2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/clocks.h>
29 #include <asm/div64.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33 #include <asm/irq_handler.h>
40 EXPORT_SYMBOL(_bfin_swrst
);
42 unsigned long memory_start
, memory_end
, physical_mem_end
;
43 unsigned long _rambase
, _ramstart
, _ramend
;
44 unsigned long reserved_mem_dcache_on
;
45 unsigned long reserved_mem_icache_on
;
46 EXPORT_SYMBOL(memory_start
);
47 EXPORT_SYMBOL(memory_end
);
48 EXPORT_SYMBOL(physical_mem_end
);
49 EXPORT_SYMBOL(_ramend
);
50 EXPORT_SYMBOL(reserved_mem_dcache_on
);
52 #ifdef CONFIG_MTD_UCLINUX
53 extern struct map_info uclinux_ram_map
;
54 unsigned long memory_mtd_end
, memory_mtd_start
, mtd_size
;
55 EXPORT_SYMBOL(memory_mtd_end
);
56 EXPORT_SYMBOL(memory_mtd_start
);
57 EXPORT_SYMBOL(mtd_size
);
60 char __initdata command_line
[COMMAND_LINE_SIZE
];
61 struct blackfin_initial_pda __initdata initial_pda
;
63 /* boot memmap, for parsing "memmap=" */
64 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
65 #define BFIN_MEMMAP_RAM 1
66 #define BFIN_MEMMAP_RESERVED 2
67 static struct bfin_memmap
{
69 struct bfin_memmap_entry
{
70 unsigned long long addr
; /* start of memory segment */
71 unsigned long long size
;
73 } map
[BFIN_MEMMAP_MAX
];
74 } bfin_memmap __initdata
;
76 /* for memmap sanitization */
77 struct change_member
{
78 struct bfin_memmap_entry
*pentry
; /* pointer to original entry */
79 unsigned long long addr
; /* address for this change point */
81 static struct change_member change_point_list
[2*BFIN_MEMMAP_MAX
] __initdata
;
82 static struct change_member
*change_point
[2*BFIN_MEMMAP_MAX
] __initdata
;
83 static struct bfin_memmap_entry
*overlap_list
[BFIN_MEMMAP_MAX
] __initdata
;
84 static struct bfin_memmap_entry new_map
[BFIN_MEMMAP_MAX
] __initdata
;
86 DEFINE_PER_CPU(struct blackfin_cpudata
, cpu_data
);
88 static int early_init_clkin_hz(char *buf
);
90 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91 void __init
generate_cplb_tables(void)
95 generate_cplb_tables_all();
96 /* Generate per-CPU I&D CPLB tables */
97 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
)
98 generate_cplb_tables_cpu(cpu
);
102 void __cpuinit
bfin_setup_caches(unsigned int cpu
)
104 #ifdef CONFIG_BFIN_ICACHE
105 bfin_icache_init(icplb_tbl
[cpu
]);
108 #ifdef CONFIG_BFIN_DCACHE
109 bfin_dcache_init(dcplb_tbl
[cpu
]);
112 bfin_setup_cpudata(cpu
);
115 * In cache coherence emulation mode, we need to have the
116 * D-cache enabled before running any atomic operation which
117 * might involve cache invalidation (i.e. spinlock, rwlock).
118 * So printk's are deferred until then.
120 #ifdef CONFIG_BFIN_ICACHE
121 printk(KERN_INFO
"Instruction Cache Enabled for CPU%u\n", cpu
);
122 printk(KERN_INFO
" External memory:"
123 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
128 " in instruction cache\n");
130 printk(KERN_INFO
" L2 SRAM :"
131 # ifdef CONFIG_BFIN_L2_ICACHEABLE
136 " in instruction cache\n");
139 printk(KERN_INFO
"Instruction Cache Disabled for CPU%u\n", cpu
);
142 #ifdef CONFIG_BFIN_DCACHE
143 printk(KERN_INFO
"Data Cache Enabled for CPU%u\n", cpu
);
144 printk(KERN_INFO
" External memory:"
145 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
146 " cacheable (write-back)"
147 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
148 " cacheable (write-through)"
154 printk(KERN_INFO
" L2 SRAM :"
155 # if defined CONFIG_BFIN_L2_WRITEBACK
156 " cacheable (write-back)"
157 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
158 " cacheable (write-through)"
164 printk(KERN_INFO
"Data Cache Disabled for CPU%u\n", cpu
);
168 void __cpuinit
bfin_setup_cpudata(unsigned int cpu
)
170 struct blackfin_cpudata
*cpudata
= &per_cpu(cpu_data
, cpu
);
172 cpudata
->imemctl
= bfin_read_IMEM_CONTROL();
173 cpudata
->dmemctl
= bfin_read_DMEM_CONTROL();
176 void __init
bfin_cache_init(void)
178 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
179 generate_cplb_tables();
181 bfin_setup_caches(0);
184 void __init
bfin_relocate_l1_mem(void)
186 unsigned long text_l1_len
= (unsigned long)_text_l1_len
;
187 unsigned long data_l1_len
= (unsigned long)_data_l1_len
;
188 unsigned long data_b_l1_len
= (unsigned long)_data_b_l1_len
;
189 unsigned long l2_len
= (unsigned long)_l2_len
;
191 early_shadow_stamp();
194 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
195 * we know that everything about l1 text/data is nice and aligned,
196 * so copy by 4 byte chunks, and don't worry about overlapping
199 * We can't use the dma_memcpy functions, since they can call
200 * scheduler functions which might be in L1 :( and core writes
201 * into L1 instruction cause bad access errors, so we are stuck,
202 * we are required to use DMA, but can't use the common dma
203 * functions. We can't use memcpy either - since that might be
204 * going to be in the relocated L1
207 blackfin_dma_early_init();
209 /* if necessary, copy L1 text to L1 instruction SRAM */
210 if (L1_CODE_LENGTH
&& text_l1_len
)
211 early_dma_memcpy(_stext_l1
, _text_l1_lma
, text_l1_len
);
213 /* if necessary, copy L1 data to L1 data bank A SRAM */
214 if (L1_DATA_A_LENGTH
&& data_l1_len
)
215 early_dma_memcpy(_sdata_l1
, _data_l1_lma
, data_l1_len
);
217 /* if necessary, copy L1 data B to L1 data bank B SRAM */
218 if (L1_DATA_B_LENGTH
&& data_b_l1_len
)
219 early_dma_memcpy(_sdata_b_l1
, _data_b_l1_lma
, data_b_l1_len
);
221 early_dma_memcpy_done();
223 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
224 blackfin_iflush_l1_entry
[0] = (unsigned long)blackfin_icache_flush_range_l1
;
227 /* if necessary, copy L2 text/data to L2 SRAM */
228 if (L2_LENGTH
&& l2_len
)
229 memcpy(_stext_l2
, _l2_lma
, l2_len
);
233 void __init
bfin_relocate_coreb_l1_mem(void)
235 unsigned long text_l1_len
= (unsigned long)_text_l1_len
;
236 unsigned long data_l1_len
= (unsigned long)_data_l1_len
;
237 unsigned long data_b_l1_len
= (unsigned long)_data_b_l1_len
;
239 blackfin_dma_early_init();
241 /* if necessary, copy L1 text to L1 instruction SRAM */
242 if (L1_CODE_LENGTH
&& text_l1_len
)
243 early_dma_memcpy((void *)COREB_L1_CODE_START
, _text_l1_lma
,
246 /* if necessary, copy L1 data to L1 data bank A SRAM */
247 if (L1_DATA_A_LENGTH
&& data_l1_len
)
248 early_dma_memcpy((void *)COREB_L1_DATA_A_START
, _data_l1_lma
,
251 /* if necessary, copy L1 data B to L1 data bank B SRAM */
252 if (L1_DATA_B_LENGTH
&& data_b_l1_len
)
253 early_dma_memcpy((void *)COREB_L1_DATA_B_START
, _data_b_l1_lma
,
256 early_dma_memcpy_done();
258 #ifdef CONFIG_ICACHE_FLUSH_L1
259 blackfin_iflush_l1_entry
[1] = (unsigned long)blackfin_icache_flush_range_l1
-
260 (unsigned long)_stext_l1
+ COREB_L1_CODE_START
;
265 #ifdef CONFIG_ROMKERNEL
266 void __init
bfin_relocate_xip_data(void)
268 early_shadow_stamp();
270 memcpy(_sdata
, _data_lma
, (unsigned long)_data_len
- THREAD_SIZE
+ sizeof(struct thread_info
));
271 memcpy(_sinitdata
, _init_data_lma
, (unsigned long)_init_data_len
);
275 /* add_memory_region to memmap */
276 static void __init
add_memory_region(unsigned long long start
,
277 unsigned long long size
, int type
)
281 i
= bfin_memmap
.nr_map
;
283 if (i
== BFIN_MEMMAP_MAX
) {
284 printk(KERN_ERR
"Ooops! Too many entries in the memory map!\n");
288 bfin_memmap
.map
[i
].addr
= start
;
289 bfin_memmap
.map
[i
].size
= size
;
290 bfin_memmap
.map
[i
].type
= type
;
291 bfin_memmap
.nr_map
++;
295 * Sanitize the boot memmap, removing overlaps.
297 static int __init
sanitize_memmap(struct bfin_memmap_entry
*map
, int *pnr_map
)
299 struct change_member
*change_tmp
;
300 unsigned long current_type
, last_type
;
301 unsigned long long last_addr
;
302 int chgidx
, still_changing
;
305 int old_nr
, new_nr
, chg_nr
;
309 Visually we're performing the following (1,2,3,4 = memory types)
311 Sample memory map (w/overlaps):
312 ____22__________________
313 ______________________4_
314 ____1111________________
315 _44_____________________
316 11111111________________
317 ____________________33__
318 ___________44___________
319 __________33333_________
320 ______________22________
321 ___________________2222_
322 _________111111111______
323 _____________________11_
324 _________________4______
326 Sanitized equivalent (no overlap):
327 1_______________________
328 _44_____________________
329 ___1____________________
330 ____22__________________
331 ______11________________
332 _________1______________
333 __________3_____________
334 ___________44___________
335 _____________33_________
336 _______________2________
337 ________________1_______
338 _________________4______
339 ___________________2____
340 ____________________33__
341 ______________________4_
343 /* if there's only one memory region, don't bother */
349 /* bail out if we find any unreasonable addresses in memmap */
350 for (i
= 0; i
< old_nr
; i
++)
351 if (map
[i
].addr
+ map
[i
].size
< map
[i
].addr
)
354 /* create pointers for initial change-point information (for sorting) */
355 for (i
= 0; i
< 2*old_nr
; i
++)
356 change_point
[i
] = &change_point_list
[i
];
358 /* record all known change-points (starting and ending addresses),
359 omitting those that are for empty memory regions */
361 for (i
= 0; i
< old_nr
; i
++) {
362 if (map
[i
].size
!= 0) {
363 change_point
[chgidx
]->addr
= map
[i
].addr
;
364 change_point
[chgidx
++]->pentry
= &map
[i
];
365 change_point
[chgidx
]->addr
= map
[i
].addr
+ map
[i
].size
;
366 change_point
[chgidx
++]->pentry
= &map
[i
];
369 chg_nr
= chgidx
; /* true number of change-points */
371 /* sort change-point list by memory addresses (low -> high) */
373 while (still_changing
) {
375 for (i
= 1; i
< chg_nr
; i
++) {
376 /* if <current_addr> > <last_addr>, swap */
377 /* or, if current=<start_addr> & last=<end_addr>, swap */
378 if ((change_point
[i
]->addr
< change_point
[i
-1]->addr
) ||
379 ((change_point
[i
]->addr
== change_point
[i
-1]->addr
) &&
380 (change_point
[i
]->addr
== change_point
[i
]->pentry
->addr
) &&
381 (change_point
[i
-1]->addr
!= change_point
[i
-1]->pentry
->addr
))
383 change_tmp
= change_point
[i
];
384 change_point
[i
] = change_point
[i
-1];
385 change_point
[i
-1] = change_tmp
;
391 /* create a new memmap, removing overlaps */
392 overlap_entries
= 0; /* number of entries in the overlap table */
393 new_entry
= 0; /* index for creating new memmap entries */
394 last_type
= 0; /* start with undefined memory type */
395 last_addr
= 0; /* start with 0 as last starting address */
396 /* loop through change-points, determining affect on the new memmap */
397 for (chgidx
= 0; chgidx
< chg_nr
; chgidx
++) {
398 /* keep track of all overlapping memmap entries */
399 if (change_point
[chgidx
]->addr
== change_point
[chgidx
]->pentry
->addr
) {
400 /* add map entry to overlap list (> 1 entry implies an overlap) */
401 overlap_list
[overlap_entries
++] = change_point
[chgidx
]->pentry
;
403 /* remove entry from list (order independent, so swap with last) */
404 for (i
= 0; i
< overlap_entries
; i
++) {
405 if (overlap_list
[i
] == change_point
[chgidx
]->pentry
)
406 overlap_list
[i
] = overlap_list
[overlap_entries
-1];
410 /* if there are overlapping entries, decide which "type" to use */
411 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
413 for (i
= 0; i
< overlap_entries
; i
++)
414 if (overlap_list
[i
]->type
> current_type
)
415 current_type
= overlap_list
[i
]->type
;
416 /* continue building up new memmap based on this information */
417 if (current_type
!= last_type
) {
418 if (last_type
!= 0) {
419 new_map
[new_entry
].size
=
420 change_point
[chgidx
]->addr
- last_addr
;
421 /* move forward only if the new size was non-zero */
422 if (new_map
[new_entry
].size
!= 0)
423 if (++new_entry
>= BFIN_MEMMAP_MAX
)
424 break; /* no more space left for new entries */
426 if (current_type
!= 0) {
427 new_map
[new_entry
].addr
= change_point
[chgidx
]->addr
;
428 new_map
[new_entry
].type
= current_type
;
429 last_addr
= change_point
[chgidx
]->addr
;
431 last_type
= current_type
;
434 new_nr
= new_entry
; /* retain count for new entries */
436 /* copy new mapping into original location */
437 memcpy(map
, new_map
, new_nr
*sizeof(struct bfin_memmap_entry
));
443 static void __init
print_memory_map(char *who
)
447 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
448 printk(KERN_DEBUG
" %s: %016Lx - %016Lx ", who
,
449 bfin_memmap
.map
[i
].addr
,
450 bfin_memmap
.map
[i
].addr
+ bfin_memmap
.map
[i
].size
);
451 switch (bfin_memmap
.map
[i
].type
) {
452 case BFIN_MEMMAP_RAM
:
453 printk(KERN_CONT
"(usable)\n");
455 case BFIN_MEMMAP_RESERVED
:
456 printk(KERN_CONT
"(reserved)\n");
459 printk(KERN_CONT
"type %lu\n", bfin_memmap
.map
[i
].type
);
465 static __init
int parse_memmap(char *arg
)
467 unsigned long long start_at
, mem_size
;
472 mem_size
= memparse(arg
, &arg
);
474 start_at
= memparse(arg
+1, &arg
);
475 add_memory_region(start_at
, mem_size
, BFIN_MEMMAP_RAM
);
476 } else if (*arg
== '$') {
477 start_at
= memparse(arg
+1, &arg
);
478 add_memory_region(start_at
, mem_size
, BFIN_MEMMAP_RESERVED
);
485 * Initial parsing of the command line. Currently, we support:
486 * - Controlling the linux memory size: mem=xxx[KMG]
487 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
488 * $ -> reserved memory is dcacheable
489 * # -> reserved memory is icacheable
490 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
491 * @ from <start> to <start>+<mem>, type RAM
492 * $ from <start> to <start>+<mem>, type RESERVED
494 static __init
void parse_cmdline_early(char *cmdline_p
)
496 char c
= ' ', *to
= cmdline_p
;
497 unsigned int memsize
;
500 if (!memcmp(to
, "mem=", 4)) {
502 memsize
= memparse(to
, &to
);
506 } else if (!memcmp(to
, "max_mem=", 8)) {
508 memsize
= memparse(to
, &to
);
510 physical_mem_end
= memsize
;
514 reserved_mem_dcache_on
= 1;
517 reserved_mem_icache_on
= 1;
520 } else if (!memcmp(to
, "clkin_hz=", 9)) {
522 early_init_clkin_hz(to
);
523 #ifdef CONFIG_EARLY_PRINTK
524 } else if (!memcmp(to
, "earlyprintk=", 12)) {
526 setup_early_printk(to
);
528 } else if (!memcmp(to
, "memmap=", 7)) {
540 * Setup memory defaults from user config.
541 * The physical memory layout looks like:
543 * [_rambase, _ramstart]: kernel image
544 * [memory_start, memory_end]: dynamic memory managed by kernel
545 * [memory_end, _ramend]: reserved memory
546 * [memory_mtd_start(memory_end),
547 * memory_mtd_start + mtd_size]: rootfs (if any)
548 * [_ramend - DMA_UNCACHED_REGION,
549 * _ramend]: uncached DMA region
550 * [_ramend, physical_mem_end]: memory not managed by kernel
552 static __init
void memory_setup(void)
554 #ifdef CONFIG_MTD_UCLINUX
555 unsigned long mtd_phys
= 0;
557 unsigned long max_mem
;
559 _rambase
= CONFIG_BOOT_LOAD
;
560 _ramstart
= (unsigned long)_end
;
562 if (DMA_UNCACHED_REGION
> (_ramend
- _ramstart
)) {
564 panic("DMA region exceeds memory limit: %lu.",
565 _ramend
- _ramstart
);
567 max_mem
= memory_end
= _ramend
- DMA_UNCACHED_REGION
;
569 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
570 /* Due to a Hardware Anomaly we need to limit the size of usable
571 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
572 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
574 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
575 if (max_mem
>= 56 * 1024 * 1024)
576 max_mem
= 56 * 1024 * 1024;
578 if (max_mem
>= 60 * 1024 * 1024)
579 max_mem
= 60 * 1024 * 1024;
580 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
581 #endif /* ANOMALY_05000263 */
585 /* Round up to multiple of 4MB */
586 memory_start
= (_ramstart
+ 0x3fffff) & ~0x3fffff;
588 memory_start
= PAGE_ALIGN(_ramstart
);
591 #if defined(CONFIG_MTD_UCLINUX)
592 /* generic memory mapped MTD driver */
593 memory_mtd_end
= memory_end
;
595 mtd_phys
= _ramstart
;
596 mtd_size
= PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 8)));
598 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
599 if (*((unsigned short *)(mtd_phys
+ 0x438)) == EXT2_SUPER_MAGIC
)
601 PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 0x404)) << 10);
604 # if defined(CONFIG_CRAMFS)
605 if (*((unsigned long *)(mtd_phys
)) == CRAMFS_MAGIC
)
606 mtd_size
= PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 0x4)));
609 # if defined(CONFIG_ROMFS_FS)
610 if (((unsigned long *)mtd_phys
)[0] == ROMSB_WORD0
611 && ((unsigned long *)mtd_phys
)[1] == ROMSB_WORD1
) {
613 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys
)[2]));
615 /* ROM_FS is XIP, so if we found it, we need to limit memory */
616 if (memory_end
> max_mem
) {
617 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
618 (max_mem
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
619 memory_end
= max_mem
;
622 # endif /* CONFIG_ROMFS_FS */
624 /* Since the default MTD_UCLINUX has no magic number, we just blindly
625 * read 8 past the end of the kernel's image, and look at it.
626 * When no image is attached, mtd_size is set to a random number
627 * Do some basic sanity checks before operating on things
629 if (mtd_size
== 0 || memory_end
<= mtd_size
) {
630 pr_emerg("Could not find valid ram mtd attached.\n");
632 memory_end
-= mtd_size
;
634 /* Relocate MTD image to the top of memory after the uncached memory area */
635 uclinux_ram_map
.phys
= memory_mtd_start
= memory_end
;
636 uclinux_ram_map
.size
= mtd_size
;
637 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
638 _end
, mtd_size
, (void *)memory_mtd_start
);
639 dma_memcpy((void *)uclinux_ram_map
.phys
, _end
, uclinux_ram_map
.size
);
641 #endif /* CONFIG_MTD_UCLINUX */
643 /* We need lo limit memory, since everything could have a text section
644 * of userspace in it, and expose anomaly 05000263. If the anomaly
645 * doesn't exist, or we don't need to - then dont.
647 if (memory_end
> max_mem
) {
648 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
649 (max_mem
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
650 memory_end
= max_mem
;
654 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
655 page_mask_nelts
= (((_ramend
+ ASYNC_BANK3_BASE
+ ASYNC_BANK3_SIZE
-
656 ASYNC_BANK0_BASE
) >> PAGE_SHIFT
) + 31) / 32;
658 page_mask_nelts
= ((_ramend
>> PAGE_SHIFT
) + 31) / 32;
660 page_mask_order
= get_order(3 * page_mask_nelts
* sizeof(long));
663 init_mm
.start_code
= (unsigned long)_stext
;
664 init_mm
.end_code
= (unsigned long)_etext
;
665 init_mm
.end_data
= (unsigned long)_edata
;
666 init_mm
.brk
= (unsigned long)0;
668 printk(KERN_INFO
"Board Memory: %ldMB\n", (physical_mem_end
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
669 printk(KERN_INFO
"Kernel Managed Memory: %ldMB\n", (_ramend
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
671 printk(KERN_INFO
"Memory map:\n"
672 " fixedcode = 0x%p-0x%p\n"
673 " text = 0x%p-0x%p\n"
674 " rodata = 0x%p-0x%p\n"
676 " data = 0x%p-0x%p\n"
677 " stack = 0x%p-0x%p\n"
678 " init = 0x%p-0x%p\n"
679 " available = 0x%p-0x%p\n"
680 #ifdef CONFIG_MTD_UCLINUX
681 " rootfs = 0x%p-0x%p\n"
683 #if DMA_UNCACHED_REGION > 0
684 " DMA Zone = 0x%p-0x%p\n"
686 , (void *)FIXED_CODE_START
, (void *)FIXED_CODE_END
,
688 __start_rodata
, __end_rodata
,
689 __bss_start
, __bss_stop
,
691 (void *)&init_thread_union
,
692 (void *)((int)(&init_thread_union
) + THREAD_SIZE
),
693 __init_begin
, __init_end
,
694 (void *)_ramstart
, (void *)memory_end
695 #ifdef CONFIG_MTD_UCLINUX
696 , (void *)memory_mtd_start
, (void *)(memory_mtd_start
+ mtd_size
)
698 #if DMA_UNCACHED_REGION > 0
699 , (void *)(_ramend
- DMA_UNCACHED_REGION
), (void *)(_ramend
)
705 * Find the lowest, highest page frame number we have available
707 void __init
find_min_max_pfn(void)
712 min_low_pfn
= PFN_DOWN(memory_end
);
714 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
715 unsigned long start
, end
;
717 if (bfin_memmap
.map
[i
].type
!= BFIN_MEMMAP_RAM
)
719 start
= PFN_UP(bfin_memmap
.map
[i
].addr
);
720 end
= PFN_DOWN(bfin_memmap
.map
[i
].addr
+
721 bfin_memmap
.map
[i
].size
);
726 if (start
< min_low_pfn
)
731 static __init
void setup_bootmem_allocator(void)
735 unsigned long start_pfn
, end_pfn
;
736 unsigned long curr_pfn
, last_pfn
, size
;
738 /* mark memory between memory_start and memory_end usable */
739 add_memory_region(memory_start
,
740 memory_end
- memory_start
, BFIN_MEMMAP_RAM
);
741 /* sanity check for overlap */
742 sanitize_memmap(bfin_memmap
.map
, &bfin_memmap
.nr_map
);
743 print_memory_map("boot memmap");
745 /* initialize globals in linux/bootmem.h */
747 /* pfn of the last usable page frame */
748 if (max_pfn
> memory_end
>> PAGE_SHIFT
)
749 max_pfn
= memory_end
>> PAGE_SHIFT
;
750 /* pfn of last page frame directly mapped by kernel */
751 max_low_pfn
= max_pfn
;
752 /* pfn of the first usable page frame after kernel image*/
753 if (min_low_pfn
< memory_start
>> PAGE_SHIFT
)
754 min_low_pfn
= memory_start
>> PAGE_SHIFT
;
755 start_pfn
= CONFIG_PHY_RAM_BASE_ADDRESS
>> PAGE_SHIFT
;
756 end_pfn
= memory_end
>> PAGE_SHIFT
;
759 * give all the memory to the bootmap allocator, tell it to put the
760 * boot mem_map at the start of memory.
762 bootmap_size
= init_bootmem_node(NODE_DATA(0),
763 memory_start
>> PAGE_SHIFT
, /* map goes here */
766 /* register the memmap regions with the bootmem allocator */
767 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
769 * Reserve usable memory
771 if (bfin_memmap
.map
[i
].type
!= BFIN_MEMMAP_RAM
)
774 * We are rounding up the start address of usable memory:
776 curr_pfn
= PFN_UP(bfin_memmap
.map
[i
].addr
);
777 if (curr_pfn
>= end_pfn
)
780 * ... and at the end of the usable range downwards:
782 last_pfn
= PFN_DOWN(bfin_memmap
.map
[i
].addr
+
783 bfin_memmap
.map
[i
].size
);
785 if (last_pfn
> end_pfn
)
789 * .. finally, did all the rounding and playing
790 * around just make the area go away?
792 if (last_pfn
<= curr_pfn
)
795 size
= last_pfn
- curr_pfn
;
796 free_bootmem(PFN_PHYS(curr_pfn
), PFN_PHYS(size
));
799 /* reserve memory before memory_start, including bootmap */
800 reserve_bootmem(CONFIG_PHY_RAM_BASE_ADDRESS
,
801 memory_start
+ bootmap_size
+ PAGE_SIZE
- 1 - CONFIG_PHY_RAM_BASE_ADDRESS
,
805 #define EBSZ_TO_MEG(ebsz) \
808 switch (ebsz & 0xf) { \
809 case 0x1: meg = 16; break; \
810 case 0x3: meg = 32; break; \
811 case 0x5: meg = 64; break; \
812 case 0x7: meg = 128; break; \
813 case 0x9: meg = 256; break; \
814 case 0xb: meg = 512; break; \
818 static inline int __init
get_mem_size(void)
820 #if defined(EBIU_SDBCTL)
821 # if defined(BF561_FAMILY)
823 u32 sdbctl
= bfin_read_EBIU_SDBCTL();
824 ret
+= EBSZ_TO_MEG(sdbctl
>> 0);
825 ret
+= EBSZ_TO_MEG(sdbctl
>> 8);
826 ret
+= EBSZ_TO_MEG(sdbctl
>> 16);
827 ret
+= EBSZ_TO_MEG(sdbctl
>> 24);
830 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
832 #elif defined(EBIU_DDRCTL1)
833 u32 ddrctl
= bfin_read_EBIU_DDRCTL1();
835 switch (ddrctl
& 0xc0000) {
849 switch (ddrctl
& 0x30000) {
857 if ((ddrctl
& 0xc000) == 0x4000)
860 #elif defined(CONFIG_BF60x)
861 u32 ddrctl
= bfin_read_DMC0_CFG();
863 switch (ddrctl
& 0xf00) {
888 __attribute__((weak
))
889 void __init
native_machine_early_platform_add_devices(void)
894 static inline u_long
bfin_get_clk(char *name
)
899 clk
= clk_get(NULL
, name
);
903 clk_rate
= clk_get_rate(clk
);
909 void __init
setup_arch(char **cmdline_p
)
912 unsigned long sclk
, cclk
;
914 native_machine_early_platform_add_devices();
916 enable_shadow_console();
918 /* Check to make sure we are running on the right processor */
920 if (unlikely(CPUID
!= bfin_cpuid()))
921 printk(KERN_ERR
"ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
922 CPU
, bfin_cpuid(), bfin_revid());
924 #ifdef CONFIG_DUMMY_CONSOLE
925 conswitchp
= &dummy_con
;
928 #if defined(CONFIG_CMDLINE_BOOL)
929 strncpy(&command_line
[0], CONFIG_CMDLINE
, sizeof(command_line
));
930 command_line
[sizeof(command_line
) - 1] = 0;
933 /* Keep a copy of command line */
934 *cmdline_p
= &command_line
[0];
935 memcpy(boot_command_line
, command_line
, COMMAND_LINE_SIZE
);
936 boot_command_line
[COMMAND_LINE_SIZE
- 1] = '\0';
938 memset(&bfin_memmap
, 0, sizeof(bfin_memmap
));
941 /* Should init clock device before parse command early */
944 /* If the user does not specify things on the command line, use
945 * what the bootloader set things up as
947 physical_mem_end
= 0;
948 parse_cmdline_early(&command_line
[0]);
951 _ramend
= get_mem_size() * 1024 * 1024;
953 if (physical_mem_end
== 0)
954 physical_mem_end
= _ramend
;
959 /* Initialize Async memory banks */
960 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL
);
961 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL
);
962 bfin_write_EBIU_AMGCTL(AMGCTLVAL
);
963 #ifdef CONFIG_EBIU_MBSCTLVAL
964 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL
);
965 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL
);
966 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL
);
969 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
970 bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15
);
971 bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15
);
972 bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15
);
973 bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
974 ~HYST_NONEGPIO_MASK
) | HYST_NONEGPIO
);
980 if ((ANOMALY_05000273
|| ANOMALY_05000274
) && (cclk
>> 1) < sclk
)
981 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
984 if (ANOMALY_05000266
) {
985 bfin_read_IMDMA_D0_IRQ_STATUS();
986 bfin_read_IMDMA_D1_IRQ_STATUS();
990 mmr
= bfin_read_TBUFCTL();
991 printk(KERN_INFO
"Hardware Trace %s and %sabled\n",
992 (mmr
& 0x1) ? "active" : "off",
993 (mmr
& 0x2) ? "en" : "dis");
995 mmr
= bfin_read_SYSCR();
996 printk(KERN_INFO
"Boot Mode: %i\n", mmr
& 0xF);
998 /* Newer parts mirror SWRST bits in SYSCR */
999 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
1000 defined(CONFIG_BF538) || defined(CONFIG_BF539)
1001 _bfin_swrst
= bfin_read_SWRST();
1003 /* Clear boot mode field */
1004 _bfin_swrst
= mmr
& ~0xf;
1007 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
1008 bfin_write_SWRST(_bfin_swrst
& ~DOUBLE_FAULT
);
1010 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
1011 bfin_write_SWRST(_bfin_swrst
| DOUBLE_FAULT
);
1015 if (_bfin_swrst
& SWRST_DBL_FAULT_A
) {
1017 if (_bfin_swrst
& RESET_DOUBLE
) {
1019 printk(KERN_EMERG
"Recovering from DOUBLE FAULT event\n");
1020 #ifdef CONFIG_DEBUG_DOUBLEFAULT
1021 /* We assume the crashing kernel, and the current symbol table match */
1022 printk(KERN_EMERG
" While handling exception (EXCAUSE = %#x) at %pF\n",
1023 initial_pda
.seqstat_doublefault
& SEQSTAT_EXCAUSE
,
1024 initial_pda
.retx_doublefault
);
1025 printk(KERN_NOTICE
" DCPLB_FAULT_ADDR: %pF\n",
1026 initial_pda
.dcplb_doublefault_addr
);
1027 printk(KERN_NOTICE
" ICPLB_FAULT_ADDR: %pF\n",
1028 initial_pda
.icplb_doublefault_addr
);
1030 printk(KERN_NOTICE
" The instruction at %pF caused a double exception\n",
1032 } else if (_bfin_swrst
& RESET_WDOG
)
1033 printk(KERN_INFO
"Recovering from Watchdog event\n");
1034 else if (_bfin_swrst
& RESET_SOFTWARE
)
1035 printk(KERN_NOTICE
"Reset caused by Software reset\n");
1037 printk(KERN_INFO
"Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
1038 if (bfin_compiled_revid() == 0xffff)
1039 printk(KERN_INFO
"Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU
, bfin_revid());
1040 else if (bfin_compiled_revid() == -1)
1041 printk(KERN_INFO
"Compiled for ADSP-%s Rev none\n", CPU
);
1043 printk(KERN_INFO
"Compiled for ADSP-%s Rev 0.%d\n", CPU
, bfin_compiled_revid());
1045 if (likely(CPUID
== bfin_cpuid())) {
1046 if (bfin_revid() != bfin_compiled_revid()) {
1047 if (bfin_compiled_revid() == -1)
1048 printk(KERN_ERR
"Warning: Compiled for Rev none, but running on Rev %d\n",
1050 else if (bfin_compiled_revid() != 0xffff) {
1051 printk(KERN_ERR
"Warning: Compiled for Rev %d, but running on Rev %d\n",
1052 bfin_compiled_revid(), bfin_revid());
1053 if (bfin_compiled_revid() > bfin_revid())
1054 panic("Error: you are missing anomaly workarounds for this rev");
1057 if (bfin_revid() < CONFIG_BF_REV_MIN
|| bfin_revid() > CONFIG_BF_REV_MAX
)
1058 printk(KERN_ERR
"Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1062 printk(KERN_INFO
"Blackfin Linux support by http://blackfin.uclinux.org/\n");
1065 printk(KERN_INFO
"Processor Speed: %lu MHz core clock, %lu MHz SCLk, %lu MHz SCLK0, %lu MHz SCLK1 and %lu MHz DCLK\n",
1066 cclk
/ 1000000, bfin_get_clk("SYSCLK") / 1000000, get_sclk0() / 1000000, get_sclk1() / 1000000, get_dclk() / 1000000);
1068 printk(KERN_INFO
"Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1069 cclk
/ 1000000, sclk
/ 1000000);
1072 setup_bootmem_allocator();
1076 /* Copy atomic sequences to their fixed location, and sanity check that
1077 these locations are the ones that we advertise to userspace. */
1078 memcpy((void *)FIXED_CODE_START
, &fixed_code_start
,
1079 FIXED_CODE_END
- FIXED_CODE_START
);
1080 BUG_ON((char *)&sigreturn_stub
- (char *)&fixed_code_start
1081 != SIGRETURN_STUB
- FIXED_CODE_START
);
1082 BUG_ON((char *)&atomic_xchg32
- (char *)&fixed_code_start
1083 != ATOMIC_XCHG32
- FIXED_CODE_START
);
1084 BUG_ON((char *)&atomic_cas32
- (char *)&fixed_code_start
1085 != ATOMIC_CAS32
- FIXED_CODE_START
);
1086 BUG_ON((char *)&atomic_add32
- (char *)&fixed_code_start
1087 != ATOMIC_ADD32
- FIXED_CODE_START
);
1088 BUG_ON((char *)&atomic_sub32
- (char *)&fixed_code_start
1089 != ATOMIC_SUB32
- FIXED_CODE_START
);
1090 BUG_ON((char *)&atomic_ior32
- (char *)&fixed_code_start
1091 != ATOMIC_IOR32
- FIXED_CODE_START
);
1092 BUG_ON((char *)&atomic_and32
- (char *)&fixed_code_start
1093 != ATOMIC_AND32
- FIXED_CODE_START
);
1094 BUG_ON((char *)&atomic_xor32
- (char *)&fixed_code_start
1095 != ATOMIC_XOR32
- FIXED_CODE_START
);
1096 BUG_ON((char *)&safe_user_instruction
- (char *)&fixed_code_start
1097 != SAFE_USER_INSTRUCTION
- FIXED_CODE_START
);
1100 platform_init_cpus();
1102 init_exception_vectors();
1103 bfin_cache_init(); /* Initialize caches for the boot CPU */
1106 static int __init
topology_init(void)
1110 for_each_possible_cpu(cpu
) {
1111 register_cpu(&per_cpu(cpu_data
, cpu
).cpu
, cpu
);
1117 subsys_initcall(topology_init
);
1119 /* Get the input clock frequency */
1120 static u_long cached_clkin_hz
= CONFIG_CLKIN_HZ
;
1121 #ifndef CONFIG_BF60x
1122 static u_long
get_clkin_hz(void)
1124 return cached_clkin_hz
;
1127 static int __init
early_init_clkin_hz(char *buf
)
1129 cached_clkin_hz
= simple_strtoul(buf
, NULL
, 0);
1130 #ifdef BFIN_KERNEL_CLOCK
1131 if (cached_clkin_hz
!= CONFIG_CLKIN_HZ
)
1132 panic("cannot change clkin_hz when reprogramming clocks");
1136 early_param("clkin_hz=", early_init_clkin_hz
);
1138 #ifndef CONFIG_BF60x
1139 /* Get the voltage input multiplier */
1140 static u_long
get_vco(void)
1142 static u_long cached_vco
;
1143 u_long msel
, pll_ctl
;
1145 /* The assumption here is that VCO never changes at runtime.
1146 * If, someday, we support that, then we'll have to change this.
1151 pll_ctl
= bfin_read_PLL_CTL();
1152 msel
= (pll_ctl
>> 9) & 0x3F;
1156 cached_vco
= get_clkin_hz();
1157 cached_vco
>>= (1 & pll_ctl
); /* DF bit */
1163 /* Get the Core clock */
1164 u_long
get_cclk(void)
1167 return bfin_get_clk("CCLK");
1169 static u_long cached_cclk_pll_div
, cached_cclk
;
1172 if (bfin_read_PLL_STAT() & 0x1)
1173 return get_clkin_hz();
1175 ssel
= bfin_read_PLL_DIV();
1176 if (ssel
== cached_cclk_pll_div
)
1179 cached_cclk_pll_div
= ssel
;
1181 csel
= ((ssel
>> 4) & 0x03);
1183 if (ssel
&& ssel
< (1 << csel
)) /* SCLK > CCLK */
1184 cached_cclk
= get_vco() / ssel
;
1186 cached_cclk
= get_vco() >> csel
;
1190 EXPORT_SYMBOL(get_cclk
);
1193 /* Get the bf60x clock of SCLK0 domain */
1194 u_long
get_sclk0(void)
1196 return bfin_get_clk("SCLK0");
1198 EXPORT_SYMBOL(get_sclk0
);
1200 /* Get the bf60x clock of SCLK1 domain */
1201 u_long
get_sclk1(void)
1203 return bfin_get_clk("SCLK1");
1205 EXPORT_SYMBOL(get_sclk1
);
1207 /* Get the bf60x DRAM clock */
1208 u_long
get_dclk(void)
1210 return bfin_get_clk("DCLK");
1212 EXPORT_SYMBOL(get_dclk
);
1215 /* Get the default system clock */
1216 u_long
get_sclk(void)
1221 static u_long cached_sclk
;
1224 /* The assumption here is that SCLK never changes at runtime.
1225 * If, someday, we support that, then we'll have to change this.
1230 if (bfin_read_PLL_STAT() & 0x1)
1231 return get_clkin_hz();
1233 ssel
= bfin_read_PLL_DIV() & 0xf;
1235 printk(KERN_WARNING
"Invalid System Clock\n");
1239 cached_sclk
= get_vco() / ssel
;
1243 EXPORT_SYMBOL(get_sclk
);
1245 unsigned long sclk_to_usecs(unsigned long sclk
)
1247 u64 tmp
= USEC_PER_SEC
* (u64
)sclk
;
1248 do_div(tmp
, get_sclk());
1251 EXPORT_SYMBOL(sclk_to_usecs
);
1253 unsigned long usecs_to_sclk(unsigned long usecs
)
1255 u64 tmp
= get_sclk() * (u64
)usecs
;
1256 do_div(tmp
, USEC_PER_SEC
);
1259 EXPORT_SYMBOL(usecs_to_sclk
);
1262 * Get CPU information for use by the procfs.
1264 static int show_cpuinfo(struct seq_file
*m
, void *v
)
1266 char *cpu
, *mmu
, *fpu
, *vendor
, *cache
;
1268 int cpu_num
= *(unsigned int *)v
;
1270 u_int icache_size
= BFIN_ICACHESIZE
/ 1024, dcache_size
= 0, dsup_banks
= 0;
1271 struct blackfin_cpudata
*cpudata
= &per_cpu(cpu_data
, cpu_num
);
1276 revid
= bfin_revid();
1281 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE
) {
1283 vendor
= "Analog Devices";
1290 seq_printf(m
, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num
, vendor
);
1292 if (CPUID
== bfin_cpuid())
1293 seq_printf(m
, "cpu family\t: 0x%04x\n", CPUID
);
1295 seq_printf(m
, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1296 CPUID
, bfin_cpuid());
1298 seq_printf(m
, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1300 cpu
, cclk
/1000000, sclk
/1000000,
1308 if (bfin_revid() != bfin_compiled_revid()) {
1309 if (bfin_compiled_revid() == -1)
1310 seq_printf(m
, "(Compiled for Rev none)");
1311 else if (bfin_compiled_revid() == 0xffff)
1312 seq_printf(m
, "(Compiled for Rev any)");
1314 seq_printf(m
, "(Compiled for Rev %d)", bfin_compiled_revid());
1317 seq_printf(m
, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1318 cclk
/1000000, cclk
%1000000,
1319 sclk
/1000000, sclk
%1000000);
1320 seq_printf(m
, "bogomips\t: %lu.%02lu\n"
1321 "Calibration\t: %lu loops\n",
1322 (loops_per_jiffy
* HZ
) / 500000,
1323 ((loops_per_jiffy
* HZ
) / 5000) % 100,
1324 (loops_per_jiffy
* HZ
));
1326 /* Check Cache configutation */
1327 switch (cpudata
->dmemctl
& (1 << DMC0_P
| 1 << DMC1_P
)) {
1329 cache
= "dbank-A/B\t: cache/sram";
1334 cache
= "dbank-A/B\t: cache/cache";
1339 cache
= "dbank-A/B\t: sram/sram";
1350 /* Is it turned on? */
1351 if ((cpudata
->dmemctl
& (ENDCPLB
| DMC_ENABLE
)) != (ENDCPLB
| DMC_ENABLE
))
1354 if ((cpudata
->imemctl
& (IMC
| ENICPLB
)) != (IMC
| ENICPLB
))
1357 seq_printf(m
, "cache size\t: %d KB(L1 icache) "
1358 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1359 icache_size
, dcache_size
, 0);
1360 seq_printf(m
, "%s\n", cache
);
1361 seq_printf(m
, "external memory\t: "
1362 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1367 " in instruction cache\n");
1368 seq_printf(m
, "external memory\t: "
1369 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1370 "cacheable (write-back)"
1371 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1372 "cacheable (write-through)"
1376 " in data cache\n");
1379 seq_printf(m
, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1380 BFIN_ISUBBANKS
, BFIN_IWAYS
, BFIN_ILINES
);
1382 seq_printf(m
, "icache setup\t: off\n");
1385 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1386 dsup_banks
, BFIN_DSUBBANKS
, BFIN_DWAYS
,
1388 #ifdef __ARCH_SYNC_CORE_DCACHE
1389 seq_printf(m
, "dcache flushes\t: %lu\n", dcache_invld_count
[cpu_num
]);
1391 #ifdef __ARCH_SYNC_CORE_ICACHE
1392 seq_printf(m
, "icache flushes\t: %lu\n", icache_invld_count
[cpu_num
]);
1395 seq_printf(m
, "\n");
1397 if (cpu_num
!= num_possible_cpus() - 1)
1401 seq_printf(m
, "L2 SRAM\t\t: %dKB\n", L2_LENGTH
/0x400);
1402 seq_printf(m
, "L2 SRAM\t\t: "
1403 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1408 " in instruction cache\n");
1409 seq_printf(m
, "L2 SRAM\t\t: "
1410 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1411 "cacheable (write-back)"
1412 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1413 "cacheable (write-through)"
1417 " in data cache\n");
1419 seq_printf(m
, "board name\t: %s\n", bfin_board_name
);
1420 seq_printf(m
, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1421 physical_mem_end
>> 10, 0ul, physical_mem_end
);
1422 seq_printf(m
, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1423 ((int)memory_end
- (int)_rambase
) >> 10,
1424 _rambase
, memory_end
);
1429 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1432 *pos
= cpumask_first(cpu_online_mask
);
1433 if (*pos
>= num_online_cpus())
1439 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1441 *pos
= cpumask_next(*pos
, cpu_online_mask
);
1443 return c_start(m
, pos
);
1446 static void c_stop(struct seq_file
*m
, void *v
)
1450 const struct seq_operations cpuinfo_op
= {
1454 .show
= show_cpuinfo
,
1457 void __init
cmdline_init(const char *r0
)
1459 early_shadow_stamp();
1461 strncpy(command_line
, r0
, COMMAND_LINE_SIZE
);