2 * linux/mm/filemap_xip.c
4 * Copyright (C) 2005 IBM Corporation
5 * Author: Carsten Otte <cotte@de.ibm.com>
7 * derived from linux/mm/filemap.c - Copyright (C) Linus Torvalds
12 #include <linux/pagemap.h>
13 #include <linux/export.h>
14 #include <linux/uio.h>
15 #include <linux/rmap.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/sched.h>
18 #include <linux/seqlock.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <asm/tlbflush.h>
25 * We do use our own empty page to avoid interference with other users
26 * of ZERO_PAGE(), such as /dev/zero
28 static DEFINE_MUTEX(xip_sparse_mutex
);
29 static seqcount_t xip_sparse_seq
= SEQCNT_ZERO
;
30 static struct page
*__xip_sparse_page
;
32 /* called under xip_sparse_mutex */
33 static struct page
*xip_sparse_page(void)
35 if (!__xip_sparse_page
) {
36 struct page
*page
= alloc_page(GFP_HIGHUSER
| __GFP_ZERO
);
39 __xip_sparse_page
= page
;
41 return __xip_sparse_page
;
45 * This is a file read routine for execute in place files, and uses
46 * the mapping->a_ops->get_xip_mem() function for the actual low-level
49 * Note the struct file* is not used at all. It may be NULL.
52 do_xip_mapping_read(struct address_space
*mapping
,
53 struct file_ra_state
*_ra
,
59 struct inode
*inode
= mapping
->host
;
60 pgoff_t index
, end_index
;
63 size_t copied
= 0, error
= 0;
65 BUG_ON(!mapping
->a_ops
->get_xip_mem
);
68 index
= pos
>> PAGE_CACHE_SHIFT
;
69 offset
= pos
& ~PAGE_CACHE_MASK
;
71 isize
= i_size_read(inode
);
75 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
77 unsigned long nr
, left
;
79 unsigned long xip_pfn
;
82 /* nr is the maximum number of bytes to copy from this page */
84 if (index
>= end_index
) {
85 if (index
> end_index
)
87 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
93 if (nr
> len
- copied
)
96 error
= mapping
->a_ops
->get_xip_mem(mapping
, index
, 0,
98 if (unlikely(error
)) {
99 if (error
== -ENODATA
) {
106 /* If users can be writing to this page using arbitrary
107 * virtual addresses, take care about potential aliasing
108 * before reading the page on the kernel side.
110 if (mapping_writably_mapped(mapping
))
111 /* address based flush */ ;
114 * Ok, we have the mem, so now we can copy it to user space...
116 * The actor routine returns how many bytes were actually used..
117 * NOTE! This may not be the same as how much of a user buffer
118 * we filled up (we may be padding etc), so we can only update
119 * "pos" here (the actor routine has to update the user buffer
120 * pointers and the remaining count).
123 left
= __copy_to_user(buf
+copied
, xip_mem
+offset
, nr
);
125 left
= __clear_user(buf
+ copied
, nr
);
132 copied
+= (nr
- left
);
133 offset
+= (nr
- left
);
134 index
+= offset
>> PAGE_CACHE_SHIFT
;
135 offset
&= ~PAGE_CACHE_MASK
;
136 } while (copied
< len
);
139 *ppos
= pos
+ copied
;
143 return (copied
? copied
: error
);
147 xip_file_read(struct file
*filp
, char __user
*buf
, size_t len
, loff_t
*ppos
)
149 if (!access_ok(VERIFY_WRITE
, buf
, len
))
152 return do_xip_mapping_read(filp
->f_mapping
, &filp
->f_ra
, filp
,
155 EXPORT_SYMBOL_GPL(xip_file_read
);
158 * __xip_unmap is invoked from xip_unmap and
161 * This function walks all vmas of the address_space and unmaps the
162 * __xip_sparse_page when found at pgoff.
165 __xip_unmap (struct address_space
* mapping
,
168 struct vm_area_struct
*vma
;
169 struct mm_struct
*mm
;
170 struct prio_tree_iter iter
;
171 unsigned long address
;
179 count
= read_seqcount_begin(&xip_sparse_seq
);
181 page
= __xip_sparse_page
;
186 mutex_lock(&mapping
->i_mmap_mutex
);
187 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
189 address
= vma
->vm_start
+
190 ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
191 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
192 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
194 /* Nuke the page table entry. */
195 flush_cache_page(vma
, address
, pte_pfn(*pte
));
196 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
197 page_remove_rmap(page
);
198 dec_mm_counter(mm
, MM_FILEPAGES
);
199 BUG_ON(pte_dirty(pteval
));
200 pte_unmap_unlock(pte
, ptl
);
201 page_cache_release(page
);
204 mutex_unlock(&mapping
->i_mmap_mutex
);
207 mutex_unlock(&xip_sparse_mutex
);
208 } else if (read_seqcount_retry(&xip_sparse_seq
, count
)) {
209 mutex_lock(&xip_sparse_mutex
);
216 * xip_fault() is invoked via the vma operations vector for a
217 * mapped memory region to read in file data during a page fault.
219 * This function is derived from filemap_fault, but used for execute in place
221 static int xip_file_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
223 struct file
*file
= vma
->vm_file
;
224 struct address_space
*mapping
= file
->f_mapping
;
225 struct inode
*inode
= mapping
->host
;
228 unsigned long xip_pfn
;
232 /* XXX: are VM_FAULT_ codes OK? */
234 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
235 if (vmf
->pgoff
>= size
)
236 return VM_FAULT_SIGBUS
;
238 error
= mapping
->a_ops
->get_xip_mem(mapping
, vmf
->pgoff
, 0,
242 if (error
!= -ENODATA
)
246 if ((vma
->vm_flags
& (VM_WRITE
| VM_MAYWRITE
)) &&
247 (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) &&
248 (!(mapping
->host
->i_sb
->s_flags
& MS_RDONLY
))) {
251 /* maybe shared writable, allocate new block */
252 mutex_lock(&xip_sparse_mutex
);
253 error
= mapping
->a_ops
->get_xip_mem(mapping
, vmf
->pgoff
, 1,
255 mutex_unlock(&xip_sparse_mutex
);
257 return VM_FAULT_SIGBUS
;
258 /* unmap sparse mappings at pgoff from all other vmas */
259 __xip_unmap(mapping
, vmf
->pgoff
);
262 err
= vm_insert_mixed(vma
, (unsigned long)vmf
->virtual_address
,
267 * err == -EBUSY is fine, we've raced against another thread
268 * that faulted-in the same page
272 return VM_FAULT_NOPAGE
;
274 int err
, ret
= VM_FAULT_OOM
;
276 mutex_lock(&xip_sparse_mutex
);
277 write_seqcount_begin(&xip_sparse_seq
);
278 error
= mapping
->a_ops
->get_xip_mem(mapping
, vmf
->pgoff
, 0,
280 if (unlikely(!error
)) {
281 write_seqcount_end(&xip_sparse_seq
);
282 mutex_unlock(&xip_sparse_mutex
);
285 if (error
!= -ENODATA
)
287 /* not shared and writable, use xip_sparse_page() */
288 page
= xip_sparse_page();
291 err
= vm_insert_page(vma
, (unsigned long)vmf
->virtual_address
,
296 ret
= VM_FAULT_NOPAGE
;
298 write_seqcount_end(&xip_sparse_seq
);
299 mutex_unlock(&xip_sparse_mutex
);
305 static const struct vm_operations_struct xip_file_vm_ops
= {
306 .fault
= xip_file_fault
,
307 .page_mkwrite
= filemap_page_mkwrite
,
310 int xip_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
312 BUG_ON(!file
->f_mapping
->a_ops
->get_xip_mem
);
315 vma
->vm_ops
= &xip_file_vm_ops
;
316 vma
->vm_flags
|= VM_CAN_NONLINEAR
| VM_MIXEDMAP
;
319 EXPORT_SYMBOL_GPL(xip_file_mmap
);
322 __xip_file_write(struct file
*filp
, const char __user
*buf
,
323 size_t count
, loff_t pos
, loff_t
*ppos
)
325 struct address_space
* mapping
= filp
->f_mapping
;
326 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
327 struct inode
*inode
= mapping
->host
;
332 BUG_ON(!mapping
->a_ops
->get_xip_mem
);
336 unsigned long offset
;
339 unsigned long xip_pfn
;
341 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
342 index
= pos
>> PAGE_CACHE_SHIFT
;
343 bytes
= PAGE_CACHE_SIZE
- offset
;
347 status
= a_ops
->get_xip_mem(mapping
, index
, 0,
349 if (status
== -ENODATA
) {
350 /* we allocate a new page unmap it */
351 mutex_lock(&xip_sparse_mutex
);
352 status
= a_ops
->get_xip_mem(mapping
, index
, 1,
354 mutex_unlock(&xip_sparse_mutex
);
356 /* unmap page at pgoff from all other vmas */
357 __xip_unmap(mapping
, index
);
364 __copy_from_user_nocache(xip_mem
+ offset
, buf
, bytes
);
366 if (likely(copied
> 0)) {
376 if (unlikely(copied
!= bytes
))
384 * No need to use i_size_read() here, the i_size
385 * cannot change under us because we hold i_mutex.
387 if (pos
> inode
->i_size
) {
388 i_size_write(inode
, pos
);
389 mark_inode_dirty(inode
);
392 return written
? written
: status
;
396 xip_file_write(struct file
*filp
, const char __user
*buf
, size_t len
,
399 struct address_space
*mapping
= filp
->f_mapping
;
400 struct inode
*inode
= mapping
->host
;
405 sb_start_write(inode
->i_sb
);
407 mutex_lock(&inode
->i_mutex
);
409 if (!access_ok(VERIFY_READ
, buf
, len
)) {
417 /* We can write back this queue in page reclaim */
418 current
->backing_dev_info
= mapping
->backing_dev_info
;
420 ret
= generic_write_checks(filp
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
426 ret
= file_remove_suid(filp
);
430 ret
= file_update_time(filp
);
434 ret
= __xip_file_write (filp
, buf
, count
, pos
, ppos
);
437 current
->backing_dev_info
= NULL
;
439 mutex_unlock(&inode
->i_mutex
);
440 sb_end_write(inode
->i_sb
);
443 EXPORT_SYMBOL_GPL(xip_file_write
);
446 * truncate a page used for execute in place
447 * functionality is analog to block_truncate_page but does use get_xip_mem
448 * to get the page instead of page cache
451 xip_truncate_page(struct address_space
*mapping
, loff_t from
)
453 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
454 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
458 unsigned long xip_pfn
;
461 BUG_ON(!mapping
->a_ops
->get_xip_mem
);
463 blocksize
= 1 << mapping
->host
->i_blkbits
;
464 length
= offset
& (blocksize
- 1);
466 /* Block boundary? Nothing to do */
470 length
= blocksize
- length
;
472 err
= mapping
->a_ops
->get_xip_mem(mapping
, index
, 0,
476 /* Hole? No need to truncate */
481 memset(xip_mem
+ offset
, 0, length
);
484 EXPORT_SYMBOL_GPL(xip_truncate_page
);