2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock
);
76 static cpumask_var_t cpus_hardware_enabled
;
77 static int kvm_usage_count
= 0;
78 static atomic_t hardware_enable_failed
;
80 struct kmem_cache
*kvm_vcpu_cache
;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
83 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
85 struct dentry
*kvm_debugfs_dir
;
87 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
90 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
99 EXPORT_SYMBOL_GPL(kvm_rebooting
);
101 static bool largepages_enabled
= true;
103 static struct page
*hwpoison_page
;
104 static pfn_t hwpoison_pfn
;
106 struct page
*fault_page
;
109 inline int kvm_is_mmio_pfn(pfn_t pfn
)
111 if (pfn_valid(pfn
)) {
113 struct page
*tail
= pfn_to_page(pfn
);
114 struct page
*head
= compound_trans_head(tail
);
115 reserved
= PageReserved(head
);
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
131 return PageReserved(tail
);
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu
*vcpu
)
144 mutex_lock(&vcpu
->mutex
);
145 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
146 /* The thread running this VCPU changed. */
147 struct pid
*oldpid
= vcpu
->pid
;
148 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
149 rcu_assign_pointer(vcpu
->pid
, newpid
);
154 preempt_notifier_register(&vcpu
->preempt_notifier
);
155 kvm_arch_vcpu_load(vcpu
, cpu
);
159 void vcpu_put(struct kvm_vcpu
*vcpu
)
162 kvm_arch_vcpu_put(vcpu
);
163 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
165 mutex_unlock(&vcpu
->mutex
);
168 static void ack_flush(void *_completed
)
172 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
177 struct kvm_vcpu
*vcpu
;
179 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
182 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
183 kvm_make_request(req
, vcpu
);
186 /* Set ->requests bit before we read ->mode */
189 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
190 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
191 cpumask_set_cpu(cpu
, cpus
);
193 if (unlikely(cpus
== NULL
))
194 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
195 else if (!cpumask_empty(cpus
))
196 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
200 free_cpumask_var(cpus
);
204 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
206 long dirty_count
= kvm
->tlbs_dirty
;
209 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
210 ++kvm
->stat
.remote_tlb_flush
;
211 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
214 void kvm_reload_remote_mmus(struct kvm
*kvm
)
216 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
219 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
224 mutex_init(&vcpu
->mutex
);
229 init_waitqueue_head(&vcpu
->wq
);
230 kvm_async_pf_vcpu_init(vcpu
);
232 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
237 vcpu
->run
= page_address(page
);
239 r
= kvm_arch_vcpu_init(vcpu
);
245 free_page((unsigned long)vcpu
->run
);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
251 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
254 kvm_arch_vcpu_uninit(vcpu
);
255 free_page((unsigned long)vcpu
->run
);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
262 return container_of(mn
, struct kvm
, mmu_notifier
);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
266 struct mm_struct
*mm
,
267 unsigned long address
)
269 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
270 int need_tlb_flush
, idx
;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx
= srcu_read_lock(&kvm
->srcu
);
291 spin_lock(&kvm
->mmu_lock
);
293 kvm
->mmu_notifier_seq
++;
294 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
295 /* we've to flush the tlb before the pages can be freed */
297 kvm_flush_remote_tlbs(kvm
);
299 spin_unlock(&kvm
->mmu_lock
);
300 srcu_read_unlock(&kvm
->srcu
, idx
);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
304 struct mm_struct
*mm
,
305 unsigned long address
,
308 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
311 idx
= srcu_read_lock(&kvm
->srcu
);
312 spin_lock(&kvm
->mmu_lock
);
313 kvm
->mmu_notifier_seq
++;
314 kvm_set_spte_hva(kvm
, address
, pte
);
315 spin_unlock(&kvm
->mmu_lock
);
316 srcu_read_unlock(&kvm
->srcu
, idx
);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
320 struct mm_struct
*mm
,
324 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
325 int need_tlb_flush
= 0, idx
;
327 idx
= srcu_read_lock(&kvm
->srcu
);
328 spin_lock(&kvm
->mmu_lock
);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm
->mmu_notifier_count
++;
335 for (; start
< end
; start
+= PAGE_SIZE
)
336 need_tlb_flush
|= kvm_unmap_hva(kvm
, start
);
337 need_tlb_flush
|= kvm
->tlbs_dirty
;
338 /* we've to flush the tlb before the pages can be freed */
340 kvm_flush_remote_tlbs(kvm
);
342 spin_unlock(&kvm
->mmu_lock
);
343 srcu_read_unlock(&kvm
->srcu
, idx
);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
353 spin_lock(&kvm
->mmu_lock
);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm
->mmu_notifier_seq
++;
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
366 kvm
->mmu_notifier_count
--;
367 spin_unlock(&kvm
->mmu_lock
);
369 BUG_ON(kvm
->mmu_notifier_count
< 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
373 struct mm_struct
*mm
,
374 unsigned long address
)
376 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
379 idx
= srcu_read_lock(&kvm
->srcu
);
380 spin_lock(&kvm
->mmu_lock
);
382 young
= kvm_age_hva(kvm
, address
);
384 kvm_flush_remote_tlbs(kvm
);
386 spin_unlock(&kvm
->mmu_lock
);
387 srcu_read_unlock(&kvm
->srcu
, idx
);
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
393 struct mm_struct
*mm
,
394 unsigned long address
)
396 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
399 idx
= srcu_read_lock(&kvm
->srcu
);
400 spin_lock(&kvm
->mmu_lock
);
401 young
= kvm_test_age_hva(kvm
, address
);
402 spin_unlock(&kvm
->mmu_lock
);
403 srcu_read_unlock(&kvm
->srcu
, idx
);
408 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
409 struct mm_struct
*mm
)
411 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
414 idx
= srcu_read_lock(&kvm
->srcu
);
415 kvm_arch_flush_shadow(kvm
);
416 srcu_read_unlock(&kvm
->srcu
, idx
);
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
420 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
421 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
422 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
423 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
424 .test_young
= kvm_mmu_notifier_test_young
,
425 .change_pte
= kvm_mmu_notifier_change_pte
,
426 .release
= kvm_mmu_notifier_release
,
429 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
431 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
432 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
437 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
444 static void kvm_init_memslots_id(struct kvm
*kvm
)
447 struct kvm_memslots
*slots
= kvm
->memslots
;
449 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
450 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
453 static struct kvm
*kvm_create_vm(unsigned long type
)
456 struct kvm
*kvm
= kvm_arch_alloc_vm();
459 return ERR_PTR(-ENOMEM
);
461 r
= kvm_arch_init_vm(kvm
, type
);
463 goto out_err_nodisable
;
465 r
= hardware_enable_all();
467 goto out_err_nodisable
;
469 #ifdef CONFIG_HAVE_KVM_IRQCHIP
470 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
471 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
475 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
478 kvm_init_memslots_id(kvm
);
479 if (init_srcu_struct(&kvm
->srcu
))
481 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
482 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
488 spin_lock_init(&kvm
->mmu_lock
);
489 kvm
->mm
= current
->mm
;
490 atomic_inc(&kvm
->mm
->mm_count
);
491 kvm_eventfd_init(kvm
);
492 mutex_init(&kvm
->lock
);
493 mutex_init(&kvm
->irq_lock
);
494 mutex_init(&kvm
->slots_lock
);
495 atomic_set(&kvm
->users_count
, 1);
497 r
= kvm_init_mmu_notifier(kvm
);
501 raw_spin_lock(&kvm_lock
);
502 list_add(&kvm
->vm_list
, &vm_list
);
503 raw_spin_unlock(&kvm_lock
);
508 cleanup_srcu_struct(&kvm
->srcu
);
510 hardware_disable_all();
512 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
513 kfree(kvm
->buses
[i
]);
514 kfree(kvm
->memslots
);
515 kvm_arch_free_vm(kvm
);
520 * Avoid using vmalloc for a small buffer.
521 * Should not be used when the size is statically known.
523 void *kvm_kvzalloc(unsigned long size
)
525 if (size
> PAGE_SIZE
)
526 return vzalloc(size
);
528 return kzalloc(size
, GFP_KERNEL
);
531 void kvm_kvfree(const void *addr
)
533 if (is_vmalloc_addr(addr
))
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
541 if (!memslot
->dirty_bitmap
)
544 kvm_kvfree(memslot
->dirty_bitmap
);
545 memslot
->dirty_bitmap
= NULL
;
549 * Free any memory in @free but not in @dont.
551 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
552 struct kvm_memory_slot
*dont
)
554 if (!dont
|| free
->rmap
!= dont
->rmap
)
557 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
558 kvm_destroy_dirty_bitmap(free
);
560 kvm_arch_free_memslot(free
, dont
);
566 void kvm_free_physmem(struct kvm
*kvm
)
568 struct kvm_memslots
*slots
= kvm
->memslots
;
569 struct kvm_memory_slot
*memslot
;
571 kvm_for_each_memslot(memslot
, slots
)
572 kvm_free_physmem_slot(memslot
, NULL
);
574 kfree(kvm
->memslots
);
577 static void kvm_destroy_vm(struct kvm
*kvm
)
580 struct mm_struct
*mm
= kvm
->mm
;
582 kvm_arch_sync_events(kvm
);
583 raw_spin_lock(&kvm_lock
);
584 list_del(&kvm
->vm_list
);
585 raw_spin_unlock(&kvm_lock
);
586 kvm_free_irq_routing(kvm
);
587 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
588 kvm_io_bus_destroy(kvm
->buses
[i
]);
589 kvm_coalesced_mmio_free(kvm
);
590 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
591 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
593 kvm_arch_flush_shadow(kvm
);
595 kvm_arch_destroy_vm(kvm
);
596 kvm_free_physmem(kvm
);
597 cleanup_srcu_struct(&kvm
->srcu
);
598 kvm_arch_free_vm(kvm
);
599 hardware_disable_all();
603 void kvm_get_kvm(struct kvm
*kvm
)
605 atomic_inc(&kvm
->users_count
);
607 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
609 void kvm_put_kvm(struct kvm
*kvm
)
611 if (atomic_dec_and_test(&kvm
->users_count
))
614 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
617 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
619 struct kvm
*kvm
= filp
->private_data
;
621 kvm_irqfd_release(kvm
);
628 * Allocation size is twice as large as the actual dirty bitmap size.
629 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
631 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
634 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
636 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
637 if (!memslot
->dirty_bitmap
)
640 #endif /* !CONFIG_S390 */
644 static int cmp_memslot(const void *slot1
, const void *slot2
)
646 struct kvm_memory_slot
*s1
, *s2
;
648 s1
= (struct kvm_memory_slot
*)slot1
;
649 s2
= (struct kvm_memory_slot
*)slot2
;
651 if (s1
->npages
< s2
->npages
)
653 if (s1
->npages
> s2
->npages
)
660 * Sort the memslots base on its size, so the larger slots
661 * will get better fit.
663 static void sort_memslots(struct kvm_memslots
*slots
)
667 sort(slots
->memslots
, KVM_MEM_SLOTS_NUM
,
668 sizeof(struct kvm_memory_slot
), cmp_memslot
, NULL
);
670 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
671 slots
->id_to_index
[slots
->memslots
[i
].id
] = i
;
674 void update_memslots(struct kvm_memslots
*slots
, struct kvm_memory_slot
*new)
678 struct kvm_memory_slot
*old
= id_to_memslot(slots
, id
);
679 unsigned long npages
= old
->npages
;
682 if (new->npages
!= npages
)
683 sort_memslots(slots
);
690 * Allocate some memory and give it an address in the guest physical address
693 * Discontiguous memory is allowed, mostly for framebuffers.
695 * Must be called holding mmap_sem for write.
697 int __kvm_set_memory_region(struct kvm
*kvm
,
698 struct kvm_userspace_memory_region
*mem
,
703 unsigned long npages
;
705 struct kvm_memory_slot
*memslot
;
706 struct kvm_memory_slot old
, new;
707 struct kvm_memslots
*slots
, *old_memslots
;
710 /* General sanity checks */
711 if (mem
->memory_size
& (PAGE_SIZE
- 1))
713 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
715 /* We can read the guest memory with __xxx_user() later on. */
717 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
718 !access_ok(VERIFY_WRITE
,
719 (void __user
*)(unsigned long)mem
->userspace_addr
,
722 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
724 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
727 memslot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
728 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
729 npages
= mem
->memory_size
>> PAGE_SHIFT
;
732 if (npages
> KVM_MEM_MAX_NR_PAGES
)
736 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
738 new = old
= *memslot
;
741 new.base_gfn
= base_gfn
;
743 new.flags
= mem
->flags
;
745 /* Disallow changing a memory slot's size. */
747 if (npages
&& old
.npages
&& npages
!= old
.npages
)
750 /* Check for overlaps */
752 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
753 struct kvm_memory_slot
*s
= &kvm
->memslots
->memslots
[i
];
755 if (s
== memslot
|| !s
->npages
)
757 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
758 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
762 /* Free page dirty bitmap if unneeded */
763 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
764 new.dirty_bitmap
= NULL
;
768 /* Allocate if a slot is being created */
769 if (npages
&& !old
.npages
) {
770 new.user_alloc
= user_alloc
;
771 new.userspace_addr
= mem
->userspace_addr
;
773 new.rmap
= vzalloc(npages
* sizeof(*new.rmap
));
776 #endif /* not defined CONFIG_S390 */
777 if (kvm_arch_create_memslot(&new, npages
))
781 /* Allocate page dirty bitmap if needed */
782 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
783 if (kvm_create_dirty_bitmap(&new) < 0)
785 /* destroy any largepage mappings for dirty tracking */
789 struct kvm_memory_slot
*slot
;
792 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
796 slot
= id_to_memslot(slots
, mem
->slot
);
797 slot
->flags
|= KVM_MEMSLOT_INVALID
;
799 update_memslots(slots
, NULL
);
801 old_memslots
= kvm
->memslots
;
802 rcu_assign_pointer(kvm
->memslots
, slots
);
803 synchronize_srcu_expedited(&kvm
->srcu
);
804 /* From this point no new shadow pages pointing to a deleted
805 * memslot will be created.
807 * validation of sp->gfn happens in:
808 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
809 * - kvm_is_visible_gfn (mmu_check_roots)
811 kvm_arch_flush_shadow(kvm
);
815 r
= kvm_arch_prepare_memory_region(kvm
, &new, old
, mem
, user_alloc
);
819 /* map/unmap the pages in iommu page table */
821 r
= kvm_iommu_map_pages(kvm
, &new);
825 kvm_iommu_unmap_pages(kvm
, &old
);
828 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
833 /* actual memory is freed via old in kvm_free_physmem_slot below */
836 new.dirty_bitmap
= NULL
;
837 memset(&new.arch
, 0, sizeof(new.arch
));
840 update_memslots(slots
, &new);
841 old_memslots
= kvm
->memslots
;
842 rcu_assign_pointer(kvm
->memslots
, slots
);
843 synchronize_srcu_expedited(&kvm
->srcu
);
845 kvm_arch_commit_memory_region(kvm
, mem
, old
, user_alloc
);
848 * If the new memory slot is created, we need to clear all
851 if (npages
&& old
.base_gfn
!= mem
->guest_phys_addr
>> PAGE_SHIFT
)
852 kvm_arch_flush_shadow(kvm
);
854 kvm_free_physmem_slot(&old
, &new);
860 kvm_free_physmem_slot(&new, &old
);
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
867 int kvm_set_memory_region(struct kvm
*kvm
,
868 struct kvm_userspace_memory_region
*mem
,
873 mutex_lock(&kvm
->slots_lock
);
874 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
875 mutex_unlock(&kvm
->slots_lock
);
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
880 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
882 kvm_userspace_memory_region
*mem
,
885 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
887 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
890 int kvm_get_dirty_log(struct kvm
*kvm
,
891 struct kvm_dirty_log
*log
, int *is_dirty
)
893 struct kvm_memory_slot
*memslot
;
896 unsigned long any
= 0;
899 if (log
->slot
>= KVM_MEMORY_SLOTS
)
902 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
904 if (!memslot
->dirty_bitmap
)
907 n
= kvm_dirty_bitmap_bytes(memslot
);
909 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
910 any
= memslot
->dirty_bitmap
[i
];
913 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
924 bool kvm_largepages_enabled(void)
926 return largepages_enabled
;
929 void kvm_disable_largepages(void)
931 largepages_enabled
= false;
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
935 int is_error_page(struct page
*page
)
937 return page
== bad_page
|| page
== hwpoison_page
|| page
== fault_page
;
939 EXPORT_SYMBOL_GPL(is_error_page
);
941 int is_error_pfn(pfn_t pfn
)
943 return pfn
== bad_pfn
|| pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
945 EXPORT_SYMBOL_GPL(is_error_pfn
);
947 int is_hwpoison_pfn(pfn_t pfn
)
949 return pfn
== hwpoison_pfn
;
951 EXPORT_SYMBOL_GPL(is_hwpoison_pfn
);
953 int is_fault_pfn(pfn_t pfn
)
955 return pfn
== fault_pfn
;
957 EXPORT_SYMBOL_GPL(is_fault_pfn
);
959 int is_noslot_pfn(pfn_t pfn
)
961 return pfn
== bad_pfn
;
963 EXPORT_SYMBOL_GPL(is_noslot_pfn
);
965 int is_invalid_pfn(pfn_t pfn
)
967 return pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
969 EXPORT_SYMBOL_GPL(is_invalid_pfn
);
971 static inline unsigned long bad_hva(void)
976 int kvm_is_error_hva(unsigned long addr
)
978 return addr
== bad_hva();
980 EXPORT_SYMBOL_GPL(kvm_is_error_hva
);
982 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
984 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
986 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
988 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
990 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
992 if (!memslot
|| memslot
->id
>= KVM_MEMORY_SLOTS
||
993 memslot
->flags
& KVM_MEMSLOT_INVALID
)
998 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1000 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1002 struct vm_area_struct
*vma
;
1003 unsigned long addr
, size
;
1007 addr
= gfn_to_hva(kvm
, gfn
);
1008 if (kvm_is_error_hva(addr
))
1011 down_read(¤t
->mm
->mmap_sem
);
1012 vma
= find_vma(current
->mm
, addr
);
1016 size
= vma_kernel_pagesize(vma
);
1019 up_read(¤t
->mm
->mmap_sem
);
1024 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1027 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1031 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1033 return gfn_to_hva_memslot(slot
, gfn
);
1036 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1038 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1040 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1042 static pfn_t
get_fault_pfn(void)
1044 get_page(fault_page
);
1048 int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1049 unsigned long start
, int write
, struct page
**page
)
1051 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1054 flags
|= FOLL_WRITE
;
1056 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1059 static inline int check_user_page_hwpoison(unsigned long addr
)
1061 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1063 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1064 flags
, NULL
, NULL
, NULL
);
1065 return rc
== -EHWPOISON
;
1068 static pfn_t
hva_to_pfn(struct kvm
*kvm
, unsigned long addr
, bool atomic
,
1069 bool *async
, bool write_fault
, bool *writable
)
1071 struct page
*page
[1];
1075 /* we can do it either atomically or asynchronously, not both */
1076 BUG_ON(atomic
&& async
);
1078 BUG_ON(!write_fault
&& !writable
);
1083 if (atomic
|| async
)
1084 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1086 if (unlikely(npages
!= 1) && !atomic
) {
1090 *writable
= write_fault
;
1093 down_read(¤t
->mm
->mmap_sem
);
1094 npages
= get_user_page_nowait(current
, current
->mm
,
1095 addr
, write_fault
, page
);
1096 up_read(¤t
->mm
->mmap_sem
);
1098 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1101 /* map read fault as writable if possible */
1102 if (unlikely(!write_fault
) && npages
== 1) {
1103 struct page
*wpage
[1];
1105 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1115 if (unlikely(npages
!= 1)) {
1116 struct vm_area_struct
*vma
;
1119 return get_fault_pfn();
1121 down_read(¤t
->mm
->mmap_sem
);
1122 if (npages
== -EHWPOISON
||
1123 (!async
&& check_user_page_hwpoison(addr
))) {
1124 up_read(¤t
->mm
->mmap_sem
);
1125 get_page(hwpoison_page
);
1126 return page_to_pfn(hwpoison_page
);
1129 vma
= find_vma_intersection(current
->mm
, addr
, addr
+1);
1132 pfn
= get_fault_pfn();
1133 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1134 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1136 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1138 if (async
&& (vma
->vm_flags
& VM_WRITE
))
1140 pfn
= get_fault_pfn();
1142 up_read(¤t
->mm
->mmap_sem
);
1144 pfn
= page_to_pfn(page
[0]);
1149 pfn_t
hva_to_pfn_atomic(struct kvm
*kvm
, unsigned long addr
)
1151 return hva_to_pfn(kvm
, addr
, true, NULL
, true, NULL
);
1153 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic
);
1155 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1156 bool write_fault
, bool *writable
)
1163 addr
= gfn_to_hva(kvm
, gfn
);
1164 if (kvm_is_error_hva(addr
)) {
1166 return page_to_pfn(bad_page
);
1169 return hva_to_pfn(kvm
, addr
, atomic
, async
, write_fault
, writable
);
1172 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1174 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1176 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1178 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1179 bool write_fault
, bool *writable
)
1181 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1183 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1185 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1187 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1191 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1194 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1196 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1198 pfn_t
gfn_to_pfn_memslot(struct kvm
*kvm
,
1199 struct kvm_memory_slot
*slot
, gfn_t gfn
)
1201 unsigned long addr
= gfn_to_hva_memslot(slot
, gfn
);
1202 return hva_to_pfn(kvm
, addr
, false, NULL
, true, NULL
);
1205 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1211 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1212 if (kvm_is_error_hva(addr
))
1215 if (entry
< nr_pages
)
1218 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1220 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1222 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1226 pfn
= gfn_to_pfn(kvm
, gfn
);
1227 if (!kvm_is_mmio_pfn(pfn
))
1228 return pfn_to_page(pfn
);
1230 WARN_ON(kvm_is_mmio_pfn(pfn
));
1236 EXPORT_SYMBOL_GPL(gfn_to_page
);
1238 void kvm_release_page_clean(struct page
*page
)
1240 kvm_release_pfn_clean(page_to_pfn(page
));
1242 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1244 void kvm_release_pfn_clean(pfn_t pfn
)
1246 if (!kvm_is_mmio_pfn(pfn
))
1247 put_page(pfn_to_page(pfn
));
1249 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1251 void kvm_release_page_dirty(struct page
*page
)
1253 kvm_release_pfn_dirty(page_to_pfn(page
));
1255 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1257 void kvm_release_pfn_dirty(pfn_t pfn
)
1259 kvm_set_pfn_dirty(pfn
);
1260 kvm_release_pfn_clean(pfn
);
1262 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1264 void kvm_set_page_dirty(struct page
*page
)
1266 kvm_set_pfn_dirty(page_to_pfn(page
));
1268 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1270 void kvm_set_pfn_dirty(pfn_t pfn
)
1272 if (!kvm_is_mmio_pfn(pfn
)) {
1273 struct page
*page
= pfn_to_page(pfn
);
1274 if (!PageReserved(page
))
1278 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1280 void kvm_set_pfn_accessed(pfn_t pfn
)
1282 if (!kvm_is_mmio_pfn(pfn
))
1283 mark_page_accessed(pfn_to_page(pfn
));
1285 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1287 void kvm_get_pfn(pfn_t pfn
)
1289 if (!kvm_is_mmio_pfn(pfn
))
1290 get_page(pfn_to_page(pfn
));
1292 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1294 static int next_segment(unsigned long len
, int offset
)
1296 if (len
> PAGE_SIZE
- offset
)
1297 return PAGE_SIZE
- offset
;
1302 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1308 addr
= gfn_to_hva(kvm
, gfn
);
1309 if (kvm_is_error_hva(addr
))
1311 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1316 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1318 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1320 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1322 int offset
= offset_in_page(gpa
);
1325 while ((seg
= next_segment(len
, offset
)) != 0) {
1326 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1336 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1338 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1343 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1344 int offset
= offset_in_page(gpa
);
1346 addr
= gfn_to_hva(kvm
, gfn
);
1347 if (kvm_is_error_hva(addr
))
1349 pagefault_disable();
1350 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1356 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1358 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1359 int offset
, int len
)
1364 addr
= gfn_to_hva(kvm
, gfn
);
1365 if (kvm_is_error_hva(addr
))
1367 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1370 mark_page_dirty(kvm
, gfn
);
1373 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1375 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1378 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1380 int offset
= offset_in_page(gpa
);
1383 while ((seg
= next_segment(len
, offset
)) != 0) {
1384 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1395 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1398 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1399 int offset
= offset_in_page(gpa
);
1400 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1403 ghc
->generation
= slots
->generation
;
1404 ghc
->memslot
= gfn_to_memslot(kvm
, gfn
);
1405 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, gfn
, NULL
);
1406 if (!kvm_is_error_hva(ghc
->hva
))
1413 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1415 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1416 void *data
, unsigned long len
)
1418 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1421 if (slots
->generation
!= ghc
->generation
)
1422 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1424 if (kvm_is_error_hva(ghc
->hva
))
1427 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1430 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1434 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1436 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1437 void *data
, unsigned long len
)
1439 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1442 if (slots
->generation
!= ghc
->generation
)
1443 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1445 if (kvm_is_error_hva(ghc
->hva
))
1448 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1454 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1456 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1458 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1461 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1463 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1465 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1467 int offset
= offset_in_page(gpa
);
1470 while ((seg
= next_segment(len
, offset
)) != 0) {
1471 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1480 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1482 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1485 if (memslot
&& memslot
->dirty_bitmap
) {
1486 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1488 /* TODO: introduce set_bit_le() and use it */
1489 test_and_set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1493 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1495 struct kvm_memory_slot
*memslot
;
1497 memslot
= gfn_to_memslot(kvm
, gfn
);
1498 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1502 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1504 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1509 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1511 if (kvm_arch_vcpu_runnable(vcpu
)) {
1512 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1515 if (kvm_cpu_has_pending_timer(vcpu
))
1517 if (signal_pending(current
))
1523 finish_wait(&vcpu
->wq
, &wait
);
1528 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1530 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
1533 int cpu
= vcpu
->cpu
;
1534 wait_queue_head_t
*wqp
;
1536 wqp
= kvm_arch_vcpu_wq(vcpu
);
1537 if (waitqueue_active(wqp
)) {
1538 wake_up_interruptible(wqp
);
1539 ++vcpu
->stat
.halt_wakeup
;
1543 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
1544 if (kvm_arch_vcpu_should_kick(vcpu
))
1545 smp_send_reschedule(cpu
);
1548 #endif /* !CONFIG_S390 */
1550 void kvm_resched(struct kvm_vcpu
*vcpu
)
1552 if (!need_resched())
1556 EXPORT_SYMBOL_GPL(kvm_resched
);
1558 bool kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
1561 struct task_struct
*task
= NULL
;
1564 pid
= rcu_dereference(target
->pid
);
1566 task
= get_pid_task(target
->pid
, PIDTYPE_PID
);
1570 if (task
->flags
& PF_VCPU
) {
1571 put_task_struct(task
);
1574 if (yield_to(task
, 1)) {
1575 put_task_struct(task
);
1578 put_task_struct(task
);
1581 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
1583 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1585 struct kvm
*kvm
= me
->kvm
;
1586 struct kvm_vcpu
*vcpu
;
1587 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1593 * We boost the priority of a VCPU that is runnable but not
1594 * currently running, because it got preempted by something
1595 * else and called schedule in __vcpu_run. Hopefully that
1596 * VCPU is holding the lock that we need and will release it.
1597 * We approximate round-robin by starting at the last boosted VCPU.
1599 for (pass
= 0; pass
< 2 && !yielded
; pass
++) {
1600 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1601 if (!pass
&& i
<= last_boosted_vcpu
) {
1602 i
= last_boosted_vcpu
;
1604 } else if (pass
&& i
> last_boosted_vcpu
)
1608 if (waitqueue_active(&vcpu
->wq
))
1610 if (kvm_vcpu_yield_to(vcpu
)) {
1611 kvm
->last_boosted_vcpu
= i
;
1618 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1620 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1622 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1625 if (vmf
->pgoff
== 0)
1626 page
= virt_to_page(vcpu
->run
);
1628 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1629 page
= virt_to_page(vcpu
->arch
.pio_data
);
1631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1632 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1633 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1636 return kvm_arch_vcpu_fault(vcpu
, vmf
);
1642 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1643 .fault
= kvm_vcpu_fault
,
1646 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1648 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1652 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1654 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1656 kvm_put_kvm(vcpu
->kvm
);
1660 static struct file_operations kvm_vcpu_fops
= {
1661 .release
= kvm_vcpu_release
,
1662 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1663 #ifdef CONFIG_COMPAT
1664 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1666 .mmap
= kvm_vcpu_mmap
,
1667 .llseek
= noop_llseek
,
1671 * Allocates an inode for the vcpu.
1673 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1675 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
);
1679 * Creates some virtual cpus. Good luck creating more than one.
1681 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1684 struct kvm_vcpu
*vcpu
, *v
;
1686 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1688 return PTR_ERR(vcpu
);
1690 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1692 r
= kvm_arch_vcpu_setup(vcpu
);
1696 mutex_lock(&kvm
->lock
);
1697 if (!kvm_vcpu_compatible(vcpu
)) {
1699 goto unlock_vcpu_destroy
;
1701 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1703 goto unlock_vcpu_destroy
;
1706 kvm_for_each_vcpu(r
, v
, kvm
)
1707 if (v
->vcpu_id
== id
) {
1709 goto unlock_vcpu_destroy
;
1712 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1714 /* Now it's all set up, let userspace reach it */
1716 r
= create_vcpu_fd(vcpu
);
1719 goto unlock_vcpu_destroy
;
1722 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1724 atomic_inc(&kvm
->online_vcpus
);
1726 mutex_unlock(&kvm
->lock
);
1729 unlock_vcpu_destroy
:
1730 mutex_unlock(&kvm
->lock
);
1732 kvm_arch_vcpu_destroy(vcpu
);
1736 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1739 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1740 vcpu
->sigset_active
= 1;
1741 vcpu
->sigset
= *sigset
;
1743 vcpu
->sigset_active
= 0;
1747 static long kvm_vcpu_ioctl(struct file
*filp
,
1748 unsigned int ioctl
, unsigned long arg
)
1750 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1751 void __user
*argp
= (void __user
*)arg
;
1753 struct kvm_fpu
*fpu
= NULL
;
1754 struct kvm_sregs
*kvm_sregs
= NULL
;
1756 if (vcpu
->kvm
->mm
!= current
->mm
)
1759 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1761 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1762 * so vcpu_load() would break it.
1764 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1765 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1775 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1776 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1778 case KVM_GET_REGS
: {
1779 struct kvm_regs
*kvm_regs
;
1782 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1785 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1789 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1796 case KVM_SET_REGS
: {
1797 struct kvm_regs
*kvm_regs
;
1800 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
1801 if (IS_ERR(kvm_regs
)) {
1802 r
= PTR_ERR(kvm_regs
);
1805 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1813 case KVM_GET_SREGS
: {
1814 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1818 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1822 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1827 case KVM_SET_SREGS
: {
1828 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
1829 if (IS_ERR(kvm_sregs
)) {
1830 r
= PTR_ERR(kvm_sregs
);
1833 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1839 case KVM_GET_MP_STATE
: {
1840 struct kvm_mp_state mp_state
;
1842 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1846 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1851 case KVM_SET_MP_STATE
: {
1852 struct kvm_mp_state mp_state
;
1855 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1857 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1863 case KVM_TRANSLATE
: {
1864 struct kvm_translation tr
;
1867 if (copy_from_user(&tr
, argp
, sizeof tr
))
1869 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1873 if (copy_to_user(argp
, &tr
, sizeof tr
))
1878 case KVM_SET_GUEST_DEBUG
: {
1879 struct kvm_guest_debug dbg
;
1882 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
1884 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
1890 case KVM_SET_SIGNAL_MASK
: {
1891 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1892 struct kvm_signal_mask kvm_sigmask
;
1893 sigset_t sigset
, *p
;
1898 if (copy_from_user(&kvm_sigmask
, argp
,
1899 sizeof kvm_sigmask
))
1902 if (kvm_sigmask
.len
!= sizeof sigset
)
1905 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
1910 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
1914 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1918 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
1922 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
1928 fpu
= memdup_user(argp
, sizeof(*fpu
));
1933 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
1940 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1949 #ifdef CONFIG_COMPAT
1950 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
1951 unsigned int ioctl
, unsigned long arg
)
1953 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1954 void __user
*argp
= compat_ptr(arg
);
1957 if (vcpu
->kvm
->mm
!= current
->mm
)
1961 case KVM_SET_SIGNAL_MASK
: {
1962 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1963 struct kvm_signal_mask kvm_sigmask
;
1964 compat_sigset_t csigset
;
1969 if (copy_from_user(&kvm_sigmask
, argp
,
1970 sizeof kvm_sigmask
))
1973 if (kvm_sigmask
.len
!= sizeof csigset
)
1976 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
1979 sigset_from_compat(&sigset
, &csigset
);
1980 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
1982 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
1986 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
1994 static long kvm_vm_ioctl(struct file
*filp
,
1995 unsigned int ioctl
, unsigned long arg
)
1997 struct kvm
*kvm
= filp
->private_data
;
1998 void __user
*argp
= (void __user
*)arg
;
2001 if (kvm
->mm
!= current
->mm
)
2004 case KVM_CREATE_VCPU
:
2005 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2009 case KVM_SET_USER_MEMORY_REGION
: {
2010 struct kvm_userspace_memory_region kvm_userspace_mem
;
2013 if (copy_from_user(&kvm_userspace_mem
, argp
,
2014 sizeof kvm_userspace_mem
))
2017 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
2022 case KVM_GET_DIRTY_LOG
: {
2023 struct kvm_dirty_log log
;
2026 if (copy_from_user(&log
, argp
, sizeof log
))
2028 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2033 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2034 case KVM_REGISTER_COALESCED_MMIO
: {
2035 struct kvm_coalesced_mmio_zone zone
;
2037 if (copy_from_user(&zone
, argp
, sizeof zone
))
2039 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2045 case KVM_UNREGISTER_COALESCED_MMIO
: {
2046 struct kvm_coalesced_mmio_zone zone
;
2048 if (copy_from_user(&zone
, argp
, sizeof zone
))
2050 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2058 struct kvm_irqfd data
;
2061 if (copy_from_user(&data
, argp
, sizeof data
))
2063 r
= kvm_irqfd(kvm
, &data
);
2066 case KVM_IOEVENTFD
: {
2067 struct kvm_ioeventfd data
;
2070 if (copy_from_user(&data
, argp
, sizeof data
))
2072 r
= kvm_ioeventfd(kvm
, &data
);
2075 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2076 case KVM_SET_BOOT_CPU_ID
:
2078 mutex_lock(&kvm
->lock
);
2079 if (atomic_read(&kvm
->online_vcpus
) != 0)
2082 kvm
->bsp_vcpu_id
= arg
;
2083 mutex_unlock(&kvm
->lock
);
2086 #ifdef CONFIG_HAVE_KVM_MSI
2087 case KVM_SIGNAL_MSI
: {
2091 if (copy_from_user(&msi
, argp
, sizeof msi
))
2093 r
= kvm_send_userspace_msi(kvm
, &msi
);
2098 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2100 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2106 #ifdef CONFIG_COMPAT
2107 struct compat_kvm_dirty_log
{
2111 compat_uptr_t dirty_bitmap
; /* one bit per page */
2116 static long kvm_vm_compat_ioctl(struct file
*filp
,
2117 unsigned int ioctl
, unsigned long arg
)
2119 struct kvm
*kvm
= filp
->private_data
;
2122 if (kvm
->mm
!= current
->mm
)
2125 case KVM_GET_DIRTY_LOG
: {
2126 struct compat_kvm_dirty_log compat_log
;
2127 struct kvm_dirty_log log
;
2130 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2131 sizeof(compat_log
)))
2133 log
.slot
= compat_log
.slot
;
2134 log
.padding1
= compat_log
.padding1
;
2135 log
.padding2
= compat_log
.padding2
;
2136 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2138 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2144 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2152 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2154 struct page
*page
[1];
2157 gfn_t gfn
= vmf
->pgoff
;
2158 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2160 addr
= gfn_to_hva(kvm
, gfn
);
2161 if (kvm_is_error_hva(addr
))
2162 return VM_FAULT_SIGBUS
;
2164 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2166 if (unlikely(npages
!= 1))
2167 return VM_FAULT_SIGBUS
;
2169 vmf
->page
= page
[0];
2173 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2174 .fault
= kvm_vm_fault
,
2177 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2179 vma
->vm_ops
= &kvm_vm_vm_ops
;
2183 static struct file_operations kvm_vm_fops
= {
2184 .release
= kvm_vm_release
,
2185 .unlocked_ioctl
= kvm_vm_ioctl
,
2186 #ifdef CONFIG_COMPAT
2187 .compat_ioctl
= kvm_vm_compat_ioctl
,
2189 .mmap
= kvm_vm_mmap
,
2190 .llseek
= noop_llseek
,
2193 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2198 kvm
= kvm_create_vm(type
);
2200 return PTR_ERR(kvm
);
2201 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2202 r
= kvm_coalesced_mmio_init(kvm
);
2208 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
2215 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2218 case KVM_CAP_USER_MEMORY
:
2219 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2220 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2221 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2222 case KVM_CAP_SET_BOOT_CPU_ID
:
2224 case KVM_CAP_INTERNAL_ERROR_DATA
:
2225 #ifdef CONFIG_HAVE_KVM_MSI
2226 case KVM_CAP_SIGNAL_MSI
:
2229 #ifdef KVM_CAP_IRQ_ROUTING
2230 case KVM_CAP_IRQ_ROUTING
:
2231 return KVM_MAX_IRQ_ROUTES
;
2236 return kvm_dev_ioctl_check_extension(arg
);
2239 static long kvm_dev_ioctl(struct file
*filp
,
2240 unsigned int ioctl
, unsigned long arg
)
2245 case KVM_GET_API_VERSION
:
2249 r
= KVM_API_VERSION
;
2252 r
= kvm_dev_ioctl_create_vm(arg
);
2254 case KVM_CHECK_EXTENSION
:
2255 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2257 case KVM_GET_VCPU_MMAP_SIZE
:
2261 r
= PAGE_SIZE
; /* struct kvm_run */
2263 r
+= PAGE_SIZE
; /* pio data page */
2265 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2266 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2269 case KVM_TRACE_ENABLE
:
2270 case KVM_TRACE_PAUSE
:
2271 case KVM_TRACE_DISABLE
:
2275 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2281 static struct file_operations kvm_chardev_ops
= {
2282 .unlocked_ioctl
= kvm_dev_ioctl
,
2283 .compat_ioctl
= kvm_dev_ioctl
,
2284 .llseek
= noop_llseek
,
2287 static struct miscdevice kvm_dev
= {
2293 static void hardware_enable_nolock(void *junk
)
2295 int cpu
= raw_smp_processor_id();
2298 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2301 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2303 r
= kvm_arch_hardware_enable(NULL
);
2306 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2307 atomic_inc(&hardware_enable_failed
);
2308 printk(KERN_INFO
"kvm: enabling virtualization on "
2309 "CPU%d failed\n", cpu
);
2313 static void hardware_enable(void *junk
)
2315 raw_spin_lock(&kvm_lock
);
2316 hardware_enable_nolock(junk
);
2317 raw_spin_unlock(&kvm_lock
);
2320 static void hardware_disable_nolock(void *junk
)
2322 int cpu
= raw_smp_processor_id();
2324 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2326 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2327 kvm_arch_hardware_disable(NULL
);
2330 static void hardware_disable(void *junk
)
2332 raw_spin_lock(&kvm_lock
);
2333 hardware_disable_nolock(junk
);
2334 raw_spin_unlock(&kvm_lock
);
2337 static void hardware_disable_all_nolock(void)
2339 BUG_ON(!kvm_usage_count
);
2342 if (!kvm_usage_count
)
2343 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2346 static void hardware_disable_all(void)
2348 raw_spin_lock(&kvm_lock
);
2349 hardware_disable_all_nolock();
2350 raw_spin_unlock(&kvm_lock
);
2353 static int hardware_enable_all(void)
2357 raw_spin_lock(&kvm_lock
);
2360 if (kvm_usage_count
== 1) {
2361 atomic_set(&hardware_enable_failed
, 0);
2362 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2364 if (atomic_read(&hardware_enable_failed
)) {
2365 hardware_disable_all_nolock();
2370 raw_spin_unlock(&kvm_lock
);
2375 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2380 if (!kvm_usage_count
)
2383 val
&= ~CPU_TASKS_FROZEN
;
2386 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2388 hardware_disable(NULL
);
2391 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2393 hardware_enable(NULL
);
2400 asmlinkage
void kvm_spurious_fault(void)
2402 /* Fault while not rebooting. We want the trace. */
2405 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
2407 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2411 * Some (well, at least mine) BIOSes hang on reboot if
2414 * And Intel TXT required VMX off for all cpu when system shutdown.
2416 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2417 kvm_rebooting
= true;
2418 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2422 static struct notifier_block kvm_reboot_notifier
= {
2423 .notifier_call
= kvm_reboot
,
2427 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2431 for (i
= 0; i
< bus
->dev_count
; i
++) {
2432 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2434 kvm_iodevice_destructor(pos
);
2439 int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2441 const struct kvm_io_range
*r1
= p1
;
2442 const struct kvm_io_range
*r2
= p2
;
2444 if (r1
->addr
< r2
->addr
)
2446 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2451 int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2452 gpa_t addr
, int len
)
2454 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2460 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2461 kvm_io_bus_sort_cmp
, NULL
);
2466 int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2467 gpa_t addr
, int len
)
2469 struct kvm_io_range
*range
, key
;
2472 key
= (struct kvm_io_range
) {
2477 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2478 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2482 off
= range
- bus
->range
;
2484 while (off
> 0 && kvm_io_bus_sort_cmp(&key
, &bus
->range
[off
-1]) == 0)
2490 /* kvm_io_bus_write - called under kvm->slots_lock */
2491 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2492 int len
, const void *val
)
2495 struct kvm_io_bus
*bus
;
2496 struct kvm_io_range range
;
2498 range
= (struct kvm_io_range
) {
2503 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2504 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2508 while (idx
< bus
->dev_count
&&
2509 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2510 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, addr
, len
, val
))
2518 /* kvm_io_bus_read - called under kvm->slots_lock */
2519 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2523 struct kvm_io_bus
*bus
;
2524 struct kvm_io_range range
;
2526 range
= (struct kvm_io_range
) {
2531 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2532 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2536 while (idx
< bus
->dev_count
&&
2537 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2538 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, addr
, len
, val
))
2546 /* Caller must hold slots_lock. */
2547 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2548 int len
, struct kvm_io_device
*dev
)
2550 struct kvm_io_bus
*new_bus
, *bus
;
2552 bus
= kvm
->buses
[bus_idx
];
2553 if (bus
->dev_count
> NR_IOBUS_DEVS
- 1)
2556 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
2557 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
2560 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
2561 sizeof(struct kvm_io_range
)));
2562 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
2563 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2564 synchronize_srcu_expedited(&kvm
->srcu
);
2570 /* Caller must hold slots_lock. */
2571 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2572 struct kvm_io_device
*dev
)
2575 struct kvm_io_bus
*new_bus
, *bus
;
2577 bus
= kvm
->buses
[bus_idx
];
2579 for (i
= 0; i
< bus
->dev_count
; i
++)
2580 if (bus
->range
[i
].dev
== dev
) {
2588 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
2589 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
2593 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
2594 new_bus
->dev_count
--;
2595 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
2596 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
2598 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2599 synchronize_srcu_expedited(&kvm
->srcu
);
2604 static struct notifier_block kvm_cpu_notifier
= {
2605 .notifier_call
= kvm_cpu_hotplug
,
2608 static int vm_stat_get(void *_offset
, u64
*val
)
2610 unsigned offset
= (long)_offset
;
2614 raw_spin_lock(&kvm_lock
);
2615 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2616 *val
+= *(u32
*)((void *)kvm
+ offset
);
2617 raw_spin_unlock(&kvm_lock
);
2621 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2623 static int vcpu_stat_get(void *_offset
, u64
*val
)
2625 unsigned offset
= (long)_offset
;
2627 struct kvm_vcpu
*vcpu
;
2631 raw_spin_lock(&kvm_lock
);
2632 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2633 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2634 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2636 raw_spin_unlock(&kvm_lock
);
2640 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2642 static const struct file_operations
*stat_fops
[] = {
2643 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2644 [KVM_STAT_VM
] = &vm_stat_fops
,
2647 static int kvm_init_debug(void)
2650 struct kvm_stats_debugfs_item
*p
;
2652 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2653 if (kvm_debugfs_dir
== NULL
)
2656 for (p
= debugfs_entries
; p
->name
; ++p
) {
2657 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2658 (void *)(long)p
->offset
,
2659 stat_fops
[p
->kind
]);
2660 if (p
->dentry
== NULL
)
2667 debugfs_remove_recursive(kvm_debugfs_dir
);
2672 static void kvm_exit_debug(void)
2674 struct kvm_stats_debugfs_item
*p
;
2676 for (p
= debugfs_entries
; p
->name
; ++p
)
2677 debugfs_remove(p
->dentry
);
2678 debugfs_remove(kvm_debugfs_dir
);
2681 static int kvm_suspend(void)
2683 if (kvm_usage_count
)
2684 hardware_disable_nolock(NULL
);
2688 static void kvm_resume(void)
2690 if (kvm_usage_count
) {
2691 WARN_ON(raw_spin_is_locked(&kvm_lock
));
2692 hardware_enable_nolock(NULL
);
2696 static struct syscore_ops kvm_syscore_ops
= {
2697 .suspend
= kvm_suspend
,
2698 .resume
= kvm_resume
,
2701 struct page
*bad_page
;
2705 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2707 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2710 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2712 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2714 kvm_arch_vcpu_load(vcpu
, cpu
);
2717 static void kvm_sched_out(struct preempt_notifier
*pn
,
2718 struct task_struct
*next
)
2720 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2722 kvm_arch_vcpu_put(vcpu
);
2725 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
2726 struct module
*module
)
2731 r
= kvm_arch_init(opaque
);
2735 bad_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2737 if (bad_page
== NULL
) {
2742 bad_pfn
= page_to_pfn(bad_page
);
2744 hwpoison_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2746 if (hwpoison_page
== NULL
) {
2751 hwpoison_pfn
= page_to_pfn(hwpoison_page
);
2753 fault_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2755 if (fault_page
== NULL
) {
2760 fault_pfn
= page_to_pfn(fault_page
);
2762 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2767 r
= kvm_arch_hardware_setup();
2771 for_each_online_cpu(cpu
) {
2772 smp_call_function_single(cpu
,
2773 kvm_arch_check_processor_compat
,
2779 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2782 register_reboot_notifier(&kvm_reboot_notifier
);
2784 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2786 vcpu_align
= __alignof__(struct kvm_vcpu
);
2787 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
2789 if (!kvm_vcpu_cache
) {
2794 r
= kvm_async_pf_init();
2798 kvm_chardev_ops
.owner
= module
;
2799 kvm_vm_fops
.owner
= module
;
2800 kvm_vcpu_fops
.owner
= module
;
2802 r
= misc_register(&kvm_dev
);
2804 printk(KERN_ERR
"kvm: misc device register failed\n");
2808 register_syscore_ops(&kvm_syscore_ops
);
2810 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2811 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2813 r
= kvm_init_debug();
2815 printk(KERN_ERR
"kvm: create debugfs files failed\n");
2822 unregister_syscore_ops(&kvm_syscore_ops
);
2824 kvm_async_pf_deinit();
2826 kmem_cache_destroy(kvm_vcpu_cache
);
2828 unregister_reboot_notifier(&kvm_reboot_notifier
);
2829 unregister_cpu_notifier(&kvm_cpu_notifier
);
2832 kvm_arch_hardware_unsetup();
2834 free_cpumask_var(cpus_hardware_enabled
);
2837 __free_page(fault_page
);
2839 __free_page(hwpoison_page
);
2840 __free_page(bad_page
);
2846 EXPORT_SYMBOL_GPL(kvm_init
);
2851 misc_deregister(&kvm_dev
);
2852 kmem_cache_destroy(kvm_vcpu_cache
);
2853 kvm_async_pf_deinit();
2854 unregister_syscore_ops(&kvm_syscore_ops
);
2855 unregister_reboot_notifier(&kvm_reboot_notifier
);
2856 unregister_cpu_notifier(&kvm_cpu_notifier
);
2857 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2858 kvm_arch_hardware_unsetup();
2860 free_cpumask_var(cpus_hardware_enabled
);
2861 __free_page(fault_page
);
2862 __free_page(hwpoison_page
);
2863 __free_page(bad_page
);
2865 EXPORT_SYMBOL_GPL(kvm_exit
);