Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / hexagon / include / asm / bitops.h
blob4caa649ad78b06551120f7be0749e2e986892132
1 /*
2 * Bit operations for the Hexagon architecture
4 * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 and
9 * only version 2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 * 02110-1301, USA.
22 #ifndef _ASM_BITOPS_H
23 #define _ASM_BITOPS_H
25 #include <linux/compiler.h>
26 #include <asm/byteorder.h>
27 #include <asm/atomic.h>
29 #ifdef __KERNEL__
31 #define smp_mb__before_clear_bit() barrier()
32 #define smp_mb__after_clear_bit() barrier()
35 * The offset calculations for these are based on BITS_PER_LONG == 32
36 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
37 * mask by 0x0000001F)
39 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
42 /**
43 * test_and_clear_bit - clear a bit and return its old value
44 * @nr: bit number to clear
45 * @addr: pointer to memory
47 static inline int test_and_clear_bit(int nr, volatile void *addr)
49 int oldval;
51 __asm__ __volatile__ (
52 " {R10 = %1; R11 = asr(%2,#5); }\n"
53 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
54 "1: R12 = memw_locked(R10);\n"
55 " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
56 " memw_locked(R10,P1) = R12;\n"
57 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
58 : "=&r" (oldval)
59 : "r" (addr), "r" (nr)
60 : "r10", "r11", "r12", "p0", "p1", "memory"
63 return oldval;
66 /**
67 * test_and_set_bit - set a bit and return its old value
68 * @nr: bit number to set
69 * @addr: pointer to memory
71 static inline int test_and_set_bit(int nr, volatile void *addr)
73 int oldval;
75 __asm__ __volatile__ (
76 " {R10 = %1; R11 = asr(%2,#5); }\n"
77 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
78 "1: R12 = memw_locked(R10);\n"
79 " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
80 " memw_locked(R10,P1) = R12;\n"
81 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
82 : "=&r" (oldval)
83 : "r" (addr), "r" (nr)
84 : "r10", "r11", "r12", "p0", "p1", "memory"
88 return oldval;
92 /**
93 * test_and_change_bit - toggle a bit and return its old value
94 * @nr: bit number to set
95 * @addr: pointer to memory
97 static inline int test_and_change_bit(int nr, volatile void *addr)
99 int oldval;
101 __asm__ __volatile__ (
102 " {R10 = %1; R11 = asr(%2,#5); }\n"
103 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
104 "1: R12 = memw_locked(R10);\n"
105 " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
106 " memw_locked(R10,P1) = R12;\n"
107 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
108 : "=&r" (oldval)
109 : "r" (addr), "r" (nr)
110 : "r10", "r11", "r12", "p0", "p1", "memory"
113 return oldval;
118 * Atomic, but doesn't care about the return value.
119 * Rewrite later to save a cycle or two.
122 static inline void clear_bit(int nr, volatile void *addr)
124 test_and_clear_bit(nr, addr);
127 static inline void set_bit(int nr, volatile void *addr)
129 test_and_set_bit(nr, addr);
132 static inline void change_bit(int nr, volatile void *addr)
134 test_and_change_bit(nr, addr);
139 * These are allowed to be non-atomic. In fact the generic flavors are
140 * in non-atomic.h. Would it be better to use intrinsics for this?
142 * OK, writes in our architecture do not invalidate LL/SC, so this has to
143 * be atomic, particularly for things like slab_lock and slab_unlock.
146 static inline void __clear_bit(int nr, volatile unsigned long *addr)
148 test_and_clear_bit(nr, addr);
151 static inline void __set_bit(int nr, volatile unsigned long *addr)
153 test_and_set_bit(nr, addr);
156 static inline void __change_bit(int nr, volatile unsigned long *addr)
158 test_and_change_bit(nr, addr);
161 /* Apparently, at least some of these are allowed to be non-atomic */
162 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
164 return test_and_clear_bit(nr, addr);
167 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
169 return test_and_set_bit(nr, addr);
172 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
174 return test_and_change_bit(nr, addr);
177 static inline int __test_bit(int nr, const volatile unsigned long *addr)
179 int retval;
181 asm volatile(
182 "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
183 : "=&r" (retval)
184 : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
185 : "p0"
188 return retval;
191 #define test_bit(nr, addr) __test_bit(nr, addr)
194 * ffz - find first zero in word.
195 * @word: The word to search
197 * Undefined if no zero exists, so code should check against ~0UL first.
199 static inline long ffz(int x)
201 int r;
203 asm("%0 = ct1(%1);\n"
204 : "=&r" (r)
205 : "r" (x));
206 return r;
210 * fls - find last (most-significant) bit set
211 * @x: the word to search
213 * This is defined the same way as ffs.
214 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
216 static inline long fls(int x)
218 int r;
220 asm("{ %0 = cl0(%1);}\n"
221 "%0 = sub(#32,%0);\n"
222 : "=&r" (r)
223 : "r" (x)
224 : "p0");
226 return r;
230 * ffs - find first bit set
231 * @x: the word to search
233 * This is defined the same way as
234 * the libc and compiler builtin ffs routines, therefore
235 * differs in spirit from the above ffz (man ffs).
237 static inline long ffs(int x)
239 int r;
241 asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
242 "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
243 : "=&r" (r)
244 : "r" (x)
245 : "p0");
247 return r;
251 * __ffs - find first bit in word.
252 * @word: The word to search
254 * Undefined if no bit exists, so code should check against 0 first.
256 * bits_per_long assumed to be 32
257 * numbering starts at 0 I think (instead of 1 like ffs)
259 static inline unsigned long __ffs(unsigned long word)
261 int num;
263 asm("%0 = ct0(%1);\n"
264 : "=&r" (num)
265 : "r" (word));
267 return num;
271 * __fls - find last (most-significant) set bit in a long word
272 * @word: the word to search
274 * Undefined if no set bit exists, so code should check against 0 first.
275 * bits_per_long assumed to be 32
277 static inline unsigned long __fls(unsigned long word)
279 int num;
281 asm("%0 = cl0(%1);\n"
282 "%0 = sub(#31,%0);\n"
283 : "=&r" (num)
284 : "r" (word));
286 return num;
289 #include <asm-generic/bitops/lock.h>
290 #include <asm-generic/bitops/find.h>
292 #include <asm-generic/bitops/fls64.h>
293 #include <asm-generic/bitops/sched.h>
294 #include <asm-generic/bitops/hweight.h>
296 #include <asm-generic/bitops/le.h>
297 #include <asm-generic/bitops/ext2-atomic.h>
299 #endif /* __KERNEL__ */
300 #endif