Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / mips / kernel / smp-bmips.c
blob8e393b8443f7ae4aa8c4b8a99eb1f689e49957c1
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
8 * SMP support for BMIPS
9 */
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
39 static int __maybe_unused max_cpus = 1;
41 /* these may be configured by the platform code */
42 int bmips_smp_enabled = 1;
43 int bmips_cpu_offset;
44 cpumask_t bmips_booted_mask;
46 #ifdef CONFIG_SMP
48 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
49 unsigned long bmips_smp_boot_sp;
50 unsigned long bmips_smp_boot_gp;
52 static void bmips_send_ipi_single(int cpu, unsigned int action);
53 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
55 /* SW interrupts 0,1 are used for interprocessor signaling */
56 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
57 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
59 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
60 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
61 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
62 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
64 static void __init bmips_smp_setup(void)
66 int i;
68 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
69 /* arbitration priority */
70 clear_c0_brcm_cmt_ctrl(0x30);
72 /* NBK and weak order flags */
73 set_c0_brcm_config_0(0x30000);
76 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
77 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
78 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
80 change_c0_brcm_cmt_intr(0xf8018000,
81 (0x02 << 27) | (0x03 << 15));
83 /* single core, 2 threads (2 pipelines) */
84 max_cpus = 2;
85 #elif defined(CONFIG_CPU_BMIPS5000)
86 /* enable raceless SW interrupts */
87 set_c0_brcm_config(0x03 << 22);
89 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
90 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
92 /* N cores, 2 threads per core */
93 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
95 /* clear any pending SW interrupts */
96 for (i = 0; i < max_cpus; i++) {
97 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
98 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
100 #endif
102 if (!bmips_smp_enabled)
103 max_cpus = 1;
105 /* this can be overridden by the BSP */
106 if (!board_ebase_setup)
107 board_ebase_setup = &bmips_ebase_setup;
109 for (i = 0; i < max_cpus; i++) {
110 __cpu_number_map[i] = 1;
111 __cpu_logical_map[i] = 1;
112 set_cpu_possible(i, 1);
113 set_cpu_present(i, 1);
118 * IPI IRQ setup - runs on CPU0
120 static void bmips_prepare_cpus(unsigned int max_cpus)
122 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
123 "smp_ipi0", NULL))
124 panic("Can't request IPI0 interrupt\n");
125 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
126 "smp_ipi1", NULL))
127 panic("Can't request IPI1 interrupt\n");
131 * Tell the hardware to boot CPUx - runs on CPU0
133 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
135 bmips_smp_boot_sp = __KSTK_TOS(idle);
136 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
137 mb();
140 * Initial boot sequence for secondary CPU:
141 * bmips_reset_nmi_vec @ a000_0000 ->
142 * bmips_smp_entry ->
143 * plat_wired_tlb_setup (cached function call; optional) ->
144 * start_secondary (cached jump)
146 * Warm restart sequence:
147 * play_dead WAIT loop ->
148 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
149 * eret to play_dead ->
150 * bmips_secondary_reentry ->
151 * start_secondary
154 pr_info("SMP: Booting CPU%d...\n", cpu);
156 if (cpumask_test_cpu(cpu, &bmips_booted_mask))
157 bmips_send_ipi_single(cpu, 0);
158 else {
159 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
160 set_c0_brcm_cmt_ctrl(0x01);
161 #elif defined(CONFIG_CPU_BMIPS5000)
162 if (cpu & 0x01)
163 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
164 else {
166 * core N thread 0 was already booted; just
167 * pulse the NMI line
169 bmips_write_zscm_reg(0x210, 0xc0000000);
170 udelay(10);
171 bmips_write_zscm_reg(0x210, 0x00);
173 #endif
174 cpumask_set_cpu(cpu, &bmips_booted_mask);
179 * Early setup - runs on secondary CPU after cache probe
181 static void bmips_init_secondary(void)
183 /* move NMI vector to kseg0, in case XKS01 is enabled */
185 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
186 void __iomem *cbr = BMIPS_GET_CBR();
187 unsigned long old_vec;
189 old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
190 __raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
192 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
193 #elif defined(CONFIG_CPU_BMIPS5000)
194 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
195 (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
197 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
198 #endif
202 * Late setup - runs on secondary CPU before entering the idle loop
204 static void bmips_smp_finish(void)
206 pr_info("SMP: CPU%d is running\n", smp_processor_id());
208 /* make sure there won't be a timer interrupt for a little while */
209 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
211 irq_enable_hazard();
212 set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
213 irq_enable_hazard();
217 * Runs on CPU0 after all CPUs have been booted
219 static void bmips_cpus_done(void)
223 #if defined(CONFIG_CPU_BMIPS5000)
226 * BMIPS5000 raceless IPIs
228 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
229 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
230 * IPI1 is used for SMP_CALL_FUNCTION
233 static void bmips_send_ipi_single(int cpu, unsigned int action)
235 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
238 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
240 int action = irq - IPI0_IRQ;
242 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
244 if (action == 0)
245 scheduler_ipi();
246 else
247 smp_call_function_interrupt();
249 return IRQ_HANDLED;
252 #else
255 * BMIPS43xx racey IPIs
257 * We use one inbound SW IRQ for each CPU.
259 * A spinlock must be held in order to keep CPUx from accidentally clearing
260 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
261 * same spinlock is used to protect the action masks.
264 static DEFINE_SPINLOCK(ipi_lock);
265 static DEFINE_PER_CPU(int, ipi_action_mask);
267 static void bmips_send_ipi_single(int cpu, unsigned int action)
269 unsigned long flags;
271 spin_lock_irqsave(&ipi_lock, flags);
272 set_c0_cause(cpu ? C_SW1 : C_SW0);
273 per_cpu(ipi_action_mask, cpu) |= action;
274 irq_enable_hazard();
275 spin_unlock_irqrestore(&ipi_lock, flags);
278 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
280 unsigned long flags;
281 int action, cpu = irq - IPI0_IRQ;
283 spin_lock_irqsave(&ipi_lock, flags);
284 action = __get_cpu_var(ipi_action_mask);
285 per_cpu(ipi_action_mask, cpu) = 0;
286 clear_c0_cause(cpu ? C_SW1 : C_SW0);
287 spin_unlock_irqrestore(&ipi_lock, flags);
289 if (action & SMP_RESCHEDULE_YOURSELF)
290 scheduler_ipi();
291 if (action & SMP_CALL_FUNCTION)
292 smp_call_function_interrupt();
294 return IRQ_HANDLED;
297 #endif /* BMIPS type */
299 static void bmips_send_ipi_mask(const struct cpumask *mask,
300 unsigned int action)
302 unsigned int i;
304 for_each_cpu(i, mask)
305 bmips_send_ipi_single(i, action);
308 #ifdef CONFIG_HOTPLUG_CPU
310 static int bmips_cpu_disable(void)
312 unsigned int cpu = smp_processor_id();
314 if (cpu == 0)
315 return -EBUSY;
317 pr_info("SMP: CPU%d is offline\n", cpu);
319 set_cpu_online(cpu, false);
320 cpu_clear(cpu, cpu_callin_map);
322 local_flush_tlb_all();
323 local_flush_icache_range(0, ~0);
325 return 0;
328 static void bmips_cpu_die(unsigned int cpu)
332 void __ref play_dead(void)
334 idle_task_exit();
336 /* flush data cache */
337 _dma_cache_wback_inv(0, ~0);
340 * Wakeup is on SW0 or SW1; disable everything else
341 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
342 * IRQ handlers; this clears ST0_IE and returns immediately.
344 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
345 change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
346 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
347 irq_disable_hazard();
350 * wait for SW interrupt from bmips_boot_secondary(), then jump
351 * back to start_secondary()
353 __asm__ __volatile__(
354 " wait\n"
355 " j bmips_secondary_reentry\n"
356 : : : "memory");
359 #endif /* CONFIG_HOTPLUG_CPU */
361 struct plat_smp_ops bmips_smp_ops = {
362 .smp_setup = bmips_smp_setup,
363 .prepare_cpus = bmips_prepare_cpus,
364 .boot_secondary = bmips_boot_secondary,
365 .smp_finish = bmips_smp_finish,
366 .init_secondary = bmips_init_secondary,
367 .cpus_done = bmips_cpus_done,
368 .send_ipi_single = bmips_send_ipi_single,
369 .send_ipi_mask = bmips_send_ipi_mask,
370 #ifdef CONFIG_HOTPLUG_CPU
371 .cpu_disable = bmips_cpu_disable,
372 .cpu_die = bmips_cpu_die,
373 #endif
376 #endif /* CONFIG_SMP */
378 /***********************************************************************
379 * BMIPS vector relocation
380 * This is primarily used for SMP boot, but it is applicable to some
381 * UP BMIPS systems as well.
382 ***********************************************************************/
384 static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
386 memcpy((void *)dst, start, end - start);
387 dma_cache_wback((unsigned long)start, end - start);
388 local_flush_icache_range(dst, dst + (end - start));
389 instruction_hazard();
392 static inline void __cpuinit bmips_nmi_handler_setup(void)
394 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
395 &bmips_reset_nmi_vec_end);
396 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
397 &bmips_smp_int_vec_end);
400 void __cpuinit bmips_ebase_setup(void)
402 unsigned long new_ebase = ebase;
403 void __iomem __maybe_unused *cbr;
405 BUG_ON(ebase != CKSEG0);
407 #if defined(CONFIG_CPU_BMIPS4350)
409 * BMIPS4350 cannot relocate the normal vectors, but it
410 * can relocate the BEV=1 vectors. So CPU1 starts up at
411 * the relocated BEV=1, IV=0 general exception vector @
412 * 0xa000_0380.
414 * set_uncached_handler() is used here because:
415 * - CPU1 will run this from uncached space
416 * - None of the cacheflush functions are set up yet
418 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
419 &bmips_smp_int_vec, 0x80);
420 __sync();
421 return;
422 #elif defined(CONFIG_CPU_BMIPS4380)
424 * 0x8000_0000: reset/NMI (initially in kseg1)
425 * 0x8000_0400: normal vectors
427 new_ebase = 0x80000400;
428 cbr = BMIPS_GET_CBR();
429 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
430 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
431 #elif defined(CONFIG_CPU_BMIPS5000)
433 * 0x8000_0000: reset/NMI (initially in kseg1)
434 * 0x8000_1000: normal vectors
436 new_ebase = 0x80001000;
437 write_c0_brcm_bootvec(0xa0088008);
438 write_c0_ebase(new_ebase);
439 if (max_cpus > 2)
440 bmips_write_zscm_reg(0xa0, 0xa008a008);
441 #else
442 return;
443 #endif
444 board_nmi_handler_setup = &bmips_nmi_handler_setup;
445 ebase = new_ebase;
448 asmlinkage void __weak plat_wired_tlb_setup(void)
451 * Called when starting/restarting a secondary CPU.
452 * Kernel stacks and other important data might only be accessible
453 * once the wired entries are present.