inline_data))
419 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
420 else {
421 real_size = roundup(size, 4);
422 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
424 ifp->if_bytes = size;
425 ifp->if_real_bytes = real_size;
426 if (size)
427 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
428 ifp->if_flags &= ~XFS_IFEXTENTS;
429 ifp->if_flags |= XFS_IFINLINE;
430 return 0;
434 * The file consists of a set of extents all
435 * of which fit into the on-disk inode.
436 * If there are few enough extents to fit into
437 * the if_inline_ext, then copy them there.
438 * Otherwise allocate a buffer for them and copy
439 * them into it. Either way, set if_extents
440 * to point at the extents.
442 STATIC int
443 xfs_iformat_extents(
444 xfs_inode_t *ip,
445 xfs_dinode_t *dip,
446 int whichfork)
448 xfs_bmbt_rec_t *dp;
449 xfs_ifork_t *ifp;
450 int nex;
451 int size;
452 int i;
454 ifp = XFS_IFORK_PTR(ip, whichfork);
455 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
456 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
459 * If the number of extents is unreasonable, then something
460 * is wrong and we just bail out rather than crash in
461 * kmem_alloc() or memcpy() below.
463 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
464 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
465 (unsigned long long) ip->i_ino, nex);
466 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
467 ip->i_mount, dip);
468 return XFS_ERROR(EFSCORRUPTED);
471 ifp->if_real_bytes = 0;
472 if (nex == 0)
473 ifp->if_u1.if_extents = NULL;
474 else if (nex <= XFS_INLINE_EXTS)
475 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
476 else
477 xfs_iext_add(ifp, 0, nex);
479 ifp->if_bytes = size;
480 if (size) {
481 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
482 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
483 for (i = 0; i < nex; i++, dp++) {
484 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
485 ep->l0 = get_unaligned_be64(&dp->l0);
486 ep->l1 = get_unaligned_be64(&dp->l1);
488 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
489 if (whichfork != XFS_DATA_FORK ||
490 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
491 if (unlikely(xfs_check_nostate_extents(
492 ifp, 0, nex))) {
493 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
494 XFS_ERRLEVEL_LOW,
495 ip->i_mount);
496 return XFS_ERROR(EFSCORRUPTED);
499 ifp->if_flags |= XFS_IFEXTENTS;
500 return 0;
504 * The file has too many extents to fit into
505 * the inode, so they are in B-tree format.
506 * Allocate a buffer for the root of the B-tree
507 * and copy the root into it. The i_extents
508 * field will remain NULL until all of the
509 * extents are read in (when they are needed).
511 STATIC int
512 xfs_iformat_btree(
513 xfs_inode_t *ip,
514 xfs_dinode_t *dip,
515 int whichfork)
517 xfs_bmdr_block_t *dfp;
518 xfs_ifork_t *ifp;
519 /* REFERENCED */
520 int nrecs;
521 int size;
523 ifp = XFS_IFORK_PTR(ip, whichfork);
524 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
525 size = XFS_BMAP_BROOT_SPACE(dfp);
526 nrecs = be16_to_cpu(dfp->bb_numrecs);
529 * blow out if -- fork has less extents than can fit in
530 * fork (fork shouldn't be a btree format), root btree
531 * block has more records than can fit into the fork,
532 * or the number of extents is greater than the number of
533 * blocks.
535 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
536 XFS_IFORK_MAXEXT(ip, whichfork) ||
537 XFS_BMDR_SPACE_CALC(nrecs) >
538 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
539 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
540 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
541 (unsigned long long) ip->i_ino);
542 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
543 ip->i_mount, dip);
544 return XFS_ERROR(EFSCORRUPTED);
547 ifp->if_broot_bytes = size;
548 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
549 ASSERT(ifp->if_broot != NULL);
551 * Copy and convert from the on-disk structure
552 * to the in-memory structure.
554 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
555 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
556 ifp->if_broot, size);
557 ifp->if_flags &= ~XFS_IFEXTENTS;
558 ifp->if_flags |= XFS_IFBROOT;
560 return 0;
563 STATIC void
564 xfs_dinode_from_disk(
565 xfs_icdinode_t *to,
566 xfs_dinode_t *from)
568 to->di_magic = be16_to_cpu(from->di_magic);
569 to->di_mode = be16_to_cpu(from->di_mode);
570 to->di_version = from ->di_version;
571 to->di_format = from->di_format;
572 to->di_onlink = be16_to_cpu(from->di_onlink);
573 to->di_uid = be32_to_cpu(from->di_uid);
574 to->di_gid = be32_to_cpu(from->di_gid);
575 to->di_nlink = be32_to_cpu(from->di_nlink);
576 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
577 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
578 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
579 to->di_flushiter = be16_to_cpu(from->di_flushiter);
580 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
581 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
582 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
583 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
584 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
585 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
586 to->di_size = be64_to_cpu(from->di_size);
587 to->di_nblocks = be64_to_cpu(from->di_nblocks);
588 to->di_extsize = be32_to_cpu(from->di_extsize);
589 to->di_nextents = be32_to_cpu(from->di_nextents);
590 to->di_anextents = be16_to_cpu(from->di_anextents);
591 to->di_forkoff = from->di_forkoff;
592 to->di_aformat = from->di_aformat;
593 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
594 to->di_dmstate = be16_to_cpu(from->di_dmstate);
595 to->di_flags = be16_to_cpu(from->di_flags);
596 to->di_gen = be32_to_cpu(from->di_gen);
599 void
600 xfs_dinode_to_disk(
601 xfs_dinode_t *to,
602 xfs_icdinode_t *from)
604 to->di_magic = cpu_to_be16(from->di_magic);
605 to->di_mode = cpu_to_be16(from->di_mode);
606 to->di_version = from ->di_version;
607 to->di_format = from->di_format;
608 to->di_onlink = cpu_to_be16(from->di_onlink);
609 to->di_uid = cpu_to_be32(from->di_uid);
610 to->di_gid = cpu_to_be32(from->di_gid);
611 to->di_nlink = cpu_to_be32(from->di_nlink);
612 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
613 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
614 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
615 to->di_flushiter = cpu_to_be16(from->di_flushiter);
616 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
617 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
618 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
619 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
620 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
621 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
622 to->di_size = cpu_to_be64(from->di_size);
623 to->di_nblocks = cpu_to_be64(from->di_nblocks);
624 to->di_extsize = cpu_to_be32(from->di_extsize);
625 to->di_nextents = cpu_to_be32(from->di_nextents);
626 to->di_anextents = cpu_to_be16(from->di_anextents);
627 to->di_forkoff = from->di_forkoff;
628 to->di_aformat = from->di_aformat;
629 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
630 to->di_dmstate = cpu_to_be16(from->di_dmstate);
631 to->di_flags = cpu_to_be16(from->di_flags);
632 to->di_gen = cpu_to_be32(from->di_gen);
635 STATIC uint
636 _xfs_dic2xflags(
637 __uint16_t di_flags)
639 uint flags = 0;
641 if (di_flags & XFS_DIFLAG_ANY) {
642 if (di_flags & XFS_DIFLAG_REALTIME)
643 flags |= XFS_XFLAG_REALTIME;
644 if (di_flags & XFS_DIFLAG_PREALLOC)
645 flags |= XFS_XFLAG_PREALLOC;
646 if (di_flags & XFS_DIFLAG_IMMUTABLE)
647 flags |= XFS_XFLAG_IMMUTABLE;
648 if (di_flags & XFS_DIFLAG_APPEND)
649 flags |= XFS_XFLAG_APPEND;
650 if (di_flags & XFS_DIFLAG_SYNC)
651 flags |= XFS_XFLAG_SYNC;
652 if (di_flags & XFS_DIFLAG_NOATIME)
653 flags |= XFS_XFLAG_NOATIME;
654 if (di_flags & XFS_DIFLAG_NODUMP)
655 flags |= XFS_XFLAG_NODUMP;
656 if (di_flags & XFS_DIFLAG_RTINHERIT)
657 flags |= XFS_XFLAG_RTINHERIT;
658 if (di_flags & XFS_DIFLAG_PROJINHERIT)
659 flags |= XFS_XFLAG_PROJINHERIT;
660 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
661 flags |= XFS_XFLAG_NOSYMLINKS;
662 if (di_flags & XFS_DIFLAG_EXTSIZE)
663 flags |= XFS_XFLAG_EXTSIZE;
664 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
665 flags |= XFS_XFLAG_EXTSZINHERIT;
666 if (di_flags & XFS_DIFLAG_NODEFRAG)
667 flags |= XFS_XFLAG_NODEFRAG;
668 if (di_flags & XFS_DIFLAG_FILESTREAM)
669 flags |= XFS_XFLAG_FILESTREAM;
672 return flags;
675 uint
676 xfs_ip2xflags(
677 xfs_inode_t *ip)
679 xfs_icdinode_t *dic = &ip->i_d;
681 return _xfs_dic2xflags(dic->di_flags) |
682 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
685 uint
686 xfs_dic2xflags(
687 xfs_dinode_t *dip)
689 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
690 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
694 * Read the disk inode attributes into the in-core inode structure.
697 xfs_iread(
698 xfs_mount_t *mp,
699 xfs_trans_t *tp,
700 xfs_inode_t *ip,
701 uint iget_flags)
703 xfs_buf_t *bp;
704 xfs_dinode_t *dip;
705 int error;
708 * Fill in the location information in the in-core inode.
710 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
711 if (error)
712 return error;
715 * Get pointers to the on-disk inode and the buffer containing it.
717 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
718 if (error)
719 return error;
722 * If we got something that isn't an inode it means someone
723 * (nfs or dmi) has a stale handle.
725 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
726 #ifdef DEBUG
727 xfs_alert(mp,
728 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
729 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
730 #endif /* DEBUG */
731 error = XFS_ERROR(EINVAL);
732 goto out_brelse;
736 * If the on-disk inode is already linked to a directory
737 * entry, copy all of the inode into the in-core inode.
738 * xfs_iformat() handles copying in the inode format
739 * specific information.
740 * Otherwise, just get the truly permanent information.
742 if (dip->di_mode) {
743 xfs_dinode_from_disk(&ip->i_d, dip);
744 error = xfs_iformat(ip, dip);
745 if (error) {
746 #ifdef DEBUG
747 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
748 __func__, error);
749 #endif /* DEBUG */
750 goto out_brelse;
752 } else {
753 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
754 ip->i_d.di_version = dip->di_version;
755 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
756 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
758 * Make sure to pull in the mode here as well in
759 * case the inode is released without being used.
760 * This ensures that xfs_inactive() will see that
761 * the inode is already free and not try to mess
762 * with the uninitialized part of it.
764 ip->i_d.di_mode = 0;
768 * The inode format changed when we moved the link count and
769 * made it 32 bits long. If this is an old format inode,
770 * convert it in memory to look like a new one. If it gets
771 * flushed to disk we will convert back before flushing or
772 * logging it. We zero out the new projid field and the old link
773 * count field. We'll handle clearing the pad field (the remains
774 * of the old uuid field) when we actually convert the inode to
775 * the new format. We don't change the version number so that we
776 * can distinguish this from a real new format inode.
778 if (ip->i_d.di_version == 1) {
779 ip->i_d.di_nlink = ip->i_d.di_onlink;
780 ip->i_d.di_onlink = 0;
781 xfs_set_projid(ip, 0);
784 ip->i_delayed_blks = 0;
787 * Mark the buffer containing the inode as something to keep
788 * around for a while. This helps to keep recently accessed
789 * meta-data in-core longer.
791 xfs_buf_set_ref(bp, XFS_INO_REF);
794 * Use xfs_trans_brelse() to release the buffer containing the
795 * on-disk inode, because it was acquired with xfs_trans_read_buf()
796 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
797 * brelse(). If we're within a transaction, then xfs_trans_brelse()
798 * will only release the buffer if it is not dirty within the
799 * transaction. It will be OK to release the buffer in this case,
800 * because inodes on disk are never destroyed and we will be
801 * locking the new in-core inode before putting it in the hash
802 * table where other processes can find it. Thus we don't have
803 * to worry about the inode being changed just because we released
804 * the buffer.
806 out_brelse:
807 xfs_trans_brelse(tp, bp);
808 return error;
812 * Read in extents from a btree-format inode.
813 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
816 xfs_iread_extents(
817 xfs_trans_t *tp,
818 xfs_inode_t *ip,
819 int whichfork)
821 int error;
822 xfs_ifork_t *ifp;
823 xfs_extnum_t nextents;
825 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
826 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
827 ip->i_mount);
828 return XFS_ERROR(EFSCORRUPTED);
830 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
831 ifp = XFS_IFORK_PTR(ip, whichfork);
834 * We know that the size is valid (it's checked in iformat_btree)
836 ifp->if_bytes = ifp->if_real_bytes = 0;
837 ifp->if_flags |= XFS_IFEXTENTS;
838 xfs_iext_add(ifp, 0, nextents);
839 error = xfs_bmap_read_extents(tp, ip, whichfork);
840 if (error) {
841 xfs_iext_destroy(ifp);
842 ifp->if_flags &= ~XFS_IFEXTENTS;
843 return error;
845 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
846 return 0;
850 * Allocate an inode on disk and return a copy of its in-core version.
851 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
852 * appropriately within the inode. The uid and gid for the inode are
853 * set according to the contents of the given cred structure.
855 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
856 * has a free inode available, call xfs_iget()
857 * to obtain the in-core version of the allocated inode. Finally,
858 * fill in the inode and log its initial contents. In this case,
859 * ialloc_context would be set to NULL and call_again set to false.
861 * If xfs_dialloc() does not have an available inode,
862 * it will replenish its supply by doing an allocation. Since we can
863 * only do one allocation within a transaction without deadlocks, we
864 * must commit the current transaction before returning the inode itself.
865 * In this case, therefore, we will set call_again to true and return.
866 * The caller should then commit the current transaction, start a new
867 * transaction, and call xfs_ialloc() again to actually get the inode.
869 * To ensure that some other process does not grab the inode that
870 * was allocated during the first call to xfs_ialloc(), this routine
871 * also returns the [locked] bp pointing to the head of the freelist
872 * as ialloc_context. The caller should hold this buffer across
873 * the commit and pass it back into this routine on the second call.
875 * If we are allocating quota inodes, we do not have a parent inode
876 * to attach to or associate with (i.e. pip == NULL) because they
877 * are not linked into the directory structure - they are attached
878 * directly to the superblock - and so have no parent.
881 xfs_ialloc(
882 xfs_trans_t *tp,
883 xfs_inode_t *pip,
884 umode_t mode,
885 xfs_nlink_t nlink,
886 xfs_dev_t rdev,
887 prid_t prid,
888 int okalloc,
889 xfs_buf_t **ialloc_context,
890 xfs_inode_t **ipp)
892 xfs_ino_t ino;
893 xfs_inode_t *ip;
894 uint flags;
895 int error;
896 timespec_t tv;
897 int filestreams = 0;
900 * Call the space management code to pick
901 * the on-disk inode to be allocated.
903 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
904 ialloc_context, &ino);
905 if (error)
906 return error;
907 if (*ialloc_context || ino == NULLFSINO) {
908 *ipp = NULL;
909 return 0;
911 ASSERT(*ialloc_context == NULL);
914 * Get the in-core inode with the lock held exclusively.
915 * This is because we're setting fields here we need
916 * to prevent others from looking at until we're done.
918 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
919 XFS_ILOCK_EXCL, &ip);
920 if (error)
921 return error;
922 ASSERT(ip != NULL);
924 ip->i_d.di_mode = mode;
925 ip->i_d.di_onlink = 0;
926 ip->i_d.di_nlink = nlink;
927 ASSERT(ip->i_d.di_nlink == nlink);
928 ip->i_d.di_uid = current_fsuid();
929 ip->i_d.di_gid = current_fsgid();
930 xfs_set_projid(ip, prid);
931 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
934 * If the superblock version is up to where we support new format
935 * inodes and this is currently an old format inode, then change
936 * the inode version number now. This way we only do the conversion
937 * here rather than here and in the flush/logging code.
939 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
940 ip->i_d.di_version == 1) {
941 ip->i_d.di_version = 2;
943 * We've already zeroed the old link count, the projid field,
944 * and the pad field.
949 * Project ids won't be stored on disk if we are using a version 1 inode.
951 if ((prid != 0) && (ip->i_d.di_version == 1))
952 xfs_bump_ino_vers2(tp, ip);
954 if (pip && XFS_INHERIT_GID(pip)) {
955 ip->i_d.di_gid = pip->i_d.di_gid;
956 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
957 ip->i_d.di_mode |= S_ISGID;
962 * If the group ID of the new file does not match the effective group
963 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
964 * (and only if the irix_sgid_inherit compatibility variable is set).
966 if ((irix_sgid_inherit) &&
967 (ip->i_d.di_mode & S_ISGID) &&
968 (!in_group_p((gid_t)ip->i_d.di_gid))) {
969 ip->i_d.di_mode &= ~S_ISGID;
972 ip->i_d.di_size = 0;
973 ip->i_d.di_nextents = 0;
974 ASSERT(ip->i_d.di_nblocks == 0);
976 nanotime(&tv);
977 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
978 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
979 ip->i_d.di_atime = ip->i_d.di_mtime;
980 ip->i_d.di_ctime = ip->i_d.di_mtime;
983 * di_gen will have been taken care of in xfs_iread.
985 ip->i_d.di_extsize = 0;
986 ip->i_d.di_dmevmask = 0;
987 ip->i_d.di_dmstate = 0;
988 ip->i_d.di_flags = 0;
989 flags = XFS_ILOG_CORE;
990 switch (mode & S_IFMT) {
991 case S_IFIFO:
992 case S_IFCHR:
993 case S_IFBLK:
994 case S_IFSOCK:
995 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
996 ip->i_df.if_u2.if_rdev = rdev;
997 ip->i_df.if_flags = 0;
998 flags |= XFS_ILOG_DEV;
999 break;
1000 case S_IFREG:
1002 * we can't set up filestreams until after the VFS inode
1003 * is set up properly.
1005 if (pip && xfs_inode_is_filestream(pip))
1006 filestreams = 1;
1007 /* fall through */
1008 case S_IFDIR:
1009 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1010 uint di_flags = 0;
1012 if (S_ISDIR(mode)) {
1013 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1014 di_flags |= XFS_DIFLAG_RTINHERIT;
1015 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1016 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1017 ip->i_d.di_extsize = pip->i_d.di_extsize;
1019 } else if (S_ISREG(mode)) {
1020 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1021 di_flags |= XFS_DIFLAG_REALTIME;
1022 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1023 di_flags |= XFS_DIFLAG_EXTSIZE;
1024 ip->i_d.di_extsize = pip->i_d.di_extsize;
1027 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1028 xfs_inherit_noatime)
1029 di_flags |= XFS_DIFLAG_NOATIME;
1030 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1031 xfs_inherit_nodump)
1032 di_flags |= XFS_DIFLAG_NODUMP;
1033 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1034 xfs_inherit_sync)
1035 di_flags |= XFS_DIFLAG_SYNC;
1036 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1037 xfs_inherit_nosymlinks)
1038 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1039 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1040 di_flags |= XFS_DIFLAG_PROJINHERIT;
1041 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1042 xfs_inherit_nodefrag)
1043 di_flags |= XFS_DIFLAG_NODEFRAG;
1044 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1045 di_flags |= XFS_DIFLAG_FILESTREAM;
1046 ip->i_d.di_flags |= di_flags;
1048 /* FALLTHROUGH */
1049 case S_IFLNK:
1050 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1051 ip->i_df.if_flags = XFS_IFEXTENTS;
1052 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1053 ip->i_df.if_u1.if_extents = NULL;
1054 break;
1055 default:
1056 ASSERT(0);
1059 * Attribute fork settings for new inode.
1061 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1062 ip->i_d.di_anextents = 0;
1065 * Log the new values stuffed into the inode.
1067 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1068 xfs_trans_log_inode(tp, ip, flags);
1070 /* now that we have an i_mode we can setup inode ops and unlock */
1071 xfs_setup_inode(ip);
1073 /* now we have set up the vfs inode we can associate the filestream */
1074 if (filestreams) {
1075 error = xfs_filestream_associate(pip, ip);
1076 if (error < 0)
1077 return -error;
1078 if (!error)
1079 xfs_iflags_set(ip, XFS_IFILESTREAM);
1082 *ipp = ip;
1083 return 0;
1087 * Free up the underlying blocks past new_size. The new size must be smaller
1088 * than the current size. This routine can be used both for the attribute and
1089 * data fork, and does not modify the inode size, which is left to the caller.
1091 * The transaction passed to this routine must have made a permanent log
1092 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1093 * given transaction and start new ones, so make sure everything involved in
1094 * the transaction is tidy before calling here. Some transaction will be
1095 * returned to the caller to be committed. The incoming transaction must
1096 * already include the inode, and both inode locks must be held exclusively.
1097 * The inode must also be "held" within the transaction. On return the inode
1098 * will be "held" within the returned transaction. This routine does NOT
1099 * require any disk space to be reserved for it within the transaction.
1101 * If we get an error, we must return with the inode locked and linked into the
1102 * current transaction. This keeps things simple for the higher level code,
1103 * because it always knows that the inode is locked and held in the transaction
1104 * that returns to it whether errors occur or not. We don't mark the inode
1105 * dirty on error so that transactions can be easily aborted if possible.
1108 xfs_itruncate_extents(
1109 struct xfs_trans **tpp,
1110 struct xfs_inode *ip,
1111 int whichfork,
1112 xfs_fsize_t new_size)
1114 struct xfs_mount *mp = ip->i_mount;
1115 struct xfs_trans *tp = *tpp;
1116 struct xfs_trans *ntp;
1117 xfs_bmap_free_t free_list;
1118 xfs_fsblock_t first_block;
1119 xfs_fileoff_t first_unmap_block;
1120 xfs_fileoff_t last_block;
1121 xfs_filblks_t unmap_len;
1122 int committed;
1123 int error = 0;
1124 int done = 0;
1126 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1127 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1128 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1129 ASSERT(new_size <= XFS_ISIZE(ip));
1130 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1131 ASSERT(ip->i_itemp != NULL);
1132 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1133 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1135 trace_xfs_itruncate_extents_start(ip, new_size);
1138 * Since it is possible for space to become allocated beyond
1139 * the end of the file (in a crash where the space is allocated
1140 * but the inode size is not yet updated), simply remove any
1141 * blocks which show up between the new EOF and the maximum
1142 * possible file size. If the first block to be removed is
1143 * beyond the maximum file size (ie it is the same as last_block),
1144 * then there is nothing to do.
1146 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1147 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1148 if (first_unmap_block == last_block)
1149 return 0;
1151 ASSERT(first_unmap_block < last_block);
1152 unmap_len = last_block - first_unmap_block + 1;
1153 while (!done) {
1154 xfs_bmap_init(&free_list, &first_block);
1155 error = xfs_bunmapi(tp, ip,
1156 first_unmap_block, unmap_len,
1157 xfs_bmapi_aflag(whichfork),
1158 XFS_ITRUNC_MAX_EXTENTS,
1159 &first_block, &free_list,
1160 &done);
1161 if (error)
1162 goto out_bmap_cancel;
1165 * Duplicate the transaction that has the permanent
1166 * reservation and commit the old transaction.
1168 error = xfs_bmap_finish(&tp, &free_list, &committed);
1169 if (committed)
1170 xfs_trans_ijoin(tp, ip, 0);
1171 if (error)
1172 goto out_bmap_cancel;
1174 if (committed) {
1176 * Mark the inode dirty so it will be logged and
1177 * moved forward in the log as part of every commit.
1179 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1182 ntp = xfs_trans_dup(tp);
1183 error = xfs_trans_commit(tp, 0);
1184 tp = ntp;
1186 xfs_trans_ijoin(tp, ip, 0);
1188 if (error)
1189 goto out;
1192 * Transaction commit worked ok so we can drop the extra ticket
1193 * reference that we gained in xfs_trans_dup()
1195 xfs_log_ticket_put(tp->t_ticket);
1196 error = xfs_trans_reserve(tp, 0,
1197 XFS_ITRUNCATE_LOG_RES(mp), 0,
1198 XFS_TRANS_PERM_LOG_RES,
1199 XFS_ITRUNCATE_LOG_COUNT);
1200 if (error)
1201 goto out;
1205 * Always re-log the inode so that our permanent transaction can keep
1206 * on rolling it forward in the log.
1208 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1210 trace_xfs_itruncate_extents_end(ip, new_size);
1212 out:
1213 *tpp = tp;
1214 return error;
1215 out_bmap_cancel:
1217 * If the bunmapi call encounters an error, return to the caller where
1218 * the transaction can be properly aborted. We just need to make sure
1219 * we're not holding any resources that we were not when we came in.
1221 xfs_bmap_cancel(&free_list);
1222 goto out;
1226 * This is called when the inode's link count goes to 0.
1227 * We place the on-disk inode on a list in the AGI. It
1228 * will be pulled from this list when the inode is freed.
1231 xfs_iunlink(
1232 xfs_trans_t *tp,
1233 xfs_inode_t *ip)
1235 xfs_mount_t *mp;
1236 xfs_agi_t *agi;
1237 xfs_dinode_t *dip;
1238 xfs_buf_t *agibp;
1239 xfs_buf_t *ibp;
1240 xfs_agino_t agino;
1241 short bucket_index;
1242 int offset;
1243 int error;
1245 ASSERT(ip->i_d.di_nlink == 0);
1246 ASSERT(ip->i_d.di_mode != 0);
1248 mp = tp->t_mountp;
1251 * Get the agi buffer first. It ensures lock ordering
1252 * on the list.
1254 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1255 if (error)
1256 return error;
1257 agi = XFS_BUF_TO_AGI(agibp);
1260 * Get the index into the agi hash table for the
1261 * list this inode will go on.
1263 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1264 ASSERT(agino != 0);
1265 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1266 ASSERT(agi->agi_unlinked[bucket_index]);
1267 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1269 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1271 * There is already another inode in the bucket we need
1272 * to add ourselves to. Add us at the front of the list.
1273 * Here we put the head pointer into our next pointer,
1274 * and then we fall through to point the head at us.
1276 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1277 0, 0);
1278 if (error)
1279 return error;
1281 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1282 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1283 offset = ip->i_imap.im_boffset +
1284 offsetof(xfs_dinode_t, di_next_unlinked);
1285 xfs_trans_inode_buf(tp, ibp);
1286 xfs_trans_log_buf(tp, ibp, offset,
1287 (offset + sizeof(xfs_agino_t) - 1));
1288 xfs_inobp_check(mp, ibp);
1292 * Point the bucket head pointer at the inode being inserted.
1294 ASSERT(agino != 0);
1295 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1296 offset = offsetof(xfs_agi_t, agi_unlinked) +
1297 (sizeof(xfs_agino_t) * bucket_index);
1298 xfs_trans_log_buf(tp, agibp, offset,
1299 (offset + sizeof(xfs_agino_t) - 1));
1300 return 0;
1304 * Pull the on-disk inode from the AGI unlinked list.
1306 STATIC int
1307 xfs_iunlink_remove(
1308 xfs_trans_t *tp,
1309 xfs_inode_t *ip)
1311 xfs_ino_t next_ino;
1312 xfs_mount_t *mp;
1313 xfs_agi_t *agi;
1314 xfs_dinode_t *dip;
1315 xfs_buf_t *agibp;
1316 xfs_buf_t *ibp;
1317 xfs_agnumber_t agno;
1318 xfs_agino_t agino;
1319 xfs_agino_t next_agino;
1320 xfs_buf_t *last_ibp;
1321 xfs_dinode_t *last_dip = NULL;
1322 short bucket_index;
1323 int offset, last_offset = 0;
1324 int error;
1326 mp = tp->t_mountp;
1327 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1330 * Get the agi buffer first. It ensures lock ordering
1331 * on the list.
1333 error = xfs_read_agi(mp, tp, agno, &agibp);
1334 if (error)
1335 return error;
1337 agi = XFS_BUF_TO_AGI(agibp);
1340 * Get the index into the agi hash table for the
1341 * list this inode will go on.
1343 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1344 ASSERT(agino != 0);
1345 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1346 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1347 ASSERT(agi->agi_unlinked[bucket_index]);
1349 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1351 * We're at the head of the list. Get the inode's on-disk
1352 * buffer to see if there is anyone after us on the list.
1353 * Only modify our next pointer if it is not already NULLAGINO.
1354 * This saves us the overhead of dealing with the buffer when
1355 * there is no need to change it.
1357 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1358 0, 0);
1359 if (error) {
1360 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1361 __func__, error);
1362 return error;
1364 next_agino = be32_to_cpu(dip->di_next_unlinked);
1365 ASSERT(next_agino != 0);
1366 if (next_agino != NULLAGINO) {
1367 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1368 offset = ip->i_imap.im_boffset +
1369 offsetof(xfs_dinode_t, di_next_unlinked);
1370 xfs_trans_inode_buf(tp, ibp);
1371 xfs_trans_log_buf(tp, ibp, offset,
1372 (offset + sizeof(xfs_agino_t) - 1));
1373 xfs_inobp_check(mp, ibp);
1374 } else {
1375 xfs_trans_brelse(tp, ibp);
1378 * Point the bucket head pointer at the next inode.
1380 ASSERT(next_agino != 0);
1381 ASSERT(next_agino != agino);
1382 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1383 offset = offsetof(xfs_agi_t, agi_unlinked) +
1384 (sizeof(xfs_agino_t) * bucket_index);
1385 xfs_trans_log_buf(tp, agibp, offset,
1386 (offset + sizeof(xfs_agino_t) - 1));
1387 } else {
1389 * We need to search the list for the inode being freed.
1391 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1392 last_ibp = NULL;
1393 while (next_agino != agino) {
1394 struct xfs_imap imap;
1396 if (last_ibp)
1397 xfs_trans_brelse(tp, last_ibp);
1399 imap.im_blkno = 0;
1400 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1402 error = xfs_imap(mp, tp, next_ino, &imap, 0);
1403 if (error) {
1404 xfs_warn(mp,
1405 "%s: xfs_imap returned error %d.",
1406 __func__, error);
1407 return error;
1410 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1411 &last_ibp, 0, 0);
1412 if (error) {
1413 xfs_warn(mp,
1414 "%s: xfs_imap_to_bp returned error %d.",
1415 __func__, error);
1416 return error;
1419 last_offset = imap.im_boffset;
1420 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1421 ASSERT(next_agino != NULLAGINO);
1422 ASSERT(next_agino != 0);
1426 * Now last_ibp points to the buffer previous to us on the
1427 * unlinked list. Pull us from the list.
1429 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1430 0, 0);
1431 if (error) {
1432 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1433 __func__, error);
1434 return error;
1436 next_agino = be32_to_cpu(dip->di_next_unlinked);
1437 ASSERT(next_agino != 0);
1438 ASSERT(next_agino != agino);
1439 if (next_agino != NULLAGINO) {
1440 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1441 offset = ip->i_imap.im_boffset +
1442 offsetof(xfs_dinode_t, di_next_unlinked);
1443 xfs_trans_inode_buf(tp, ibp);
1444 xfs_trans_log_buf(tp, ibp, offset,
1445 (offset + sizeof(xfs_agino_t) - 1));
1446 xfs_inobp_check(mp, ibp);
1447 } else {
1448 xfs_trans_brelse(tp, ibp);
1451 * Point the previous inode on the list to the next inode.
1453 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1454 ASSERT(next_agino != 0);
1455 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1456 xfs_trans_inode_buf(tp, last_ibp);
1457 xfs_trans_log_buf(tp, last_ibp, offset,
1458 (offset + sizeof(xfs_agino_t) - 1));
1459 xfs_inobp_check(mp, last_ibp);
1461 return 0;
1465 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1466 * inodes that are in memory - they all must be marked stale and attached to
1467 * the cluster buffer.
1469 STATIC int
1470 xfs_ifree_cluster(
1471 xfs_inode_t *free_ip,
1472 xfs_trans_t *tp,
1473 xfs_ino_t inum)
1475 xfs_mount_t *mp = free_ip->i_mount;
1476 int blks_per_cluster;
1477 int nbufs;
1478 int ninodes;
1479 int i, j;
1480 xfs_daddr_t blkno;
1481 xfs_buf_t *bp;
1482 xfs_inode_t *ip;
1483 xfs_inode_log_item_t *iip;
1484 xfs_log_item_t *lip;
1485 struct xfs_perag *pag;
1487 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1488 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1489 blks_per_cluster = 1;
1490 ninodes = mp->m_sb.sb_inopblock;
1491 nbufs = XFS_IALLOC_BLOCKS(mp);
1492 } else {
1493 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1494 mp->m_sb.sb_blocksize;
1495 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1496 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1499 for (j = 0; j < nbufs; j++, inum += ninodes) {
1500 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1501 XFS_INO_TO_AGBNO(mp, inum));
1504 * We obtain and lock the backing buffer first in the process
1505 * here, as we have to ensure that any dirty inode that we
1506 * can't get the flush lock on is attached to the buffer.
1507 * If we scan the in-memory inodes first, then buffer IO can
1508 * complete before we get a lock on it, and hence we may fail
1509 * to mark all the active inodes on the buffer stale.
1511 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1512 mp->m_bsize * blks_per_cluster, 0);
1514 if (!bp)
1515 return ENOMEM;
1517 * Walk the inodes already attached to the buffer and mark them
1518 * stale. These will all have the flush locks held, so an
1519 * in-memory inode walk can't lock them. By marking them all
1520 * stale first, we will not attempt to lock them in the loop
1521 * below as the XFS_ISTALE flag will be set.
1523 lip = bp->b_fspriv;
1524 while (lip) {
1525 if (lip->li_type == XFS_LI_INODE) {
1526 iip = (xfs_inode_log_item_t *)lip;
1527 ASSERT(iip->ili_logged == 1);
1528 lip->li_cb = xfs_istale_done;
1529 xfs_trans_ail_copy_lsn(mp->m_ail,
1530 &iip->ili_flush_lsn,
1531 &iip->ili_item.li_lsn);
1532 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1534 lip = lip->li_bio_list;
1539 * For each inode in memory attempt to add it to the inode
1540 * buffer and set it up for being staled on buffer IO
1541 * completion. This is safe as we've locked out tail pushing
1542 * and flushing by locking the buffer.
1544 * We have already marked every inode that was part of a
1545 * transaction stale above, which means there is no point in
1546 * even trying to lock them.
1548 for (i = 0; i < ninodes; i++) {
1549 retry:
1550 rcu_read_lock();
1551 ip = radix_tree_lookup(&pag->pag_ici_root,
1552 XFS_INO_TO_AGINO(mp, (inum + i)));
1554 /* Inode not in memory, nothing to do */
1555 if (!ip) {
1556 rcu_read_unlock();
1557 continue;
1561 * because this is an RCU protected lookup, we could
1562 * find a recently freed or even reallocated inode
1563 * during the lookup. We need to check under the
1564 * i_flags_lock for a valid inode here. Skip it if it
1565 * is not valid, the wrong inode or stale.
1567 spin_lock(&ip->i_flags_lock);
1568 if (ip->i_ino != inum + i ||
1569 __xfs_iflags_test(ip, XFS_ISTALE)) {
1570 spin_unlock(&ip->i_flags_lock);
1571 rcu_read_unlock();
1572 continue;
1574 spin_unlock(&ip->i_flags_lock);
1577 * Don't try to lock/unlock the current inode, but we
1578 * _cannot_ skip the other inodes that we did not find
1579 * in the list attached to the buffer and are not
1580 * already marked stale. If we can't lock it, back off
1581 * and retry.
1583 if (ip != free_ip &&
1584 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1585 rcu_read_unlock();
1586 delay(1);
1587 goto retry;
1589 rcu_read_unlock();
1591 xfs_iflock(ip);
1592 xfs_iflags_set(ip, XFS_ISTALE);
1595 * we don't need to attach clean inodes or those only
1596 * with unlogged changes (which we throw away, anyway).
1598 iip = ip->i_itemp;
1599 if (!iip || xfs_inode_clean(ip)) {
1600 ASSERT(ip != free_ip);
1601 xfs_ifunlock(ip);
1602 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1603 continue;
1606 iip->ili_last_fields = iip->ili_fields;
1607 iip->ili_fields = 0;
1608 iip->ili_logged = 1;
1609 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1610 &iip->ili_item.li_lsn);
1612 xfs_buf_attach_iodone(bp, xfs_istale_done,
1613 &iip->ili_item);
1615 if (ip != free_ip)
1616 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1619 xfs_trans_stale_inode_buf(tp, bp);
1620 xfs_trans_binval(tp, bp);
1623 xfs_perag_put(pag);
1624 return 0;
1628 * This is called to return an inode to the inode free list.
1629 * The inode should already be truncated to 0 length and have
1630 * no pages associated with it. This routine also assumes that
1631 * the inode is already a part of the transaction.
1633 * The on-disk copy of the inode will have been added to the list
1634 * of unlinked inodes in the AGI. We need to remove the inode from
1635 * that list atomically with respect to freeing it here.
1638 xfs_ifree(
1639 xfs_trans_t *tp,
1640 xfs_inode_t *ip,
1641 xfs_bmap_free_t *flist)
1643 int error;
1644 int delete;
1645 xfs_ino_t first_ino;
1646 xfs_dinode_t *dip;
1647 xfs_buf_t *ibp;
1649 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1650 ASSERT(ip->i_d.di_nlink == 0);
1651 ASSERT(ip->i_d.di_nextents == 0);
1652 ASSERT(ip->i_d.di_anextents == 0);
1653 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1654 ASSERT(ip->i_d.di_nblocks == 0);
1657 * Pull the on-disk inode from the AGI unlinked list.
1659 error = xfs_iunlink_remove(tp, ip);
1660 if (error != 0) {
1661 return error;
1664 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1665 if (error != 0) {
1666 return error;
1668 ip->i_d.di_mode = 0; /* mark incore inode as free */
1669 ip->i_d.di_flags = 0;
1670 ip->i_d.di_dmevmask = 0;
1671 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1672 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1673 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1675 * Bump the generation count so no one will be confused
1676 * by reincarnations of this inode.
1678 ip->i_d.di_gen++;
1680 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1682 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1683 0, 0);
1684 if (error)
1685 return error;
1688 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1689 * from picking up this inode when it is reclaimed (its incore state
1690 * initialzed but not flushed to disk yet). The in-core di_mode is
1691 * already cleared and a corresponding transaction logged.
1692 * The hack here just synchronizes the in-core to on-disk
1693 * di_mode value in advance before the actual inode sync to disk.
1694 * This is OK because the inode is already unlinked and would never
1695 * change its di_mode again for this inode generation.
1696 * This is a temporary hack that would require a proper fix
1697 * in the future.
1699 dip->di_mode = 0;
1701 if (delete) {
1702 error = xfs_ifree_cluster(ip, tp, first_ino);
1705 return error;
1709 * Reallocate the space for if_broot based on the number of records
1710 * being added or deleted as indicated in rec_diff. Move the records
1711 * and pointers in if_broot to fit the new size. When shrinking this
1712 * will eliminate holes between the records and pointers created by
1713 * the caller. When growing this will create holes to be filled in
1714 * by the caller.
1716 * The caller must not request to add more records than would fit in
1717 * the on-disk inode root. If the if_broot is currently NULL, then
1718 * if we adding records one will be allocated. The caller must also
1719 * not request that the number of records go below zero, although
1720 * it can go to zero.
1722 * ip -- the inode whose if_broot area is changing
1723 * ext_diff -- the change in the number of records, positive or negative,
1724 * requested for the if_broot array.
1726 void
1727 xfs_iroot_realloc(
1728 xfs_inode_t *ip,
1729 int rec_diff,
1730 int whichfork)
1732 struct xfs_mount *mp = ip->i_mount;
1733 int cur_max;
1734 xfs_ifork_t *ifp;
1735 struct xfs_btree_block *new_broot;
1736 int new_max;
1737 size_t new_size;
1738 char *np;
1739 char *op;
1742 * Handle the degenerate case quietly.
1744 if (rec_diff == 0) {
1745 return;
1748 ifp = XFS_IFORK_PTR(ip, whichfork);
1749 if (rec_diff > 0) {
1751 * If there wasn't any memory allocated before, just
1752 * allocate it now and get out.
1754 if (ifp->if_broot_bytes == 0) {
1755 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1756 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1757 ifp->if_broot_bytes = (int)new_size;
1758 return;
1762 * If there is already an existing if_broot, then we need
1763 * to realloc() it and shift the pointers to their new
1764 * location. The records don't change location because
1765 * they are kept butted up against the btree block header.
1767 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1768 new_max = cur_max + rec_diff;
1769 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1770 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1771 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1772 KM_SLEEP | KM_NOFS);
1773 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1774 ifp->if_broot_bytes);
1775 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1776 (int)new_size);
1777 ifp->if_broot_bytes = (int)new_size;
1778 ASSERT(ifp->if_broot_bytes <=
1779 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1780 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1781 return;
1785 * rec_diff is less than 0. In this case, we are shrinking the
1786 * if_broot buffer. It must already exist. If we go to zero
1787 * records, just get rid of the root and clear the status bit.
1789 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1790 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1791 new_max = cur_max + rec_diff;
1792 ASSERT(new_max >= 0);
1793 if (new_max > 0)
1794 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1795 else
1796 new_size = 0;
1797 if (new_size > 0) {
1798 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1800 * First copy over the btree block header.
1802 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1803 } else {
1804 new_broot = NULL;
1805 ifp->if_flags &= ~XFS_IFBROOT;
1809 * Only copy the records and pointers if there are any.
1811 if (new_max > 0) {
1813 * First copy the records.
1815 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1816 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1817 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1820 * Then copy the pointers.
1822 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1823 ifp->if_broot_bytes);
1824 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1825 (int)new_size);
1826 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1828 kmem_free(ifp->if_broot);
1829 ifp->if_broot = new_broot;
1830 ifp->if_broot_bytes = (int)new_size;
1831 ASSERT(ifp->if_broot_bytes <=
1832 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1833 return;
1838 * This is called when the amount of space needed for if_data
1839 * is increased or decreased. The change in size is indicated by
1840 * the number of bytes that need to be added or deleted in the
1841 * byte_diff parameter.
1843 * If the amount of space needed has decreased below the size of the
1844 * inline buffer, then switch to using the inline buffer. Otherwise,
1845 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1846 * to what is needed.
1848 * ip -- the inode whose if_data area is changing
1849 * byte_diff -- the change in the number of bytes, positive or negative,
1850 * requested for the if_data array.
1852 void
1853 xfs_idata_realloc(
1854 xfs_inode_t *ip,
1855 int byte_diff,
1856 int whichfork)
1858 xfs_ifork_t *ifp;
1859 int new_size;
1860 int real_size;
1862 if (byte_diff == 0) {
1863 return;
1866 ifp = XFS_IFORK_PTR(ip, whichfork);
1867 new_size = (int)ifp->if_bytes + byte_diff;
1868 ASSERT(new_size >= 0);
1870 if (new_size == 0) {
1871 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1872 kmem_free(ifp->if_u1.if_data);
1874 ifp->if_u1.if_data = NULL;
1875 real_size = 0;
1876 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1878 * If the valid extents/data can fit in if_inline_ext/data,
1879 * copy them from the malloc'd vector and free it.
1881 if (ifp->if_u1.if_data == NULL) {
1882 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1883 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1884 ASSERT(ifp->if_real_bytes != 0);
1885 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1886 new_size);
1887 kmem_free(ifp->if_u1.if_data);
1888 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1890 real_size = 0;
1891 } else {
1893 * Stuck with malloc/realloc.
1894 * For inline data, the underlying buffer must be
1895 * a multiple of 4 bytes in size so that it can be
1896 * logged and stay on word boundaries. We enforce
1897 * that here.
1899 real_size = roundup(new_size, 4);
1900 if (ifp->if_u1.if_data == NULL) {
1901 ASSERT(ifp->if_real_bytes == 0);
1902 ifp->if_u1.if_data = kmem_alloc(real_size,
1903 KM_SLEEP | KM_NOFS);
1904 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1906 * Only do the realloc if the underlying size
1907 * is really changing.
1909 if (ifp->if_real_bytes != real_size) {
1910 ifp->if_u1.if_data =
1911 kmem_realloc(ifp->if_u1.if_data,
1912 real_size,
1913 ifp->if_real_bytes,
1914 KM_SLEEP | KM_NOFS);
1916 } else {
1917 ASSERT(ifp->if_real_bytes == 0);
1918 ifp->if_u1.if_data = kmem_alloc(real_size,
1919 KM_SLEEP | KM_NOFS);
1920 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1921 ifp->if_bytes);
1924 ifp->if_real_bytes = real_size;
1925 ifp->if_bytes = new_size;
1926 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1929 void
1930 xfs_idestroy_fork(
1931 xfs_inode_t *ip,
1932 int whichfork)
1934 xfs_ifork_t *ifp;
1936 ifp = XFS_IFORK_PTR(ip, whichfork);
1937 if (ifp->if_broot != NULL) {
1938 kmem_free(ifp->if_broot);
1939 ifp->if_broot = NULL;
1943 * If the format is local, then we can't have an extents
1944 * array so just look for an inline data array. If we're
1945 * not local then we may or may not have an extents list,
1946 * so check and free it up if we do.
1948 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
1949 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
1950 (ifp->if_u1.if_data != NULL)) {
1951 ASSERT(ifp->if_real_bytes != 0);
1952 kmem_free(ifp->if_u1.if_data);
1953 ifp->if_u1.if_data = NULL;
1954 ifp->if_real_bytes = 0;
1956 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
1957 ((ifp->if_flags & XFS_IFEXTIREC) ||
1958 ((ifp->if_u1.if_extents != NULL) &&
1959 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1960 ASSERT(ifp->if_real_bytes != 0);
1961 xfs_iext_destroy(ifp);
1963 ASSERT(ifp->if_u1.if_extents == NULL ||
1964 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
1965 ASSERT(ifp->if_real_bytes == 0);
1966 if (whichfork == XFS_ATTR_FORK) {
1967 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
1968 ip->i_afp = NULL;
1973 * This is called to unpin an inode. The caller must have the inode locked
1974 * in at least shared mode so that the buffer cannot be subsequently pinned
1975 * once someone is waiting for it to be unpinned.
1977 static void
1978 xfs_iunpin(
1979 struct xfs_inode *ip)
1981 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1983 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1985 /* Give the log a push to start the unpinning I/O */
1986 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
1990 static void
1991 __xfs_iunpin_wait(
1992 struct xfs_inode *ip)
1994 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1995 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1997 xfs_iunpin(ip);
1999 do {
2000 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2001 if (xfs_ipincount(ip))
2002 io_schedule();
2003 } while (xfs_ipincount(ip));
2004 finish_wait(wq, &wait.wait);
2007 void
2008 xfs_iunpin_wait(
2009 struct xfs_inode *ip)
2011 if (xfs_ipincount(ip))
2012 __xfs_iunpin_wait(ip);
2016 * xfs_iextents_copy()
2018 * This is called to copy the REAL extents (as opposed to the delayed
2019 * allocation extents) from the inode into the given buffer. It
2020 * returns the number of bytes copied into the buffer.
2022 * If there are no delayed allocation extents, then we can just
2023 * memcpy() the extents into the buffer. Otherwise, we need to
2024 * examine each extent in turn and skip those which are delayed.
2027 xfs_iextents_copy(
2028 xfs_inode_t *ip,
2029 xfs_bmbt_rec_t *dp,
2030 int whichfork)
2032 int copied;
2033 int i;
2034 xfs_ifork_t *ifp;
2035 int nrecs;
2036 xfs_fsblock_t start_block;
2038 ifp = XFS_IFORK_PTR(ip, whichfork);
2039 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2040 ASSERT(ifp->if_bytes > 0);
2042 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2043 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2044 ASSERT(nrecs > 0);
2047 * There are some delayed allocation extents in the
2048 * inode, so copy the extents one at a time and skip
2049 * the delayed ones. There must be at least one
2050 * non-delayed extent.
2052 copied = 0;
2053 for (i = 0; i < nrecs; i++) {
2054 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2055 start_block = xfs_bmbt_get_startblock(ep);
2056 if (isnullstartblock(start_block)) {
2058 * It's a delayed allocation extent, so skip it.
2060 continue;
2063 /* Translate to on disk format */
2064 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2065 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2066 dp++;
2067 copied++;
2069 ASSERT(copied != 0);
2070 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2072 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2076 * Each of the following cases stores data into the same region
2077 * of the on-disk inode, so only one of them can be valid at
2078 * any given time. While it is possible to have conflicting formats
2079 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2080 * in EXTENTS format, this can only happen when the fork has
2081 * changed formats after being modified but before being flushed.
2082 * In these cases, the format always takes precedence, because the
2083 * format indicates the current state of the fork.
2085 /*ARGSUSED*/
2086 STATIC void
2087 xfs_iflush_fork(
2088 xfs_inode_t *ip,
2089 xfs_dinode_t *dip,
2090 xfs_inode_log_item_t *iip,
2091 int whichfork,
2092 xfs_buf_t *bp)
2094 char *cp;
2095 xfs_ifork_t *ifp;
2096 xfs_mount_t *mp;
2097 #ifdef XFS_TRANS_DEBUG
2098 int first;
2099 #endif
2100 static const short brootflag[2] =
2101 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2102 static const short dataflag[2] =
2103 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2104 static const short extflag[2] =
2105 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2107 if (!iip)
2108 return;
2109 ifp = XFS_IFORK_PTR(ip, whichfork);
2111 * This can happen if we gave up in iformat in an error path,
2112 * for the attribute fork.
2114 if (!ifp) {
2115 ASSERT(whichfork == XFS_ATTR_FORK);
2116 return;
2118 cp = XFS_DFORK_PTR(dip, whichfork);
2119 mp = ip->i_mount;
2120 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2121 case XFS_DINODE_FMT_LOCAL:
2122 if ((iip->ili_fields & dataflag[whichfork]) &&
2123 (ifp->if_bytes > 0)) {
2124 ASSERT(ifp->if_u1.if_data != NULL);
2125 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2126 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2128 break;
2130 case XFS_DINODE_FMT_EXTENTS:
2131 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2132 !(iip->ili_fields & extflag[whichfork]));
2133 if ((iip->ili_fields & extflag[whichfork]) &&
2134 (ifp->if_bytes > 0)) {
2135 ASSERT(xfs_iext_get_ext(ifp, 0));
2136 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2137 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2138 whichfork);
2140 break;
2142 case XFS_DINODE_FMT_BTREE:
2143 if ((iip->ili_fields & brootflag[whichfork]) &&
2144 (ifp->if_broot_bytes > 0)) {
2145 ASSERT(ifp->if_broot != NULL);
2146 ASSERT(ifp->if_broot_bytes <=
2147 (XFS_IFORK_SIZE(ip, whichfork) +
2148 XFS_BROOT_SIZE_ADJ));
2149 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2150 (xfs_bmdr_block_t *)cp,
2151 XFS_DFORK_SIZE(dip, mp, whichfork));
2153 break;
2155 case XFS_DINODE_FMT_DEV:
2156 if (iip->ili_fields & XFS_ILOG_DEV) {
2157 ASSERT(whichfork == XFS_DATA_FORK);
2158 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2160 break;
2162 case XFS_DINODE_FMT_UUID:
2163 if (iip->ili_fields & XFS_ILOG_UUID) {
2164 ASSERT(whichfork == XFS_DATA_FORK);
2165 memcpy(XFS_DFORK_DPTR(dip),
2166 &ip->i_df.if_u2.if_uuid,
2167 sizeof(uuid_t));
2169 break;
2171 default:
2172 ASSERT(0);
2173 break;
2177 STATIC int
2178 xfs_iflush_cluster(
2179 xfs_inode_t *ip,
2180 xfs_buf_t *bp)
2182 xfs_mount_t *mp = ip->i_mount;
2183 struct xfs_perag *pag;
2184 unsigned long first_index, mask;
2185 unsigned long inodes_per_cluster;
2186 int ilist_size;
2187 xfs_inode_t **ilist;
2188 xfs_inode_t *iq;
2189 int nr_found;
2190 int clcount = 0;
2191 int bufwasdelwri;
2192 int i;
2194 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2196 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2197 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2198 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2199 if (!ilist)
2200 goto out_put;
2202 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2203 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2204 rcu_read_lock();
2205 /* really need a gang lookup range call here */
2206 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2207 first_index, inodes_per_cluster);
2208 if (nr_found == 0)
2209 goto out_free;
2211 for (i = 0; i < nr_found; i++) {
2212 iq = ilist[i];
2213 if (iq == ip)
2214 continue;
2217 * because this is an RCU protected lookup, we could find a
2218 * recently freed or even reallocated inode during the lookup.
2219 * We need to check under the i_flags_lock for a valid inode
2220 * here. Skip it if it is not valid or the wrong inode.
2222 spin_lock(&ip->i_flags_lock);
2223 if (!ip->i_ino ||
2224 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2225 spin_unlock(&ip->i_flags_lock);
2226 continue;
2228 spin_unlock(&ip->i_flags_lock);
2231 * Do an un-protected check to see if the inode is dirty and
2232 * is a candidate for flushing. These checks will be repeated
2233 * later after the appropriate locks are acquired.
2235 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2236 continue;
2239 * Try to get locks. If any are unavailable or it is pinned,
2240 * then this inode cannot be flushed and is skipped.
2243 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2244 continue;
2245 if (!xfs_iflock_nowait(iq)) {
2246 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2247 continue;
2249 if (xfs_ipincount(iq)) {
2250 xfs_ifunlock(iq);
2251 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2252 continue;
2256 * arriving here means that this inode can be flushed. First
2257 * re-check that it's dirty before flushing.
2259 if (!xfs_inode_clean(iq)) {
2260 int error;
2261 error = xfs_iflush_int(iq, bp);
2262 if (error) {
2263 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2264 goto cluster_corrupt_out;
2266 clcount++;
2267 } else {
2268 xfs_ifunlock(iq);
2270 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2273 if (clcount) {
2274 XFS_STATS_INC(xs_icluster_flushcnt);
2275 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2278 out_free:
2279 rcu_read_unlock();
2280 kmem_free(ilist);
2281 out_put:
2282 xfs_perag_put(pag);
2283 return 0;
2286 cluster_corrupt_out:
2288 * Corruption detected in the clustering loop. Invalidate the
2289 * inode buffer and shut down the filesystem.
2291 rcu_read_unlock();
2293 * Clean up the buffer. If it was delwri, just release it --
2294 * brelse can handle it with no problems. If not, shut down the
2295 * filesystem before releasing the buffer.
2297 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2298 if (bufwasdelwri)
2299 xfs_buf_relse(bp);
2301 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2303 if (!bufwasdelwri) {
2305 * Just like incore_relse: if we have b_iodone functions,
2306 * mark the buffer as an error and call them. Otherwise
2307 * mark it as stale and brelse.
2309 if (bp->b_iodone) {
2310 XFS_BUF_UNDONE(bp);
2311 xfs_buf_stale(bp);
2312 xfs_buf_ioerror(bp, EIO);
2313 xfs_buf_ioend(bp, 0);
2314 } else {
2315 xfs_buf_stale(bp);
2316 xfs_buf_relse(bp);
2321 * Unlocks the flush lock
2323 xfs_iflush_abort(iq, false);
2324 kmem_free(ilist);
2325 xfs_perag_put(pag);
2326 return XFS_ERROR(EFSCORRUPTED);
2330 * Flush dirty inode metadata into the backing buffer.
2332 * The caller must have the inode lock and the inode flush lock held. The
2333 * inode lock will still be held upon return to the caller, and the inode
2334 * flush lock will be released after the inode has reached the disk.
2336 * The caller must write out the buffer returned in *bpp and release it.
2339 xfs_iflush(
2340 struct xfs_inode *ip,
2341 struct xfs_buf **bpp)
2343 struct xfs_mount *mp = ip->i_mount;
2344 struct xfs_buf *bp;
2345 struct xfs_dinode *dip;
2346 int error;
2348 XFS_STATS_INC(xs_iflush_count);
2350 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2351 ASSERT(xfs_isiflocked(ip));
2352 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2353 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2355 *bpp = NULL;
2357 xfs_iunpin_wait(ip);
2360 * For stale inodes we cannot rely on the backing buffer remaining
2361 * stale in cache for the remaining life of the stale inode and so
2362 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2363 * inodes below. We have to check this after ensuring the inode is
2364 * unpinned so that it is safe to reclaim the stale inode after the
2365 * flush call.
2367 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2368 xfs_ifunlock(ip);
2369 return 0;
2373 * This may have been unpinned because the filesystem is shutting
2374 * down forcibly. If that's the case we must not write this inode
2375 * to disk, because the log record didn't make it to disk.
2377 * We also have to remove the log item from the AIL in this case,
2378 * as we wait for an empty AIL as part of the unmount process.
2380 if (XFS_FORCED_SHUTDOWN(mp)) {
2381 error = XFS_ERROR(EIO);
2382 goto abort_out;
2386 * Get the buffer containing the on-disk inode.
2388 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2390 if (error || !bp) {
2391 xfs_ifunlock(ip);
2392 return error;
2396 * First flush out the inode that xfs_iflush was called with.
2398 error = xfs_iflush_int(ip, bp);
2399 if (error)
2400 goto corrupt_out;
2403 * If the buffer is pinned then push on the log now so we won't
2404 * get stuck waiting in the write for too long.
2406 if (xfs_buf_ispinned(bp))
2407 xfs_log_force(mp, 0);
2410 * inode clustering:
2411 * see if other inodes can be gathered into this write
2413 error = xfs_iflush_cluster(ip, bp);
2414 if (error)
2415 goto cluster_corrupt_out;
2417 *bpp = bp;
2418 return 0;
2420 corrupt_out:
2421 xfs_buf_relse(bp);
2422 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2423 cluster_corrupt_out:
2424 error = XFS_ERROR(EFSCORRUPTED);
2425 abort_out:
2427 * Unlocks the flush lock
2429 xfs_iflush_abort(ip, false);
2430 return error;
2434 STATIC int
2435 xfs_iflush_int(
2436 xfs_inode_t *ip,
2437 xfs_buf_t *bp)
2439 xfs_inode_log_item_t *iip;
2440 xfs_dinode_t *dip;
2441 xfs_mount_t *mp;
2442 #ifdef XFS_TRANS_DEBUG
2443 int first;
2444 #endif
2446 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2447 ASSERT(xfs_isiflocked(ip));
2448 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2449 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2451 iip = ip->i_itemp;
2452 mp = ip->i_mount;
2454 /* set *dip = inode's place in the buffer */
2455 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2457 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2458 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2459 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2460 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2461 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2462 goto corrupt_out;
2464 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2465 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2466 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2467 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2468 __func__, ip->i_ino, ip, ip->i_d.di_magic);
2469 goto corrupt_out;
2471 if (S_ISREG(ip->i_d.di_mode)) {
2472 if (XFS_TEST_ERROR(
2473 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2474 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2475 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2476 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2477 "%s: Bad regular inode %Lu, ptr 0x%p",
2478 __func__, ip->i_ino, ip);
2479 goto corrupt_out;
2481 } else if (S_ISDIR(ip->i_d.di_mode)) {
2482 if (XFS_TEST_ERROR(
2483 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2484 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2485 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2486 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2487 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2488 "%s: Bad directory inode %Lu, ptr 0x%p",
2489 __func__, ip->i_ino, ip);
2490 goto corrupt_out;
2493 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2494 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2495 XFS_RANDOM_IFLUSH_5)) {
2496 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2497 "%s: detected corrupt incore inode %Lu, "
2498 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2499 __func__, ip->i_ino,
2500 ip->i_d.di_nextents + ip->i_d.di_anextents,
2501 ip->i_d.di_nblocks, ip);
2502 goto corrupt_out;
2504 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2505 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2506 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2507 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2508 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2509 goto corrupt_out;
2512 * bump the flush iteration count, used to detect flushes which
2513 * postdate a log record during recovery.
2516 ip->i_d.di_flushiter++;
2519 * Copy the dirty parts of the inode into the on-disk
2520 * inode. We always copy out the core of the inode,
2521 * because if the inode is dirty at all the core must
2522 * be.
2524 xfs_dinode_to_disk(dip, &ip->i_d);
2526 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2527 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2528 ip->i_d.di_flushiter = 0;
2531 * If this is really an old format inode and the superblock version
2532 * has not been updated to support only new format inodes, then
2533 * convert back to the old inode format. If the superblock version
2534 * has been updated, then make the conversion permanent.
2536 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2537 if (ip->i_d.di_version == 1) {
2538 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2540 * Convert it back.
2542 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2543 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2544 } else {
2546 * The superblock version has already been bumped,
2547 * so just make the conversion to the new inode
2548 * format permanent.
2550 ip->i_d.di_version = 2;
2551 dip->di_version = 2;
2552 ip->i_d.di_onlink = 0;
2553 dip->di_onlink = 0;
2554 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2555 memset(&(dip->di_pad[0]), 0,
2556 sizeof(dip->di_pad));
2557 ASSERT(xfs_get_projid(ip) == 0);
2561 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2562 if (XFS_IFORK_Q(ip))
2563 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2564 xfs_inobp_check(mp, bp);
2567 * We've recorded everything logged in the inode, so we'd like to clear
2568 * the ili_fields bits so we don't log and flush things unnecessarily.
2569 * However, we can't stop logging all this information until the data
2570 * we've copied into the disk buffer is written to disk. If we did we
2571 * might overwrite the copy of the inode in the log with all the data
2572 * after re-logging only part of it, and in the face of a crash we
2573 * wouldn't have all the data we need to recover.
2575 * What we do is move the bits to the ili_last_fields field. When
2576 * logging the inode, these bits are moved back to the ili_fields field.
2577 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2578 * know that the information those bits represent is permanently on
2579 * disk. As long as the flush completes before the inode is logged
2580 * again, then both ili_fields and ili_last_fields will be cleared.
2582 * We can play with the ili_fields bits here, because the inode lock
2583 * must be held exclusively in order to set bits there and the flush
2584 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2585 * done routine can tell whether or not to look in the AIL. Also, store
2586 * the current LSN of the inode so that we can tell whether the item has
2587 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2588 * need the AIL lock, because it is a 64 bit value that cannot be read
2589 * atomically.
2591 if (iip != NULL && iip->ili_fields != 0) {
2592 iip->ili_last_fields = iip->ili_fields;
2593 iip->ili_fields = 0;
2594 iip->ili_logged = 1;
2596 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2597 &iip->ili_item.li_lsn);
2600 * Attach the function xfs_iflush_done to the inode's
2601 * buffer. This will remove the inode from the AIL
2602 * and unlock the inode's flush lock when the inode is
2603 * completely written to disk.
2605 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2607 ASSERT(bp->b_fspriv != NULL);
2608 ASSERT(bp->b_iodone != NULL);
2609 } else {
2611 * We're flushing an inode which is not in the AIL and has
2612 * not been logged. For this case we can immediately drop
2613 * the inode flush lock because we can avoid the whole
2614 * AIL state thing. It's OK to drop the flush lock now,
2615 * because we've already locked the buffer and to do anything
2616 * you really need both.
2618 if (iip != NULL) {
2619 ASSERT(iip->ili_logged == 0);
2620 ASSERT(iip->ili_last_fields == 0);
2621 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2623 xfs_ifunlock(ip);
2626 return 0;
2628 corrupt_out:
2629 return XFS_ERROR(EFSCORRUPTED);
2633 * Return a pointer to the extent record at file index idx.
2635 xfs_bmbt_rec_host_t *
2636 xfs_iext_get_ext(
2637 xfs_ifork_t *ifp, /* inode fork pointer */
2638 xfs_extnum_t idx) /* index of target extent */
2640 ASSERT(idx >= 0);
2641 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2643 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2644 return ifp->if_u1.if_ext_irec->er_extbuf;
2645 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2646 xfs_ext_irec_t *erp; /* irec pointer */
2647 int erp_idx = 0; /* irec index */
2648 xfs_extnum_t page_idx = idx; /* ext index in target list */
2650 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2651 return &erp->er_extbuf[page_idx];
2652 } else if (ifp->if_bytes) {
2653 return &ifp->if_u1.if_extents[idx];
2654 } else {
2655 return NULL;
2660 * Insert new item(s) into the extent records for incore inode
2661 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2663 void
2664 xfs_iext_insert(
2665 xfs_inode_t *ip, /* incore inode pointer */
2666 xfs_extnum_t idx, /* starting index of new items */
2667 xfs_extnum_t count, /* number of inserted items */
2668 xfs_bmbt_irec_t *new, /* items to insert */
2669 int state) /* type of extent conversion */
2671 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2672 xfs_extnum_t i; /* extent record index */
2674 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2676 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2677 xfs_iext_add(ifp, idx, count);
2678 for (i = idx; i < idx + count; i++, new++)
2679 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2683 * This is called when the amount of space required for incore file
2684 * extents needs to be increased. The ext_diff parameter stores the
2685 * number of new extents being added and the idx parameter contains
2686 * the extent index where the new extents will be added. If the new
2687 * extents are being appended, then we just need to (re)allocate and
2688 * initialize the space. Otherwise, if the new extents are being
2689 * inserted into the middle of the existing entries, a bit more work
2690 * is required to make room for the new extents to be inserted. The
2691 * caller is responsible for filling in the new extent entries upon
2692 * return.
2694 void
2695 xfs_iext_add(
2696 xfs_ifork_t *ifp, /* inode fork pointer */
2697 xfs_extnum_t idx, /* index to begin adding exts */
2698 int ext_diff) /* number of extents to add */
2700 int byte_diff; /* new bytes being added */
2701 int new_size; /* size of extents after adding */
2702 xfs_extnum_t nextents; /* number of extents in file */
2704 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2705 ASSERT((idx >= 0) && (idx <= nextents));
2706 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2707 new_size = ifp->if_bytes + byte_diff;
2709 * If the new number of extents (nextents + ext_diff)
2710 * fits inside the inode, then continue to use the inline
2711 * extent buffer.
2713 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2714 if (idx < nextents) {
2715 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2716 &ifp->if_u2.if_inline_ext[idx],
2717 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2718 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2720 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2721 ifp->if_real_bytes = 0;
2724 * Otherwise use a linear (direct) extent list.
2725 * If the extents are currently inside the inode,
2726 * xfs_iext_realloc_direct will switch us from
2727 * inline to direct extent allocation mode.
2729 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2730 xfs_iext_realloc_direct(ifp, new_size);
2731 if (idx < nextents) {
2732 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2733 &ifp->if_u1.if_extents[idx],
2734 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2735 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2738 /* Indirection array */
2739 else {
2740 xfs_ext_irec_t *erp;
2741 int erp_idx = 0;
2742 int page_idx = idx;
2744 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2745 if (ifp->if_flags & XFS_IFEXTIREC) {
2746 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2747 } else {
2748 xfs_iext_irec_init(ifp);
2749 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2750 erp = ifp->if_u1.if_ext_irec;
2752 /* Extents fit in target extent page */
2753 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2754 if (page_idx < erp->er_extcount) {
2755 memmove(&erp->er_extbuf[page_idx + ext_diff],
2756 &erp->er_extbuf[page_idx],
2757 (erp->er_extcount - page_idx) *
2758 sizeof(xfs_bmbt_rec_t));
2759 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2761 erp->er_extcount += ext_diff;
2762 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2764 /* Insert a new extent page */
2765 else if (erp) {
2766 xfs_iext_add_indirect_multi(ifp,
2767 erp_idx, page_idx, ext_diff);
2770 * If extent(s) are being appended to the last page in
2771 * the indirection array and the new extent(s) don't fit
2772 * in the page, then erp is NULL and erp_idx is set to
2773 * the next index needed in the indirection array.
2775 else {
2776 int count = ext_diff;
2778 while (count) {
2779 erp = xfs_iext_irec_new(ifp, erp_idx);
2780 erp->er_extcount = count;
2781 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2782 if (count) {
2783 erp_idx++;
2788 ifp->if_bytes = new_size;
2792 * This is called when incore extents are being added to the indirection
2793 * array and the new extents do not fit in the target extent list. The
2794 * erp_idx parameter contains the irec index for the target extent list
2795 * in the indirection array, and the idx parameter contains the extent
2796 * index within the list. The number of extents being added is stored
2797 * in the count parameter.
2799 * |-------| |-------|
2800 * | | | | idx - number of extents before idx
2801 * | idx | | count |
2802 * | | | | count - number of extents being inserted at idx
2803 * |-------| |-------|
2804 * | count | | nex2 | nex2 - number of extents after idx + count
2805 * |-------| |-------|
2807 void
2808 xfs_iext_add_indirect_multi(
2809 xfs_ifork_t *ifp, /* inode fork pointer */
2810 int erp_idx, /* target extent irec index */
2811 xfs_extnum_t idx, /* index within target list */
2812 int count) /* new extents being added */
2814 int byte_diff; /* new bytes being added */
2815 xfs_ext_irec_t *erp; /* pointer to irec entry */
2816 xfs_extnum_t ext_diff; /* number of extents to add */
2817 xfs_extnum_t ext_cnt; /* new extents still needed */
2818 xfs_extnum_t nex2; /* extents after idx + count */
2819 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
2820 int nlists; /* number of irec's (lists) */
2822 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2823 erp = &ifp->if_u1.if_ext_irec[erp_idx];
2824 nex2 = erp->er_extcount - idx;
2825 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2828 * Save second part of target extent list
2829 * (all extents past */
2830 if (nex2) {
2831 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2832 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2833 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2834 erp->er_extcount -= nex2;
2835 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2836 memset(&erp->er_extbuf[idx], 0, byte_diff);
2840 * Add the new extents to the end of the target
2841 * list, then allocate new irec record(s) and
2842 * extent buffer(s) as needed to store the rest
2843 * of the new extents.
2845 ext_cnt = count;
2846 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2847 if (ext_diff) {
2848 erp->er_extcount += ext_diff;
2849 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2850 ext_cnt -= ext_diff;
2852 while (ext_cnt) {
2853 erp_idx++;
2854 erp = xfs_iext_irec_new(ifp, erp_idx);
2855 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2856 erp->er_extcount = ext_diff;
2857 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2858 ext_cnt -= ext_diff;
2861 /* Add nex2 extents back to indirection array */
2862 if (nex2) {
2863 xfs_extnum_t ext_avail;
2864 int i;
2866 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2867 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2868 i = 0;
2870 * If nex2 extents fit in the current page, append
2871 * nex2_ep after the new extents.
2873 if (nex2 <= ext_avail) {
2874 i = erp->er_extcount;
2877 * Otherwise, check if space is available in the
2878 * next page.
2880 else if ((erp_idx < nlists - 1) &&
2881 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2882 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2883 erp_idx++;
2884 erp++;
2885 /* Create a hole for nex2 extents */
2886 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2887 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2890 * Final choice, create a new extent page for
2891 * nex2 extents.
2893 else {
2894 erp_idx++;
2895 erp = xfs_iext_irec_new(ifp, erp_idx);
2897 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2898 kmem_free(nex2_ep);
2899 erp->er_extcount += nex2;
2900 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2905 * This is called when the amount of space required for incore file
2906 * extents needs to be decreased. The ext_diff parameter stores the
2907 * number of extents to be removed and the idx parameter contains
2908 * the extent index where the extents will be removed from.
2910 * If the amount of space needed has decreased below the linear
2911 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2912 * extent array. Otherwise, use kmem_realloc() to adjust the
2913 * size to what is needed.
2915 void
2916 xfs_iext_remove(
2917 xfs_inode_t *ip, /* incore inode pointer */
2918 xfs_extnum_t idx, /* index to begin removing exts */
2919 int ext_diff, /* number of extents to remove */
2920 int state) /* type of extent conversion */
2922 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2923 xfs_extnum_t nextents; /* number of extents in file */
2924 int new_size; /* size of extents after removal */
2926 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2928 ASSERT(ext_diff > 0);
2929 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2930 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2932 if (new_size == 0) {
2933 xfs_iext_destroy(ifp);
2934 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2935 xfs_iext_remove_indirect(ifp, idx, ext_diff);
2936 } else if (ifp->if_real_bytes) {
2937 xfs_iext_remove_direct(ifp, idx, ext_diff);
2938 } else {
2939 xfs_iext_remove_inline(ifp, idx, ext_diff);
2941 ifp->if_bytes = new_size;
2945 * This removes ext_diff extents from the inline buffer, beginning
2946 * at extent index idx.
2948 void
2949 xfs_iext_remove_inline(
2950 xfs_ifork_t *ifp, /* inode fork pointer */
2951 xfs_extnum_t idx, /* index to begin removing exts */
2952 int ext_diff) /* number of extents to remove */
2954 int nextents; /* number of extents in file */
2956 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
2957 ASSERT(idx < XFS_INLINE_EXTS);
2958 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2959 ASSERT(((nextents - ext_diff) > 0) &&
2960 (nextents - ext_diff) < XFS_INLINE_EXTS);
2962 if (idx + ext_diff < nextents) {
2963 memmove(&ifp->if_u2.if_inline_ext[idx],
2964 &ifp->if_u2.if_inline_ext[idx + ext_diff],
2965 (nextents - (idx + ext_diff)) *
2966 sizeof(xfs_bmbt_rec_t));
2967 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
2968 0, ext_diff * sizeof(xfs_bmbt_rec_t));
2969 } else {
2970 memset(&ifp->if_u2.if_inline_ext[idx], 0,
2971 ext_diff * sizeof(xfs_bmbt_rec_t));
2976 * This removes ext_diff extents from a linear (direct) extent list,
2977 * beginning at extent index idx. If the extents are being removed
2978 * from the end of the list (ie. truncate) then we just need to re-
2979 * allocate the list to remove the extra space. Otherwise, if the
2980 * extents are being removed from the middle of the existing extent
2981 * entries, then we first need to move the extent records beginning
2982 * at idx + ext_diff up in the list to overwrite the records being
2983 * removed, then remove the extra space via kmem_realloc.
2985 void
2986 xfs_iext_remove_direct(
2987 xfs_ifork_t *ifp, /* inode fork pointer */
2988 xfs_extnum_t idx, /* index to begin removing exts */
2989 int ext_diff) /* number of extents to remove */
2991 xfs_extnum_t nextents; /* number of extents in file */
2992 int new_size; /* size of extents after removal */
2994 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
2995 new_size = ifp->if_bytes -
2996 (ext_diff * sizeof(xfs_bmbt_rec_t));
2997 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2999 if (new_size == 0) {
3000 xfs_iext_destroy(ifp);
3001 return;
3003 /* Move extents up in the list (if needed) */
3004 if (idx + ext_diff < nextents) {
3005 memmove(&ifp->if_u1.if_extents[idx],
3006 &ifp->if_u1.if_extents[idx + ext_diff],
3007 (nextents - (idx + ext_diff)) *
3008 sizeof(xfs_bmbt_rec_t));
3010 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3011 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3013 * Reallocate the direct extent list. If the extents
3014 * will fit inside the inode then xfs_iext_realloc_direct
3015 * will switch from direct to inline extent allocation
3016 * mode for us.
3018 xfs_iext_realloc_direct(ifp, new_size);
3019 ifp->if_bytes = new_size;
3023 * This is called when incore extents are being removed from the
3024 * indirection array and the extents being removed span multiple extent
3025 * buffers. The idx parameter contains the file extent index where we
3026 * want to begin removing extents, and the count parameter contains
3027 * how many extents need to be removed.
3029 * |-------| |-------|
3030 * | nex1 | | | nex1 - number of extents before idx
3031 * |-------| | count |
3032 * | | | | count - number of extents being removed at idx
3033 * | count | |-------|
3034 * | | | nex2 | nex2 - number of extents after idx + count
3035 * |-------| |-------|
3037 void
3038 xfs_iext_remove_indirect(
3039 xfs_ifork_t *ifp, /* inode fork pointer */
3040 xfs_extnum_t idx, /* index to begin removing extents */
3041 int count) /* number of extents to remove */
3043 xfs_ext_irec_t *erp; /* indirection array pointer */
3044 int erp_idx = 0; /* indirection array index */
3045 xfs_extnum_t ext_cnt; /* extents left to remove */
3046 xfs_extnum_t ext_diff; /* extents to remove in current list */
3047 xfs_extnum_t nex1; /* number of extents before idx */
3048 xfs_extnum_t nex2; /* extents after idx + count */
3049 int page_idx = idx; /* index in target extent list */
3051 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3052 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3053 ASSERT(erp != NULL);
3054 nex1 = page_idx;
3055 ext_cnt = count;
3056 while (ext_cnt) {
3057 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3058 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3060 * Check for deletion of entire list;
3061 * xfs_iext_irec_remove() updates extent offsets.
3063 if (ext_diff == erp->er_extcount) {
3064 xfs_iext_irec_remove(ifp, erp_idx);
3065 ext_cnt -= ext_diff;
3066 nex1 = 0;
3067 if (ext_cnt) {
3068 ASSERT(erp_idx < ifp->if_real_bytes /
3069 XFS_IEXT_BUFSZ);
3070 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3071 nex1 = 0;
3072 continue;
3073 } else {
3074 break;
3077 /* Move extents up (if needed) */
3078 if (nex2) {
3079 memmove(&erp->er_extbuf[nex1],
3080 &erp->er_extbuf[nex1 + ext_diff],
3081 nex2 * sizeof(xfs_bmbt_rec_t));
3083 /* Zero out rest of page */
3084 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3085 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3086 /* Update remaining counters */
3087 erp->er_extcount -= ext_diff;
3088 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3089 ext_cnt -= ext_diff;
3090 nex1 = 0;
3091 erp_idx++;
3092 erp++;
3094 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3095 xfs_iext_irec_compact(ifp);
3099 * Create, destroy, or resize a linear (direct) block of extents.
3101 void
3102 xfs_iext_realloc_direct(
3103 xfs_ifork_t *ifp, /* inode fork pointer */
3104 int new_size) /* new size of extents */
3106 int rnew_size; /* real new size of extents */
3108 rnew_size = new_size;
3110 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3111 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3112 (new_size != ifp->if_real_bytes)));
3114 /* Free extent records */
3115 if (new_size == 0) {
3116 xfs_iext_destroy(ifp);
3118 /* Resize direct extent list and zero any new bytes */
3119 else if (ifp->if_real_bytes) {
3120 /* Check if extents will fit inside the inode */
3121 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3122 xfs_iext_direct_to_inline(ifp, new_size /
3123 (uint)sizeof(xfs_bmbt_rec_t));
3124 ifp->if_bytes = new_size;
3125 return;
3127 if (!is_power_of_2(new_size)){
3128 rnew_size = roundup_pow_of_two(new_size);
3130 if (rnew_size != ifp->if_real_bytes) {
3131 ifp->if_u1.if_extents =
3132 kmem_realloc(ifp->if_u1.if_extents,
3133 rnew_size,
3134 ifp->if_real_bytes, KM_NOFS);
3136 if (rnew_size > ifp->if_real_bytes) {
3137 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3138 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3139 rnew_size - ifp->if_real_bytes);
3143 * Switch from the inline extent buffer to a direct
3144 * extent list. Be sure to include the inline extent
3145 * bytes in new_size.
3147 else {
3148 new_size += ifp->if_bytes;
3149 if (!is_power_of_2(new_size)) {
3150 rnew_size = roundup_pow_of_two(new_size);
3152 xfs_iext_inline_to_direct(ifp, rnew_size);
3154 ifp->if_real_bytes = rnew_size;
3155 ifp->if_bytes = new_size;
3159 * Switch from linear (direct) extent records to inline buffer.
3161 void
3162 xfs_iext_direct_to_inline(
3163 xfs_ifork_t *ifp, /* inode fork pointer */
3164 xfs_extnum_t nextents) /* number of extents in file */
3166 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3167 ASSERT(nextents <= XFS_INLINE_EXTS);
3169 * The inline buffer was zeroed when we switched
3170 * from inline to direct extent allocation mode,
3171 * so we don't need to clear it here.
3173 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3174 nextents * sizeof(xfs_bmbt_rec_t));
3175 kmem_free(ifp->if_u1.if_extents);
3176 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3177 ifp->if_real_bytes = 0;
3181 * Switch from inline buffer to linear (direct) extent records.
3182 * new_size should already be rounded up to the next power of 2
3183 * by the caller (when appropriate), so use new_size as it is.
3184 * However, since new_size may be rounded up, we can't update
3185 * if_bytes here. It is the caller's responsibility to update
3186 * if_bytes upon return.
3188 void
3189 xfs_iext_inline_to_direct(
3190 xfs_ifork_t *ifp, /* inode fork pointer */
3191 int new_size) /* number of extents in file */
3193 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3194 memset(ifp->if_u1.if_extents, 0, new_size);
3195 if (ifp->if_bytes) {
3196 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3197 ifp->if_bytes);
3198 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3199 sizeof(xfs_bmbt_rec_t));
3201 ifp->if_real_bytes = new_size;
3205 * Resize an extent indirection array to new_size bytes.
3207 STATIC void
3208 xfs_iext_realloc_indirect(
3209 xfs_ifork_t *ifp, /* inode fork pointer */
3210 int new_size) /* new indirection array size */
3212 int nlists; /* number of irec's (ex lists) */
3213 int size; /* current indirection array size */
3215 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3216 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3217 size = nlists * sizeof(xfs_ext_irec_t);
3218 ASSERT(ifp->if_real_bytes);
3219 ASSERT((new_size >= 0) && (new_size != size));
3220 if (new_size == 0) {
3221 xfs_iext_destroy(ifp);
3222 } else {
3223 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3224 kmem_realloc(ifp->if_u1.if_ext_irec,
3225 new_size, size, KM_NOFS);
3230 * Switch from indirection array to linear (direct) extent allocations.
3232 STATIC void
3233 xfs_iext_indirect_to_direct(
3234 xfs_ifork_t *ifp) /* inode fork pointer */
3236 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3237 xfs_extnum_t nextents; /* number of extents in file */
3238 int size; /* size of file extents */
3240 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3241 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3242 ASSERT(nextents <= XFS_LINEAR_EXTS);
3243 size = nextents * sizeof(xfs_bmbt_rec_t);
3245 xfs_iext_irec_compact_pages(ifp);
3246 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3248 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3249 kmem_free(ifp->if_u1.if_ext_irec);
3250 ifp->if_flags &= ~XFS_IFEXTIREC;
3251 ifp->if_u1.if_extents = ep;
3252 ifp->if_bytes = size;
3253 if (nextents < XFS_LINEAR_EXTS) {
3254 xfs_iext_realloc_direct(ifp, size);
3259 * Free incore file extents.
3261 void
3262 xfs_iext_destroy(
3263 xfs_ifork_t *ifp) /* inode fork pointer */
3265 if (ifp->if_flags & XFS_IFEXTIREC) {
3266 int erp_idx;
3267 int nlists;
3269 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3270 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3271 xfs_iext_irec_remove(ifp, erp_idx);
3273 ifp->if_flags &= ~XFS_IFEXTIREC;
3274 } else if (ifp->if_real_bytes) {
3275 kmem_free(ifp->if_u1.if_extents);
3276 } else if (ifp->if_bytes) {
3277 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3278 sizeof(xfs_bmbt_rec_t));
3280 ifp->if_u1.if_extents = NULL;
3281 ifp->if_real_bytes = 0;
3282 ifp->if_bytes = 0;
3286 * Return a pointer to the extent record for file system block bno.
3288 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3289 xfs_iext_bno_to_ext(
3290 xfs_ifork_t *ifp, /* inode fork pointer */
3291 xfs_fileoff_t bno, /* block number to search for */
3292 xfs_extnum_t *idxp) /* index of target extent */
3294 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3295 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3296 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3297 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3298 int high; /* upper boundary in search */
3299 xfs_extnum_t idx = 0; /* index of target extent */
3300 int low; /* lower boundary in search */
3301 xfs_extnum_t nextents; /* number of file extents */
3302 xfs_fileoff_t startoff = 0; /* start offset of extent */
3304 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3305 if (nextents == 0) {
3306 *idxp = 0;
3307 return NULL;
3309 low = 0;
3310 if (ifp->if_flags & XFS_IFEXTIREC) {
3311 /* Find target extent list */
3312 int erp_idx = 0;
3313 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3314 base = erp->er_extbuf;
3315 high = erp->er_extcount - 1;
3316 } else {
3317 base = ifp->if_u1.if_extents;
3318 high = nextents - 1;
3320 /* Binary search extent records */
3321 while (low <= high) {
3322 idx = (low + high) >> 1;
3323 ep = base + idx;
3324 startoff = xfs_bmbt_get_startoff(ep);
3325 blockcount = xfs_bmbt_get_blockcount(ep);
3326 if (bno < startoff) {
3327 high = idx - 1;
3328 } else if (bno >= startoff + blockcount) {
3329 low = idx + 1;
3330 } else {
3331 /* Convert back to file-based extent index */
3332 if (ifp->if_flags & XFS_IFEXTIREC) {
3333 idx += erp->er_extoff;
3335 *idxp = idx;
3336 return ep;
3339 /* Convert back to file-based extent index */
3340 if (ifp->if_flags & XFS_IFEXTIREC) {
3341 idx += erp->er_extoff;
3343 if (bno >= startoff + blockcount) {
3344 if (++idx == nextents) {
3345 ep = NULL;
3346 } else {
3347 ep = xfs_iext_get_ext(ifp, idx);
3350 *idxp = idx;
3351 return ep;
3355 * Return a pointer to the indirection array entry containing the
3356 * extent record for filesystem block bno. Store the index of the
3357 * target irec in *erp_idxp.
3359 xfs_ext_irec_t * /* pointer to found extent record */
3360 xfs_iext_bno_to_irec(
3361 xfs_ifork_t *ifp, /* inode fork pointer */
3362 xfs_fileoff_t bno, /* block number to search for */
3363 int *erp_idxp) /* irec index of target ext list */
3365 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3366 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3367 int erp_idx; /* indirection array index */
3368 int nlists; /* number of extent irec's (lists) */
3369 int high; /* binary search upper limit */
3370 int low; /* binary search lower limit */
3372 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3373 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3374 erp_idx = 0;
3375 low = 0;
3376 high = nlists - 1;
3377 while (low <= high) {
3378 erp_idx = (low + high) >> 1;
3379 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3380 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3381 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3382 high = erp_idx - 1;
3383 } else if (erp_next && bno >=
3384 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3385 low = erp_idx + 1;
3386 } else {
3387 break;
3390 *erp_idxp = erp_idx;
3391 return erp;
3395 * Return a pointer to the indirection array entry containing the
3396 * extent record at file extent index *idxp. Store the index of the
3397 * target irec in *erp_idxp and store the page index of the target
3398 * extent record in *idxp.
3400 xfs_ext_irec_t *
3401 xfs_iext_idx_to_irec(
3402 xfs_ifork_t *ifp, /* inode fork pointer */
3403 xfs_extnum_t *idxp, /* extent index (file -> page) */
3404 int *erp_idxp, /* pointer to target irec */
3405 int realloc) /* new bytes were just added */
3407 xfs_ext_irec_t *prev; /* pointer to previous irec */
3408 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3409 int erp_idx; /* indirection array index */
3410 int nlists; /* number of irec's (ex lists) */
3411 int high; /* binary search upper limit */
3412 int low; /* binary search lower limit */
3413 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3415 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3416 ASSERT(page_idx >= 0);
3417 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3418 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3420 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3421 erp_idx = 0;
3422 low = 0;
3423 high = nlists - 1;
3425 /* Binary search extent irec's */
3426 while (low <= high) {
3427 erp_idx = (low + high) >> 1;
3428 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3429 prev = erp_idx > 0 ? erp - 1 : NULL;
3430 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3431 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3432 high = erp_idx - 1;
3433 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3434 (page_idx == erp->er_extoff + erp->er_extcount &&
3435 !realloc)) {
3436 low = erp_idx + 1;
3437 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3438 erp->er_extcount == XFS_LINEAR_EXTS) {
3439 ASSERT(realloc);
3440 page_idx = 0;
3441 erp_idx++;
3442 erp = erp_idx < nlists ? erp + 1 : NULL;
3443 break;
3444 } else {
3445 page_idx -= erp->er_extoff;
3446 break;
3449 *idxp = page_idx;
3450 *erp_idxp = erp_idx;
3451 return(erp);
3455 * Allocate and initialize an indirection array once the space needed
3456 * for incore extents increases above XFS_IEXT_BUFSZ.
3458 void
3459 xfs_iext_irec_init(
3460 xfs_ifork_t *ifp) /* inode fork pointer */
3462 xfs_ext_irec_t *erp; /* indirection array pointer */
3463 xfs_extnum_t nextents; /* number of extents in file */
3465 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3466 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3467 ASSERT(nextents <= XFS_LINEAR_EXTS);
3469 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3471 if (nextents == 0) {
3472 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3473 } else if (!ifp->if_real_bytes) {
3474 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3475 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3476 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3478 erp->er_extbuf = ifp->if_u1.if_extents;
3479 erp->er_extcount = nextents;
3480 erp->er_extoff = 0;
3482 ifp->if_flags |= XFS_IFEXTIREC;
3483 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3484 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3485 ifp->if_u1.if_ext_irec = erp;
3487 return;
3491 * Allocate and initialize a new entry in the indirection array.
3493 xfs_ext_irec_t *
3494 xfs_iext_irec_new(
3495 xfs_ifork_t *ifp, /* inode fork pointer */
3496 int erp_idx) /* index for new irec */
3498 xfs_ext_irec_t *erp; /* indirection array pointer */
3499 int i; /* loop counter */
3500 int nlists; /* number of irec's (ex lists) */
3502 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3503 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3505 /* Resize indirection array */
3506 xfs_iext_realloc_indirect(ifp, ++nlists *
3507 sizeof(xfs_ext_irec_t));
3509 * Move records down in the array so the
3510 * new page can use erp_idx.
3512 erp = ifp->if_u1.if_ext_irec;
3513 for (i = nlists - 1; i > erp_idx; i--) {
3514 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3516 ASSERT(i == erp_idx);
3518 /* Initialize new extent record */
3519 erp = ifp->if_u1.if_ext_irec;
3520 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3521 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3522 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3523 erp[erp_idx].er_extcount = 0;
3524 erp[erp_idx].er_extoff = erp_idx > 0 ?
3525 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3526 return (&erp[erp_idx]);
3530 * Remove a record from the indirection array.
3532 void
3533 xfs_iext_irec_remove(
3534 xfs_ifork_t *ifp, /* inode fork pointer */
3535 int erp_idx) /* irec index to remove */
3537 xfs_ext_irec_t *erp; /* indirection array pointer */
3538 int i; /* loop counter */
3539 int nlists; /* number of irec's (ex lists) */
3541 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3542 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3543 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3544 if (erp->er_extbuf) {
3545 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3546 -erp->er_extcount);
3547 kmem_free(erp->er_extbuf);
3549 /* Compact extent records */
3550 erp = ifp->if_u1.if_ext_irec;
3551 for (i = erp_idx; i < nlists - 1; i++) {
3552 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3555 * Manually free the last extent record from the indirection
3556 * array. A call to xfs_iext_realloc_indirect() with a size
3557 * of zero would result in a call to xfs_iext_destroy() which
3558 * would in turn call this function again, creating a nasty
3559 * infinite loop.
3561 if (--nlists) {
3562 xfs_iext_realloc_indirect(ifp,
3563 nlists * sizeof(xfs_ext_irec_t));
3564 } else {
3565 kmem_free(ifp->if_u1.if_ext_irec);
3567 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3571 * This is called to clean up large amounts of unused memory allocated
3572 * by the indirection array. Before compacting anything though, verify
3573 * that the indirection array is still needed and switch back to the
3574 * linear extent list (or even the inline buffer) if possible. The
3575 * compaction policy is as follows:
3577 * Full Compaction: Extents fit into a single page (or inline buffer)
3578 * Partial Compaction: Extents occupy less than 50% of allocated space
3579 * No Compaction: Extents occupy at least 50% of allocated space
3581 void
3582 xfs_iext_irec_compact(
3583 xfs_ifork_t *ifp) /* inode fork pointer */
3585 xfs_extnum_t nextents; /* number of extents in file */
3586 int nlists; /* number of irec's (ex lists) */
3588 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3589 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3590 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3592 if (nextents == 0) {
3593 xfs_iext_destroy(ifp);
3594 } else if (nextents <= XFS_INLINE_EXTS) {
3595 xfs_iext_indirect_to_direct(ifp);
3596 xfs_iext_direct_to_inline(ifp, nextents);
3597 } else if (nextents <= XFS_LINEAR_EXTS) {
3598 xfs_iext_indirect_to_direct(ifp);
3599 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3600 xfs_iext_irec_compact_pages(ifp);
3605 * Combine extents from neighboring extent pages.
3607 void
3608 xfs_iext_irec_compact_pages(
3609 xfs_ifork_t *ifp) /* inode fork pointer */
3611 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3612 int erp_idx = 0; /* indirection array index */
3613 int nlists; /* number of irec's (ex lists) */
3615 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3616 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3617 while (erp_idx < nlists - 1) {
3618 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3619 erp_next = erp + 1;
3620 if (erp_next->er_extcount <=
3621 (XFS_LINEAR_EXTS - erp->er_extcount)) {
3622 memcpy(&erp->er_extbuf[erp->er_extcount],
3623 erp_next->er_extbuf, erp_next->er_extcount *
3624 sizeof(xfs_bmbt_rec_t));
3625 erp->er_extcount += erp_next->er_extcount;
3627 * Free page before removing extent record
3628 * so er_extoffs don't get modified in
3629 * xfs_iext_irec_remove.
3631 kmem_free(erp_next->er_extbuf);
3632 erp_next->er_extbuf = NULL;
3633 xfs_iext_irec_remove(ifp, erp_idx + 1);
3634 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3635 } else {
3636 erp_idx++;
3642 * This is called to update the er_extoff field in the indirection
3643 * array when extents have been added or removed from one of the
3644 * extent lists. erp_idx contains the irec index to begin updating
3645 * at and ext_diff contains the number of extents that were added
3646 * or removed.
3648 void
3649 xfs_iext_irec_update_extoffs(
3650 xfs_ifork_t *ifp, /* inode fork pointer */
3651 int erp_idx, /* irec index to update */
3652 int ext_diff) /* number of new extents */
3654 int i; /* loop counter */
3655 int nlists; /* number of irec's (ex lists */
3657 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3658 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3659 for (i = erp_idx; i < nlists; i++) {
3660 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;