initial commit with v3.6.7
[linux-3.6.7-moxart.git] / net / core / dev.c
blobaed87a401458db1cc2655a7c03be0009a7b7718f
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
139 #include "net-sysfs.h"
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
204 static inline void dev_base_seq_inc(struct net *net)
206 while (++net->dev_base_seq == 0);
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 static inline void rps_lock(struct softnet_data *sd)
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
228 static inline void rps_unlock(struct softnet_data *sd)
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
238 struct net *net = dev_net(dev);
240 ASSERT_RTNL();
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
249 dev_base_seq_inc(net);
251 return 0;
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
257 static void unlist_netdevice(struct net_device *dev)
259 ASSERT_RTNL();
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
268 dev_base_seq_inc(dev_net(dev));
272 * Our notifier list
275 static RAW_NOTIFIER_HEAD(netdev_chain);
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
285 #ifdef CONFIG_LOCKDEP
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 int i;
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
341 int i;
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 int i;
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
365 #endif
367 /*******************************************************************************
369 Protocol management and registration routines
371 *******************************************************************************/
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
410 void dev_add_pack(struct packet_type *pt)
412 struct list_head *head = ptype_head(pt);
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
418 EXPORT_SYMBOL(dev_add_pack);
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
433 void __dev_remove_pack(struct packet_type *pt)
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
438 spin_lock(&ptype_lock);
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
451 EXPORT_SYMBOL(__dev_remove_pack);
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
465 void dev_remove_pack(struct packet_type *pt)
467 __dev_remove_pack(pt);
469 synchronize_net();
471 EXPORT_SYMBOL(dev_remove_pack);
473 /******************************************************************************
475 Device Boot-time Settings Routines
477 *******************************************************************************/
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 struct netdev_boot_setup *s;
494 int i;
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
518 int netdev_boot_setup_check(struct net_device *dev)
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
533 return 0;
535 EXPORT_SYMBOL(netdev_boot_setup_check);
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
548 unsigned long netdev_boot_base(const char *prefix, int unit)
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
554 sprintf(name, "%s%d", prefix, unit);
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
570 * Saves at boot time configured settings for any netdevice.
572 int __init netdev_boot_setup(char *str)
574 int ints[5];
575 struct ifmap map;
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
596 __setup("netdev=", netdev_boot_setup);
598 /*******************************************************************************
600 Device Interface Subroutines
602 *******************************************************************************/
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
626 return NULL;
628 EXPORT_SYMBOL(__dev_get_by_name);
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
652 return NULL;
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 struct net_device *dev;
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
679 EXPORT_SYMBOL(dev_get_by_name);
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
703 return NULL;
705 EXPORT_SYMBOL(__dev_get_by_index);
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
728 return NULL;
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 struct net_device *dev;
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
755 EXPORT_SYMBOL(dev_get_by_index);
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
774 struct net_device *dev;
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
781 return NULL;
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 struct net_device *dev;
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
794 return NULL;
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 struct net_device *dev, *ret = NULL;
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
809 rcu_read_unlock();
810 return ret;
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
828 struct net_device *dev, *ret;
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
837 return ret;
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
849 bool dev_valid_name(const char *name)
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
863 return true;
865 EXPORT_SYMBOL(dev_valid_name);
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
930 return -ENFILE;
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
947 int dev_alloc_name(struct net_device *dev, const char *name)
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
960 EXPORT_SYMBOL(dev_alloc_name);
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 struct net *net;
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
969 if (!dev_valid_name(name))
970 return -EINVAL;
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
979 return 0;
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
990 int dev_change_name(struct net_device *dev, const char *newname)
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1024 synchronize_rcu();
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1045 return err;
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1054 * Set ifalias for a device,
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 char *new_ifalias;
1060 ASSERT_RTNL();
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1070 return 0;
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!new_ifalias)
1075 return -ENOMEM;
1076 dev->ifalias = new_ifalias;
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1087 * Called to indicate a device has changed features.
1089 void netdev_features_change(struct net_device *dev)
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1093 EXPORT_SYMBOL(netdev_features_change);
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1103 void netdev_state_change(struct net_device *dev)
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1110 EXPORT_SYMBOL(netdev_state_change);
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1114 return call_netdevice_notifiers(event, dev);
1116 EXPORT_SYMBOL(netdev_bonding_change);
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1128 void dev_load(struct net *net, const char *name)
1130 struct net_device *dev;
1131 int no_module;
1133 rcu_read_lock();
1134 dev = dev_get_by_name_rcu(net, name);
1135 rcu_read_unlock();
1137 no_module = !dev;
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 name);
1146 EXPORT_SYMBOL(dev_load);
1148 static int __dev_open(struct net_device *dev)
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1153 ASSERT_RTNL();
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1163 set_bit(__LINK_STATE_START, &dev->state);
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 add_device_randomness(dev->dev_addr, dev->addr_len);
1181 return ret;
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1196 int dev_open(struct net_device *dev)
1198 int ret;
1200 if (dev->flags & IFF_UP)
1201 return 0;
1203 ret = __dev_open(dev);
1204 if (ret < 0)
1205 return ret;
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1210 return ret;
1212 EXPORT_SYMBOL(dev_open);
1214 static int __dev_close_many(struct list_head *head)
1216 struct net_device *dev;
1218 ASSERT_RTNL();
1219 might_sleep();
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1224 clear_bit(__LINK_STATE_START, &dev->state);
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235 dev_deactivate_many(head);
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1254 return 0;
1257 static int __dev_close(struct net_device *dev)
1259 int retval;
1260 LIST_HEAD(single);
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1264 list_del(&single);
1265 return retval;
1268 static int dev_close_many(struct list_head *head)
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1277 __dev_close_many(head);
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1286 return 0;
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 * chain.
1298 int dev_close(struct net_device *dev)
1300 if (dev->flags & IFF_UP) {
1301 LIST_HEAD(single);
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1305 list_del(&single);
1307 return 0;
1309 EXPORT_SYMBOL(dev_close);
1313 * dev_disable_lro - disable Large Receive Offload on a device
1314 * @dev: device
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1320 void dev_disable_lro(struct net_device *dev)
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1335 EXPORT_SYMBOL(dev_disable_lro);
1338 static int dev_boot_phase = 1;
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1354 int register_netdevice_notifier(struct notifier_block *nb)
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 goto outroll;
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1401 outroll:
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1403 goto unlock;
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1408 * unregister_netdevice_notifier - unregister a network notifier block
1409 * @nb: notifier
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 struct net_device *dev;
1424 struct net *net;
1425 int err;
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1432 for_each_net(net) {
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1442 unlock:
1443 rtnl_unlock();
1444 return err;
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1459 ASSERT_RTNL();
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1473 void net_enable_timestamp(void)
1475 #ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1478 if (deferred) {
1479 while (--deferred)
1480 static_key_slow_dec(&netstamp_needed);
1481 return;
1483 #endif
1484 WARN_ON(in_interrupt());
1485 static_key_slow_inc(&netstamp_needed);
1487 EXPORT_SYMBOL(net_enable_timestamp);
1489 void net_disable_timestamp(void)
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1496 #endif
1497 static_key_slow_dec(&netstamp_needed);
1499 EXPORT_SYMBOL(net_disable_timestamp);
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1562 return 0;
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1568 unsigned int len;
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1580 if (skb_is_gso(skb))
1581 return true;
1583 return false;
1587 * dev_forward_skb - loopback an skb to another netif
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1614 skb_orphan(skb);
1615 nf_reset(skb);
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1622 skb->skb_iif = 0;
1623 skb->dev = dev;
1624 skb_dst_drop(skb);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1628 skb->mark = 0;
1629 secpath_reset(skb);
1630 nf_reset(skb);
1631 return netif_rx(skb);
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 struct packet_type *pt_prev,
1637 struct net_device *orig_dev)
1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 return -ENOMEM;
1641 atomic_inc(&skb->users);
1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1647 if (!ptype->af_packet_priv || !skb->sk)
1648 return false;
1650 if (ptype->id_match)
1651 return ptype->id_match(ptype, skb->sk);
1652 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1653 return true;
1655 return false;
1659 * Support routine. Sends outgoing frames to any network
1660 * taps currently in use.
1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1665 struct packet_type *ptype;
1666 struct sk_buff *skb2 = NULL;
1667 struct packet_type *pt_prev = NULL;
1669 rcu_read_lock();
1670 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1671 /* Never send packets back to the socket
1672 * they originated from - MvS (miquels@drinkel.ow.org)
1674 if ((ptype->dev == dev || !ptype->dev) &&
1675 (!skb_loop_sk(ptype, skb))) {
1676 if (pt_prev) {
1677 deliver_skb(skb2, pt_prev, skb->dev);
1678 pt_prev = ptype;
1679 continue;
1682 skb2 = skb_clone(skb, GFP_ATOMIC);
1683 if (!skb2)
1684 break;
1686 net_timestamp_set(skb2);
1688 /* skb->nh should be correctly
1689 set by sender, so that the second statement is
1690 just protection against buggy protocols.
1692 skb_reset_mac_header(skb2);
1694 if (skb_network_header(skb2) < skb2->data ||
1695 skb2->network_header > skb2->tail) {
1696 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1697 ntohs(skb2->protocol),
1698 dev->name);
1699 skb_reset_network_header(skb2);
1702 skb2->transport_header = skb2->network_header;
1703 skb2->pkt_type = PACKET_OUTGOING;
1704 pt_prev = ptype;
1707 if (pt_prev)
1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 rcu_read_unlock();
1713 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1714 * @dev: Network device
1715 * @txq: number of queues available
1717 * If real_num_tx_queues is changed the tc mappings may no longer be
1718 * valid. To resolve this verify the tc mapping remains valid and if
1719 * not NULL the mapping. With no priorities mapping to this
1720 * offset/count pair it will no longer be used. In the worst case TC0
1721 * is invalid nothing can be done so disable priority mappings. If is
1722 * expected that drivers will fix this mapping if they can before
1723 * calling netif_set_real_num_tx_queues.
1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1727 int i;
1728 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1730 /* If TC0 is invalidated disable TC mapping */
1731 if (tc->offset + tc->count > txq) {
1732 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1733 dev->num_tc = 0;
1734 return;
1737 /* Invalidated prio to tc mappings set to TC0 */
1738 for (i = 1; i < TC_BITMASK + 1; i++) {
1739 int q = netdev_get_prio_tc_map(dev, i);
1741 tc = &dev->tc_to_txq[q];
1742 if (tc->offset + tc->count > txq) {
1743 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1744 i, q);
1745 netdev_set_prio_tc_map(dev, i, 0);
1751 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1752 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1756 int rc;
1758 if (txq < 1 || txq > dev->num_tx_queues)
1759 return -EINVAL;
1761 if (dev->reg_state == NETREG_REGISTERED ||
1762 dev->reg_state == NETREG_UNREGISTERING) {
1763 ASSERT_RTNL();
1765 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1766 txq);
1767 if (rc)
1768 return rc;
1770 if (dev->num_tc)
1771 netif_setup_tc(dev, txq);
1773 if (txq < dev->real_num_tx_queues)
1774 qdisc_reset_all_tx_gt(dev, txq);
1777 dev->real_num_tx_queues = txq;
1778 return 0;
1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1782 #ifdef CONFIG_RPS
1784 * netif_set_real_num_rx_queues - set actual number of RX queues used
1785 * @dev: Network device
1786 * @rxq: Actual number of RX queues
1788 * This must be called either with the rtnl_lock held or before
1789 * registration of the net device. Returns 0 on success, or a
1790 * negative error code. If called before registration, it always
1791 * succeeds.
1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1795 int rc;
1797 if (rxq < 1 || rxq > dev->num_rx_queues)
1798 return -EINVAL;
1800 if (dev->reg_state == NETREG_REGISTERED) {
1801 ASSERT_RTNL();
1803 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1804 rxq);
1805 if (rc)
1806 return rc;
1809 dev->real_num_rx_queues = rxq;
1810 return 0;
1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1813 #endif
1816 * netif_get_num_default_rss_queues - default number of RSS queues
1818 * This routine should set an upper limit on the number of RSS queues
1819 * used by default by multiqueue devices.
1821 int netif_get_num_default_rss_queues(void)
1823 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1827 static inline void __netif_reschedule(struct Qdisc *q)
1829 struct softnet_data *sd;
1830 unsigned long flags;
1832 local_irq_save(flags);
1833 sd = &__get_cpu_var(softnet_data);
1834 q->next_sched = NULL;
1835 *sd->output_queue_tailp = q;
1836 sd->output_queue_tailp = &q->next_sched;
1837 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1838 local_irq_restore(flags);
1841 void __netif_schedule(struct Qdisc *q)
1843 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1844 __netif_reschedule(q);
1846 EXPORT_SYMBOL(__netif_schedule);
1848 void dev_kfree_skb_irq(struct sk_buff *skb)
1850 if (atomic_dec_and_test(&skb->users)) {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 skb->next = sd->completion_queue;
1857 sd->completion_queue = skb;
1858 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1859 local_irq_restore(flags);
1862 EXPORT_SYMBOL(dev_kfree_skb_irq);
1864 void dev_kfree_skb_any(struct sk_buff *skb)
1866 if (in_irq() || irqs_disabled())
1867 dev_kfree_skb_irq(skb);
1868 else
1869 dev_kfree_skb(skb);
1871 EXPORT_SYMBOL(dev_kfree_skb_any);
1875 * netif_device_detach - mark device as removed
1876 * @dev: network device
1878 * Mark device as removed from system and therefore no longer available.
1880 void netif_device_detach(struct net_device *dev)
1882 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 netif_running(dev)) {
1884 netif_tx_stop_all_queues(dev);
1887 EXPORT_SYMBOL(netif_device_detach);
1890 * netif_device_attach - mark device as attached
1891 * @dev: network device
1893 * Mark device as attached from system and restart if needed.
1895 void netif_device_attach(struct net_device *dev)
1897 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1898 netif_running(dev)) {
1899 netif_tx_wake_all_queues(dev);
1900 __netdev_watchdog_up(dev);
1903 EXPORT_SYMBOL(netif_device_attach);
1905 static void skb_warn_bad_offload(const struct sk_buff *skb)
1907 static const netdev_features_t null_features = 0;
1908 struct net_device *dev = skb->dev;
1909 const char *driver = "";
1911 if (dev && dev->dev.parent)
1912 driver = dev_driver_string(dev->dev.parent);
1914 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1915 "gso_type=%d ip_summed=%d\n",
1916 driver, dev ? &dev->features : &null_features,
1917 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1918 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1919 skb_shinfo(skb)->gso_type, skb->ip_summed);
1923 * Invalidate hardware checksum when packet is to be mangled, and
1924 * complete checksum manually on outgoing path.
1926 int skb_checksum_help(struct sk_buff *skb)
1928 __wsum csum;
1929 int ret = 0, offset;
1931 if (skb->ip_summed == CHECKSUM_COMPLETE)
1932 goto out_set_summed;
1934 if (unlikely(skb_shinfo(skb)->gso_size)) {
1935 skb_warn_bad_offload(skb);
1936 return -EINVAL;
1939 offset = skb_checksum_start_offset(skb);
1940 BUG_ON(offset >= skb_headlen(skb));
1941 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1943 offset += skb->csum_offset;
1944 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1946 if (skb_cloned(skb) &&
1947 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1948 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1949 if (ret)
1950 goto out;
1953 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1954 out_set_summed:
1955 skb->ip_summed = CHECKSUM_NONE;
1956 out:
1957 return ret;
1959 EXPORT_SYMBOL(skb_checksum_help);
1962 * skb_gso_segment - Perform segmentation on skb.
1963 * @skb: buffer to segment
1964 * @features: features for the output path (see dev->features)
1966 * This function segments the given skb and returns a list of segments.
1968 * It may return NULL if the skb requires no segmentation. This is
1969 * only possible when GSO is used for verifying header integrity.
1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1972 netdev_features_t features)
1974 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1975 struct packet_type *ptype;
1976 __be16 type = skb->protocol;
1977 int vlan_depth = ETH_HLEN;
1978 int err;
1980 while (type == htons(ETH_P_8021Q)) {
1981 struct vlan_hdr *vh;
1983 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1984 return ERR_PTR(-EINVAL);
1986 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1987 type = vh->h_vlan_encapsulated_proto;
1988 vlan_depth += VLAN_HLEN;
1991 skb_reset_mac_header(skb);
1992 skb->mac_len = skb->network_header - skb->mac_header;
1993 __skb_pull(skb, skb->mac_len);
1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 skb_warn_bad_offload(skb);
1998 if (skb_header_cloned(skb) &&
1999 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2000 return ERR_PTR(err);
2003 rcu_read_lock();
2004 list_for_each_entry_rcu(ptype,
2005 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2006 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2007 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2008 err = ptype->gso_send_check(skb);
2009 segs = ERR_PTR(err);
2010 if (err || skb_gso_ok(skb, features))
2011 break;
2012 __skb_push(skb, (skb->data -
2013 skb_network_header(skb)));
2015 segs = ptype->gso_segment(skb, features);
2016 break;
2019 rcu_read_unlock();
2021 __skb_push(skb, skb->data - skb_mac_header(skb));
2023 return segs;
2025 EXPORT_SYMBOL(skb_gso_segment);
2027 /* Take action when hardware reception checksum errors are detected. */
2028 #ifdef CONFIG_BUG
2029 void netdev_rx_csum_fault(struct net_device *dev)
2031 if (net_ratelimit()) {
2032 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 dump_stack();
2036 EXPORT_SYMBOL(netdev_rx_csum_fault);
2037 #endif
2039 /* Actually, we should eliminate this check as soon as we know, that:
2040 * 1. IOMMU is present and allows to map all the memory.
2041 * 2. No high memory really exists on this machine.
2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2046 #ifdef CONFIG_HIGHMEM
2047 int i;
2048 if (!(dev->features & NETIF_F_HIGHDMA)) {
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 if (PageHighMem(skb_frag_page(frag)))
2052 return 1;
2056 if (PCI_DMA_BUS_IS_PHYS) {
2057 struct device *pdev = dev->dev.parent;
2059 if (!pdev)
2060 return 0;
2061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2064 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2065 return 1;
2068 #endif
2069 return 0;
2072 struct dev_gso_cb {
2073 void (*destructor)(struct sk_buff *skb);
2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2078 static void dev_gso_skb_destructor(struct sk_buff *skb)
2080 struct dev_gso_cb *cb;
2082 do {
2083 struct sk_buff *nskb = skb->next;
2085 skb->next = nskb->next;
2086 nskb->next = NULL;
2087 kfree_skb(nskb);
2088 } while (skb->next);
2090 cb = DEV_GSO_CB(skb);
2091 if (cb->destructor)
2092 cb->destructor(skb);
2096 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2097 * @skb: buffer to segment
2098 * @features: device features as applicable to this skb
2100 * This function segments the given skb and stores the list of segments
2101 * in skb->next.
2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2105 struct sk_buff *segs;
2107 segs = skb_gso_segment(skb, features);
2109 /* Verifying header integrity only. */
2110 if (!segs)
2111 return 0;
2113 if (IS_ERR(segs))
2114 return PTR_ERR(segs);
2116 skb->next = segs;
2117 DEV_GSO_CB(skb)->destructor = skb->destructor;
2118 skb->destructor = dev_gso_skb_destructor;
2120 return 0;
2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2125 return ((features & NETIF_F_GEN_CSUM) ||
2126 ((features & NETIF_F_V4_CSUM) &&
2127 protocol == htons(ETH_P_IP)) ||
2128 ((features & NETIF_F_V6_CSUM) &&
2129 protocol == htons(ETH_P_IPV6)) ||
2130 ((features & NETIF_F_FCOE_CRC) &&
2131 protocol == htons(ETH_P_FCOE)));
2134 static netdev_features_t harmonize_features(struct sk_buff *skb,
2135 __be16 protocol, netdev_features_t features)
2137 if (skb->ip_summed != CHECKSUM_NONE &&
2138 !can_checksum_protocol(features, protocol)) {
2139 features &= ~NETIF_F_ALL_CSUM;
2140 features &= ~NETIF_F_SG;
2141 } else if (illegal_highdma(skb->dev, skb)) {
2142 features &= ~NETIF_F_SG;
2145 return features;
2148 netdev_features_t netif_skb_features(struct sk_buff *skb)
2150 __be16 protocol = skb->protocol;
2151 netdev_features_t features = skb->dev->features;
2153 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2154 features &= ~NETIF_F_GSO_MASK;
2156 if (protocol == htons(ETH_P_8021Q)) {
2157 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2158 protocol = veh->h_vlan_encapsulated_proto;
2159 } else if (!vlan_tx_tag_present(skb)) {
2160 return harmonize_features(skb, protocol, features);
2163 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2165 if (protocol != htons(ETH_P_8021Q)) {
2166 return harmonize_features(skb, protocol, features);
2167 } else {
2168 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2169 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2170 return harmonize_features(skb, protocol, features);
2173 EXPORT_SYMBOL(netif_skb_features);
2176 * Returns true if either:
2177 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2178 * 2. skb is fragmented and the device does not support SG, or if
2179 * at least one of fragments is in highmem and device does not
2180 * support DMA from it.
2182 static inline int skb_needs_linearize(struct sk_buff *skb,
2183 int features)
2185 return skb_is_nonlinear(skb) &&
2186 ((skb_has_frag_list(skb) &&
2187 !(features & NETIF_F_FRAGLIST)) ||
2188 (skb_shinfo(skb)->nr_frags &&
2189 !(features & NETIF_F_SG)));
2192 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2193 struct netdev_queue *txq)
2195 const struct net_device_ops *ops = dev->netdev_ops;
2196 int rc = NETDEV_TX_OK;
2197 unsigned int skb_len;
2199 if (likely(!skb->next)) {
2200 netdev_features_t features;
2203 * If device doesn't need skb->dst, release it right now while
2204 * its hot in this cpu cache
2206 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2207 skb_dst_drop(skb);
2209 if (!list_empty(&ptype_all))
2210 dev_queue_xmit_nit(skb, dev);
2212 features = netif_skb_features(skb);
2214 if (vlan_tx_tag_present(skb) &&
2215 !(features & NETIF_F_HW_VLAN_TX)) {
2216 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2217 if (unlikely(!skb))
2218 goto out;
2220 skb->vlan_tci = 0;
2223 if (netif_needs_gso(skb, features)) {
2224 if (unlikely(dev_gso_segment(skb, features)))
2225 goto out_kfree_skb;
2226 if (skb->next)
2227 goto gso;
2228 } else {
2229 if (skb_needs_linearize(skb, features) &&
2230 __skb_linearize(skb))
2231 goto out_kfree_skb;
2233 /* If packet is not checksummed and device does not
2234 * support checksumming for this protocol, complete
2235 * checksumming here.
2237 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2238 skb_set_transport_header(skb,
2239 skb_checksum_start_offset(skb));
2240 if (!(features & NETIF_F_ALL_CSUM) &&
2241 skb_checksum_help(skb))
2242 goto out_kfree_skb;
2246 skb_len = skb->len;
2247 rc = ops->ndo_start_xmit(skb, dev);
2248 trace_net_dev_xmit(skb, rc, dev, skb_len);
2249 if (rc == NETDEV_TX_OK)
2250 txq_trans_update(txq);
2251 return rc;
2254 gso:
2255 do {
2256 struct sk_buff *nskb = skb->next;
2258 skb->next = nskb->next;
2259 nskb->next = NULL;
2262 * If device doesn't need nskb->dst, release it right now while
2263 * its hot in this cpu cache
2265 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2266 skb_dst_drop(nskb);
2268 skb_len = nskb->len;
2269 rc = ops->ndo_start_xmit(nskb, dev);
2270 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2271 if (unlikely(rc != NETDEV_TX_OK)) {
2272 if (rc & ~NETDEV_TX_MASK)
2273 goto out_kfree_gso_skb;
2274 nskb->next = skb->next;
2275 skb->next = nskb;
2276 return rc;
2278 txq_trans_update(txq);
2279 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2280 return NETDEV_TX_BUSY;
2281 } while (skb->next);
2283 out_kfree_gso_skb:
2284 if (likely(skb->next == NULL))
2285 skb->destructor = DEV_GSO_CB(skb)->destructor;
2286 out_kfree_skb:
2287 kfree_skb(skb);
2288 out:
2289 return rc;
2292 static u32 hashrnd __read_mostly;
2295 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2296 * to be used as a distribution range.
2298 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2299 unsigned int num_tx_queues)
2301 u32 hash;
2302 u16 qoffset = 0;
2303 u16 qcount = num_tx_queues;
2305 if (skb_rx_queue_recorded(skb)) {
2306 hash = skb_get_rx_queue(skb);
2307 while (unlikely(hash >= num_tx_queues))
2308 hash -= num_tx_queues;
2309 return hash;
2312 if (dev->num_tc) {
2313 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2314 qoffset = dev->tc_to_txq[tc].offset;
2315 qcount = dev->tc_to_txq[tc].count;
2318 if (skb->sk && skb->sk->sk_hash)
2319 hash = skb->sk->sk_hash;
2320 else
2321 hash = (__force u16) skb->protocol;
2322 hash = jhash_1word(hash, hashrnd);
2324 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2326 EXPORT_SYMBOL(__skb_tx_hash);
2328 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2330 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2331 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2332 dev->name, queue_index,
2333 dev->real_num_tx_queues);
2334 return 0;
2336 return queue_index;
2339 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2341 #ifdef CONFIG_XPS
2342 struct xps_dev_maps *dev_maps;
2343 struct xps_map *map;
2344 int queue_index = -1;
2346 rcu_read_lock();
2347 dev_maps = rcu_dereference(dev->xps_maps);
2348 if (dev_maps) {
2349 map = rcu_dereference(
2350 dev_maps->cpu_map[raw_smp_processor_id()]);
2351 if (map) {
2352 if (map->len == 1)
2353 queue_index = map->queues[0];
2354 else {
2355 u32 hash;
2356 if (skb->sk && skb->sk->sk_hash)
2357 hash = skb->sk->sk_hash;
2358 else
2359 hash = (__force u16) skb->protocol ^
2360 skb->rxhash;
2361 hash = jhash_1word(hash, hashrnd);
2362 queue_index = map->queues[
2363 ((u64)hash * map->len) >> 32];
2365 if (unlikely(queue_index >= dev->real_num_tx_queues))
2366 queue_index = -1;
2369 rcu_read_unlock();
2371 return queue_index;
2372 #else
2373 return -1;
2374 #endif
2377 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2378 struct sk_buff *skb)
2380 int queue_index;
2381 const struct net_device_ops *ops = dev->netdev_ops;
2383 if (dev->real_num_tx_queues == 1)
2384 queue_index = 0;
2385 else if (ops->ndo_select_queue) {
2386 queue_index = ops->ndo_select_queue(dev, skb);
2387 queue_index = dev_cap_txqueue(dev, queue_index);
2388 } else {
2389 struct sock *sk = skb->sk;
2390 queue_index = sk_tx_queue_get(sk);
2392 if (queue_index < 0 || skb->ooo_okay ||
2393 queue_index >= dev->real_num_tx_queues) {
2394 int old_index = queue_index;
2396 queue_index = get_xps_queue(dev, skb);
2397 if (queue_index < 0)
2398 queue_index = skb_tx_hash(dev, skb);
2400 if (queue_index != old_index && sk) {
2401 struct dst_entry *dst =
2402 rcu_dereference_check(sk->sk_dst_cache, 1);
2404 if (dst && skb_dst(skb) == dst)
2405 sk_tx_queue_set(sk, queue_index);
2410 skb_set_queue_mapping(skb, queue_index);
2411 return netdev_get_tx_queue(dev, queue_index);
2414 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2415 struct net_device *dev,
2416 struct netdev_queue *txq)
2418 spinlock_t *root_lock = qdisc_lock(q);
2419 bool contended;
2420 int rc;
2422 qdisc_skb_cb(skb)->pkt_len = skb->len;
2423 qdisc_calculate_pkt_len(skb, q);
2425 * Heuristic to force contended enqueues to serialize on a
2426 * separate lock before trying to get qdisc main lock.
2427 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2428 * and dequeue packets faster.
2430 contended = qdisc_is_running(q);
2431 if (unlikely(contended))
2432 spin_lock(&q->busylock);
2434 spin_lock(root_lock);
2435 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2436 kfree_skb(skb);
2437 rc = NET_XMIT_DROP;
2438 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2439 qdisc_run_begin(q)) {
2441 * This is a work-conserving queue; there are no old skbs
2442 * waiting to be sent out; and the qdisc is not running -
2443 * xmit the skb directly.
2445 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2446 skb_dst_force(skb);
2448 qdisc_bstats_update(q, skb);
2450 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2451 if (unlikely(contended)) {
2452 spin_unlock(&q->busylock);
2453 contended = false;
2455 __qdisc_run(q);
2456 } else
2457 qdisc_run_end(q);
2459 rc = NET_XMIT_SUCCESS;
2460 } else {
2461 skb_dst_force(skb);
2462 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2463 if (qdisc_run_begin(q)) {
2464 if (unlikely(contended)) {
2465 spin_unlock(&q->busylock);
2466 contended = false;
2468 __qdisc_run(q);
2471 spin_unlock(root_lock);
2472 if (unlikely(contended))
2473 spin_unlock(&q->busylock);
2474 return rc;
2477 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2478 static void skb_update_prio(struct sk_buff *skb)
2480 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2482 if (!skb->priority && skb->sk && map) {
2483 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2485 if (prioidx < map->priomap_len)
2486 skb->priority = map->priomap[prioidx];
2489 #else
2490 #define skb_update_prio(skb)
2491 #endif
2493 static DEFINE_PER_CPU(int, xmit_recursion);
2494 #define RECURSION_LIMIT 10
2497 * dev_loopback_xmit - loop back @skb
2498 * @skb: buffer to transmit
2500 int dev_loopback_xmit(struct sk_buff *skb)
2502 skb_reset_mac_header(skb);
2503 __skb_pull(skb, skb_network_offset(skb));
2504 skb->pkt_type = PACKET_LOOPBACK;
2505 skb->ip_summed = CHECKSUM_UNNECESSARY;
2506 WARN_ON(!skb_dst(skb));
2507 skb_dst_force(skb);
2508 netif_rx_ni(skb);
2509 return 0;
2511 EXPORT_SYMBOL(dev_loopback_xmit);
2514 * dev_queue_xmit - transmit a buffer
2515 * @skb: buffer to transmit
2517 * Queue a buffer for transmission to a network device. The caller must
2518 * have set the device and priority and built the buffer before calling
2519 * this function. The function can be called from an interrupt.
2521 * A negative errno code is returned on a failure. A success does not
2522 * guarantee the frame will be transmitted as it may be dropped due
2523 * to congestion or traffic shaping.
2525 * -----------------------------------------------------------------------------------
2526 * I notice this method can also return errors from the queue disciplines,
2527 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2528 * be positive.
2530 * Regardless of the return value, the skb is consumed, so it is currently
2531 * difficult to retry a send to this method. (You can bump the ref count
2532 * before sending to hold a reference for retry if you are careful.)
2534 * When calling this method, interrupts MUST be enabled. This is because
2535 * the BH enable code must have IRQs enabled so that it will not deadlock.
2536 * --BLG
2538 int dev_queue_xmit(struct sk_buff *skb)
2540 struct net_device *dev = skb->dev;
2541 struct netdev_queue *txq;
2542 struct Qdisc *q;
2543 int rc = -ENOMEM;
2545 /* Disable soft irqs for various locks below. Also
2546 * stops preemption for RCU.
2548 rcu_read_lock_bh();
2550 skb_update_prio(skb);
2552 txq = dev_pick_tx(dev, skb);
2553 q = rcu_dereference_bh(txq->qdisc);
2555 #ifdef CONFIG_NET_CLS_ACT
2556 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2557 #endif
2558 trace_net_dev_queue(skb);
2559 if (q->enqueue) {
2560 rc = __dev_xmit_skb(skb, q, dev, txq);
2561 goto out;
2564 /* The device has no queue. Common case for software devices:
2565 loopback, all the sorts of tunnels...
2567 Really, it is unlikely that netif_tx_lock protection is necessary
2568 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2569 counters.)
2570 However, it is possible, that they rely on protection
2571 made by us here.
2573 Check this and shot the lock. It is not prone from deadlocks.
2574 Either shot noqueue qdisc, it is even simpler 8)
2576 if (dev->flags & IFF_UP) {
2577 int cpu = smp_processor_id(); /* ok because BHs are off */
2579 if (txq->xmit_lock_owner != cpu) {
2581 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2582 goto recursion_alert;
2584 HARD_TX_LOCK(dev, txq, cpu);
2586 if (!netif_xmit_stopped(txq)) {
2587 __this_cpu_inc(xmit_recursion);
2588 rc = dev_hard_start_xmit(skb, dev, txq);
2589 __this_cpu_dec(xmit_recursion);
2590 if (dev_xmit_complete(rc)) {
2591 HARD_TX_UNLOCK(dev, txq);
2592 goto out;
2595 HARD_TX_UNLOCK(dev, txq);
2596 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2597 dev->name);
2598 } else {
2599 /* Recursion is detected! It is possible,
2600 * unfortunately
2602 recursion_alert:
2603 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2604 dev->name);
2608 rc = -ENETDOWN;
2609 rcu_read_unlock_bh();
2611 kfree_skb(skb);
2612 return rc;
2613 out:
2614 rcu_read_unlock_bh();
2615 return rc;
2617 EXPORT_SYMBOL(dev_queue_xmit);
2620 /*=======================================================================
2621 Receiver routines
2622 =======================================================================*/
2624 int netdev_max_backlog __read_mostly = 1000;
2625 int netdev_tstamp_prequeue __read_mostly = 1;
2626 int netdev_budget __read_mostly = 300;
2627 int weight_p __read_mostly = 64; /* old backlog weight */
2629 /* Called with irq disabled */
2630 static inline void ____napi_schedule(struct softnet_data *sd,
2631 struct napi_struct *napi)
2633 list_add_tail(&napi->poll_list, &sd->poll_list);
2634 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2638 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2639 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2640 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2641 * if hash is a canonical 4-tuple hash over transport ports.
2643 void __skb_get_rxhash(struct sk_buff *skb)
2645 struct flow_keys keys;
2646 u32 hash;
2648 if (!skb_flow_dissect(skb, &keys))
2649 return;
2651 if (keys.ports)
2652 skb->l4_rxhash = 1;
2654 /* get a consistent hash (same value on both flow directions) */
2655 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2656 (((__force u32)keys.dst == (__force u32)keys.src) &&
2657 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2658 swap(keys.dst, keys.src);
2659 swap(keys.port16[0], keys.port16[1]);
2662 hash = jhash_3words((__force u32)keys.dst,
2663 (__force u32)keys.src,
2664 (__force u32)keys.ports, hashrnd);
2665 if (!hash)
2666 hash = 1;
2668 skb->rxhash = hash;
2670 EXPORT_SYMBOL(__skb_get_rxhash);
2672 #ifdef CONFIG_RPS
2674 /* One global table that all flow-based protocols share. */
2675 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2676 EXPORT_SYMBOL(rps_sock_flow_table);
2678 struct static_key rps_needed __read_mostly;
2680 static struct rps_dev_flow *
2681 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2682 struct rps_dev_flow *rflow, u16 next_cpu)
2684 if (next_cpu != RPS_NO_CPU) {
2685 #ifdef CONFIG_RFS_ACCEL
2686 struct netdev_rx_queue *rxqueue;
2687 struct rps_dev_flow_table *flow_table;
2688 struct rps_dev_flow *old_rflow;
2689 u32 flow_id;
2690 u16 rxq_index;
2691 int rc;
2693 /* Should we steer this flow to a different hardware queue? */
2694 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2695 !(dev->features & NETIF_F_NTUPLE))
2696 goto out;
2697 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2698 if (rxq_index == skb_get_rx_queue(skb))
2699 goto out;
2701 rxqueue = dev->_rx + rxq_index;
2702 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2703 if (!flow_table)
2704 goto out;
2705 flow_id = skb->rxhash & flow_table->mask;
2706 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2707 rxq_index, flow_id);
2708 if (rc < 0)
2709 goto out;
2710 old_rflow = rflow;
2711 rflow = &flow_table->flows[flow_id];
2712 rflow->filter = rc;
2713 if (old_rflow->filter == rflow->filter)
2714 old_rflow->filter = RPS_NO_FILTER;
2715 out:
2716 #endif
2717 rflow->last_qtail =
2718 per_cpu(softnet_data, next_cpu).input_queue_head;
2721 rflow->cpu = next_cpu;
2722 return rflow;
2726 * get_rps_cpu is called from netif_receive_skb and returns the target
2727 * CPU from the RPS map of the receiving queue for a given skb.
2728 * rcu_read_lock must be held on entry.
2730 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2731 struct rps_dev_flow **rflowp)
2733 struct netdev_rx_queue *rxqueue;
2734 struct rps_map *map;
2735 struct rps_dev_flow_table *flow_table;
2736 struct rps_sock_flow_table *sock_flow_table;
2737 int cpu = -1;
2738 u16 tcpu;
2740 if (skb_rx_queue_recorded(skb)) {
2741 u16 index = skb_get_rx_queue(skb);
2742 if (unlikely(index >= dev->real_num_rx_queues)) {
2743 WARN_ONCE(dev->real_num_rx_queues > 1,
2744 "%s received packet on queue %u, but number "
2745 "of RX queues is %u\n",
2746 dev->name, index, dev->real_num_rx_queues);
2747 goto done;
2749 rxqueue = dev->_rx + index;
2750 } else
2751 rxqueue = dev->_rx;
2753 map = rcu_dereference(rxqueue->rps_map);
2754 if (map) {
2755 if (map->len == 1 &&
2756 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2757 tcpu = map->cpus[0];
2758 if (cpu_online(tcpu))
2759 cpu = tcpu;
2760 goto done;
2762 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2763 goto done;
2766 skb_reset_network_header(skb);
2767 if (!skb_get_rxhash(skb))
2768 goto done;
2770 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2771 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2772 if (flow_table && sock_flow_table) {
2773 u16 next_cpu;
2774 struct rps_dev_flow *rflow;
2776 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2777 tcpu = rflow->cpu;
2779 next_cpu = sock_flow_table->ents[skb->rxhash &
2780 sock_flow_table->mask];
2783 * If the desired CPU (where last recvmsg was done) is
2784 * different from current CPU (one in the rx-queue flow
2785 * table entry), switch if one of the following holds:
2786 * - Current CPU is unset (equal to RPS_NO_CPU).
2787 * - Current CPU is offline.
2788 * - The current CPU's queue tail has advanced beyond the
2789 * last packet that was enqueued using this table entry.
2790 * This guarantees that all previous packets for the flow
2791 * have been dequeued, thus preserving in order delivery.
2793 if (unlikely(tcpu != next_cpu) &&
2794 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2795 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2796 rflow->last_qtail)) >= 0))
2797 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2799 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2800 *rflowp = rflow;
2801 cpu = tcpu;
2802 goto done;
2806 if (map) {
2807 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2809 if (cpu_online(tcpu)) {
2810 cpu = tcpu;
2811 goto done;
2815 done:
2816 return cpu;
2819 #ifdef CONFIG_RFS_ACCEL
2822 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2823 * @dev: Device on which the filter was set
2824 * @rxq_index: RX queue index
2825 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2826 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2828 * Drivers that implement ndo_rx_flow_steer() should periodically call
2829 * this function for each installed filter and remove the filters for
2830 * which it returns %true.
2832 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2833 u32 flow_id, u16 filter_id)
2835 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2836 struct rps_dev_flow_table *flow_table;
2837 struct rps_dev_flow *rflow;
2838 bool expire = true;
2839 int cpu;
2841 rcu_read_lock();
2842 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2843 if (flow_table && flow_id <= flow_table->mask) {
2844 rflow = &flow_table->flows[flow_id];
2845 cpu = ACCESS_ONCE(rflow->cpu);
2846 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2847 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2848 rflow->last_qtail) <
2849 (int)(10 * flow_table->mask)))
2850 expire = false;
2852 rcu_read_unlock();
2853 return expire;
2855 EXPORT_SYMBOL(rps_may_expire_flow);
2857 #endif /* CONFIG_RFS_ACCEL */
2859 /* Called from hardirq (IPI) context */
2860 static void rps_trigger_softirq(void *data)
2862 struct softnet_data *sd = data;
2864 ____napi_schedule(sd, &sd->backlog);
2865 sd->received_rps++;
2868 #endif /* CONFIG_RPS */
2871 * Check if this softnet_data structure is another cpu one
2872 * If yes, queue it to our IPI list and return 1
2873 * If no, return 0
2875 static int rps_ipi_queued(struct softnet_data *sd)
2877 #ifdef CONFIG_RPS
2878 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2880 if (sd != mysd) {
2881 sd->rps_ipi_next = mysd->rps_ipi_list;
2882 mysd->rps_ipi_list = sd;
2884 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2885 return 1;
2887 #endif /* CONFIG_RPS */
2888 return 0;
2892 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2893 * queue (may be a remote CPU queue).
2895 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2896 unsigned int *qtail)
2898 struct softnet_data *sd;
2899 unsigned long flags;
2901 sd = &per_cpu(softnet_data, cpu);
2903 local_irq_save(flags);
2905 rps_lock(sd);
2906 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2907 if (skb_queue_len(&sd->input_pkt_queue)) {
2908 enqueue:
2909 __skb_queue_tail(&sd->input_pkt_queue, skb);
2910 input_queue_tail_incr_save(sd, qtail);
2911 rps_unlock(sd);
2912 local_irq_restore(flags);
2913 return NET_RX_SUCCESS;
2916 /* Schedule NAPI for backlog device
2917 * We can use non atomic operation since we own the queue lock
2919 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2920 if (!rps_ipi_queued(sd))
2921 ____napi_schedule(sd, &sd->backlog);
2923 goto enqueue;
2926 sd->dropped++;
2927 rps_unlock(sd);
2929 local_irq_restore(flags);
2931 atomic_long_inc(&skb->dev->rx_dropped);
2932 kfree_skb(skb);
2933 return NET_RX_DROP;
2937 * netif_rx - post buffer to the network code
2938 * @skb: buffer to post
2940 * This function receives a packet from a device driver and queues it for
2941 * the upper (protocol) levels to process. It always succeeds. The buffer
2942 * may be dropped during processing for congestion control or by the
2943 * protocol layers.
2945 * return values:
2946 * NET_RX_SUCCESS (no congestion)
2947 * NET_RX_DROP (packet was dropped)
2951 int netif_rx(struct sk_buff *skb)
2953 int ret;
2955 /* if netpoll wants it, pretend we never saw it */
2956 if (netpoll_rx(skb))
2957 return NET_RX_DROP;
2959 net_timestamp_check(netdev_tstamp_prequeue, skb);
2961 trace_netif_rx(skb);
2962 #ifdef CONFIG_RPS
2963 if (static_key_false(&rps_needed)) {
2964 struct rps_dev_flow voidflow, *rflow = &voidflow;
2965 int cpu;
2967 preempt_disable();
2968 rcu_read_lock();
2970 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2971 if (cpu < 0)
2972 cpu = smp_processor_id();
2974 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2976 rcu_read_unlock();
2977 preempt_enable();
2978 } else
2979 #endif
2981 unsigned int qtail;
2982 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2983 put_cpu();
2985 return ret;
2987 EXPORT_SYMBOL(netif_rx);
2989 int netif_rx_ni(struct sk_buff *skb)
2991 int err;
2993 preempt_disable();
2994 err = netif_rx(skb);
2995 if (local_softirq_pending())
2996 do_softirq();
2997 preempt_enable();
2999 return err;
3001 EXPORT_SYMBOL(netif_rx_ni);
3003 static void net_tx_action(struct softirq_action *h)
3005 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3007 if (sd->completion_queue) {
3008 struct sk_buff *clist;
3010 local_irq_disable();
3011 clist = sd->completion_queue;
3012 sd->completion_queue = NULL;
3013 local_irq_enable();
3015 while (clist) {
3016 struct sk_buff *skb = clist;
3017 clist = clist->next;
3019 WARN_ON(atomic_read(&skb->users));
3020 trace_kfree_skb(skb, net_tx_action);
3021 __kfree_skb(skb);
3025 if (sd->output_queue) {
3026 struct Qdisc *head;
3028 local_irq_disable();
3029 head = sd->output_queue;
3030 sd->output_queue = NULL;
3031 sd->output_queue_tailp = &sd->output_queue;
3032 local_irq_enable();
3034 while (head) {
3035 struct Qdisc *q = head;
3036 spinlock_t *root_lock;
3038 head = head->next_sched;
3040 root_lock = qdisc_lock(q);
3041 if (spin_trylock(root_lock)) {
3042 smp_mb__before_clear_bit();
3043 clear_bit(__QDISC_STATE_SCHED,
3044 &q->state);
3045 qdisc_run(q);
3046 spin_unlock(root_lock);
3047 } else {
3048 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3049 &q->state)) {
3050 __netif_reschedule(q);
3051 } else {
3052 smp_mb__before_clear_bit();
3053 clear_bit(__QDISC_STATE_SCHED,
3054 &q->state);
3061 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3062 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3063 /* This hook is defined here for ATM LANE */
3064 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3065 unsigned char *addr) __read_mostly;
3066 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3067 #endif
3069 #ifdef CONFIG_NET_CLS_ACT
3070 /* TODO: Maybe we should just force sch_ingress to be compiled in
3071 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3072 * a compare and 2 stores extra right now if we dont have it on
3073 * but have CONFIG_NET_CLS_ACT
3074 * NOTE: This doesn't stop any functionality; if you dont have
3075 * the ingress scheduler, you just can't add policies on ingress.
3078 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3080 struct net_device *dev = skb->dev;
3081 u32 ttl = G_TC_RTTL(skb->tc_verd);
3082 int result = TC_ACT_OK;
3083 struct Qdisc *q;
3085 if (unlikely(MAX_RED_LOOP < ttl++)) {
3086 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3087 skb->skb_iif, dev->ifindex);
3088 return TC_ACT_SHOT;
3091 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3092 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3094 q = rxq->qdisc;
3095 if (q != &noop_qdisc) {
3096 spin_lock(qdisc_lock(q));
3097 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3098 result = qdisc_enqueue_root(skb, q);
3099 spin_unlock(qdisc_lock(q));
3102 return result;
3105 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3106 struct packet_type **pt_prev,
3107 int *ret, struct net_device *orig_dev)
3109 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3111 if (!rxq || rxq->qdisc == &noop_qdisc)
3112 goto out;
3114 if (*pt_prev) {
3115 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3116 *pt_prev = NULL;
3119 switch (ing_filter(skb, rxq)) {
3120 case TC_ACT_SHOT:
3121 case TC_ACT_STOLEN:
3122 kfree_skb(skb);
3123 return NULL;
3126 out:
3127 skb->tc_verd = 0;
3128 return skb;
3130 #endif
3133 * netdev_rx_handler_register - register receive handler
3134 * @dev: device to register a handler for
3135 * @rx_handler: receive handler to register
3136 * @rx_handler_data: data pointer that is used by rx handler
3138 * Register a receive hander for a device. This handler will then be
3139 * called from __netif_receive_skb. A negative errno code is returned
3140 * on a failure.
3142 * The caller must hold the rtnl_mutex.
3144 * For a general description of rx_handler, see enum rx_handler_result.
3146 int netdev_rx_handler_register(struct net_device *dev,
3147 rx_handler_func_t *rx_handler,
3148 void *rx_handler_data)
3150 ASSERT_RTNL();
3152 if (dev->rx_handler)
3153 return -EBUSY;
3155 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3156 rcu_assign_pointer(dev->rx_handler, rx_handler);
3158 return 0;
3160 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3163 * netdev_rx_handler_unregister - unregister receive handler
3164 * @dev: device to unregister a handler from
3166 * Unregister a receive hander from a device.
3168 * The caller must hold the rtnl_mutex.
3170 void netdev_rx_handler_unregister(struct net_device *dev)
3173 ASSERT_RTNL();
3174 RCU_INIT_POINTER(dev->rx_handler, NULL);
3175 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3177 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3180 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3181 * the special handling of PFMEMALLOC skbs.
3183 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3185 switch (skb->protocol) {
3186 case __constant_htons(ETH_P_ARP):
3187 case __constant_htons(ETH_P_IP):
3188 case __constant_htons(ETH_P_IPV6):
3189 case __constant_htons(ETH_P_8021Q):
3190 return true;
3191 default:
3192 return false;
3196 static int __netif_receive_skb(struct sk_buff *skb)
3198 struct packet_type *ptype, *pt_prev;
3199 rx_handler_func_t *rx_handler;
3200 struct net_device *orig_dev;
3201 struct net_device *null_or_dev;
3202 bool deliver_exact = false;
3203 int ret = NET_RX_DROP;
3204 __be16 type;
3205 unsigned long pflags = current->flags;
3207 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3209 trace_netif_receive_skb(skb);
3212 * PFMEMALLOC skbs are special, they should
3213 * - be delivered to SOCK_MEMALLOC sockets only
3214 * - stay away from userspace
3215 * - have bounded memory usage
3217 * Use PF_MEMALLOC as this saves us from propagating the allocation
3218 * context down to all allocation sites.
3220 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3221 current->flags |= PF_MEMALLOC;
3223 /* if we've gotten here through NAPI, check netpoll */
3224 if (netpoll_receive_skb(skb))
3225 goto out;
3227 orig_dev = skb->dev;
3229 skb_reset_network_header(skb);
3230 skb_reset_transport_header(skb);
3231 skb_reset_mac_len(skb);
3233 pt_prev = NULL;
3235 rcu_read_lock();
3237 another_round:
3238 skb->skb_iif = skb->dev->ifindex;
3240 __this_cpu_inc(softnet_data.processed);
3242 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3243 skb = vlan_untag(skb);
3244 if (unlikely(!skb))
3245 goto unlock;
3248 #ifdef CONFIG_NET_CLS_ACT
3249 if (skb->tc_verd & TC_NCLS) {
3250 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3251 goto ncls;
3253 #endif
3255 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3256 goto skip_taps;
3258 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3259 if (!ptype->dev || ptype->dev == skb->dev) {
3260 if (pt_prev)
3261 ret = deliver_skb(skb, pt_prev, orig_dev);
3262 pt_prev = ptype;
3266 skip_taps:
3267 #ifdef CONFIG_NET_CLS_ACT
3268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3269 if (!skb)
3270 goto unlock;
3271 ncls:
3272 #endif
3274 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3275 && !skb_pfmemalloc_protocol(skb))
3276 goto drop;
3278 if (vlan_tx_tag_present(skb)) {
3279 if (pt_prev) {
3280 ret = deliver_skb(skb, pt_prev, orig_dev);
3281 pt_prev = NULL;
3283 if (vlan_do_receive(&skb))
3284 goto another_round;
3285 else if (unlikely(!skb))
3286 goto unlock;
3289 rx_handler = rcu_dereference(skb->dev->rx_handler);
3290 if (rx_handler) {
3291 if (pt_prev) {
3292 ret = deliver_skb(skb, pt_prev, orig_dev);
3293 pt_prev = NULL;
3295 switch (rx_handler(&skb)) {
3296 case RX_HANDLER_CONSUMED:
3297 goto unlock;
3298 case RX_HANDLER_ANOTHER:
3299 goto another_round;
3300 case RX_HANDLER_EXACT:
3301 deliver_exact = true;
3302 case RX_HANDLER_PASS:
3303 break;
3304 default:
3305 BUG();
3309 if (vlan_tx_nonzero_tag_present(skb))
3310 skb->pkt_type = PACKET_OTHERHOST;
3312 /* deliver only exact match when indicated */
3313 null_or_dev = deliver_exact ? skb->dev : NULL;
3315 type = skb->protocol;
3316 list_for_each_entry_rcu(ptype,
3317 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3318 if (ptype->type == type &&
3319 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3320 ptype->dev == orig_dev)) {
3321 if (pt_prev)
3322 ret = deliver_skb(skb, pt_prev, orig_dev);
3323 pt_prev = ptype;
3327 if (pt_prev) {
3328 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3329 goto drop;
3330 else
3331 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3332 } else {
3333 drop:
3334 atomic_long_inc(&skb->dev->rx_dropped);
3335 kfree_skb(skb);
3336 /* Jamal, now you will not able to escape explaining
3337 * me how you were going to use this. :-)
3339 ret = NET_RX_DROP;
3342 unlock:
3343 rcu_read_unlock();
3344 out:
3345 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3346 return ret;
3350 * netif_receive_skb - process receive buffer from network
3351 * @skb: buffer to process
3353 * netif_receive_skb() is the main receive data processing function.
3354 * It always succeeds. The buffer may be dropped during processing
3355 * for congestion control or by the protocol layers.
3357 * This function may only be called from softirq context and interrupts
3358 * should be enabled.
3360 * Return values (usually ignored):
3361 * NET_RX_SUCCESS: no congestion
3362 * NET_RX_DROP: packet was dropped
3364 int netif_receive_skb(struct sk_buff *skb)
3366 net_timestamp_check(netdev_tstamp_prequeue, skb);
3368 if (skb_defer_rx_timestamp(skb))
3369 return NET_RX_SUCCESS;
3371 #ifdef CONFIG_RPS
3372 if (static_key_false(&rps_needed)) {
3373 struct rps_dev_flow voidflow, *rflow = &voidflow;
3374 int cpu, ret;
3376 rcu_read_lock();
3378 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3380 if (cpu >= 0) {
3381 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3382 rcu_read_unlock();
3383 return ret;
3385 rcu_read_unlock();
3387 #endif
3388 return __netif_receive_skb(skb);
3390 EXPORT_SYMBOL(netif_receive_skb);
3392 /* Network device is going away, flush any packets still pending
3393 * Called with irqs disabled.
3395 static void flush_backlog(void *arg)
3397 struct net_device *dev = arg;
3398 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3399 struct sk_buff *skb, *tmp;
3401 rps_lock(sd);
3402 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3403 if (skb->dev == dev) {
3404 __skb_unlink(skb, &sd->input_pkt_queue);
3405 kfree_skb(skb);
3406 input_queue_head_incr(sd);
3409 rps_unlock(sd);
3411 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3412 if (skb->dev == dev) {
3413 __skb_unlink(skb, &sd->process_queue);
3414 kfree_skb(skb);
3415 input_queue_head_incr(sd);
3420 static int napi_gro_complete(struct sk_buff *skb)
3422 struct packet_type *ptype;
3423 __be16 type = skb->protocol;
3424 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3425 int err = -ENOENT;
3427 if (NAPI_GRO_CB(skb)->count == 1) {
3428 skb_shinfo(skb)->gso_size = 0;
3429 goto out;
3432 rcu_read_lock();
3433 list_for_each_entry_rcu(ptype, head, list) {
3434 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3435 continue;
3437 err = ptype->gro_complete(skb);
3438 break;
3440 rcu_read_unlock();
3442 if (err) {
3443 WARN_ON(&ptype->list == head);
3444 kfree_skb(skb);
3445 return NET_RX_SUCCESS;
3448 out:
3449 return netif_receive_skb(skb);
3452 inline void napi_gro_flush(struct napi_struct *napi)
3454 struct sk_buff *skb, *next;
3456 for (skb = napi->gro_list; skb; skb = next) {
3457 next = skb->next;
3458 skb->next = NULL;
3459 napi_gro_complete(skb);
3462 napi->gro_count = 0;
3463 napi->gro_list = NULL;
3465 EXPORT_SYMBOL(napi_gro_flush);
3467 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3469 struct sk_buff **pp = NULL;
3470 struct packet_type *ptype;
3471 __be16 type = skb->protocol;
3472 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3473 int same_flow;
3474 int mac_len;
3475 enum gro_result ret;
3477 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3478 goto normal;
3480 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3481 goto normal;
3483 rcu_read_lock();
3484 list_for_each_entry_rcu(ptype, head, list) {
3485 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3486 continue;
3488 skb_set_network_header(skb, skb_gro_offset(skb));
3489 mac_len = skb->network_header - skb->mac_header;
3490 skb->mac_len = mac_len;
3491 NAPI_GRO_CB(skb)->same_flow = 0;
3492 NAPI_GRO_CB(skb)->flush = 0;
3493 NAPI_GRO_CB(skb)->free = 0;
3495 pp = ptype->gro_receive(&napi->gro_list, skb);
3496 break;
3498 rcu_read_unlock();
3500 if (&ptype->list == head)
3501 goto normal;
3503 same_flow = NAPI_GRO_CB(skb)->same_flow;
3504 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3506 if (pp) {
3507 struct sk_buff *nskb = *pp;
3509 *pp = nskb->next;
3510 nskb->next = NULL;
3511 napi_gro_complete(nskb);
3512 napi->gro_count--;
3515 if (same_flow)
3516 goto ok;
3518 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3519 goto normal;
3521 napi->gro_count++;
3522 NAPI_GRO_CB(skb)->count = 1;
3523 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3524 skb->next = napi->gro_list;
3525 napi->gro_list = skb;
3526 ret = GRO_HELD;
3528 pull:
3529 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3530 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3532 BUG_ON(skb->end - skb->tail < grow);
3534 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3536 skb->tail += grow;
3537 skb->data_len -= grow;
3539 skb_shinfo(skb)->frags[0].page_offset += grow;
3540 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3542 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3543 skb_frag_unref(skb, 0);
3544 memmove(skb_shinfo(skb)->frags,
3545 skb_shinfo(skb)->frags + 1,
3546 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3551 return ret;
3553 normal:
3554 ret = GRO_NORMAL;
3555 goto pull;
3557 EXPORT_SYMBOL(dev_gro_receive);
3559 static inline gro_result_t
3560 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3562 struct sk_buff *p;
3563 unsigned int maclen = skb->dev->hard_header_len;
3565 for (p = napi->gro_list; p; p = p->next) {
3566 unsigned long diffs;
3568 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3569 diffs |= p->vlan_tci ^ skb->vlan_tci;
3570 if (maclen == ETH_HLEN)
3571 diffs |= compare_ether_header(skb_mac_header(p),
3572 skb_gro_mac_header(skb));
3573 else if (!diffs)
3574 diffs = memcmp(skb_mac_header(p),
3575 skb_gro_mac_header(skb),
3576 maclen);
3577 NAPI_GRO_CB(p)->same_flow = !diffs;
3578 NAPI_GRO_CB(p)->flush = 0;
3581 return dev_gro_receive(napi, skb);
3584 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3586 switch (ret) {
3587 case GRO_NORMAL:
3588 if (netif_receive_skb(skb))
3589 ret = GRO_DROP;
3590 break;
3592 case GRO_DROP:
3593 kfree_skb(skb);
3594 break;
3596 case GRO_MERGED_FREE:
3597 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3598 kmem_cache_free(skbuff_head_cache, skb);
3599 else
3600 __kfree_skb(skb);
3601 break;
3603 case GRO_HELD:
3604 case GRO_MERGED:
3605 break;
3608 return ret;
3610 EXPORT_SYMBOL(napi_skb_finish);
3612 void skb_gro_reset_offset(struct sk_buff *skb)
3614 NAPI_GRO_CB(skb)->data_offset = 0;
3615 NAPI_GRO_CB(skb)->frag0 = NULL;
3616 NAPI_GRO_CB(skb)->frag0_len = 0;
3618 if (skb->mac_header == skb->tail &&
3619 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3620 NAPI_GRO_CB(skb)->frag0 =
3621 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3622 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3625 EXPORT_SYMBOL(skb_gro_reset_offset);
3627 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3629 skb_gro_reset_offset(skb);
3631 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3633 EXPORT_SYMBOL(napi_gro_receive);
3635 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3637 __skb_pull(skb, skb_headlen(skb));
3638 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3639 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3640 skb->vlan_tci = 0;
3641 skb->dev = napi->dev;
3642 skb->skb_iif = 0;
3644 napi->skb = skb;
3647 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3649 struct sk_buff *skb = napi->skb;
3651 if (!skb) {
3652 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3653 if (skb)
3654 napi->skb = skb;
3656 return skb;
3658 EXPORT_SYMBOL(napi_get_frags);
3660 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3661 gro_result_t ret)
3663 switch (ret) {
3664 case GRO_NORMAL:
3665 case GRO_HELD:
3666 skb->protocol = eth_type_trans(skb, skb->dev);
3668 if (ret == GRO_HELD)
3669 skb_gro_pull(skb, -ETH_HLEN);
3670 else if (netif_receive_skb(skb))
3671 ret = GRO_DROP;
3672 break;
3674 case GRO_DROP:
3675 case GRO_MERGED_FREE:
3676 napi_reuse_skb(napi, skb);
3677 break;
3679 case GRO_MERGED:
3680 break;
3683 return ret;
3685 EXPORT_SYMBOL(napi_frags_finish);
3687 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3689 struct sk_buff *skb = napi->skb;
3690 struct ethhdr *eth;
3691 unsigned int hlen;
3692 unsigned int off;
3694 napi->skb = NULL;
3696 skb_reset_mac_header(skb);
3697 skb_gro_reset_offset(skb);
3699 off = skb_gro_offset(skb);
3700 hlen = off + sizeof(*eth);
3701 eth = skb_gro_header_fast(skb, off);
3702 if (skb_gro_header_hard(skb, hlen)) {
3703 eth = skb_gro_header_slow(skb, hlen, off);
3704 if (unlikely(!eth)) {
3705 napi_reuse_skb(napi, skb);
3706 skb = NULL;
3707 goto out;
3711 skb_gro_pull(skb, sizeof(*eth));
3714 * This works because the only protocols we care about don't require
3715 * special handling. We'll fix it up properly at the end.
3717 skb->protocol = eth->h_proto;
3719 out:
3720 return skb;
3723 gro_result_t napi_gro_frags(struct napi_struct *napi)
3725 struct sk_buff *skb = napi_frags_skb(napi);
3727 if (!skb)
3728 return GRO_DROP;
3730 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3732 EXPORT_SYMBOL(napi_gro_frags);
3735 * net_rps_action sends any pending IPI's for rps.
3736 * Note: called with local irq disabled, but exits with local irq enabled.
3738 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3740 #ifdef CONFIG_RPS
3741 struct softnet_data *remsd = sd->rps_ipi_list;
3743 if (remsd) {
3744 sd->rps_ipi_list = NULL;
3746 local_irq_enable();
3748 /* Send pending IPI's to kick RPS processing on remote cpus. */
3749 while (remsd) {
3750 struct softnet_data *next = remsd->rps_ipi_next;
3752 if (cpu_online(remsd->cpu))
3753 __smp_call_function_single(remsd->cpu,
3754 &remsd->csd, 0);
3755 remsd = next;
3757 } else
3758 #endif
3759 local_irq_enable();
3762 static int process_backlog(struct napi_struct *napi, int quota)
3764 int work = 0;
3765 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3767 #ifdef CONFIG_RPS
3768 /* Check if we have pending ipi, its better to send them now,
3769 * not waiting net_rx_action() end.
3771 if (sd->rps_ipi_list) {
3772 local_irq_disable();
3773 net_rps_action_and_irq_enable(sd);
3775 #endif
3776 napi->weight = weight_p;
3777 local_irq_disable();
3778 while (work < quota) {
3779 struct sk_buff *skb;
3780 unsigned int qlen;
3782 while ((skb = __skb_dequeue(&sd->process_queue))) {
3783 local_irq_enable();
3784 __netif_receive_skb(skb);
3785 local_irq_disable();
3786 input_queue_head_incr(sd);
3787 if (++work >= quota) {
3788 local_irq_enable();
3789 return work;
3793 rps_lock(sd);
3794 qlen = skb_queue_len(&sd->input_pkt_queue);
3795 if (qlen)
3796 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3797 &sd->process_queue);
3799 if (qlen < quota - work) {
3801 * Inline a custom version of __napi_complete().
3802 * only current cpu owns and manipulates this napi,
3803 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3804 * we can use a plain write instead of clear_bit(),
3805 * and we dont need an smp_mb() memory barrier.
3807 list_del(&napi->poll_list);
3808 napi->state = 0;
3810 quota = work + qlen;
3812 rps_unlock(sd);
3814 local_irq_enable();
3816 return work;
3820 * __napi_schedule - schedule for receive
3821 * @n: entry to schedule
3823 * The entry's receive function will be scheduled to run
3825 void __napi_schedule(struct napi_struct *n)
3827 unsigned long flags;
3829 local_irq_save(flags);
3830 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3831 local_irq_restore(flags);
3833 EXPORT_SYMBOL(__napi_schedule);
3835 void __napi_complete(struct napi_struct *n)
3837 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3838 BUG_ON(n->gro_list);
3840 list_del(&n->poll_list);
3841 smp_mb__before_clear_bit();
3842 clear_bit(NAPI_STATE_SCHED, &n->state);
3844 EXPORT_SYMBOL(__napi_complete);
3846 void napi_complete(struct napi_struct *n)
3848 unsigned long flags;
3851 * don't let napi dequeue from the cpu poll list
3852 * just in case its running on a different cpu
3854 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3855 return;
3857 napi_gro_flush(n);
3858 local_irq_save(flags);
3859 __napi_complete(n);
3860 local_irq_restore(flags);
3862 EXPORT_SYMBOL(napi_complete);
3864 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3865 int (*poll)(struct napi_struct *, int), int weight)
3867 INIT_LIST_HEAD(&napi->poll_list);
3868 napi->gro_count = 0;
3869 napi->gro_list = NULL;
3870 napi->skb = NULL;
3871 napi->poll = poll;
3872 napi->weight = weight;
3873 list_add(&napi->dev_list, &dev->napi_list);
3874 napi->dev = dev;
3875 #ifdef CONFIG_NETPOLL
3876 spin_lock_init(&napi->poll_lock);
3877 napi->poll_owner = -1;
3878 #endif
3879 set_bit(NAPI_STATE_SCHED, &napi->state);
3881 EXPORT_SYMBOL(netif_napi_add);
3883 void netif_napi_del(struct napi_struct *napi)
3885 struct sk_buff *skb, *next;
3887 list_del_init(&napi->dev_list);
3888 napi_free_frags(napi);
3890 for (skb = napi->gro_list; skb; skb = next) {
3891 next = skb->next;
3892 skb->next = NULL;
3893 kfree_skb(skb);
3896 napi->gro_list = NULL;
3897 napi->gro_count = 0;
3899 EXPORT_SYMBOL(netif_napi_del);
3901 static void net_rx_action(struct softirq_action *h)
3903 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3904 unsigned long time_limit = jiffies + 2;
3905 int budget = netdev_budget;
3906 void *have;
3908 local_irq_disable();
3910 while (!list_empty(&sd->poll_list)) {
3911 struct napi_struct *n;
3912 int work, weight;
3914 /* If softirq window is exhuasted then punt.
3915 * Allow this to run for 2 jiffies since which will allow
3916 * an average latency of 1.5/HZ.
3918 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3919 goto softnet_break;
3921 local_irq_enable();
3923 /* Even though interrupts have been re-enabled, this
3924 * access is safe because interrupts can only add new
3925 * entries to the tail of this list, and only ->poll()
3926 * calls can remove this head entry from the list.
3928 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3930 have = netpoll_poll_lock(n);
3932 weight = n->weight;
3934 /* This NAPI_STATE_SCHED test is for avoiding a race
3935 * with netpoll's poll_napi(). Only the entity which
3936 * obtains the lock and sees NAPI_STATE_SCHED set will
3937 * actually make the ->poll() call. Therefore we avoid
3938 * accidentally calling ->poll() when NAPI is not scheduled.
3940 work = 0;
3941 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3942 work = n->poll(n, weight);
3943 trace_napi_poll(n);
3946 WARN_ON_ONCE(work > weight);
3948 budget -= work;
3950 local_irq_disable();
3952 /* Drivers must not modify the NAPI state if they
3953 * consume the entire weight. In such cases this code
3954 * still "owns" the NAPI instance and therefore can
3955 * move the instance around on the list at-will.
3957 if (unlikely(work == weight)) {
3958 if (unlikely(napi_disable_pending(n))) {
3959 local_irq_enable();
3960 napi_complete(n);
3961 local_irq_disable();
3962 } else
3963 list_move_tail(&n->poll_list, &sd->poll_list);
3966 netpoll_poll_unlock(have);
3968 out:
3969 net_rps_action_and_irq_enable(sd);
3971 #ifdef CONFIG_NET_DMA
3973 * There may not be any more sk_buffs coming right now, so push
3974 * any pending DMA copies to hardware
3976 dma_issue_pending_all();
3977 #endif
3979 return;
3981 softnet_break:
3982 sd->time_squeeze++;
3983 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3984 goto out;
3987 static gifconf_func_t *gifconf_list[NPROTO];
3990 * register_gifconf - register a SIOCGIF handler
3991 * @family: Address family
3992 * @gifconf: Function handler
3994 * Register protocol dependent address dumping routines. The handler
3995 * that is passed must not be freed or reused until it has been replaced
3996 * by another handler.
3998 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4000 if (family >= NPROTO)
4001 return -EINVAL;
4002 gifconf_list[family] = gifconf;
4003 return 0;
4005 EXPORT_SYMBOL(register_gifconf);
4009 * Map an interface index to its name (SIOCGIFNAME)
4013 * We need this ioctl for efficient implementation of the
4014 * if_indextoname() function required by the IPv6 API. Without
4015 * it, we would have to search all the interfaces to find a
4016 * match. --pb
4019 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4021 struct net_device *dev;
4022 struct ifreq ifr;
4025 * Fetch the caller's info block.
4028 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4029 return -EFAULT;
4031 rcu_read_lock();
4032 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4033 if (!dev) {
4034 rcu_read_unlock();
4035 return -ENODEV;
4038 strcpy(ifr.ifr_name, dev->name);
4039 rcu_read_unlock();
4041 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4042 return -EFAULT;
4043 return 0;
4047 * Perform a SIOCGIFCONF call. This structure will change
4048 * size eventually, and there is nothing I can do about it.
4049 * Thus we will need a 'compatibility mode'.
4052 static int dev_ifconf(struct net *net, char __user *arg)
4054 struct ifconf ifc;
4055 struct net_device *dev;
4056 char __user *pos;
4057 int len;
4058 int total;
4059 int i;
4062 * Fetch the caller's info block.
4065 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4066 return -EFAULT;
4068 pos = ifc.ifc_buf;
4069 len = ifc.ifc_len;
4072 * Loop over the interfaces, and write an info block for each.
4075 total = 0;
4076 for_each_netdev(net, dev) {
4077 for (i = 0; i < NPROTO; i++) {
4078 if (gifconf_list[i]) {
4079 int done;
4080 if (!pos)
4081 done = gifconf_list[i](dev, NULL, 0);
4082 else
4083 done = gifconf_list[i](dev, pos + total,
4084 len - total);
4085 if (done < 0)
4086 return -EFAULT;
4087 total += done;
4093 * All done. Write the updated control block back to the caller.
4095 ifc.ifc_len = total;
4098 * Both BSD and Solaris return 0 here, so we do too.
4100 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4103 #ifdef CONFIG_PROC_FS
4105 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4107 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4108 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4109 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4111 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4113 struct net *net = seq_file_net(seq);
4114 struct net_device *dev;
4115 struct hlist_node *p;
4116 struct hlist_head *h;
4117 unsigned int count = 0, offset = get_offset(*pos);
4119 h = &net->dev_name_head[get_bucket(*pos)];
4120 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4121 if (++count == offset)
4122 return dev;
4125 return NULL;
4128 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4130 struct net_device *dev;
4131 unsigned int bucket;
4133 do {
4134 dev = dev_from_same_bucket(seq, pos);
4135 if (dev)
4136 return dev;
4138 bucket = get_bucket(*pos) + 1;
4139 *pos = set_bucket_offset(bucket, 1);
4140 } while (bucket < NETDEV_HASHENTRIES);
4142 return NULL;
4146 * This is invoked by the /proc filesystem handler to display a device
4147 * in detail.
4149 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4150 __acquires(RCU)
4152 rcu_read_lock();
4153 if (!*pos)
4154 return SEQ_START_TOKEN;
4156 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4157 return NULL;
4159 return dev_from_bucket(seq, pos);
4162 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4164 ++*pos;
4165 return dev_from_bucket(seq, pos);
4168 void dev_seq_stop(struct seq_file *seq, void *v)
4169 __releases(RCU)
4171 rcu_read_unlock();
4174 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4176 struct rtnl_link_stats64 temp;
4177 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4179 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4180 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4181 dev->name, stats->rx_bytes, stats->rx_packets,
4182 stats->rx_errors,
4183 stats->rx_dropped + stats->rx_missed_errors,
4184 stats->rx_fifo_errors,
4185 stats->rx_length_errors + stats->rx_over_errors +
4186 stats->rx_crc_errors + stats->rx_frame_errors,
4187 stats->rx_compressed, stats->multicast,
4188 stats->tx_bytes, stats->tx_packets,
4189 stats->tx_errors, stats->tx_dropped,
4190 stats->tx_fifo_errors, stats->collisions,
4191 stats->tx_carrier_errors +
4192 stats->tx_aborted_errors +
4193 stats->tx_window_errors +
4194 stats->tx_heartbeat_errors,
4195 stats->tx_compressed);
4199 * Called from the PROCfs module. This now uses the new arbitrary sized
4200 * /proc/net interface to create /proc/net/dev
4202 static int dev_seq_show(struct seq_file *seq, void *v)
4204 if (v == SEQ_START_TOKEN)
4205 seq_puts(seq, "Inter-| Receive "
4206 " | Transmit\n"
4207 " face |bytes packets errs drop fifo frame "
4208 "compressed multicast|bytes packets errs "
4209 "drop fifo colls carrier compressed\n");
4210 else
4211 dev_seq_printf_stats(seq, v);
4212 return 0;
4215 static struct softnet_data *softnet_get_online(loff_t *pos)
4217 struct softnet_data *sd = NULL;
4219 while (*pos < nr_cpu_ids)
4220 if (cpu_online(*pos)) {
4221 sd = &per_cpu(softnet_data, *pos);
4222 break;
4223 } else
4224 ++*pos;
4225 return sd;
4228 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4230 return softnet_get_online(pos);
4233 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4235 ++*pos;
4236 return softnet_get_online(pos);
4239 static void softnet_seq_stop(struct seq_file *seq, void *v)
4243 static int softnet_seq_show(struct seq_file *seq, void *v)
4245 struct softnet_data *sd = v;
4247 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4248 sd->processed, sd->dropped, sd->time_squeeze, 0,
4249 0, 0, 0, 0, /* was fastroute */
4250 sd->cpu_collision, sd->received_rps);
4251 return 0;
4254 static const struct seq_operations dev_seq_ops = {
4255 .start = dev_seq_start,
4256 .next = dev_seq_next,
4257 .stop = dev_seq_stop,
4258 .show = dev_seq_show,
4261 static int dev_seq_open(struct inode *inode, struct file *file)
4263 return seq_open_net(inode, file, &dev_seq_ops,
4264 sizeof(struct seq_net_private));
4267 static const struct file_operations dev_seq_fops = {
4268 .owner = THIS_MODULE,
4269 .open = dev_seq_open,
4270 .read = seq_read,
4271 .llseek = seq_lseek,
4272 .release = seq_release_net,
4275 static const struct seq_operations softnet_seq_ops = {
4276 .start = softnet_seq_start,
4277 .next = softnet_seq_next,
4278 .stop = softnet_seq_stop,
4279 .show = softnet_seq_show,
4282 static int softnet_seq_open(struct inode *inode, struct file *file)
4284 return seq_open(file, &softnet_seq_ops);
4287 static const struct file_operations softnet_seq_fops = {
4288 .owner = THIS_MODULE,
4289 .open = softnet_seq_open,
4290 .read = seq_read,
4291 .llseek = seq_lseek,
4292 .release = seq_release,
4295 static void *ptype_get_idx(loff_t pos)
4297 struct packet_type *pt = NULL;
4298 loff_t i = 0;
4299 int t;
4301 list_for_each_entry_rcu(pt, &ptype_all, list) {
4302 if (i == pos)
4303 return pt;
4304 ++i;
4307 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4308 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4309 if (i == pos)
4310 return pt;
4311 ++i;
4314 return NULL;
4317 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4318 __acquires(RCU)
4320 rcu_read_lock();
4321 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4324 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4326 struct packet_type *pt;
4327 struct list_head *nxt;
4328 int hash;
4330 ++*pos;
4331 if (v == SEQ_START_TOKEN)
4332 return ptype_get_idx(0);
4334 pt = v;
4335 nxt = pt->list.next;
4336 if (pt->type == htons(ETH_P_ALL)) {
4337 if (nxt != &ptype_all)
4338 goto found;
4339 hash = 0;
4340 nxt = ptype_base[0].next;
4341 } else
4342 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4344 while (nxt == &ptype_base[hash]) {
4345 if (++hash >= PTYPE_HASH_SIZE)
4346 return NULL;
4347 nxt = ptype_base[hash].next;
4349 found:
4350 return list_entry(nxt, struct packet_type, list);
4353 static void ptype_seq_stop(struct seq_file *seq, void *v)
4354 __releases(RCU)
4356 rcu_read_unlock();
4359 static int ptype_seq_show(struct seq_file *seq, void *v)
4361 struct packet_type *pt = v;
4363 if (v == SEQ_START_TOKEN)
4364 seq_puts(seq, "Type Device Function\n");
4365 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4366 if (pt->type == htons(ETH_P_ALL))
4367 seq_puts(seq, "ALL ");
4368 else
4369 seq_printf(seq, "%04x", ntohs(pt->type));
4371 seq_printf(seq, " %-8s %pF\n",
4372 pt->dev ? pt->dev->name : "", pt->func);
4375 return 0;
4378 static const struct seq_operations ptype_seq_ops = {
4379 .start = ptype_seq_start,
4380 .next = ptype_seq_next,
4381 .stop = ptype_seq_stop,
4382 .show = ptype_seq_show,
4385 static int ptype_seq_open(struct inode *inode, struct file *file)
4387 return seq_open_net(inode, file, &ptype_seq_ops,
4388 sizeof(struct seq_net_private));
4391 static const struct file_operations ptype_seq_fops = {
4392 .owner = THIS_MODULE,
4393 .open = ptype_seq_open,
4394 .read = seq_read,
4395 .llseek = seq_lseek,
4396 .release = seq_release_net,
4400 static int __net_init dev_proc_net_init(struct net *net)
4402 int rc = -ENOMEM;
4404 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4405 goto out;
4406 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4407 goto out_dev;
4408 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4409 goto out_softnet;
4411 if (wext_proc_init(net))
4412 goto out_ptype;
4413 rc = 0;
4414 out:
4415 return rc;
4416 out_ptype:
4417 proc_net_remove(net, "ptype");
4418 out_softnet:
4419 proc_net_remove(net, "softnet_stat");
4420 out_dev:
4421 proc_net_remove(net, "dev");
4422 goto out;
4425 static void __net_exit dev_proc_net_exit(struct net *net)
4427 wext_proc_exit(net);
4429 proc_net_remove(net, "ptype");
4430 proc_net_remove(net, "softnet_stat");
4431 proc_net_remove(net, "dev");
4434 static struct pernet_operations __net_initdata dev_proc_ops = {
4435 .init = dev_proc_net_init,
4436 .exit = dev_proc_net_exit,
4439 static int __init dev_proc_init(void)
4441 return register_pernet_subsys(&dev_proc_ops);
4443 #else
4444 #define dev_proc_init() 0
4445 #endif /* CONFIG_PROC_FS */
4449 * netdev_set_master - set up master pointer
4450 * @slave: slave device
4451 * @master: new master device
4453 * Changes the master device of the slave. Pass %NULL to break the
4454 * bonding. The caller must hold the RTNL semaphore. On a failure
4455 * a negative errno code is returned. On success the reference counts
4456 * are adjusted and the function returns zero.
4458 int netdev_set_master(struct net_device *slave, struct net_device *master)
4460 struct net_device *old = slave->master;
4462 ASSERT_RTNL();
4464 if (master) {
4465 if (old)
4466 return -EBUSY;
4467 dev_hold(master);
4470 slave->master = master;
4472 if (old)
4473 dev_put(old);
4474 return 0;
4476 EXPORT_SYMBOL(netdev_set_master);
4479 * netdev_set_bond_master - set up bonding master/slave pair
4480 * @slave: slave device
4481 * @master: new master device
4483 * Changes the master device of the slave. Pass %NULL to break the
4484 * bonding. The caller must hold the RTNL semaphore. On a failure
4485 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4486 * to the routing socket and the function returns zero.
4488 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4490 int err;
4492 ASSERT_RTNL();
4494 err = netdev_set_master(slave, master);
4495 if (err)
4496 return err;
4497 if (master)
4498 slave->flags |= IFF_SLAVE;
4499 else
4500 slave->flags &= ~IFF_SLAVE;
4502 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4503 return 0;
4505 EXPORT_SYMBOL(netdev_set_bond_master);
4507 static void dev_change_rx_flags(struct net_device *dev, int flags)
4509 const struct net_device_ops *ops = dev->netdev_ops;
4511 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4512 ops->ndo_change_rx_flags(dev, flags);
4515 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4517 unsigned int old_flags = dev->flags;
4518 uid_t uid;
4519 gid_t gid;
4521 ASSERT_RTNL();
4523 dev->flags |= IFF_PROMISC;
4524 dev->promiscuity += inc;
4525 if (dev->promiscuity == 0) {
4527 * Avoid overflow.
4528 * If inc causes overflow, untouch promisc and return error.
4530 if (inc < 0)
4531 dev->flags &= ~IFF_PROMISC;
4532 else {
4533 dev->promiscuity -= inc;
4534 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4535 dev->name);
4536 return -EOVERFLOW;
4539 if (dev->flags != old_flags) {
4540 pr_info("device %s %s promiscuous mode\n",
4541 dev->name,
4542 dev->flags & IFF_PROMISC ? "entered" : "left");
4543 if (audit_enabled) {
4544 current_uid_gid(&uid, &gid);
4545 audit_log(current->audit_context, GFP_ATOMIC,
4546 AUDIT_ANOM_PROMISCUOUS,
4547 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4548 dev->name, (dev->flags & IFF_PROMISC),
4549 (old_flags & IFF_PROMISC),
4550 audit_get_loginuid(current),
4551 uid, gid,
4552 audit_get_sessionid(current));
4555 dev_change_rx_flags(dev, IFF_PROMISC);
4557 return 0;
4561 * dev_set_promiscuity - update promiscuity count on a device
4562 * @dev: device
4563 * @inc: modifier
4565 * Add or remove promiscuity from a device. While the count in the device
4566 * remains above zero the interface remains promiscuous. Once it hits zero
4567 * the device reverts back to normal filtering operation. A negative inc
4568 * value is used to drop promiscuity on the device.
4569 * Return 0 if successful or a negative errno code on error.
4571 int dev_set_promiscuity(struct net_device *dev, int inc)
4573 unsigned int old_flags = dev->flags;
4574 int err;
4576 err = __dev_set_promiscuity(dev, inc);
4577 if (err < 0)
4578 return err;
4579 if (dev->flags != old_flags)
4580 dev_set_rx_mode(dev);
4581 return err;
4583 EXPORT_SYMBOL(dev_set_promiscuity);
4586 * dev_set_allmulti - update allmulti count on a device
4587 * @dev: device
4588 * @inc: modifier
4590 * Add or remove reception of all multicast frames to a device. While the
4591 * count in the device remains above zero the interface remains listening
4592 * to all interfaces. Once it hits zero the device reverts back to normal
4593 * filtering operation. A negative @inc value is used to drop the counter
4594 * when releasing a resource needing all multicasts.
4595 * Return 0 if successful or a negative errno code on error.
4598 int dev_set_allmulti(struct net_device *dev, int inc)
4600 unsigned int old_flags = dev->flags;
4602 ASSERT_RTNL();
4604 dev->flags |= IFF_ALLMULTI;
4605 dev->allmulti += inc;
4606 if (dev->allmulti == 0) {
4608 * Avoid overflow.
4609 * If inc causes overflow, untouch allmulti and return error.
4611 if (inc < 0)
4612 dev->flags &= ~IFF_ALLMULTI;
4613 else {
4614 dev->allmulti -= inc;
4615 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4616 dev->name);
4617 return -EOVERFLOW;
4620 if (dev->flags ^ old_flags) {
4621 dev_change_rx_flags(dev, IFF_ALLMULTI);
4622 dev_set_rx_mode(dev);
4624 return 0;
4626 EXPORT_SYMBOL(dev_set_allmulti);
4629 * Upload unicast and multicast address lists to device and
4630 * configure RX filtering. When the device doesn't support unicast
4631 * filtering it is put in promiscuous mode while unicast addresses
4632 * are present.
4634 void __dev_set_rx_mode(struct net_device *dev)
4636 const struct net_device_ops *ops = dev->netdev_ops;
4638 /* dev_open will call this function so the list will stay sane. */
4639 if (!(dev->flags&IFF_UP))
4640 return;
4642 if (!netif_device_present(dev))
4643 return;
4645 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4646 /* Unicast addresses changes may only happen under the rtnl,
4647 * therefore calling __dev_set_promiscuity here is safe.
4649 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4650 __dev_set_promiscuity(dev, 1);
4651 dev->uc_promisc = true;
4652 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4653 __dev_set_promiscuity(dev, -1);
4654 dev->uc_promisc = false;
4658 if (ops->ndo_set_rx_mode)
4659 ops->ndo_set_rx_mode(dev);
4662 void dev_set_rx_mode(struct net_device *dev)
4664 netif_addr_lock_bh(dev);
4665 __dev_set_rx_mode(dev);
4666 netif_addr_unlock_bh(dev);
4670 * dev_get_flags - get flags reported to userspace
4671 * @dev: device
4673 * Get the combination of flag bits exported through APIs to userspace.
4675 unsigned int dev_get_flags(const struct net_device *dev)
4677 unsigned int flags;
4679 flags = (dev->flags & ~(IFF_PROMISC |
4680 IFF_ALLMULTI |
4681 IFF_RUNNING |
4682 IFF_LOWER_UP |
4683 IFF_DORMANT)) |
4684 (dev->gflags & (IFF_PROMISC |
4685 IFF_ALLMULTI));
4687 if (netif_running(dev)) {
4688 if (netif_oper_up(dev))
4689 flags |= IFF_RUNNING;
4690 if (netif_carrier_ok(dev))
4691 flags |= IFF_LOWER_UP;
4692 if (netif_dormant(dev))
4693 flags |= IFF_DORMANT;
4696 return flags;
4698 EXPORT_SYMBOL(dev_get_flags);
4700 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4702 unsigned int old_flags = dev->flags;
4703 int ret;
4705 ASSERT_RTNL();
4708 * Set the flags on our device.
4711 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4712 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4713 IFF_AUTOMEDIA)) |
4714 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4715 IFF_ALLMULTI));
4718 * Load in the correct multicast list now the flags have changed.
4721 if ((old_flags ^ flags) & IFF_MULTICAST)
4722 dev_change_rx_flags(dev, IFF_MULTICAST);
4724 dev_set_rx_mode(dev);
4727 * Have we downed the interface. We handle IFF_UP ourselves
4728 * according to user attempts to set it, rather than blindly
4729 * setting it.
4732 ret = 0;
4733 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4734 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4736 if (!ret)
4737 dev_set_rx_mode(dev);
4740 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4741 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4743 dev->gflags ^= IFF_PROMISC;
4744 dev_set_promiscuity(dev, inc);
4747 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4748 is important. Some (broken) drivers set IFF_PROMISC, when
4749 IFF_ALLMULTI is requested not asking us and not reporting.
4751 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4752 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4754 dev->gflags ^= IFF_ALLMULTI;
4755 dev_set_allmulti(dev, inc);
4758 return ret;
4761 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4763 unsigned int changes = dev->flags ^ old_flags;
4765 if (changes & IFF_UP) {
4766 if (dev->flags & IFF_UP)
4767 call_netdevice_notifiers(NETDEV_UP, dev);
4768 else
4769 call_netdevice_notifiers(NETDEV_DOWN, dev);
4772 if (dev->flags & IFF_UP &&
4773 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4774 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4778 * dev_change_flags - change device settings
4779 * @dev: device
4780 * @flags: device state flags
4782 * Change settings on device based state flags. The flags are
4783 * in the userspace exported format.
4785 int dev_change_flags(struct net_device *dev, unsigned int flags)
4787 int ret;
4788 unsigned int changes, old_flags = dev->flags;
4790 ret = __dev_change_flags(dev, flags);
4791 if (ret < 0)
4792 return ret;
4794 changes = old_flags ^ dev->flags;
4795 if (changes)
4796 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4798 __dev_notify_flags(dev, old_flags);
4799 return ret;
4801 EXPORT_SYMBOL(dev_change_flags);
4804 * dev_set_mtu - Change maximum transfer unit
4805 * @dev: device
4806 * @new_mtu: new transfer unit
4808 * Change the maximum transfer size of the network device.
4810 int dev_set_mtu(struct net_device *dev, int new_mtu)
4812 const struct net_device_ops *ops = dev->netdev_ops;
4813 int err;
4815 if (new_mtu == dev->mtu)
4816 return 0;
4818 /* MTU must be positive. */
4819 if (new_mtu < 0)
4820 return -EINVAL;
4822 if (!netif_device_present(dev))
4823 return -ENODEV;
4825 err = 0;
4826 if (ops->ndo_change_mtu)
4827 err = ops->ndo_change_mtu(dev, new_mtu);
4828 else
4829 dev->mtu = new_mtu;
4831 if (!err && dev->flags & IFF_UP)
4832 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4833 return err;
4835 EXPORT_SYMBOL(dev_set_mtu);
4838 * dev_set_group - Change group this device belongs to
4839 * @dev: device
4840 * @new_group: group this device should belong to
4842 void dev_set_group(struct net_device *dev, int new_group)
4844 dev->group = new_group;
4846 EXPORT_SYMBOL(dev_set_group);
4849 * dev_set_mac_address - Change Media Access Control Address
4850 * @dev: device
4851 * @sa: new address
4853 * Change the hardware (MAC) address of the device
4855 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4857 const struct net_device_ops *ops = dev->netdev_ops;
4858 int err;
4860 if (!ops->ndo_set_mac_address)
4861 return -EOPNOTSUPP;
4862 if (sa->sa_family != dev->type)
4863 return -EINVAL;
4864 if (!netif_device_present(dev))
4865 return -ENODEV;
4866 err = ops->ndo_set_mac_address(dev, sa);
4867 if (!err)
4868 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4869 add_device_randomness(dev->dev_addr, dev->addr_len);
4870 return err;
4872 EXPORT_SYMBOL(dev_set_mac_address);
4875 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4877 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4879 int err;
4880 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4882 if (!dev)
4883 return -ENODEV;
4885 switch (cmd) {
4886 case SIOCGIFFLAGS: /* Get interface flags */
4887 ifr->ifr_flags = (short) dev_get_flags(dev);
4888 return 0;
4890 case SIOCGIFMETRIC: /* Get the metric on the interface
4891 (currently unused) */
4892 ifr->ifr_metric = 0;
4893 return 0;
4895 case SIOCGIFMTU: /* Get the MTU of a device */
4896 ifr->ifr_mtu = dev->mtu;
4897 return 0;
4899 case SIOCGIFHWADDR:
4900 if (!dev->addr_len)
4901 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4902 else
4903 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4904 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4905 ifr->ifr_hwaddr.sa_family = dev->type;
4906 return 0;
4908 case SIOCGIFSLAVE:
4909 err = -EINVAL;
4910 break;
4912 case SIOCGIFMAP:
4913 ifr->ifr_map.mem_start = dev->mem_start;
4914 ifr->ifr_map.mem_end = dev->mem_end;
4915 ifr->ifr_map.base_addr = dev->base_addr;
4916 ifr->ifr_map.irq = dev->irq;
4917 ifr->ifr_map.dma = dev->dma;
4918 ifr->ifr_map.port = dev->if_port;
4919 return 0;
4921 case SIOCGIFINDEX:
4922 ifr->ifr_ifindex = dev->ifindex;
4923 return 0;
4925 case SIOCGIFTXQLEN:
4926 ifr->ifr_qlen = dev->tx_queue_len;
4927 return 0;
4929 default:
4930 /* dev_ioctl() should ensure this case
4931 * is never reached
4933 WARN_ON(1);
4934 err = -ENOTTY;
4935 break;
4938 return err;
4942 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4944 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4946 int err;
4947 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4948 const struct net_device_ops *ops;
4950 if (!dev)
4951 return -ENODEV;
4953 ops = dev->netdev_ops;
4955 switch (cmd) {
4956 case SIOCSIFFLAGS: /* Set interface flags */
4957 return dev_change_flags(dev, ifr->ifr_flags);
4959 case SIOCSIFMETRIC: /* Set the metric on the interface
4960 (currently unused) */
4961 return -EOPNOTSUPP;
4963 case SIOCSIFMTU: /* Set the MTU of a device */
4964 return dev_set_mtu(dev, ifr->ifr_mtu);
4966 case SIOCSIFHWADDR:
4967 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4969 case SIOCSIFHWBROADCAST:
4970 if (ifr->ifr_hwaddr.sa_family != dev->type)
4971 return -EINVAL;
4972 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4973 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4974 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4975 return 0;
4977 case SIOCSIFMAP:
4978 if (ops->ndo_set_config) {
4979 if (!netif_device_present(dev))
4980 return -ENODEV;
4981 return ops->ndo_set_config(dev, &ifr->ifr_map);
4983 return -EOPNOTSUPP;
4985 case SIOCADDMULTI:
4986 if (!ops->ndo_set_rx_mode ||
4987 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4988 return -EINVAL;
4989 if (!netif_device_present(dev))
4990 return -ENODEV;
4991 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4993 case SIOCDELMULTI:
4994 if (!ops->ndo_set_rx_mode ||
4995 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4996 return -EINVAL;
4997 if (!netif_device_present(dev))
4998 return -ENODEV;
4999 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5001 case SIOCSIFTXQLEN:
5002 if (ifr->ifr_qlen < 0)
5003 return -EINVAL;
5004 dev->tx_queue_len = ifr->ifr_qlen;
5005 return 0;
5007 case SIOCSIFNAME:
5008 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5009 return dev_change_name(dev, ifr->ifr_newname);
5011 case SIOCSHWTSTAMP:
5012 err = net_hwtstamp_validate(ifr);
5013 if (err)
5014 return err;
5015 /* fall through */
5018 * Unknown or private ioctl
5020 default:
5021 if ((cmd >= SIOCDEVPRIVATE &&
5022 cmd <= SIOCDEVPRIVATE + 15) ||
5023 cmd == SIOCBONDENSLAVE ||
5024 cmd == SIOCBONDRELEASE ||
5025 cmd == SIOCBONDSETHWADDR ||
5026 cmd == SIOCBONDSLAVEINFOQUERY ||
5027 cmd == SIOCBONDINFOQUERY ||
5028 cmd == SIOCBONDCHANGEACTIVE ||
5029 cmd == SIOCGMIIPHY ||
5030 cmd == SIOCGMIIREG ||
5031 cmd == SIOCSMIIREG ||
5032 cmd == SIOCBRADDIF ||
5033 cmd == SIOCBRDELIF ||
5034 cmd == SIOCSHWTSTAMP ||
5035 cmd == SIOCWANDEV) {
5036 err = -EOPNOTSUPP;
5037 if (ops->ndo_do_ioctl) {
5038 if (netif_device_present(dev))
5039 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5040 else
5041 err = -ENODEV;
5043 } else
5044 err = -EINVAL;
5047 return err;
5051 * This function handles all "interface"-type I/O control requests. The actual
5052 * 'doing' part of this is dev_ifsioc above.
5056 * dev_ioctl - network device ioctl
5057 * @net: the applicable net namespace
5058 * @cmd: command to issue
5059 * @arg: pointer to a struct ifreq in user space
5061 * Issue ioctl functions to devices. This is normally called by the
5062 * user space syscall interfaces but can sometimes be useful for
5063 * other purposes. The return value is the return from the syscall if
5064 * positive or a negative errno code on error.
5067 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5069 struct ifreq ifr;
5070 int ret;
5071 char *colon;
5073 /* One special case: SIOCGIFCONF takes ifconf argument
5074 and requires shared lock, because it sleeps writing
5075 to user space.
5078 if (cmd == SIOCGIFCONF) {
5079 rtnl_lock();
5080 ret = dev_ifconf(net, (char __user *) arg);
5081 rtnl_unlock();
5082 return ret;
5084 if (cmd == SIOCGIFNAME)
5085 return dev_ifname(net, (struct ifreq __user *)arg);
5087 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5088 return -EFAULT;
5090 ifr.ifr_name[IFNAMSIZ-1] = 0;
5092 colon = strchr(ifr.ifr_name, ':');
5093 if (colon)
5094 *colon = 0;
5097 * See which interface the caller is talking about.
5100 switch (cmd) {
5102 * These ioctl calls:
5103 * - can be done by all.
5104 * - atomic and do not require locking.
5105 * - return a value
5107 case SIOCGIFFLAGS:
5108 case SIOCGIFMETRIC:
5109 case SIOCGIFMTU:
5110 case SIOCGIFHWADDR:
5111 case SIOCGIFSLAVE:
5112 case SIOCGIFMAP:
5113 case SIOCGIFINDEX:
5114 case SIOCGIFTXQLEN:
5115 dev_load(net, ifr.ifr_name);
5116 rcu_read_lock();
5117 ret = dev_ifsioc_locked(net, &ifr, cmd);
5118 rcu_read_unlock();
5119 if (!ret) {
5120 if (colon)
5121 *colon = ':';
5122 if (copy_to_user(arg, &ifr,
5123 sizeof(struct ifreq)))
5124 ret = -EFAULT;
5126 return ret;
5128 case SIOCETHTOOL:
5129 dev_load(net, ifr.ifr_name);
5130 rtnl_lock();
5131 ret = dev_ethtool(net, &ifr);
5132 rtnl_unlock();
5133 if (!ret) {
5134 if (colon)
5135 *colon = ':';
5136 if (copy_to_user(arg, &ifr,
5137 sizeof(struct ifreq)))
5138 ret = -EFAULT;
5140 return ret;
5143 * These ioctl calls:
5144 * - require superuser power.
5145 * - require strict serialization.
5146 * - return a value
5148 case SIOCGMIIPHY:
5149 case SIOCGMIIREG:
5150 case SIOCSIFNAME:
5151 if (!capable(CAP_NET_ADMIN))
5152 return -EPERM;
5153 dev_load(net, ifr.ifr_name);
5154 rtnl_lock();
5155 ret = dev_ifsioc(net, &ifr, cmd);
5156 rtnl_unlock();
5157 if (!ret) {
5158 if (colon)
5159 *colon = ':';
5160 if (copy_to_user(arg, &ifr,
5161 sizeof(struct ifreq)))
5162 ret = -EFAULT;
5164 return ret;
5167 * These ioctl calls:
5168 * - require superuser power.
5169 * - require strict serialization.
5170 * - do not return a value
5172 case SIOCSIFFLAGS:
5173 case SIOCSIFMETRIC:
5174 case SIOCSIFMTU:
5175 case SIOCSIFMAP:
5176 case SIOCSIFHWADDR:
5177 case SIOCSIFSLAVE:
5178 case SIOCADDMULTI:
5179 case SIOCDELMULTI:
5180 case SIOCSIFHWBROADCAST:
5181 case SIOCSIFTXQLEN:
5182 case SIOCSMIIREG:
5183 case SIOCBONDENSLAVE:
5184 case SIOCBONDRELEASE:
5185 case SIOCBONDSETHWADDR:
5186 case SIOCBONDCHANGEACTIVE:
5187 case SIOCBRADDIF:
5188 case SIOCBRDELIF:
5189 case SIOCSHWTSTAMP:
5190 if (!capable(CAP_NET_ADMIN))
5191 return -EPERM;
5192 /* fall through */
5193 case SIOCBONDSLAVEINFOQUERY:
5194 case SIOCBONDINFOQUERY:
5195 dev_load(net, ifr.ifr_name);
5196 rtnl_lock();
5197 ret = dev_ifsioc(net, &ifr, cmd);
5198 rtnl_unlock();
5199 return ret;
5201 case SIOCGIFMEM:
5202 /* Get the per device memory space. We can add this but
5203 * currently do not support it */
5204 case SIOCSIFMEM:
5205 /* Set the per device memory buffer space.
5206 * Not applicable in our case */
5207 case SIOCSIFLINK:
5208 return -ENOTTY;
5211 * Unknown or private ioctl.
5213 default:
5214 if (cmd == SIOCWANDEV ||
5215 (cmd >= SIOCDEVPRIVATE &&
5216 cmd <= SIOCDEVPRIVATE + 15)) {
5217 dev_load(net, ifr.ifr_name);
5218 rtnl_lock();
5219 ret = dev_ifsioc(net, &ifr, cmd);
5220 rtnl_unlock();
5221 if (!ret && copy_to_user(arg, &ifr,
5222 sizeof(struct ifreq)))
5223 ret = -EFAULT;
5224 return ret;
5226 /* Take care of Wireless Extensions */
5227 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5228 return wext_handle_ioctl(net, &ifr, cmd, arg);
5229 return -ENOTTY;
5235 * dev_new_index - allocate an ifindex
5236 * @net: the applicable net namespace
5238 * Returns a suitable unique value for a new device interface
5239 * number. The caller must hold the rtnl semaphore or the
5240 * dev_base_lock to be sure it remains unique.
5242 static int dev_new_index(struct net *net)
5244 static int ifindex;
5245 for (;;) {
5246 if (++ifindex <= 0)
5247 ifindex = 1;
5248 if (!__dev_get_by_index(net, ifindex))
5249 return ifindex;
5253 /* Delayed registration/unregisteration */
5254 static LIST_HEAD(net_todo_list);
5256 static void net_set_todo(struct net_device *dev)
5258 list_add_tail(&dev->todo_list, &net_todo_list);
5261 static void rollback_registered_many(struct list_head *head)
5263 struct net_device *dev, *tmp;
5265 BUG_ON(dev_boot_phase);
5266 ASSERT_RTNL();
5268 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5269 /* Some devices call without registering
5270 * for initialization unwind. Remove those
5271 * devices and proceed with the remaining.
5273 if (dev->reg_state == NETREG_UNINITIALIZED) {
5274 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5275 dev->name, dev);
5277 WARN_ON(1);
5278 list_del(&dev->unreg_list);
5279 continue;
5281 dev->dismantle = true;
5282 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5285 /* If device is running, close it first. */
5286 dev_close_many(head);
5288 list_for_each_entry(dev, head, unreg_list) {
5289 /* And unlink it from device chain. */
5290 unlist_netdevice(dev);
5292 dev->reg_state = NETREG_UNREGISTERING;
5295 synchronize_net();
5297 list_for_each_entry(dev, head, unreg_list) {
5298 /* Shutdown queueing discipline. */
5299 dev_shutdown(dev);
5302 /* Notify protocols, that we are about to destroy
5303 this device. They should clean all the things.
5305 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5307 if (!dev->rtnl_link_ops ||
5308 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5309 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5312 * Flush the unicast and multicast chains
5314 dev_uc_flush(dev);
5315 dev_mc_flush(dev);
5317 if (dev->netdev_ops->ndo_uninit)
5318 dev->netdev_ops->ndo_uninit(dev);
5320 /* Notifier chain MUST detach us from master device. */
5321 WARN_ON(dev->master);
5323 /* Remove entries from kobject tree */
5324 netdev_unregister_kobject(dev);
5327 /* Process any work delayed until the end of the batch */
5328 dev = list_first_entry(head, struct net_device, unreg_list);
5329 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5331 synchronize_net();
5333 list_for_each_entry(dev, head, unreg_list)
5334 dev_put(dev);
5337 static void rollback_registered(struct net_device *dev)
5339 LIST_HEAD(single);
5341 list_add(&dev->unreg_list, &single);
5342 rollback_registered_many(&single);
5343 list_del(&single);
5346 static netdev_features_t netdev_fix_features(struct net_device *dev,
5347 netdev_features_t features)
5349 /* Fix illegal checksum combinations */
5350 if ((features & NETIF_F_HW_CSUM) &&
5351 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5352 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5353 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5356 /* Fix illegal SG+CSUM combinations. */
5357 if ((features & NETIF_F_SG) &&
5358 !(features & NETIF_F_ALL_CSUM)) {
5359 netdev_dbg(dev,
5360 "Dropping NETIF_F_SG since no checksum feature.\n");
5361 features &= ~NETIF_F_SG;
5364 /* TSO requires that SG is present as well. */
5365 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5366 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5367 features &= ~NETIF_F_ALL_TSO;
5370 /* TSO ECN requires that TSO is present as well. */
5371 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5372 features &= ~NETIF_F_TSO_ECN;
5374 /* Software GSO depends on SG. */
5375 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5376 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5377 features &= ~NETIF_F_GSO;
5380 /* UFO needs SG and checksumming */
5381 if (features & NETIF_F_UFO) {
5382 /* maybe split UFO into V4 and V6? */
5383 if (!((features & NETIF_F_GEN_CSUM) ||
5384 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5385 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5386 netdev_dbg(dev,
5387 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5388 features &= ~NETIF_F_UFO;
5391 if (!(features & NETIF_F_SG)) {
5392 netdev_dbg(dev,
5393 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5394 features &= ~NETIF_F_UFO;
5398 return features;
5401 int __netdev_update_features(struct net_device *dev)
5403 netdev_features_t features;
5404 int err = 0;
5406 ASSERT_RTNL();
5408 features = netdev_get_wanted_features(dev);
5410 if (dev->netdev_ops->ndo_fix_features)
5411 features = dev->netdev_ops->ndo_fix_features(dev, features);
5413 /* driver might be less strict about feature dependencies */
5414 features = netdev_fix_features(dev, features);
5416 if (dev->features == features)
5417 return 0;
5419 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5420 &dev->features, &features);
5422 if (dev->netdev_ops->ndo_set_features)
5423 err = dev->netdev_ops->ndo_set_features(dev, features);
5425 if (unlikely(err < 0)) {
5426 netdev_err(dev,
5427 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5428 err, &features, &dev->features);
5429 return -1;
5432 if (!err)
5433 dev->features = features;
5435 return 1;
5439 * netdev_update_features - recalculate device features
5440 * @dev: the device to check
5442 * Recalculate dev->features set and send notifications if it
5443 * has changed. Should be called after driver or hardware dependent
5444 * conditions might have changed that influence the features.
5446 void netdev_update_features(struct net_device *dev)
5448 if (__netdev_update_features(dev))
5449 netdev_features_change(dev);
5451 EXPORT_SYMBOL(netdev_update_features);
5454 * netdev_change_features - recalculate device features
5455 * @dev: the device to check
5457 * Recalculate dev->features set and send notifications even
5458 * if they have not changed. Should be called instead of
5459 * netdev_update_features() if also dev->vlan_features might
5460 * have changed to allow the changes to be propagated to stacked
5461 * VLAN devices.
5463 void netdev_change_features(struct net_device *dev)
5465 __netdev_update_features(dev);
5466 netdev_features_change(dev);
5468 EXPORT_SYMBOL(netdev_change_features);
5471 * netif_stacked_transfer_operstate - transfer operstate
5472 * @rootdev: the root or lower level device to transfer state from
5473 * @dev: the device to transfer operstate to
5475 * Transfer operational state from root to device. This is normally
5476 * called when a stacking relationship exists between the root
5477 * device and the device(a leaf device).
5479 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5480 struct net_device *dev)
5482 if (rootdev->operstate == IF_OPER_DORMANT)
5483 netif_dormant_on(dev);
5484 else
5485 netif_dormant_off(dev);
5487 if (netif_carrier_ok(rootdev)) {
5488 if (!netif_carrier_ok(dev))
5489 netif_carrier_on(dev);
5490 } else {
5491 if (netif_carrier_ok(dev))
5492 netif_carrier_off(dev);
5495 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5497 #ifdef CONFIG_RPS
5498 static int netif_alloc_rx_queues(struct net_device *dev)
5500 unsigned int i, count = dev->num_rx_queues;
5501 struct netdev_rx_queue *rx;
5503 BUG_ON(count < 1);
5505 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5506 if (!rx) {
5507 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5508 return -ENOMEM;
5510 dev->_rx = rx;
5512 for (i = 0; i < count; i++)
5513 rx[i].dev = dev;
5514 return 0;
5516 #endif
5518 static void netdev_init_one_queue(struct net_device *dev,
5519 struct netdev_queue *queue, void *_unused)
5521 /* Initialize queue lock */
5522 spin_lock_init(&queue->_xmit_lock);
5523 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5524 queue->xmit_lock_owner = -1;
5525 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5526 queue->dev = dev;
5527 #ifdef CONFIG_BQL
5528 dql_init(&queue->dql, HZ);
5529 #endif
5532 static int netif_alloc_netdev_queues(struct net_device *dev)
5534 unsigned int count = dev->num_tx_queues;
5535 struct netdev_queue *tx;
5537 BUG_ON(count < 1);
5539 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5540 if (!tx) {
5541 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5542 return -ENOMEM;
5544 dev->_tx = tx;
5546 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5547 spin_lock_init(&dev->tx_global_lock);
5549 return 0;
5553 * register_netdevice - register a network device
5554 * @dev: device to register
5556 * Take a completed network device structure and add it to the kernel
5557 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5558 * chain. 0 is returned on success. A negative errno code is returned
5559 * on a failure to set up the device, or if the name is a duplicate.
5561 * Callers must hold the rtnl semaphore. You may want
5562 * register_netdev() instead of this.
5564 * BUGS:
5565 * The locking appears insufficient to guarantee two parallel registers
5566 * will not get the same name.
5569 int register_netdevice(struct net_device *dev)
5571 int ret;
5572 struct net *net = dev_net(dev);
5574 BUG_ON(dev_boot_phase);
5575 ASSERT_RTNL();
5577 might_sleep();
5579 /* When net_device's are persistent, this will be fatal. */
5580 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5581 BUG_ON(!net);
5583 spin_lock_init(&dev->addr_list_lock);
5584 netdev_set_addr_lockdep_class(dev);
5586 dev->iflink = -1;
5588 ret = dev_get_valid_name(dev, dev->name);
5589 if (ret < 0)
5590 goto out;
5592 /* Init, if this function is available */
5593 if (dev->netdev_ops->ndo_init) {
5594 ret = dev->netdev_ops->ndo_init(dev);
5595 if (ret) {
5596 if (ret > 0)
5597 ret = -EIO;
5598 goto out;
5602 dev->ifindex = dev_new_index(net);
5603 if (dev->iflink == -1)
5604 dev->iflink = dev->ifindex;
5606 /* Transfer changeable features to wanted_features and enable
5607 * software offloads (GSO and GRO).
5609 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5610 dev->features |= NETIF_F_SOFT_FEATURES;
5611 dev->wanted_features = dev->features & dev->hw_features;
5613 /* Turn on no cache copy if HW is doing checksum */
5614 if (!(dev->flags & IFF_LOOPBACK)) {
5615 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5616 if (dev->features & NETIF_F_ALL_CSUM) {
5617 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5618 dev->features |= NETIF_F_NOCACHE_COPY;
5622 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5624 dev->vlan_features |= NETIF_F_HIGHDMA;
5626 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5627 ret = notifier_to_errno(ret);
5628 if (ret)
5629 goto err_uninit;
5631 ret = netdev_register_kobject(dev);
5632 if (ret)
5633 goto err_uninit;
5634 dev->reg_state = NETREG_REGISTERED;
5636 __netdev_update_features(dev);
5639 * Default initial state at registry is that the
5640 * device is present.
5643 set_bit(__LINK_STATE_PRESENT, &dev->state);
5645 dev_init_scheduler(dev);
5646 dev_hold(dev);
5647 list_netdevice(dev);
5648 add_device_randomness(dev->dev_addr, dev->addr_len);
5650 /* Notify protocols, that a new device appeared. */
5651 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5652 ret = notifier_to_errno(ret);
5653 if (ret) {
5654 rollback_registered(dev);
5655 dev->reg_state = NETREG_UNREGISTERED;
5658 * Prevent userspace races by waiting until the network
5659 * device is fully setup before sending notifications.
5661 if (!dev->rtnl_link_ops ||
5662 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5663 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5665 out:
5666 return ret;
5668 err_uninit:
5669 if (dev->netdev_ops->ndo_uninit)
5670 dev->netdev_ops->ndo_uninit(dev);
5671 goto out;
5673 EXPORT_SYMBOL(register_netdevice);
5676 * init_dummy_netdev - init a dummy network device for NAPI
5677 * @dev: device to init
5679 * This takes a network device structure and initialize the minimum
5680 * amount of fields so it can be used to schedule NAPI polls without
5681 * registering a full blown interface. This is to be used by drivers
5682 * that need to tie several hardware interfaces to a single NAPI
5683 * poll scheduler due to HW limitations.
5685 int init_dummy_netdev(struct net_device *dev)
5687 /* Clear everything. Note we don't initialize spinlocks
5688 * are they aren't supposed to be taken by any of the
5689 * NAPI code and this dummy netdev is supposed to be
5690 * only ever used for NAPI polls
5692 memset(dev, 0, sizeof(struct net_device));
5694 /* make sure we BUG if trying to hit standard
5695 * register/unregister code path
5697 dev->reg_state = NETREG_DUMMY;
5699 /* NAPI wants this */
5700 INIT_LIST_HEAD(&dev->napi_list);
5702 /* a dummy interface is started by default */
5703 set_bit(__LINK_STATE_PRESENT, &dev->state);
5704 set_bit(__LINK_STATE_START, &dev->state);
5706 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5707 * because users of this 'device' dont need to change
5708 * its refcount.
5711 return 0;
5713 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5717 * register_netdev - register a network device
5718 * @dev: device to register
5720 * Take a completed network device structure and add it to the kernel
5721 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5722 * chain. 0 is returned on success. A negative errno code is returned
5723 * on a failure to set up the device, or if the name is a duplicate.
5725 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5726 * and expands the device name if you passed a format string to
5727 * alloc_netdev.
5729 int register_netdev(struct net_device *dev)
5731 int err;
5733 rtnl_lock();
5734 err = register_netdevice(dev);
5735 rtnl_unlock();
5736 return err;
5738 EXPORT_SYMBOL(register_netdev);
5740 int netdev_refcnt_read(const struct net_device *dev)
5742 int i, refcnt = 0;
5744 for_each_possible_cpu(i)
5745 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5746 return refcnt;
5748 EXPORT_SYMBOL(netdev_refcnt_read);
5751 * netdev_wait_allrefs - wait until all references are gone.
5752 * @dev: target net_device
5754 * This is called when unregistering network devices.
5756 * Any protocol or device that holds a reference should register
5757 * for netdevice notification, and cleanup and put back the
5758 * reference if they receive an UNREGISTER event.
5759 * We can get stuck here if buggy protocols don't correctly
5760 * call dev_put.
5762 static void netdev_wait_allrefs(struct net_device *dev)
5764 unsigned long rebroadcast_time, warning_time;
5765 int refcnt;
5767 linkwatch_forget_dev(dev);
5769 rebroadcast_time = warning_time = jiffies;
5770 refcnt = netdev_refcnt_read(dev);
5772 while (refcnt != 0) {
5773 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5774 rtnl_lock();
5776 /* Rebroadcast unregister notification */
5777 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5778 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5779 * should have already handle it the first time */
5781 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5782 &dev->state)) {
5783 /* We must not have linkwatch events
5784 * pending on unregister. If this
5785 * happens, we simply run the queue
5786 * unscheduled, resulting in a noop
5787 * for this device.
5789 linkwatch_run_queue();
5792 __rtnl_unlock();
5794 rebroadcast_time = jiffies;
5797 msleep(250);
5799 refcnt = netdev_refcnt_read(dev);
5801 if (time_after(jiffies, warning_time + 10 * HZ)) {
5802 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5803 dev->name, refcnt);
5804 warning_time = jiffies;
5809 /* The sequence is:
5811 * rtnl_lock();
5812 * ...
5813 * register_netdevice(x1);
5814 * register_netdevice(x2);
5815 * ...
5816 * unregister_netdevice(y1);
5817 * unregister_netdevice(y2);
5818 * ...
5819 * rtnl_unlock();
5820 * free_netdev(y1);
5821 * free_netdev(y2);
5823 * We are invoked by rtnl_unlock().
5824 * This allows us to deal with problems:
5825 * 1) We can delete sysfs objects which invoke hotplug
5826 * without deadlocking with linkwatch via keventd.
5827 * 2) Since we run with the RTNL semaphore not held, we can sleep
5828 * safely in order to wait for the netdev refcnt to drop to zero.
5830 * We must not return until all unregister events added during
5831 * the interval the lock was held have been completed.
5833 void netdev_run_todo(void)
5835 struct list_head list;
5837 /* Snapshot list, allow later requests */
5838 list_replace_init(&net_todo_list, &list);
5840 __rtnl_unlock();
5842 /* Wait for rcu callbacks to finish before attempting to drain
5843 * the device list. This usually avoids a 250ms wait.
5845 if (!list_empty(&list))
5846 rcu_barrier();
5848 while (!list_empty(&list)) {
5849 struct net_device *dev
5850 = list_first_entry(&list, struct net_device, todo_list);
5851 list_del(&dev->todo_list);
5853 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5854 pr_err("network todo '%s' but state %d\n",
5855 dev->name, dev->reg_state);
5856 dump_stack();
5857 continue;
5860 dev->reg_state = NETREG_UNREGISTERED;
5862 on_each_cpu(flush_backlog, dev, 1);
5864 netdev_wait_allrefs(dev);
5866 /* paranoia */
5867 BUG_ON(netdev_refcnt_read(dev));
5868 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5869 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5870 WARN_ON(dev->dn_ptr);
5872 if (dev->destructor)
5873 dev->destructor(dev);
5875 /* Free network device */
5876 kobject_put(&dev->dev.kobj);
5880 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5881 * fields in the same order, with only the type differing.
5883 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5884 const struct net_device_stats *netdev_stats)
5886 #if BITS_PER_LONG == 64
5887 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5888 memcpy(stats64, netdev_stats, sizeof(*stats64));
5889 #else
5890 size_t i, n = sizeof(*stats64) / sizeof(u64);
5891 const unsigned long *src = (const unsigned long *)netdev_stats;
5892 u64 *dst = (u64 *)stats64;
5894 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5895 sizeof(*stats64) / sizeof(u64));
5896 for (i = 0; i < n; i++)
5897 dst[i] = src[i];
5898 #endif
5900 EXPORT_SYMBOL(netdev_stats_to_stats64);
5903 * dev_get_stats - get network device statistics
5904 * @dev: device to get statistics from
5905 * @storage: place to store stats
5907 * Get network statistics from device. Return @storage.
5908 * The device driver may provide its own method by setting
5909 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5910 * otherwise the internal statistics structure is used.
5912 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5913 struct rtnl_link_stats64 *storage)
5915 const struct net_device_ops *ops = dev->netdev_ops;
5917 if (ops->ndo_get_stats64) {
5918 memset(storage, 0, sizeof(*storage));
5919 ops->ndo_get_stats64(dev, storage);
5920 } else if (ops->ndo_get_stats) {
5921 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5922 } else {
5923 netdev_stats_to_stats64(storage, &dev->stats);
5925 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5926 return storage;
5928 EXPORT_SYMBOL(dev_get_stats);
5930 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5932 struct netdev_queue *queue = dev_ingress_queue(dev);
5934 #ifdef CONFIG_NET_CLS_ACT
5935 if (queue)
5936 return queue;
5937 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5938 if (!queue)
5939 return NULL;
5940 netdev_init_one_queue(dev, queue, NULL);
5941 queue->qdisc = &noop_qdisc;
5942 queue->qdisc_sleeping = &noop_qdisc;
5943 rcu_assign_pointer(dev->ingress_queue, queue);
5944 #endif
5945 return queue;
5949 * alloc_netdev_mqs - allocate network device
5950 * @sizeof_priv: size of private data to allocate space for
5951 * @name: device name format string
5952 * @setup: callback to initialize device
5953 * @txqs: the number of TX subqueues to allocate
5954 * @rxqs: the number of RX subqueues to allocate
5956 * Allocates a struct net_device with private data area for driver use
5957 * and performs basic initialization. Also allocates subquue structs
5958 * for each queue on the device.
5960 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5961 void (*setup)(struct net_device *),
5962 unsigned int txqs, unsigned int rxqs)
5964 struct net_device *dev;
5965 size_t alloc_size;
5966 struct net_device *p;
5968 BUG_ON(strlen(name) >= sizeof(dev->name));
5970 if (txqs < 1) {
5971 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5972 return NULL;
5975 #ifdef CONFIG_RPS
5976 if (rxqs < 1) {
5977 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5978 return NULL;
5980 #endif
5982 alloc_size = sizeof(struct net_device);
5983 if (sizeof_priv) {
5984 /* ensure 32-byte alignment of private area */
5985 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5986 alloc_size += sizeof_priv;
5988 /* ensure 32-byte alignment of whole construct */
5989 alloc_size += NETDEV_ALIGN - 1;
5991 p = kzalloc(alloc_size, GFP_KERNEL);
5992 if (!p) {
5993 pr_err("alloc_netdev: Unable to allocate device\n");
5994 return NULL;
5997 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5998 dev->padded = (char *)dev - (char *)p;
6000 dev->pcpu_refcnt = alloc_percpu(int);
6001 if (!dev->pcpu_refcnt)
6002 goto free_p;
6004 if (dev_addr_init(dev))
6005 goto free_pcpu;
6007 dev_mc_init(dev);
6008 dev_uc_init(dev);
6010 dev_net_set(dev, &init_net);
6012 dev->gso_max_size = GSO_MAX_SIZE;
6013 dev->gso_max_segs = GSO_MAX_SEGS;
6015 INIT_LIST_HEAD(&dev->napi_list);
6016 INIT_LIST_HEAD(&dev->unreg_list);
6017 INIT_LIST_HEAD(&dev->link_watch_list);
6018 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6019 setup(dev);
6021 dev->num_tx_queues = txqs;
6022 dev->real_num_tx_queues = txqs;
6023 if (netif_alloc_netdev_queues(dev))
6024 goto free_all;
6026 #ifdef CONFIG_RPS
6027 dev->num_rx_queues = rxqs;
6028 dev->real_num_rx_queues = rxqs;
6029 if (netif_alloc_rx_queues(dev))
6030 goto free_all;
6031 #endif
6033 strcpy(dev->name, name);
6034 dev->group = INIT_NETDEV_GROUP;
6035 return dev;
6037 free_all:
6038 free_netdev(dev);
6039 return NULL;
6041 free_pcpu:
6042 free_percpu(dev->pcpu_refcnt);
6043 kfree(dev->_tx);
6044 #ifdef CONFIG_RPS
6045 kfree(dev->_rx);
6046 #endif
6048 free_p:
6049 kfree(p);
6050 return NULL;
6052 EXPORT_SYMBOL(alloc_netdev_mqs);
6055 * free_netdev - free network device
6056 * @dev: device
6058 * This function does the last stage of destroying an allocated device
6059 * interface. The reference to the device object is released.
6060 * If this is the last reference then it will be freed.
6062 void free_netdev(struct net_device *dev)
6064 struct napi_struct *p, *n;
6066 release_net(dev_net(dev));
6068 kfree(dev->_tx);
6069 #ifdef CONFIG_RPS
6070 kfree(dev->_rx);
6071 #endif
6073 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6075 /* Flush device addresses */
6076 dev_addr_flush(dev);
6078 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6079 netif_napi_del(p);
6081 free_percpu(dev->pcpu_refcnt);
6082 dev->pcpu_refcnt = NULL;
6084 /* Compatibility with error handling in drivers */
6085 if (dev->reg_state == NETREG_UNINITIALIZED) {
6086 kfree((char *)dev - dev->padded);
6087 return;
6090 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6091 dev->reg_state = NETREG_RELEASED;
6093 /* will free via device release */
6094 put_device(&dev->dev);
6096 EXPORT_SYMBOL(free_netdev);
6099 * synchronize_net - Synchronize with packet receive processing
6101 * Wait for packets currently being received to be done.
6102 * Does not block later packets from starting.
6104 void synchronize_net(void)
6106 might_sleep();
6107 if (rtnl_is_locked())
6108 synchronize_rcu_expedited();
6109 else
6110 synchronize_rcu();
6112 EXPORT_SYMBOL(synchronize_net);
6115 * unregister_netdevice_queue - remove device from the kernel
6116 * @dev: device
6117 * @head: list
6119 * This function shuts down a device interface and removes it
6120 * from the kernel tables.
6121 * If head not NULL, device is queued to be unregistered later.
6123 * Callers must hold the rtnl semaphore. You may want
6124 * unregister_netdev() instead of this.
6127 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6129 ASSERT_RTNL();
6131 if (head) {
6132 list_move_tail(&dev->unreg_list, head);
6133 } else {
6134 rollback_registered(dev);
6135 /* Finish processing unregister after unlock */
6136 net_set_todo(dev);
6139 EXPORT_SYMBOL(unregister_netdevice_queue);
6142 * unregister_netdevice_many - unregister many devices
6143 * @head: list of devices
6145 void unregister_netdevice_many(struct list_head *head)
6147 struct net_device *dev;
6149 if (!list_empty(head)) {
6150 rollback_registered_many(head);
6151 list_for_each_entry(dev, head, unreg_list)
6152 net_set_todo(dev);
6155 EXPORT_SYMBOL(unregister_netdevice_many);
6158 * unregister_netdev - remove device from the kernel
6159 * @dev: device
6161 * This function shuts down a device interface and removes it
6162 * from the kernel tables.
6164 * This is just a wrapper for unregister_netdevice that takes
6165 * the rtnl semaphore. In general you want to use this and not
6166 * unregister_netdevice.
6168 void unregister_netdev(struct net_device *dev)
6170 rtnl_lock();
6171 unregister_netdevice(dev);
6172 rtnl_unlock();
6174 EXPORT_SYMBOL(unregister_netdev);
6177 * dev_change_net_namespace - move device to different nethost namespace
6178 * @dev: device
6179 * @net: network namespace
6180 * @pat: If not NULL name pattern to try if the current device name
6181 * is already taken in the destination network namespace.
6183 * This function shuts down a device interface and moves it
6184 * to a new network namespace. On success 0 is returned, on
6185 * a failure a netagive errno code is returned.
6187 * Callers must hold the rtnl semaphore.
6190 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6192 int err;
6194 ASSERT_RTNL();
6196 /* Don't allow namespace local devices to be moved. */
6197 err = -EINVAL;
6198 if (dev->features & NETIF_F_NETNS_LOCAL)
6199 goto out;
6201 /* Ensure the device has been registrered */
6202 err = -EINVAL;
6203 if (dev->reg_state != NETREG_REGISTERED)
6204 goto out;
6206 /* Get out if there is nothing todo */
6207 err = 0;
6208 if (net_eq(dev_net(dev), net))
6209 goto out;
6211 /* Pick the destination device name, and ensure
6212 * we can use it in the destination network namespace.
6214 err = -EEXIST;
6215 if (__dev_get_by_name(net, dev->name)) {
6216 /* We get here if we can't use the current device name */
6217 if (!pat)
6218 goto out;
6219 if (dev_get_valid_name(dev, pat) < 0)
6220 goto out;
6224 * And now a mini version of register_netdevice unregister_netdevice.
6227 /* If device is running close it first. */
6228 dev_close(dev);
6230 /* And unlink it from device chain */
6231 err = -ENODEV;
6232 unlist_netdevice(dev);
6234 synchronize_net();
6236 /* Shutdown queueing discipline. */
6237 dev_shutdown(dev);
6239 /* Notify protocols, that we are about to destroy
6240 this device. They should clean all the things.
6242 Note that dev->reg_state stays at NETREG_REGISTERED.
6243 This is wanted because this way 8021q and macvlan know
6244 the device is just moving and can keep their slaves up.
6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6247 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6248 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6251 * Flush the unicast and multicast chains
6253 dev_uc_flush(dev);
6254 dev_mc_flush(dev);
6256 /* Actually switch the network namespace */
6257 dev_net_set(dev, net);
6259 /* If there is an ifindex conflict assign a new one */
6260 if (__dev_get_by_index(net, dev->ifindex)) {
6261 int iflink = (dev->iflink == dev->ifindex);
6262 dev->ifindex = dev_new_index(net);
6263 if (iflink)
6264 dev->iflink = dev->ifindex;
6267 /* Fixup kobjects */
6268 err = device_rename(&dev->dev, dev->name);
6269 WARN_ON(err);
6271 /* Add the device back in the hashes */
6272 list_netdevice(dev);
6274 /* Notify protocols, that a new device appeared. */
6275 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6278 * Prevent userspace races by waiting until the network
6279 * device is fully setup before sending notifications.
6281 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6283 synchronize_net();
6284 err = 0;
6285 out:
6286 return err;
6288 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6290 static int dev_cpu_callback(struct notifier_block *nfb,
6291 unsigned long action,
6292 void *ocpu)
6294 struct sk_buff **list_skb;
6295 struct sk_buff *skb;
6296 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6297 struct softnet_data *sd, *oldsd;
6299 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6300 return NOTIFY_OK;
6302 local_irq_disable();
6303 cpu = smp_processor_id();
6304 sd = &per_cpu(softnet_data, cpu);
6305 oldsd = &per_cpu(softnet_data, oldcpu);
6307 /* Find end of our completion_queue. */
6308 list_skb = &sd->completion_queue;
6309 while (*list_skb)
6310 list_skb = &(*list_skb)->next;
6311 /* Append completion queue from offline CPU. */
6312 *list_skb = oldsd->completion_queue;
6313 oldsd->completion_queue = NULL;
6315 /* Append output queue from offline CPU. */
6316 if (oldsd->output_queue) {
6317 *sd->output_queue_tailp = oldsd->output_queue;
6318 sd->output_queue_tailp = oldsd->output_queue_tailp;
6319 oldsd->output_queue = NULL;
6320 oldsd->output_queue_tailp = &oldsd->output_queue;
6322 /* Append NAPI poll list from offline CPU. */
6323 if (!list_empty(&oldsd->poll_list)) {
6324 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6325 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6329 local_irq_enable();
6331 /* Process offline CPU's input_pkt_queue */
6332 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6333 netif_rx(skb);
6334 input_queue_head_incr(oldsd);
6336 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6337 netif_rx(skb);
6338 input_queue_head_incr(oldsd);
6341 return NOTIFY_OK;
6346 * netdev_increment_features - increment feature set by one
6347 * @all: current feature set
6348 * @one: new feature set
6349 * @mask: mask feature set
6351 * Computes a new feature set after adding a device with feature set
6352 * @one to the master device with current feature set @all. Will not
6353 * enable anything that is off in @mask. Returns the new feature set.
6355 netdev_features_t netdev_increment_features(netdev_features_t all,
6356 netdev_features_t one, netdev_features_t mask)
6358 if (mask & NETIF_F_GEN_CSUM)
6359 mask |= NETIF_F_ALL_CSUM;
6360 mask |= NETIF_F_VLAN_CHALLENGED;
6362 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6363 all &= one | ~NETIF_F_ALL_FOR_ALL;
6365 /* If one device supports hw checksumming, set for all. */
6366 if (all & NETIF_F_GEN_CSUM)
6367 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6369 return all;
6371 EXPORT_SYMBOL(netdev_increment_features);
6373 static struct hlist_head *netdev_create_hash(void)
6375 int i;
6376 struct hlist_head *hash;
6378 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6379 if (hash != NULL)
6380 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6381 INIT_HLIST_HEAD(&hash[i]);
6383 return hash;
6386 /* Initialize per network namespace state */
6387 static int __net_init netdev_init(struct net *net)
6389 if (net != &init_net)
6390 INIT_LIST_HEAD(&net->dev_base_head);
6392 net->dev_name_head = netdev_create_hash();
6393 if (net->dev_name_head == NULL)
6394 goto err_name;
6396 net->dev_index_head = netdev_create_hash();
6397 if (net->dev_index_head == NULL)
6398 goto err_idx;
6400 return 0;
6402 err_idx:
6403 kfree(net->dev_name_head);
6404 err_name:
6405 return -ENOMEM;
6409 * netdev_drivername - network driver for the device
6410 * @dev: network device
6412 * Determine network driver for device.
6414 const char *netdev_drivername(const struct net_device *dev)
6416 const struct device_driver *driver;
6417 const struct device *parent;
6418 const char *empty = "";
6420 parent = dev->dev.parent;
6421 if (!parent)
6422 return empty;
6424 driver = parent->driver;
6425 if (driver && driver->name)
6426 return driver->name;
6427 return empty;
6430 int __netdev_printk(const char *level, const struct net_device *dev,
6431 struct va_format *vaf)
6433 int r;
6435 if (dev && dev->dev.parent)
6436 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6437 netdev_name(dev), vaf);
6438 else if (dev)
6439 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6440 else
6441 r = printk("%s(NULL net_device): %pV", level, vaf);
6443 return r;
6445 EXPORT_SYMBOL(__netdev_printk);
6447 int netdev_printk(const char *level, const struct net_device *dev,
6448 const char *format, ...)
6450 struct va_format vaf;
6451 va_list args;
6452 int r;
6454 va_start(args, format);
6456 vaf.fmt = format;
6457 vaf.va = &args;
6459 r = __netdev_printk(level, dev, &vaf);
6460 va_end(args);
6462 return r;
6464 EXPORT_SYMBOL(netdev_printk);
6466 #define define_netdev_printk_level(func, level) \
6467 int func(const struct net_device *dev, const char *fmt, ...) \
6469 int r; \
6470 struct va_format vaf; \
6471 va_list args; \
6473 va_start(args, fmt); \
6475 vaf.fmt = fmt; \
6476 vaf.va = &args; \
6478 r = __netdev_printk(level, dev, &vaf); \
6479 va_end(args); \
6481 return r; \
6483 EXPORT_SYMBOL(func);
6485 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6486 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6487 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6488 define_netdev_printk_level(netdev_err, KERN_ERR);
6489 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6490 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6491 define_netdev_printk_level(netdev_info, KERN_INFO);
6493 static void __net_exit netdev_exit(struct net *net)
6495 kfree(net->dev_name_head);
6496 kfree(net->dev_index_head);
6499 static struct pernet_operations __net_initdata netdev_net_ops = {
6500 .init = netdev_init,
6501 .exit = netdev_exit,
6504 static void __net_exit default_device_exit(struct net *net)
6506 struct net_device *dev, *aux;
6508 * Push all migratable network devices back to the
6509 * initial network namespace
6511 rtnl_lock();
6512 for_each_netdev_safe(net, dev, aux) {
6513 int err;
6514 char fb_name[IFNAMSIZ];
6516 /* Ignore unmoveable devices (i.e. loopback) */
6517 if (dev->features & NETIF_F_NETNS_LOCAL)
6518 continue;
6520 /* Leave virtual devices for the generic cleanup */
6521 if (dev->rtnl_link_ops)
6522 continue;
6524 /* Push remaining network devices to init_net */
6525 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6526 err = dev_change_net_namespace(dev, &init_net, fb_name);
6527 if (err) {
6528 pr_emerg("%s: failed to move %s to init_net: %d\n",
6529 __func__, dev->name, err);
6530 BUG();
6533 rtnl_unlock();
6536 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6538 /* At exit all network devices most be removed from a network
6539 * namespace. Do this in the reverse order of registration.
6540 * Do this across as many network namespaces as possible to
6541 * improve batching efficiency.
6543 struct net_device *dev;
6544 struct net *net;
6545 LIST_HEAD(dev_kill_list);
6547 rtnl_lock();
6548 list_for_each_entry(net, net_list, exit_list) {
6549 for_each_netdev_reverse(net, dev) {
6550 if (dev->rtnl_link_ops)
6551 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6552 else
6553 unregister_netdevice_queue(dev, &dev_kill_list);
6556 unregister_netdevice_many(&dev_kill_list);
6557 list_del(&dev_kill_list);
6558 rtnl_unlock();
6561 static struct pernet_operations __net_initdata default_device_ops = {
6562 .exit = default_device_exit,
6563 .exit_batch = default_device_exit_batch,
6567 * Initialize the DEV module. At boot time this walks the device list and
6568 * unhooks any devices that fail to initialise (normally hardware not
6569 * present) and leaves us with a valid list of present and active devices.
6574 * This is called single threaded during boot, so no need
6575 * to take the rtnl semaphore.
6577 static int __init net_dev_init(void)
6579 int i, rc = -ENOMEM;
6581 BUG_ON(!dev_boot_phase);
6583 if (dev_proc_init())
6584 goto out;
6586 if (netdev_kobject_init())
6587 goto out;
6589 INIT_LIST_HEAD(&ptype_all);
6590 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6591 INIT_LIST_HEAD(&ptype_base[i]);
6593 if (register_pernet_subsys(&netdev_net_ops))
6594 goto out;
6597 * Initialise the packet receive queues.
6600 for_each_possible_cpu(i) {
6601 struct softnet_data *sd = &per_cpu(softnet_data, i);
6603 memset(sd, 0, sizeof(*sd));
6604 skb_queue_head_init(&sd->input_pkt_queue);
6605 skb_queue_head_init(&sd->process_queue);
6606 sd->completion_queue = NULL;
6607 INIT_LIST_HEAD(&sd->poll_list);
6608 sd->output_queue = NULL;
6609 sd->output_queue_tailp = &sd->output_queue;
6610 #ifdef CONFIG_RPS
6611 sd->csd.func = rps_trigger_softirq;
6612 sd->csd.info = sd;
6613 sd->csd.flags = 0;
6614 sd->cpu = i;
6615 #endif
6617 sd->backlog.poll = process_backlog;
6618 sd->backlog.weight = weight_p;
6619 sd->backlog.gro_list = NULL;
6620 sd->backlog.gro_count = 0;
6623 dev_boot_phase = 0;
6625 /* The loopback device is special if any other network devices
6626 * is present in a network namespace the loopback device must
6627 * be present. Since we now dynamically allocate and free the
6628 * loopback device ensure this invariant is maintained by
6629 * keeping the loopback device as the first device on the
6630 * list of network devices. Ensuring the loopback devices
6631 * is the first device that appears and the last network device
6632 * that disappears.
6634 if (register_pernet_device(&loopback_net_ops))
6635 goto out;
6637 if (register_pernet_device(&default_device_ops))
6638 goto out;
6640 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6641 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6643 hotcpu_notifier(dev_cpu_callback, 0);
6644 dst_init();
6645 dev_mcast_init();
6646 rc = 0;
6647 out:
6648 return rc;
6651 subsys_initcall(net_dev_init);
6653 static int __init initialize_hashrnd(void)
6655 get_random_bytes(&hashrnd, sizeof(hashrnd));
6656 return 0;
6659 late_initcall_sync(initialize_hashrnd);