initial commit with v3.6.7
[linux-3.6.7-moxart.git] / net / ipv6 / ip6_fib.c
blob286acfc21250cd760565b182cbc2d3d4490463dd
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
22 #define pr_fmt(fmt) "IPv6: " fmt
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
41 #define RT6_DEBUG 2
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
51 enum fib_walk_state_t
53 #ifdef CONFIG_IPV6_SUBTREES
54 FWS_S,
55 #endif
56 FWS_L,
57 FWS_R,
58 FWS_C,
59 FWS_U
62 struct fib6_cleaner_t
64 struct fib6_walker_t w;
65 struct net *net;
66 int (*func)(struct rt6_info *, void *arg);
67 void *arg;
70 static DEFINE_RWLOCK(fib6_walker_lock);
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
92 static __u32 rt_sernum;
94 static void fib6_gc_timer_cb(unsigned long arg);
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
101 write_lock_bh(&fib6_walker_lock);
102 list_add(&w->lh, &fib6_walkers);
103 write_unlock_bh(&fib6_walker_lock);
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108 write_lock_bh(&fib6_walker_lock);
109 list_del(&w->lh);
110 write_unlock_bh(&fib6_walker_lock);
112 static __inline__ u32 fib6_new_sernum(void)
114 u32 n = ++rt_sernum;
115 if ((__s32)n <= 0)
116 rt_sernum = n = 1;
117 return n;
121 * Auxiliary address test functions for the radix tree.
123 * These assume a 32bit processor (although it will work on
124 * 64bit processors)
128 * test bit
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE 0
134 #endif
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
138 const __be32 *addr = token;
140 * Here,
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
146 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 addr[fn_bit >> 5];
150 static __inline__ struct fib6_node * node_alloc(void)
152 struct fib6_node *fn;
154 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
156 return fn;
159 static __inline__ void node_free(struct fib6_node * fn)
161 kmem_cache_free(fib6_node_kmem, fn);
164 static __inline__ void rt6_release(struct rt6_info *rt)
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->dst);
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
172 unsigned int h;
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
178 rwlock_init(&tb->tb6_lock);
180 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
186 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
193 struct fib6_table *table;
195 table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 if (table) {
197 table->tb6_id = id;
198 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 inet_peer_base_init(&table->tb6_peers);
203 return table;
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
208 struct fib6_table *tb;
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
216 tb = fib6_alloc_table(net, id);
217 if (tb)
218 fib6_link_table(net, tb);
220 return tb;
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 struct hlist_node *node;
228 unsigned int h;
230 if (id == 0)
231 id = RT6_TABLE_MAIN;
232 h = id & (FIB6_TABLE_HASHSZ - 1);
233 rcu_read_lock();
234 head = &net->ipv6.fib_table_hash[h];
235 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 if (tb->tb6_id == id) {
237 rcu_read_unlock();
238 return tb;
241 rcu_read_unlock();
243 return NULL;
246 static void __net_init fib6_tables_init(struct net *net)
248 fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 fib6_link_table(net, net->ipv6.fib6_local_tbl);
251 #else
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
255 return fib6_get_table(net, id);
258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
260 return net->ipv6.fib6_main_tbl;
263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 int flags, pol_lookup_t lookup)
266 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
269 static void __net_init fib6_tables_init(struct net *net)
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
274 #endif
276 static int fib6_dump_node(struct fib6_walker_t *w)
278 int res;
279 struct rt6_info *rt;
281 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 res = rt6_dump_route(rt, w->args);
283 if (res < 0) {
284 /* Frame is full, suspend walking */
285 w->leaf = rt;
286 return 1;
288 WARN_ON(res == 0);
290 w->leaf = NULL;
291 return 0;
294 static void fib6_dump_end(struct netlink_callback *cb)
296 struct fib6_walker_t *w = (void*)cb->args[2];
298 if (w) {
299 if (cb->args[4]) {
300 cb->args[4] = 0;
301 fib6_walker_unlink(w);
303 cb->args[2] = 0;
304 kfree(w);
306 cb->done = (void*)cb->args[3];
307 cb->args[1] = 3;
310 static int fib6_dump_done(struct netlink_callback *cb)
312 fib6_dump_end(cb);
313 return cb->done ? cb->done(cb) : 0;
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 struct netlink_callback *cb)
319 struct fib6_walker_t *w;
320 int res;
322 w = (void *)cb->args[2];
323 w->root = &table->tb6_root;
325 if (cb->args[4] == 0) {
326 w->count = 0;
327 w->skip = 0;
329 read_lock_bh(&table->tb6_lock);
330 res = fib6_walk(w);
331 read_unlock_bh(&table->tb6_lock);
332 if (res > 0) {
333 cb->args[4] = 1;
334 cb->args[5] = w->root->fn_sernum;
336 } else {
337 if (cb->args[5] != w->root->fn_sernum) {
338 /* Begin at the root if the tree changed */
339 cb->args[5] = w->root->fn_sernum;
340 w->state = FWS_INIT;
341 w->node = w->root;
342 w->skip = w->count;
343 } else
344 w->skip = 0;
346 read_lock_bh(&table->tb6_lock);
347 res = fib6_walk_continue(w);
348 read_unlock_bh(&table->tb6_lock);
349 if (res <= 0) {
350 fib6_walker_unlink(w);
351 cb->args[4] = 0;
355 return res;
358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
360 struct net *net = sock_net(skb->sk);
361 unsigned int h, s_h;
362 unsigned int e = 0, s_e;
363 struct rt6_rtnl_dump_arg arg;
364 struct fib6_walker_t *w;
365 struct fib6_table *tb;
366 struct hlist_node *node;
367 struct hlist_head *head;
368 int res = 0;
370 s_h = cb->args[0];
371 s_e = cb->args[1];
373 w = (void *)cb->args[2];
374 if (!w) {
375 /* New dump:
377 * 1. hook callback destructor.
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
383 * 2. allocate and initialize walker.
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (!w)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
392 arg.skb = skb;
393 arg.cb = cb;
394 arg.net = net;
395 w->args = &arg;
397 rcu_read_lock();
398 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 e = 0;
400 head = &net->ipv6.fib_table_hash[h];
401 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 if (e < s_e)
403 goto next;
404 res = fib6_dump_table(tb, skb, cb);
405 if (res != 0)
406 goto out;
407 next:
408 e++;
411 out:
412 rcu_read_unlock();
413 cb->args[1] = e;
414 cb->args[0] = h;
416 res = res < 0 ? res : skb->len;
417 if (res <= 0)
418 fib6_dump_end(cb);
419 return res;
423 * Routing Table
425 * return the appropriate node for a routing tree "add" operation
426 * by either creating and inserting or by returning an existing
427 * node.
430 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 int addrlen, int plen,
432 int offset, int allow_create,
433 int replace_required)
435 struct fib6_node *fn, *in, *ln;
436 struct fib6_node *pn = NULL;
437 struct rt6key *key;
438 int bit;
439 __be32 dir = 0;
440 __u32 sernum = fib6_new_sernum();
442 RT6_TRACE("fib6_add_1\n");
444 /* insert node in tree */
446 fn = root;
448 do {
449 key = (struct rt6key *)((u8 *)fn->leaf + offset);
452 * Prefix match
454 if (plen < fn->fn_bit ||
455 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
456 if (!allow_create) {
457 if (replace_required) {
458 pr_warn("Can't replace route, no match found\n");
459 return ERR_PTR(-ENOENT);
461 pr_warn("NLM_F_CREATE should be set when creating new route\n");
463 goto insert_above;
467 * Exact match ?
470 if (plen == fn->fn_bit) {
471 /* clean up an intermediate node */
472 if (!(fn->fn_flags & RTN_RTINFO)) {
473 rt6_release(fn->leaf);
474 fn->leaf = NULL;
477 fn->fn_sernum = sernum;
479 return fn;
483 * We have more bits to go
486 /* Try to walk down on tree. */
487 fn->fn_sernum = sernum;
488 dir = addr_bit_set(addr, fn->fn_bit);
489 pn = fn;
490 fn = dir ? fn->right: fn->left;
491 } while (fn);
493 if (!allow_create) {
494 /* We should not create new node because
495 * NLM_F_REPLACE was specified without NLM_F_CREATE
496 * I assume it is safe to require NLM_F_CREATE when
497 * REPLACE flag is used! Later we may want to remove the
498 * check for replace_required, because according
499 * to netlink specification, NLM_F_CREATE
500 * MUST be specified if new route is created.
501 * That would keep IPv6 consistent with IPv4
503 if (replace_required) {
504 pr_warn("Can't replace route, no match found\n");
505 return ERR_PTR(-ENOENT);
507 pr_warn("NLM_F_CREATE should be set when creating new route\n");
510 * We walked to the bottom of tree.
511 * Create new leaf node without children.
514 ln = node_alloc();
516 if (!ln)
517 return NULL;
518 ln->fn_bit = plen;
520 ln->parent = pn;
521 ln->fn_sernum = sernum;
523 if (dir)
524 pn->right = ln;
525 else
526 pn->left = ln;
528 return ln;
531 insert_above:
533 * split since we don't have a common prefix anymore or
534 * we have a less significant route.
535 * we've to insert an intermediate node on the list
536 * this new node will point to the one we need to create
537 * and the current
540 pn = fn->parent;
542 /* find 1st bit in difference between the 2 addrs.
544 See comment in __ipv6_addr_diff: bit may be an invalid value,
545 but if it is >= plen, the value is ignored in any case.
548 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
551 * (intermediate)[in]
552 * / \
553 * (new leaf node)[ln] (old node)[fn]
555 if (plen > bit) {
556 in = node_alloc();
557 ln = node_alloc();
559 if (!in || !ln) {
560 if (in)
561 node_free(in);
562 if (ln)
563 node_free(ln);
564 return NULL;
568 * new intermediate node.
569 * RTN_RTINFO will
570 * be off since that an address that chooses one of
571 * the branches would not match less specific routes
572 * in the other branch
575 in->fn_bit = bit;
577 in->parent = pn;
578 in->leaf = fn->leaf;
579 atomic_inc(&in->leaf->rt6i_ref);
581 in->fn_sernum = sernum;
583 /* update parent pointer */
584 if (dir)
585 pn->right = in;
586 else
587 pn->left = in;
589 ln->fn_bit = plen;
591 ln->parent = in;
592 fn->parent = in;
594 ln->fn_sernum = sernum;
596 if (addr_bit_set(addr, bit)) {
597 in->right = ln;
598 in->left = fn;
599 } else {
600 in->left = ln;
601 in->right = fn;
603 } else { /* plen <= bit */
606 * (new leaf node)[ln]
607 * / \
608 * (old node)[fn] NULL
611 ln = node_alloc();
613 if (!ln)
614 return NULL;
616 ln->fn_bit = plen;
618 ln->parent = pn;
620 ln->fn_sernum = sernum;
622 if (dir)
623 pn->right = ln;
624 else
625 pn->left = ln;
627 if (addr_bit_set(&key->addr, plen))
628 ln->right = fn;
629 else
630 ln->left = fn;
632 fn->parent = ln;
634 return ln;
638 * Insert routing information in a node.
641 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
642 struct nl_info *info)
644 struct rt6_info *iter = NULL;
645 struct rt6_info **ins;
646 int replace = (info->nlh &&
647 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
648 int add = (!info->nlh ||
649 (info->nlh->nlmsg_flags & NLM_F_CREATE));
650 int found = 0;
652 ins = &fn->leaf;
654 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
656 * Search for duplicates
659 if (iter->rt6i_metric == rt->rt6i_metric) {
661 * Same priority level
663 if (info->nlh &&
664 (info->nlh->nlmsg_flags & NLM_F_EXCL))
665 return -EEXIST;
666 if (replace) {
667 found++;
668 break;
671 if (iter->dst.dev == rt->dst.dev &&
672 iter->rt6i_idev == rt->rt6i_idev &&
673 ipv6_addr_equal(&iter->rt6i_gateway,
674 &rt->rt6i_gateway)) {
675 if (!(iter->rt6i_flags & RTF_EXPIRES))
676 return -EEXIST;
677 if (!(rt->rt6i_flags & RTF_EXPIRES))
678 rt6_clean_expires(iter);
679 else
680 rt6_set_expires(iter, rt->dst.expires);
681 return -EEXIST;
685 if (iter->rt6i_metric > rt->rt6i_metric)
686 break;
688 ins = &iter->dst.rt6_next;
691 /* Reset round-robin state, if necessary */
692 if (ins == &fn->leaf)
693 fn->rr_ptr = NULL;
696 * insert node
698 if (!replace) {
699 if (!add)
700 pr_warn("NLM_F_CREATE should be set when creating new route\n");
702 add:
703 rt->dst.rt6_next = iter;
704 *ins = rt;
705 rt->rt6i_node = fn;
706 atomic_inc(&rt->rt6i_ref);
707 inet6_rt_notify(RTM_NEWROUTE, rt, info);
708 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
710 if (!(fn->fn_flags & RTN_RTINFO)) {
711 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
712 fn->fn_flags |= RTN_RTINFO;
715 } else {
716 if (!found) {
717 if (add)
718 goto add;
719 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
720 return -ENOENT;
722 *ins = rt;
723 rt->rt6i_node = fn;
724 rt->dst.rt6_next = iter->dst.rt6_next;
725 atomic_inc(&rt->rt6i_ref);
726 inet6_rt_notify(RTM_NEWROUTE, rt, info);
727 rt6_release(iter);
728 if (!(fn->fn_flags & RTN_RTINFO)) {
729 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
730 fn->fn_flags |= RTN_RTINFO;
734 return 0;
737 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
739 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
740 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
741 mod_timer(&net->ipv6.ip6_fib_timer,
742 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
745 void fib6_force_start_gc(struct net *net)
747 if (!timer_pending(&net->ipv6.ip6_fib_timer))
748 mod_timer(&net->ipv6.ip6_fib_timer,
749 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
753 * Add routing information to the routing tree.
754 * <destination addr>/<source addr>
755 * with source addr info in sub-trees
758 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
760 struct fib6_node *fn, *pn = NULL;
761 int err = -ENOMEM;
762 int allow_create = 1;
763 int replace_required = 0;
765 if (info->nlh) {
766 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
767 allow_create = 0;
768 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
769 replace_required = 1;
771 if (!allow_create && !replace_required)
772 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
774 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
775 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
776 allow_create, replace_required);
778 if (IS_ERR(fn)) {
779 err = PTR_ERR(fn);
780 fn = NULL;
783 if (!fn)
784 goto out;
786 pn = fn;
788 #ifdef CONFIG_IPV6_SUBTREES
789 if (rt->rt6i_src.plen) {
790 struct fib6_node *sn;
792 if (!fn->subtree) {
793 struct fib6_node *sfn;
796 * Create subtree.
798 * fn[main tree]
800 * sfn[subtree root]
802 * sn[new leaf node]
805 /* Create subtree root node */
806 sfn = node_alloc();
807 if (!sfn)
808 goto st_failure;
810 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
811 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
812 sfn->fn_flags = RTN_ROOT;
813 sfn->fn_sernum = fib6_new_sernum();
815 /* Now add the first leaf node to new subtree */
817 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
818 sizeof(struct in6_addr), rt->rt6i_src.plen,
819 offsetof(struct rt6_info, rt6i_src),
820 allow_create, replace_required);
822 if (IS_ERR(sn)) {
823 err = PTR_ERR(sn);
824 sn = NULL;
826 if (!sn) {
827 /* If it is failed, discard just allocated
828 root, and then (in st_failure) stale node
829 in main tree.
831 node_free(sfn);
832 goto st_failure;
835 /* Now link new subtree to main tree */
836 sfn->parent = fn;
837 fn->subtree = sfn;
838 } else {
839 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
840 sizeof(struct in6_addr), rt->rt6i_src.plen,
841 offsetof(struct rt6_info, rt6i_src),
842 allow_create, replace_required);
844 if (IS_ERR(sn)) {
845 err = PTR_ERR(sn);
846 sn = NULL;
848 if (!sn)
849 goto st_failure;
852 if (!fn->leaf) {
853 fn->leaf = rt;
854 atomic_inc(&rt->rt6i_ref);
856 fn = sn;
858 #endif
860 err = fib6_add_rt2node(fn, rt, info);
861 if (!err) {
862 fib6_start_gc(info->nl_net, rt);
863 if (!(rt->rt6i_flags & RTF_CACHE))
864 fib6_prune_clones(info->nl_net, pn, rt);
867 out:
868 if (err) {
869 #ifdef CONFIG_IPV6_SUBTREES
871 * If fib6_add_1 has cleared the old leaf pointer in the
872 * super-tree leaf node we have to find a new one for it.
874 if (pn != fn && pn->leaf == rt) {
875 pn->leaf = NULL;
876 atomic_dec(&rt->rt6i_ref);
878 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
879 pn->leaf = fib6_find_prefix(info->nl_net, pn);
880 #if RT6_DEBUG >= 2
881 if (!pn->leaf) {
882 WARN_ON(pn->leaf == NULL);
883 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
885 #endif
886 atomic_inc(&pn->leaf->rt6i_ref);
888 #endif
889 dst_free(&rt->dst);
891 return err;
893 #ifdef CONFIG_IPV6_SUBTREES
894 /* Subtree creation failed, probably main tree node
895 is orphan. If it is, shoot it.
897 st_failure:
898 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
899 fib6_repair_tree(info->nl_net, fn);
900 dst_free(&rt->dst);
901 return err;
902 #endif
906 * Routing tree lookup
910 struct lookup_args {
911 int offset; /* key offset on rt6_info */
912 const struct in6_addr *addr; /* search key */
915 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
916 struct lookup_args *args)
918 struct fib6_node *fn;
919 __be32 dir;
921 if (unlikely(args->offset == 0))
922 return NULL;
925 * Descend on a tree
928 fn = root;
930 for (;;) {
931 struct fib6_node *next;
933 dir = addr_bit_set(args->addr, fn->fn_bit);
935 next = dir ? fn->right : fn->left;
937 if (next) {
938 fn = next;
939 continue;
941 break;
944 while (fn) {
945 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
946 struct rt6key *key;
948 key = (struct rt6key *) ((u8 *) fn->leaf +
949 args->offset);
951 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
952 #ifdef CONFIG_IPV6_SUBTREES
953 if (fn->subtree)
954 fn = fib6_lookup_1(fn->subtree, args + 1);
955 #endif
956 if (!fn || fn->fn_flags & RTN_RTINFO)
957 return fn;
961 if (fn->fn_flags & RTN_ROOT)
962 break;
964 fn = fn->parent;
967 return NULL;
970 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
971 const struct in6_addr *saddr)
973 struct fib6_node *fn;
974 struct lookup_args args[] = {
976 .offset = offsetof(struct rt6_info, rt6i_dst),
977 .addr = daddr,
979 #ifdef CONFIG_IPV6_SUBTREES
981 .offset = offsetof(struct rt6_info, rt6i_src),
982 .addr = saddr,
984 #endif
986 .offset = 0, /* sentinel */
990 fn = fib6_lookup_1(root, daddr ? args : args + 1);
991 if (!fn || fn->fn_flags & RTN_TL_ROOT)
992 fn = root;
994 return fn;
998 * Get node with specified destination prefix (and source prefix,
999 * if subtrees are used)
1003 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1004 const struct in6_addr *addr,
1005 int plen, int offset)
1007 struct fib6_node *fn;
1009 for (fn = root; fn ; ) {
1010 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1013 * Prefix match
1015 if (plen < fn->fn_bit ||
1016 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1017 return NULL;
1019 if (plen == fn->fn_bit)
1020 return fn;
1023 * We have more bits to go
1025 if (addr_bit_set(addr, fn->fn_bit))
1026 fn = fn->right;
1027 else
1028 fn = fn->left;
1030 return NULL;
1033 struct fib6_node * fib6_locate(struct fib6_node *root,
1034 const struct in6_addr *daddr, int dst_len,
1035 const struct in6_addr *saddr, int src_len)
1037 struct fib6_node *fn;
1039 fn = fib6_locate_1(root, daddr, dst_len,
1040 offsetof(struct rt6_info, rt6i_dst));
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 if (src_len) {
1044 WARN_ON(saddr == NULL);
1045 if (fn && fn->subtree)
1046 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1047 offsetof(struct rt6_info, rt6i_src));
1049 #endif
1051 if (fn && fn->fn_flags & RTN_RTINFO)
1052 return fn;
1054 return NULL;
1059 * Deletion
1063 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1065 if (fn->fn_flags & RTN_ROOT)
1066 return net->ipv6.ip6_null_entry;
1068 while (fn) {
1069 if (fn->left)
1070 return fn->left->leaf;
1071 if (fn->right)
1072 return fn->right->leaf;
1074 fn = FIB6_SUBTREE(fn);
1076 return NULL;
1080 * Called to trim the tree of intermediate nodes when possible. "fn"
1081 * is the node we want to try and remove.
1084 static struct fib6_node *fib6_repair_tree(struct net *net,
1085 struct fib6_node *fn)
1087 int children;
1088 int nstate;
1089 struct fib6_node *child, *pn;
1090 struct fib6_walker_t *w;
1091 int iter = 0;
1093 for (;;) {
1094 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1095 iter++;
1097 WARN_ON(fn->fn_flags & RTN_RTINFO);
1098 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1099 WARN_ON(fn->leaf != NULL);
1101 children = 0;
1102 child = NULL;
1103 if (fn->right) child = fn->right, children |= 1;
1104 if (fn->left) child = fn->left, children |= 2;
1106 if (children == 3 || FIB6_SUBTREE(fn)
1107 #ifdef CONFIG_IPV6_SUBTREES
1108 /* Subtree root (i.e. fn) may have one child */
1109 || (children && fn->fn_flags & RTN_ROOT)
1110 #endif
1112 fn->leaf = fib6_find_prefix(net, fn);
1113 #if RT6_DEBUG >= 2
1114 if (!fn->leaf) {
1115 WARN_ON(!fn->leaf);
1116 fn->leaf = net->ipv6.ip6_null_entry;
1118 #endif
1119 atomic_inc(&fn->leaf->rt6i_ref);
1120 return fn->parent;
1123 pn = fn->parent;
1124 #ifdef CONFIG_IPV6_SUBTREES
1125 if (FIB6_SUBTREE(pn) == fn) {
1126 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1127 FIB6_SUBTREE(pn) = NULL;
1128 nstate = FWS_L;
1129 } else {
1130 WARN_ON(fn->fn_flags & RTN_ROOT);
1131 #endif
1132 if (pn->right == fn) pn->right = child;
1133 else if (pn->left == fn) pn->left = child;
1134 #if RT6_DEBUG >= 2
1135 else
1136 WARN_ON(1);
1137 #endif
1138 if (child)
1139 child->parent = pn;
1140 nstate = FWS_R;
1141 #ifdef CONFIG_IPV6_SUBTREES
1143 #endif
1145 read_lock(&fib6_walker_lock);
1146 FOR_WALKERS(w) {
1147 if (!child) {
1148 if (w->root == fn) {
1149 w->root = w->node = NULL;
1150 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1151 } else if (w->node == fn) {
1152 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1153 w->node = pn;
1154 w->state = nstate;
1156 } else {
1157 if (w->root == fn) {
1158 w->root = child;
1159 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1161 if (w->node == fn) {
1162 w->node = child;
1163 if (children&2) {
1164 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1165 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1166 } else {
1167 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1168 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1173 read_unlock(&fib6_walker_lock);
1175 node_free(fn);
1176 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1177 return pn;
1179 rt6_release(pn->leaf);
1180 pn->leaf = NULL;
1181 fn = pn;
1185 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1186 struct nl_info *info)
1188 struct fib6_walker_t *w;
1189 struct rt6_info *rt = *rtp;
1190 struct net *net = info->nl_net;
1192 RT6_TRACE("fib6_del_route\n");
1194 /* Unlink it */
1195 *rtp = rt->dst.rt6_next;
1196 rt->rt6i_node = NULL;
1197 net->ipv6.rt6_stats->fib_rt_entries--;
1198 net->ipv6.rt6_stats->fib_discarded_routes++;
1200 /* Reset round-robin state, if necessary */
1201 if (fn->rr_ptr == rt)
1202 fn->rr_ptr = NULL;
1204 /* Adjust walkers */
1205 read_lock(&fib6_walker_lock);
1206 FOR_WALKERS(w) {
1207 if (w->state == FWS_C && w->leaf == rt) {
1208 RT6_TRACE("walker %p adjusted by delroute\n", w);
1209 w->leaf = rt->dst.rt6_next;
1210 if (!w->leaf)
1211 w->state = FWS_U;
1214 read_unlock(&fib6_walker_lock);
1216 rt->dst.rt6_next = NULL;
1218 /* If it was last route, expunge its radix tree node */
1219 if (!fn->leaf) {
1220 fn->fn_flags &= ~RTN_RTINFO;
1221 net->ipv6.rt6_stats->fib_route_nodes--;
1222 fn = fib6_repair_tree(net, fn);
1225 if (atomic_read(&rt->rt6i_ref) != 1) {
1226 /* This route is used as dummy address holder in some split
1227 * nodes. It is not leaked, but it still holds other resources,
1228 * which must be released in time. So, scan ascendant nodes
1229 * and replace dummy references to this route with references
1230 * to still alive ones.
1232 while (fn) {
1233 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1234 fn->leaf = fib6_find_prefix(net, fn);
1235 atomic_inc(&fn->leaf->rt6i_ref);
1236 rt6_release(rt);
1238 fn = fn->parent;
1240 /* No more references are possible at this point. */
1241 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1244 inet6_rt_notify(RTM_DELROUTE, rt, info);
1245 rt6_release(rt);
1248 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1250 struct net *net = info->nl_net;
1251 struct fib6_node *fn = rt->rt6i_node;
1252 struct rt6_info **rtp;
1254 #if RT6_DEBUG >= 2
1255 if (rt->dst.obsolete>0) {
1256 WARN_ON(fn != NULL);
1257 return -ENOENT;
1259 #endif
1260 if (!fn || rt == net->ipv6.ip6_null_entry)
1261 return -ENOENT;
1263 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1265 if (!(rt->rt6i_flags & RTF_CACHE)) {
1266 struct fib6_node *pn = fn;
1267 #ifdef CONFIG_IPV6_SUBTREES
1268 /* clones of this route might be in another subtree */
1269 if (rt->rt6i_src.plen) {
1270 while (!(pn->fn_flags & RTN_ROOT))
1271 pn = pn->parent;
1272 pn = pn->parent;
1274 #endif
1275 fib6_prune_clones(info->nl_net, pn, rt);
1279 * Walk the leaf entries looking for ourself
1282 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1283 if (*rtp == rt) {
1284 fib6_del_route(fn, rtp, info);
1285 return 0;
1288 return -ENOENT;
1292 * Tree traversal function.
1294 * Certainly, it is not interrupt safe.
1295 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1296 * It means, that we can modify tree during walking
1297 * and use this function for garbage collection, clone pruning,
1298 * cleaning tree when a device goes down etc. etc.
1300 * It guarantees that every node will be traversed,
1301 * and that it will be traversed only once.
1303 * Callback function w->func may return:
1304 * 0 -> continue walking.
1305 * positive value -> walking is suspended (used by tree dumps,
1306 * and probably by gc, if it will be split to several slices)
1307 * negative value -> terminate walking.
1309 * The function itself returns:
1310 * 0 -> walk is complete.
1311 * >0 -> walk is incomplete (i.e. suspended)
1312 * <0 -> walk is terminated by an error.
1315 static int fib6_walk_continue(struct fib6_walker_t *w)
1317 struct fib6_node *fn, *pn;
1319 for (;;) {
1320 fn = w->node;
1321 if (!fn)
1322 return 0;
1324 if (w->prune && fn != w->root &&
1325 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1326 w->state = FWS_C;
1327 w->leaf = fn->leaf;
1329 switch (w->state) {
1330 #ifdef CONFIG_IPV6_SUBTREES
1331 case FWS_S:
1332 if (FIB6_SUBTREE(fn)) {
1333 w->node = FIB6_SUBTREE(fn);
1334 continue;
1336 w->state = FWS_L;
1337 #endif
1338 case FWS_L:
1339 if (fn->left) {
1340 w->node = fn->left;
1341 w->state = FWS_INIT;
1342 continue;
1344 w->state = FWS_R;
1345 case FWS_R:
1346 if (fn->right) {
1347 w->node = fn->right;
1348 w->state = FWS_INIT;
1349 continue;
1351 w->state = FWS_C;
1352 w->leaf = fn->leaf;
1353 case FWS_C:
1354 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1355 int err;
1357 if (w->skip) {
1358 w->skip--;
1359 continue;
1362 err = w->func(w);
1363 if (err)
1364 return err;
1366 w->count++;
1367 continue;
1369 w->state = FWS_U;
1370 case FWS_U:
1371 if (fn == w->root)
1372 return 0;
1373 pn = fn->parent;
1374 w->node = pn;
1375 #ifdef CONFIG_IPV6_SUBTREES
1376 if (FIB6_SUBTREE(pn) == fn) {
1377 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1378 w->state = FWS_L;
1379 continue;
1381 #endif
1382 if (pn->left == fn) {
1383 w->state = FWS_R;
1384 continue;
1386 if (pn->right == fn) {
1387 w->state = FWS_C;
1388 w->leaf = w->node->leaf;
1389 continue;
1391 #if RT6_DEBUG >= 2
1392 WARN_ON(1);
1393 #endif
1398 static int fib6_walk(struct fib6_walker_t *w)
1400 int res;
1402 w->state = FWS_INIT;
1403 w->node = w->root;
1405 fib6_walker_link(w);
1406 res = fib6_walk_continue(w);
1407 if (res <= 0)
1408 fib6_walker_unlink(w);
1409 return res;
1412 static int fib6_clean_node(struct fib6_walker_t *w)
1414 int res;
1415 struct rt6_info *rt;
1416 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1417 struct nl_info info = {
1418 .nl_net = c->net,
1421 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1422 res = c->func(rt, c->arg);
1423 if (res < 0) {
1424 w->leaf = rt;
1425 res = fib6_del(rt, &info);
1426 if (res) {
1427 #if RT6_DEBUG >= 2
1428 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1429 __func__, rt, rt->rt6i_node, res);
1430 #endif
1431 continue;
1433 return 0;
1435 WARN_ON(res != 0);
1437 w->leaf = rt;
1438 return 0;
1442 * Convenient frontend to tree walker.
1444 * func is called on each route.
1445 * It may return -1 -> delete this route.
1446 * 0 -> continue walking
1448 * prune==1 -> only immediate children of node (certainly,
1449 * ignoring pure split nodes) will be scanned.
1452 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1453 int (*func)(struct rt6_info *, void *arg),
1454 int prune, void *arg)
1456 struct fib6_cleaner_t c;
1458 c.w.root = root;
1459 c.w.func = fib6_clean_node;
1460 c.w.prune = prune;
1461 c.w.count = 0;
1462 c.w.skip = 0;
1463 c.func = func;
1464 c.arg = arg;
1465 c.net = net;
1467 fib6_walk(&c.w);
1470 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1471 int prune, void *arg)
1473 struct fib6_table *table;
1474 struct hlist_node *node;
1475 struct hlist_head *head;
1476 unsigned int h;
1478 rcu_read_lock();
1479 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1480 head = &net->ipv6.fib_table_hash[h];
1481 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1482 read_lock_bh(&table->tb6_lock);
1483 fib6_clean_tree(net, &table->tb6_root,
1484 func, prune, arg);
1485 read_unlock_bh(&table->tb6_lock);
1488 rcu_read_unlock();
1490 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1491 int prune, void *arg)
1493 struct fib6_table *table;
1494 struct hlist_node *node;
1495 struct hlist_head *head;
1496 unsigned int h;
1498 rcu_read_lock();
1499 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1500 head = &net->ipv6.fib_table_hash[h];
1501 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1502 write_lock_bh(&table->tb6_lock);
1503 fib6_clean_tree(net, &table->tb6_root,
1504 func, prune, arg);
1505 write_unlock_bh(&table->tb6_lock);
1508 rcu_read_unlock();
1511 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1513 if (rt->rt6i_flags & RTF_CACHE) {
1514 RT6_TRACE("pruning clone %p\n", rt);
1515 return -1;
1518 return 0;
1521 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1522 struct rt6_info *rt)
1524 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1528 * Garbage collection
1531 static struct fib6_gc_args
1533 int timeout;
1534 int more;
1535 } gc_args;
1537 static int fib6_age(struct rt6_info *rt, void *arg)
1539 unsigned long now = jiffies;
1542 * check addrconf expiration here.
1543 * Routes are expired even if they are in use.
1545 * Also age clones. Note, that clones are aged out
1546 * only if they are not in use now.
1549 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1550 if (time_after(now, rt->dst.expires)) {
1551 RT6_TRACE("expiring %p\n", rt);
1552 return -1;
1554 gc_args.more++;
1555 } else if (rt->rt6i_flags & RTF_CACHE) {
1556 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1557 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1558 RT6_TRACE("aging clone %p\n", rt);
1559 return -1;
1560 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1561 struct neighbour *neigh;
1562 __u8 neigh_flags = 0;
1564 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1565 if (neigh) {
1566 neigh_flags = neigh->flags;
1567 neigh_release(neigh);
1569 if (!(neigh_flags & NTF_ROUTER)) {
1570 RT6_TRACE("purging route %p via non-router but gateway\n",
1571 rt);
1572 return -1;
1575 gc_args.more++;
1578 return 0;
1581 static DEFINE_SPINLOCK(fib6_gc_lock);
1583 void fib6_run_gc(unsigned long expires, struct net *net)
1585 if (expires != ~0UL) {
1586 spin_lock_bh(&fib6_gc_lock);
1587 gc_args.timeout = expires ? (int)expires :
1588 net->ipv6.sysctl.ip6_rt_gc_interval;
1589 } else {
1590 if (!spin_trylock_bh(&fib6_gc_lock)) {
1591 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1592 return;
1594 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1597 gc_args.more = icmp6_dst_gc();
1599 fib6_clean_all(net, fib6_age, 0, NULL);
1601 if (gc_args.more)
1602 mod_timer(&net->ipv6.ip6_fib_timer,
1603 round_jiffies(jiffies
1604 + net->ipv6.sysctl.ip6_rt_gc_interval));
1605 else
1606 del_timer(&net->ipv6.ip6_fib_timer);
1607 spin_unlock_bh(&fib6_gc_lock);
1610 static void fib6_gc_timer_cb(unsigned long arg)
1612 fib6_run_gc(0, (struct net *)arg);
1615 static int __net_init fib6_net_init(struct net *net)
1617 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1619 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1621 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1622 if (!net->ipv6.rt6_stats)
1623 goto out_timer;
1625 /* Avoid false sharing : Use at least a full cache line */
1626 size = max_t(size_t, size, L1_CACHE_BYTES);
1628 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1629 if (!net->ipv6.fib_table_hash)
1630 goto out_rt6_stats;
1632 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1633 GFP_KERNEL);
1634 if (!net->ipv6.fib6_main_tbl)
1635 goto out_fib_table_hash;
1637 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1638 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1639 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1640 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1641 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1643 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1644 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1645 GFP_KERNEL);
1646 if (!net->ipv6.fib6_local_tbl)
1647 goto out_fib6_main_tbl;
1648 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1649 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1650 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1651 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1652 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1653 #endif
1654 fib6_tables_init(net);
1656 return 0;
1658 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1659 out_fib6_main_tbl:
1660 kfree(net->ipv6.fib6_main_tbl);
1661 #endif
1662 out_fib_table_hash:
1663 kfree(net->ipv6.fib_table_hash);
1664 out_rt6_stats:
1665 kfree(net->ipv6.rt6_stats);
1666 out_timer:
1667 return -ENOMEM;
1670 static void fib6_net_exit(struct net *net)
1672 rt6_ifdown(net, NULL);
1673 del_timer_sync(&net->ipv6.ip6_fib_timer);
1675 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1676 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1677 kfree(net->ipv6.fib6_local_tbl);
1678 #endif
1679 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1680 kfree(net->ipv6.fib6_main_tbl);
1681 kfree(net->ipv6.fib_table_hash);
1682 kfree(net->ipv6.rt6_stats);
1685 static struct pernet_operations fib6_net_ops = {
1686 .init = fib6_net_init,
1687 .exit = fib6_net_exit,
1690 int __init fib6_init(void)
1692 int ret = -ENOMEM;
1694 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1695 sizeof(struct fib6_node),
1696 0, SLAB_HWCACHE_ALIGN,
1697 NULL);
1698 if (!fib6_node_kmem)
1699 goto out;
1701 ret = register_pernet_subsys(&fib6_net_ops);
1702 if (ret)
1703 goto out_kmem_cache_create;
1705 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1706 NULL);
1707 if (ret)
1708 goto out_unregister_subsys;
1709 out:
1710 return ret;
1712 out_unregister_subsys:
1713 unregister_pernet_subsys(&fib6_net_ops);
1714 out_kmem_cache_create:
1715 kmem_cache_destroy(fib6_node_kmem);
1716 goto out;
1719 void fib6_gc_cleanup(void)
1721 unregister_pernet_subsys(&fib6_net_ops);
1722 kmem_cache_destroy(fib6_node_kmem);