Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / arch / parisc / math-emu / fpudispatch.c
blob673b73e8420d0fd5742264ad6c2214c43a78ef9a
1 /*
2 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
4 * Floating-point emulation code
5 * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * BEGIN_DESC
24 * File:
25 * @(#) pa/fp/fpudispatch.c $Revision: 1.1 $
27 * Purpose:
28 * <<please update with a synopsis of the functionality provided by this file>>
30 * External Interfaces:
31 * <<the following list was autogenerated, please review>>
32 * emfpudispatch(ir, dummy1, dummy2, fpregs)
33 * fpudispatch(ir, excp_code, holder, fpregs)
35 * Internal Interfaces:
36 * <<the following list was autogenerated, please review>>
37 * static u_int decode_06(u_int, u_int *)
38 * static u_int decode_0c(u_int, u_int, u_int, u_int *)
39 * static u_int decode_0e(u_int, u_int, u_int, u_int *)
40 * static u_int decode_26(u_int, u_int *)
41 * static u_int decode_2e(u_int, u_int *)
42 * static void update_status_cbit(u_int *, u_int, u_int, u_int)
44 * Theory:
45 * <<please update with a overview of the operation of this file>>
47 * END_DESC
50 #define FPUDEBUG 0
52 #include "float.h"
53 #include <linux/bug.h>
54 #include <linux/kernel.h>
55 #include <asm/processor.h>
56 /* #include <sys/debug.h> */
57 /* #include <machine/sys/mdep_private.h> */
59 #define COPR_INST 0x30000000
62 * definition of extru macro. If pos and len are constants, the compiler
63 * will generate an extru instruction when optimized
65 #define extru(r,pos,len) (((r) >> (31-(pos))) & (( 1 << (len)) - 1))
66 /* definitions of bit field locations in the instruction */
67 #define fpmajorpos 5
68 #define fpr1pos 10
69 #define fpr2pos 15
70 #define fptpos 31
71 #define fpsubpos 18
72 #define fpclass1subpos 16
73 #define fpclasspos 22
74 #define fpfmtpos 20
75 #define fpdfpos 18
76 #define fpnulpos 26
78 * the following are the extra bits for the 0E major op
80 #define fpxr1pos 24
81 #define fpxr2pos 19
82 #define fpxtpos 25
83 #define fpxpos 23
84 #define fp0efmtpos 20
86 * the following are for the multi-ops
88 #define fprm1pos 10
89 #define fprm2pos 15
90 #define fptmpos 31
91 #define fprapos 25
92 #define fptapos 20
93 #define fpmultifmt 26
95 * the following are for the fused FP instructions
97 /* fprm1pos 10 */
98 /* fprm2pos 15 */
99 #define fpraupos 18
100 #define fpxrm2pos 19
101 /* fpfmtpos 20 */
102 #define fpralpos 23
103 #define fpxrm1pos 24
104 /* fpxtpos 25 */
105 #define fpfusedsubop 26
106 /* fptpos 31 */
109 * offset to constant zero in the FP emulation registers
111 #define fpzeroreg (32*sizeof(double)/sizeof(u_int))
114 * extract the major opcode from the instruction
116 #define get_major(op) extru(op,fpmajorpos,6)
118 * extract the two bit class field from the FP instruction. The class is at bit
119 * positions 21-22
121 #define get_class(op) extru(op,fpclasspos,2)
123 * extract the 3 bit subop field. For all but class 1 instructions, it is
124 * located at bit positions 16-18
126 #define get_subop(op) extru(op,fpsubpos,3)
128 * extract the 2 or 3 bit subop field from class 1 instructions. It is located
129 * at bit positions 15-16 (PA1.1) or 14-16 (PA2.0)
131 #define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2) /* PA89 (1.1) fmt */
132 #define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3) /* PA 2.0 fmt */
134 /* definitions of unimplemented exceptions */
135 #define MAJOR_0C_EXCP 0x09
136 #define MAJOR_0E_EXCP 0x0b
137 #define MAJOR_06_EXCP 0x03
138 #define MAJOR_26_EXCP 0x23
139 #define MAJOR_2E_EXCP 0x2b
140 #define PA83_UNIMP_EXCP 0x01
143 * Special Defines for TIMEX specific code
146 #define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2)
147 #define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG)
150 * Static function definitions
152 #define _PROTOTYPES
153 #if defined(_PROTOTYPES) || defined(_lint)
154 static u_int decode_0c(u_int, u_int, u_int, u_int *);
155 static u_int decode_0e(u_int, u_int, u_int, u_int *);
156 static u_int decode_06(u_int, u_int *);
157 static u_int decode_26(u_int, u_int *);
158 static u_int decode_2e(u_int, u_int *);
159 static void update_status_cbit(u_int *, u_int, u_int, u_int);
160 #else /* !_PROTOTYPES&&!_lint */
161 static u_int decode_0c();
162 static u_int decode_0e();
163 static u_int decode_06();
164 static u_int decode_26();
165 static u_int decode_2e();
166 static void update_status_cbit();
167 #endif /* _PROTOTYPES&&!_lint */
169 #define VASSERT(x)
171 static void parisc_linux_get_fpu_type(u_int fpregs[])
173 /* on pa-linux the fpu type is not filled in by the
174 * caller; it is constructed here
176 if (boot_cpu_data.cpu_type == pcxs)
177 fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG;
178 else if (boot_cpu_data.cpu_type == pcxt ||
179 boot_cpu_data.cpu_type == pcxt_)
180 fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG;
181 else if (boot_cpu_data.cpu_type >= pcxu)
182 fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG;
186 * this routine will decode the excepting floating point instruction and
187 * call the approiate emulation routine.
188 * It is called by decode_fpu with the following parameters:
189 * fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register)
190 * where current_ir is the instruction to be emulated,
191 * unimplemented_code is the exception_code that the hardware generated
192 * and &Fpu_register is the address of emulated FP reg 0.
194 u_int
195 fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[])
197 u_int class, subop;
198 u_int fpu_type_flags;
200 /* All FP emulation code assumes that ints are 4-bytes in length */
201 VASSERT(sizeof(int) == 4);
203 parisc_linux_get_fpu_type(fpregs);
205 fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
207 class = get_class(ir);
208 if (class == 1) {
209 if (fpu_type_flags & PA2_0_FPU_FLAG)
210 subop = get_subop1_PA2_0(ir);
211 else
212 subop = get_subop1_PA1_1(ir);
214 else
215 subop = get_subop(ir);
217 if (FPUDEBUG) printk("class %d subop %d\n", class, subop);
219 switch (excp_code) {
220 case MAJOR_0C_EXCP:
221 case PA83_UNIMP_EXCP:
222 return(decode_0c(ir,class,subop,fpregs));
223 case MAJOR_0E_EXCP:
224 return(decode_0e(ir,class,subop,fpregs));
225 case MAJOR_06_EXCP:
226 return(decode_06(ir,fpregs));
227 case MAJOR_26_EXCP:
228 return(decode_26(ir,fpregs));
229 case MAJOR_2E_EXCP:
230 return(decode_2e(ir,fpregs));
231 default:
232 /* "crashme Night Gallery painting nr 2. (asm_crash.s).
233 * This was fixed for multi-user kernels, but
234 * workstation kernels had a panic here. This allowed
235 * any arbitrary user to panic the kernel by executing
236 * setting the FP exception registers to strange values
237 * and generating an emulation trap. The emulation and
238 * exception code must never be able to panic the
239 * kernel.
241 return(UNIMPLEMENTEDEXCEPTION);
246 * this routine is called by $emulation_trap to emulate a coprocessor
247 * instruction if one doesn't exist
249 u_int
250 emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[])
252 u_int class, subop, major;
253 u_int fpu_type_flags;
255 /* All FP emulation code assumes that ints are 4-bytes in length */
256 VASSERT(sizeof(int) == 4);
258 fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
260 major = get_major(ir);
261 class = get_class(ir);
262 if (class == 1) {
263 if (fpu_type_flags & PA2_0_FPU_FLAG)
264 subop = get_subop1_PA2_0(ir);
265 else
266 subop = get_subop1_PA1_1(ir);
268 else
269 subop = get_subop(ir);
270 switch (major) {
271 case 0x0C:
272 return(decode_0c(ir,class,subop,fpregs));
273 case 0x0E:
274 return(decode_0e(ir,class,subop,fpregs));
275 case 0x06:
276 return(decode_06(ir,fpregs));
277 case 0x26:
278 return(decode_26(ir,fpregs));
279 case 0x2E:
280 return(decode_2e(ir,fpregs));
281 default:
282 return(PA83_UNIMP_EXCP);
287 static u_int
288 decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[])
290 u_int r1,r2,t; /* operand register offsets */
291 u_int fmt; /* also sf for class 1 conversions */
292 u_int df; /* for class 1 conversions */
293 u_int *status;
294 u_int retval, local_status;
295 u_int fpu_type_flags;
297 if (ir == COPR_INST) {
298 fpregs[0] = EMULATION_VERSION << 11;
299 return(NOEXCEPTION);
301 status = &fpregs[0]; /* fp status register */
302 local_status = fpregs[0]; /* and local copy */
303 r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int);
304 if (r1 == 0) /* map fr0 source to constant zero */
305 r1 = fpzeroreg;
306 t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
307 if (t == 0 && class != 2) /* don't allow fr0 as a dest */
308 return(MAJOR_0C_EXCP);
309 fmt = extru(ir,fpfmtpos,2); /* get fmt completer */
311 switch (class) {
312 case 0:
313 switch (subop) {
314 case 0: /* COPR 0,0 emulated above*/
315 case 1:
316 return(MAJOR_0C_EXCP);
317 case 2: /* FCPY */
318 switch (fmt) {
319 case 2: /* illegal */
320 return(MAJOR_0C_EXCP);
321 case 3: /* quad */
322 t &= ~3; /* force to even reg #s */
323 r1 &= ~3;
324 fpregs[t+3] = fpregs[r1+3];
325 fpregs[t+2] = fpregs[r1+2];
326 case 1: /* double */
327 fpregs[t+1] = fpregs[r1+1];
328 case 0: /* single */
329 fpregs[t] = fpregs[r1];
330 return(NOEXCEPTION);
332 case 3: /* FABS */
333 switch (fmt) {
334 case 2: /* illegal */
335 return(MAJOR_0C_EXCP);
336 case 3: /* quad */
337 t &= ~3; /* force to even reg #s */
338 r1 &= ~3;
339 fpregs[t+3] = fpregs[r1+3];
340 fpregs[t+2] = fpregs[r1+2];
341 case 1: /* double */
342 fpregs[t+1] = fpregs[r1+1];
343 case 0: /* single */
344 /* copy and clear sign bit */
345 fpregs[t] = fpregs[r1] & 0x7fffffff;
346 return(NOEXCEPTION);
348 case 6: /* FNEG */
349 switch (fmt) {
350 case 2: /* illegal */
351 return(MAJOR_0C_EXCP);
352 case 3: /* quad */
353 t &= ~3; /* force to even reg #s */
354 r1 &= ~3;
355 fpregs[t+3] = fpregs[r1+3];
356 fpregs[t+2] = fpregs[r1+2];
357 case 1: /* double */
358 fpregs[t+1] = fpregs[r1+1];
359 case 0: /* single */
360 /* copy and invert sign bit */
361 fpregs[t] = fpregs[r1] ^ 0x80000000;
362 return(NOEXCEPTION);
364 case 7: /* FNEGABS */
365 switch (fmt) {
366 case 2: /* illegal */
367 return(MAJOR_0C_EXCP);
368 case 3: /* quad */
369 t &= ~3; /* force to even reg #s */
370 r1 &= ~3;
371 fpregs[t+3] = fpregs[r1+3];
372 fpregs[t+2] = fpregs[r1+2];
373 case 1: /* double */
374 fpregs[t+1] = fpregs[r1+1];
375 case 0: /* single */
376 /* copy and set sign bit */
377 fpregs[t] = fpregs[r1] | 0x80000000;
378 return(NOEXCEPTION);
380 case 4: /* FSQRT */
381 switch (fmt) {
382 case 0:
383 return(sgl_fsqrt(&fpregs[r1],0,
384 &fpregs[t],status));
385 case 1:
386 return(dbl_fsqrt(&fpregs[r1],0,
387 &fpregs[t],status));
388 case 2:
389 case 3: /* quad not implemented */
390 return(MAJOR_0C_EXCP);
392 case 5: /* FRND */
393 switch (fmt) {
394 case 0:
395 return(sgl_frnd(&fpregs[r1],0,
396 &fpregs[t],status));
397 case 1:
398 return(dbl_frnd(&fpregs[r1],0,
399 &fpregs[t],status));
400 case 2:
401 case 3: /* quad not implemented */
402 return(MAJOR_0C_EXCP);
404 } /* end of switch (subop) */
406 case 1: /* class 1 */
407 df = extru(ir,fpdfpos,2); /* get dest format */
408 if ((df & 2) || (fmt & 2)) {
410 * fmt's 2 and 3 are illegal of not implemented
411 * quad conversions
413 return(MAJOR_0C_EXCP);
416 * encode source and dest formats into 2 bits.
417 * high bit is source, low bit is dest.
418 * bit = 1 --> double precision
420 fmt = (fmt << 1) | df;
421 switch (subop) {
422 case 0: /* FCNVFF */
423 switch(fmt) {
424 case 0: /* sgl/sgl */
425 return(MAJOR_0C_EXCP);
426 case 1: /* sgl/dbl */
427 return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
428 &fpregs[t],status));
429 case 2: /* dbl/sgl */
430 return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
431 &fpregs[t],status));
432 case 3: /* dbl/dbl */
433 return(MAJOR_0C_EXCP);
435 case 1: /* FCNVXF */
436 switch(fmt) {
437 case 0: /* sgl/sgl */
438 return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
439 &fpregs[t],status));
440 case 1: /* sgl/dbl */
441 return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
442 &fpregs[t],status));
443 case 2: /* dbl/sgl */
444 return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
445 &fpregs[t],status));
446 case 3: /* dbl/dbl */
447 return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
448 &fpregs[t],status));
450 case 2: /* FCNVFX */
451 switch(fmt) {
452 case 0: /* sgl/sgl */
453 return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
454 &fpregs[t],status));
455 case 1: /* sgl/dbl */
456 return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
457 &fpregs[t],status));
458 case 2: /* dbl/sgl */
459 return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
460 &fpregs[t],status));
461 case 3: /* dbl/dbl */
462 return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
463 &fpregs[t],status));
465 case 3: /* FCNVFXT */
466 switch(fmt) {
467 case 0: /* sgl/sgl */
468 return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
469 &fpregs[t],status));
470 case 1: /* sgl/dbl */
471 return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
472 &fpregs[t],status));
473 case 2: /* dbl/sgl */
474 return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
475 &fpregs[t],status));
476 case 3: /* dbl/dbl */
477 return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
478 &fpregs[t],status));
480 case 5: /* FCNVUF (PA2.0 only) */
481 switch(fmt) {
482 case 0: /* sgl/sgl */
483 return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
484 &fpregs[t],status));
485 case 1: /* sgl/dbl */
486 return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
487 &fpregs[t],status));
488 case 2: /* dbl/sgl */
489 return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
490 &fpregs[t],status));
491 case 3: /* dbl/dbl */
492 return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
493 &fpregs[t],status));
495 case 6: /* FCNVFU (PA2.0 only) */
496 switch(fmt) {
497 case 0: /* sgl/sgl */
498 return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
499 &fpregs[t],status));
500 case 1: /* sgl/dbl */
501 return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
502 &fpregs[t],status));
503 case 2: /* dbl/sgl */
504 return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
505 &fpregs[t],status));
506 case 3: /* dbl/dbl */
507 return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
508 &fpregs[t],status));
510 case 7: /* FCNVFUT (PA2.0 only) */
511 switch(fmt) {
512 case 0: /* sgl/sgl */
513 return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
514 &fpregs[t],status));
515 case 1: /* sgl/dbl */
516 return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
517 &fpregs[t],status));
518 case 2: /* dbl/sgl */
519 return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
520 &fpregs[t],status));
521 case 3: /* dbl/dbl */
522 return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
523 &fpregs[t],status));
525 case 4: /* undefined */
526 return(MAJOR_0C_EXCP);
527 } /* end of switch subop */
529 case 2: /* class 2 */
530 fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
531 r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int);
532 if (r2 == 0)
533 r2 = fpzeroreg;
534 if (fpu_type_flags & PA2_0_FPU_FLAG) {
535 /* FTEST if nullify bit set, otherwise FCMP */
536 if (extru(ir, fpnulpos, 1)) { /* FTEST */
537 switch (fmt) {
538 case 0:
540 * arg0 is not used
541 * second param is the t field used for
542 * ftest,acc and ftest,rej
543 * third param is the subop (y-field)
545 BUG();
546 /* Unsupported
547 * return(ftest(0L,extru(ir,fptpos,5),
548 * &fpregs[0],subop));
550 case 1:
551 case 2:
552 case 3:
553 return(MAJOR_0C_EXCP);
555 } else { /* FCMP */
556 switch (fmt) {
557 case 0:
558 retval = sgl_fcmp(&fpregs[r1],
559 &fpregs[r2],extru(ir,fptpos,5),
560 &local_status);
561 update_status_cbit(status,local_status,
562 fpu_type_flags, subop);
563 return(retval);
564 case 1:
565 retval = dbl_fcmp(&fpregs[r1],
566 &fpregs[r2],extru(ir,fptpos,5),
567 &local_status);
568 update_status_cbit(status,local_status,
569 fpu_type_flags, subop);
570 return(retval);
571 case 2: /* illegal */
572 case 3: /* quad not implemented */
573 return(MAJOR_0C_EXCP);
576 } /* end of if for PA2.0 */
577 else { /* PA1.0 & PA1.1 */
578 switch (subop) {
579 case 2:
580 case 3:
581 case 4:
582 case 5:
583 case 6:
584 case 7:
585 return(MAJOR_0C_EXCP);
586 case 0: /* FCMP */
587 switch (fmt) {
588 case 0:
589 retval = sgl_fcmp(&fpregs[r1],
590 &fpregs[r2],extru(ir,fptpos,5),
591 &local_status);
592 update_status_cbit(status,local_status,
593 fpu_type_flags, subop);
594 return(retval);
595 case 1:
596 retval = dbl_fcmp(&fpregs[r1],
597 &fpregs[r2],extru(ir,fptpos,5),
598 &local_status);
599 update_status_cbit(status,local_status,
600 fpu_type_flags, subop);
601 return(retval);
602 case 2: /* illegal */
603 case 3: /* quad not implemented */
604 return(MAJOR_0C_EXCP);
606 case 1: /* FTEST */
607 switch (fmt) {
608 case 0:
610 * arg0 is not used
611 * second param is the t field used for
612 * ftest,acc and ftest,rej
613 * third param is the subop (y-field)
615 BUG();
616 /* unsupported
617 * return(ftest(0L,extru(ir,fptpos,5),
618 * &fpregs[0],subop));
620 case 1:
621 case 2:
622 case 3:
623 return(MAJOR_0C_EXCP);
625 } /* end of switch subop */
626 } /* end of else for PA1.0 & PA1.1 */
627 case 3: /* class 3 */
628 r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int);
629 if (r2 == 0)
630 r2 = fpzeroreg;
631 switch (subop) {
632 case 5:
633 case 6:
634 case 7:
635 return(MAJOR_0C_EXCP);
637 case 0: /* FADD */
638 switch (fmt) {
639 case 0:
640 return(sgl_fadd(&fpregs[r1],&fpregs[r2],
641 &fpregs[t],status));
642 case 1:
643 return(dbl_fadd(&fpregs[r1],&fpregs[r2],
644 &fpregs[t],status));
645 case 2: /* illegal */
646 case 3: /* quad not implemented */
647 return(MAJOR_0C_EXCP);
649 case 1: /* FSUB */
650 switch (fmt) {
651 case 0:
652 return(sgl_fsub(&fpregs[r1],&fpregs[r2],
653 &fpregs[t],status));
654 case 1:
655 return(dbl_fsub(&fpregs[r1],&fpregs[r2],
656 &fpregs[t],status));
657 case 2: /* illegal */
658 case 3: /* quad not implemented */
659 return(MAJOR_0C_EXCP);
661 case 2: /* FMPY */
662 switch (fmt) {
663 case 0:
664 return(sgl_fmpy(&fpregs[r1],&fpregs[r2],
665 &fpregs[t],status));
666 case 1:
667 return(dbl_fmpy(&fpregs[r1],&fpregs[r2],
668 &fpregs[t],status));
669 case 2: /* illegal */
670 case 3: /* quad not implemented */
671 return(MAJOR_0C_EXCP);
673 case 3: /* FDIV */
674 switch (fmt) {
675 case 0:
676 return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
677 &fpregs[t],status));
678 case 1:
679 return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
680 &fpregs[t],status));
681 case 2: /* illegal */
682 case 3: /* quad not implemented */
683 return(MAJOR_0C_EXCP);
685 case 4: /* FREM */
686 switch (fmt) {
687 case 0:
688 return(sgl_frem(&fpregs[r1],&fpregs[r2],
689 &fpregs[t],status));
690 case 1:
691 return(dbl_frem(&fpregs[r1],&fpregs[r2],
692 &fpregs[t],status));
693 case 2: /* illegal */
694 case 3: /* quad not implemented */
695 return(MAJOR_0C_EXCP);
697 } /* end of class 3 switch */
698 } /* end of switch(class) */
700 /* If we get here, something is really wrong! */
701 return(MAJOR_0C_EXCP);
704 static u_int
705 decode_0e(ir,class,subop,fpregs)
706 u_int ir,class,subop;
707 u_int fpregs[];
709 u_int r1,r2,t; /* operand register offsets */
710 u_int fmt; /* also sf for class 1 conversions */
711 u_int df; /* dest format for class 1 conversions */
712 u_int *status;
713 u_int retval, local_status;
714 u_int fpu_type_flags;
716 status = &fpregs[0];
717 local_status = fpregs[0];
718 r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1)));
719 if (r1 == 0)
720 r1 = fpzeroreg;
721 t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
722 if (t == 0 && class != 2)
723 return(MAJOR_0E_EXCP);
724 if (class < 2) /* class 0 or 1 has 2 bit fmt */
725 fmt = extru(ir,fpfmtpos,2);
726 else /* class 2 and 3 have 1 bit fmt */
727 fmt = extru(ir,fp0efmtpos,1);
729 * An undefined combination, double precision accessing the
730 * right half of a FPR, can get us into trouble.
731 * Let's just force proper alignment on it.
733 if (fmt == DBL) {
734 r1 &= ~1;
735 if (class != 1)
736 t &= ~1;
739 switch (class) {
740 case 0:
741 switch (subop) {
742 case 0: /* unimplemented */
743 case 1:
744 return(MAJOR_0E_EXCP);
745 case 2: /* FCPY */
746 switch (fmt) {
747 case 2:
748 case 3:
749 return(MAJOR_0E_EXCP);
750 case 1: /* double */
751 fpregs[t+1] = fpregs[r1+1];
752 case 0: /* single */
753 fpregs[t] = fpregs[r1];
754 return(NOEXCEPTION);
756 case 3: /* FABS */
757 switch (fmt) {
758 case 2:
759 case 3:
760 return(MAJOR_0E_EXCP);
761 case 1: /* double */
762 fpregs[t+1] = fpregs[r1+1];
763 case 0: /* single */
764 fpregs[t] = fpregs[r1] & 0x7fffffff;
765 return(NOEXCEPTION);
767 case 6: /* FNEG */
768 switch (fmt) {
769 case 2:
770 case 3:
771 return(MAJOR_0E_EXCP);
772 case 1: /* double */
773 fpregs[t+1] = fpregs[r1+1];
774 case 0: /* single */
775 fpregs[t] = fpregs[r1] ^ 0x80000000;
776 return(NOEXCEPTION);
778 case 7: /* FNEGABS */
779 switch (fmt) {
780 case 2:
781 case 3:
782 return(MAJOR_0E_EXCP);
783 case 1: /* double */
784 fpregs[t+1] = fpregs[r1+1];
785 case 0: /* single */
786 fpregs[t] = fpregs[r1] | 0x80000000;
787 return(NOEXCEPTION);
789 case 4: /* FSQRT */
790 switch (fmt) {
791 case 0:
792 return(sgl_fsqrt(&fpregs[r1],0,
793 &fpregs[t], status));
794 case 1:
795 return(dbl_fsqrt(&fpregs[r1],0,
796 &fpregs[t], status));
797 case 2:
798 case 3:
799 return(MAJOR_0E_EXCP);
801 case 5: /* FRMD */
802 switch (fmt) {
803 case 0:
804 return(sgl_frnd(&fpregs[r1],0,
805 &fpregs[t], status));
806 case 1:
807 return(dbl_frnd(&fpregs[r1],0,
808 &fpregs[t], status));
809 case 2:
810 case 3:
811 return(MAJOR_0E_EXCP);
813 } /* end of switch (subop */
815 case 1: /* class 1 */
816 df = extru(ir,fpdfpos,2); /* get dest format */
818 * Fix Crashme problem (writing to 31R in double precision)
819 * here too.
821 if (df == DBL) {
822 t &= ~1;
824 if ((df & 2) || (fmt & 2))
825 return(MAJOR_0E_EXCP);
827 fmt = (fmt << 1) | df;
828 switch (subop) {
829 case 0: /* FCNVFF */
830 switch(fmt) {
831 case 0: /* sgl/sgl */
832 return(MAJOR_0E_EXCP);
833 case 1: /* sgl/dbl */
834 return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
835 &fpregs[t],status));
836 case 2: /* dbl/sgl */
837 return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
838 &fpregs[t],status));
839 case 3: /* dbl/dbl */
840 return(MAJOR_0E_EXCP);
842 case 1: /* FCNVXF */
843 switch(fmt) {
844 case 0: /* sgl/sgl */
845 return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
846 &fpregs[t],status));
847 case 1: /* sgl/dbl */
848 return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
849 &fpregs[t],status));
850 case 2: /* dbl/sgl */
851 return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
852 &fpregs[t],status));
853 case 3: /* dbl/dbl */
854 return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
855 &fpregs[t],status));
857 case 2: /* FCNVFX */
858 switch(fmt) {
859 case 0: /* sgl/sgl */
860 return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
861 &fpregs[t],status));
862 case 1: /* sgl/dbl */
863 return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
864 &fpregs[t],status));
865 case 2: /* dbl/sgl */
866 return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
867 &fpregs[t],status));
868 case 3: /* dbl/dbl */
869 return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
870 &fpregs[t],status));
872 case 3: /* FCNVFXT */
873 switch(fmt) {
874 case 0: /* sgl/sgl */
875 return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
876 &fpregs[t],status));
877 case 1: /* sgl/dbl */
878 return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
879 &fpregs[t],status));
880 case 2: /* dbl/sgl */
881 return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
882 &fpregs[t],status));
883 case 3: /* dbl/dbl */
884 return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
885 &fpregs[t],status));
887 case 5: /* FCNVUF (PA2.0 only) */
888 switch(fmt) {
889 case 0: /* sgl/sgl */
890 return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
891 &fpregs[t],status));
892 case 1: /* sgl/dbl */
893 return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
894 &fpregs[t],status));
895 case 2: /* dbl/sgl */
896 return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
897 &fpregs[t],status));
898 case 3: /* dbl/dbl */
899 return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
900 &fpregs[t],status));
902 case 6: /* FCNVFU (PA2.0 only) */
903 switch(fmt) {
904 case 0: /* sgl/sgl */
905 return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
906 &fpregs[t],status));
907 case 1: /* sgl/dbl */
908 return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
909 &fpregs[t],status));
910 case 2: /* dbl/sgl */
911 return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
912 &fpregs[t],status));
913 case 3: /* dbl/dbl */
914 return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
915 &fpregs[t],status));
917 case 7: /* FCNVFUT (PA2.0 only) */
918 switch(fmt) {
919 case 0: /* sgl/sgl */
920 return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
921 &fpregs[t],status));
922 case 1: /* sgl/dbl */
923 return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
924 &fpregs[t],status));
925 case 2: /* dbl/sgl */
926 return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
927 &fpregs[t],status));
928 case 3: /* dbl/dbl */
929 return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
930 &fpregs[t],status));
932 case 4: /* undefined */
933 return(MAJOR_0C_EXCP);
934 } /* end of switch subop */
935 case 2: /* class 2 */
937 * Be careful out there.
938 * Crashme can generate cases where FR31R is specified
939 * as the source or target of a double precision operation.
940 * Since we just pass the address of the floating-point
941 * register to the emulation routines, this can cause
942 * corruption of fpzeroreg.
944 if (fmt == DBL)
945 r2 = (extru(ir,fpr2pos,5)<<1);
946 else
947 r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
948 fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
949 if (r2 == 0)
950 r2 = fpzeroreg;
951 if (fpu_type_flags & PA2_0_FPU_FLAG) {
952 /* FTEST if nullify bit set, otherwise FCMP */
953 if (extru(ir, fpnulpos, 1)) { /* FTEST */
954 /* not legal */
955 return(MAJOR_0E_EXCP);
956 } else { /* FCMP */
957 switch (fmt) {
959 * fmt is only 1 bit long
961 case 0:
962 retval = sgl_fcmp(&fpregs[r1],
963 &fpregs[r2],extru(ir,fptpos,5),
964 &local_status);
965 update_status_cbit(status,local_status,
966 fpu_type_flags, subop);
967 return(retval);
968 case 1:
969 retval = dbl_fcmp(&fpregs[r1],
970 &fpregs[r2],extru(ir,fptpos,5),
971 &local_status);
972 update_status_cbit(status,local_status,
973 fpu_type_flags, subop);
974 return(retval);
977 } /* end of if for PA2.0 */
978 else { /* PA1.0 & PA1.1 */
979 switch (subop) {
980 case 1:
981 case 2:
982 case 3:
983 case 4:
984 case 5:
985 case 6:
986 case 7:
987 return(MAJOR_0E_EXCP);
988 case 0: /* FCMP */
989 switch (fmt) {
991 * fmt is only 1 bit long
993 case 0:
994 retval = sgl_fcmp(&fpregs[r1],
995 &fpregs[r2],extru(ir,fptpos,5),
996 &local_status);
997 update_status_cbit(status,local_status,
998 fpu_type_flags, subop);
999 return(retval);
1000 case 1:
1001 retval = dbl_fcmp(&fpregs[r1],
1002 &fpregs[r2],extru(ir,fptpos,5),
1003 &local_status);
1004 update_status_cbit(status,local_status,
1005 fpu_type_flags, subop);
1006 return(retval);
1008 } /* end of switch subop */
1009 } /* end of else for PA1.0 & PA1.1 */
1010 case 3: /* class 3 */
1012 * Be careful out there.
1013 * Crashme can generate cases where FR31R is specified
1014 * as the source or target of a double precision operation.
1015 * Since we just pass the address of the floating-point
1016 * register to the emulation routines, this can cause
1017 * corruption of fpzeroreg.
1019 if (fmt == DBL)
1020 r2 = (extru(ir,fpr2pos,5)<<1);
1021 else
1022 r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
1023 if (r2 == 0)
1024 r2 = fpzeroreg;
1025 switch (subop) {
1026 case 5:
1027 case 6:
1028 case 7:
1029 return(MAJOR_0E_EXCP);
1032 * Note that fmt is only 1 bit for class 3 */
1033 case 0: /* FADD */
1034 switch (fmt) {
1035 case 0:
1036 return(sgl_fadd(&fpregs[r1],&fpregs[r2],
1037 &fpregs[t],status));
1038 case 1:
1039 return(dbl_fadd(&fpregs[r1],&fpregs[r2],
1040 &fpregs[t],status));
1042 case 1: /* FSUB */
1043 switch (fmt) {
1044 case 0:
1045 return(sgl_fsub(&fpregs[r1],&fpregs[r2],
1046 &fpregs[t],status));
1047 case 1:
1048 return(dbl_fsub(&fpregs[r1],&fpregs[r2],
1049 &fpregs[t],status));
1051 case 2: /* FMPY or XMPYU */
1053 * check for integer multiply (x bit set)
1055 if (extru(ir,fpxpos,1)) {
1057 * emulate XMPYU
1059 switch (fmt) {
1060 case 0:
1062 * bad instruction if t specifies
1063 * the right half of a register
1065 if (t & 1)
1066 return(MAJOR_0E_EXCP);
1067 BUG();
1068 /* unsupported
1069 * impyu(&fpregs[r1],&fpregs[r2],
1070 * &fpregs[t]);
1072 return(NOEXCEPTION);
1073 case 1:
1074 return(MAJOR_0E_EXCP);
1077 else { /* FMPY */
1078 switch (fmt) {
1079 case 0:
1080 return(sgl_fmpy(&fpregs[r1],
1081 &fpregs[r2],&fpregs[t],status));
1082 case 1:
1083 return(dbl_fmpy(&fpregs[r1],
1084 &fpregs[r2],&fpregs[t],status));
1087 case 3: /* FDIV */
1088 switch (fmt) {
1089 case 0:
1090 return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
1091 &fpregs[t],status));
1092 case 1:
1093 return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
1094 &fpregs[t],status));
1096 case 4: /* FREM */
1097 switch (fmt) {
1098 case 0:
1099 return(sgl_frem(&fpregs[r1],&fpregs[r2],
1100 &fpregs[t],status));
1101 case 1:
1102 return(dbl_frem(&fpregs[r1],&fpregs[r2],
1103 &fpregs[t],status));
1105 } /* end of class 3 switch */
1106 } /* end of switch(class) */
1108 /* If we get here, something is really wrong! */
1109 return(MAJOR_0E_EXCP);
1114 * routine to decode the 06 (FMPYADD and FMPYCFXT) instruction
1116 static u_int
1117 decode_06(ir,fpregs)
1118 u_int ir;
1119 u_int fpregs[];
1121 u_int rm1, rm2, tm, ra, ta; /* operands */
1122 u_int fmt;
1123 u_int error = 0;
1124 u_int status;
1125 u_int fpu_type_flags;
1126 union {
1127 double dbl;
1128 float flt;
1129 struct { u_int i1; u_int i2; } ints;
1130 } mtmp, atmp;
1133 status = fpregs[0]; /* use a local copy of status reg */
1134 fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS]; /* get fpu type flags */
1135 fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
1136 if (fmt == 0) { /* DBL */
1137 rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
1138 if (rm1 == 0)
1139 rm1 = fpzeroreg;
1140 rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
1141 if (rm2 == 0)
1142 rm2 = fpzeroreg;
1143 tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
1144 if (tm == 0)
1145 return(MAJOR_06_EXCP);
1146 ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
1147 ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
1148 if (ta == 0)
1149 return(MAJOR_06_EXCP);
1151 if (fpu_type_flags & TIMEX_ROLEX_FPU_MASK) {
1153 if (ra == 0) {
1154 /* special case FMPYCFXT, see sgl case below */
1155 if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],
1156 &mtmp.ints.i1,&status))
1157 error = 1;
1158 if (dbl_to_sgl_fcnvfxt(&fpregs[ta],
1159 &atmp.ints.i1,&atmp.ints.i1,&status))
1160 error = 1;
1162 else {
1164 if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1165 &status))
1166 error = 1;
1167 if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
1168 &status))
1169 error = 1;
1173 else
1176 if (ra == 0)
1177 ra = fpzeroreg;
1179 if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1180 &status))
1181 error = 1;
1182 if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
1183 &status))
1184 error = 1;
1188 if (error)
1189 return(MAJOR_06_EXCP);
1190 else {
1191 /* copy results */
1192 fpregs[tm] = mtmp.ints.i1;
1193 fpregs[tm+1] = mtmp.ints.i2;
1194 fpregs[ta] = atmp.ints.i1;
1195 fpregs[ta+1] = atmp.ints.i2;
1196 fpregs[0] = status;
1197 return(NOEXCEPTION);
1200 else { /* SGL */
1202 * calculate offsets for single precision numbers
1203 * See table 6-14 in PA-89 architecture for mapping
1205 rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
1206 rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
1208 rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
1209 rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
1211 tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
1212 tm |= extru(ir,fptmpos-4,1); /* add right word offset */
1214 ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
1215 ra |= extru(ir,fprapos-4,1); /* add right word offset */
1217 ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
1218 ta |= extru(ir,fptapos-4,1); /* add right word offset */
1220 if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) {
1221 /* special case FMPYCFXT (really 0)
1222 * This instruction is only present on the Timex and
1223 * Rolex fpu's in so if it is the special case and
1224 * one of these fpu's we run the FMPYCFXT instruction
1226 if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1227 &status))
1228 error = 1;
1229 if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1,
1230 &atmp.ints.i1,&status))
1231 error = 1;
1233 else {
1234 if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1235 &status))
1236 error = 1;
1237 if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
1238 &status))
1239 error = 1;
1241 if (error)
1242 return(MAJOR_06_EXCP);
1243 else {
1244 /* copy results */
1245 fpregs[tm] = mtmp.ints.i1;
1246 fpregs[ta] = atmp.ints.i1;
1247 fpregs[0] = status;
1248 return(NOEXCEPTION);
1254 * routine to decode the 26 (FMPYSUB) instruction
1256 static u_int
1257 decode_26(ir,fpregs)
1258 u_int ir;
1259 u_int fpregs[];
1261 u_int rm1, rm2, tm, ra, ta; /* operands */
1262 u_int fmt;
1263 u_int error = 0;
1264 u_int status;
1265 union {
1266 double dbl;
1267 float flt;
1268 struct { u_int i1; u_int i2; } ints;
1269 } mtmp, atmp;
1272 status = fpregs[0];
1273 fmt = extru(ir, fpmultifmt, 1); /* get sgl/dbl flag */
1274 if (fmt == 0) { /* DBL */
1275 rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
1276 if (rm1 == 0)
1277 rm1 = fpzeroreg;
1278 rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
1279 if (rm2 == 0)
1280 rm2 = fpzeroreg;
1281 tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
1282 if (tm == 0)
1283 return(MAJOR_26_EXCP);
1284 ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
1285 if (ra == 0)
1286 return(MAJOR_26_EXCP);
1287 ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
1288 if (ta == 0)
1289 return(MAJOR_26_EXCP);
1291 if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
1292 error = 1;
1293 if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
1294 error = 1;
1295 if (error)
1296 return(MAJOR_26_EXCP);
1297 else {
1298 /* copy results */
1299 fpregs[tm] = mtmp.ints.i1;
1300 fpregs[tm+1] = mtmp.ints.i2;
1301 fpregs[ta] = atmp.ints.i1;
1302 fpregs[ta+1] = atmp.ints.i2;
1303 fpregs[0] = status;
1304 return(NOEXCEPTION);
1307 else { /* SGL */
1309 * calculate offsets for single precision numbers
1310 * See table 6-14 in PA-89 architecture for mapping
1312 rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1; /* get offset */
1313 rm1 |= extru(ir,fprm1pos-4,1); /* add right word offset */
1315 rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1; /* get offset */
1316 rm2 |= extru(ir,fprm2pos-4,1); /* add right word offset */
1318 tm = (extru(ir,fptmpos,4) | 0x10 ) << 1; /* get offset */
1319 tm |= extru(ir,fptmpos-4,1); /* add right word offset */
1321 ra = (extru(ir,fprapos,4) | 0x10 ) << 1; /* get offset */
1322 ra |= extru(ir,fprapos-4,1); /* add right word offset */
1324 ta = (extru(ir,fptapos,4) | 0x10 ) << 1; /* get offset */
1325 ta |= extru(ir,fptapos-4,1); /* add right word offset */
1327 if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
1328 error = 1;
1329 if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
1330 error = 1;
1331 if (error)
1332 return(MAJOR_26_EXCP);
1333 else {
1334 /* copy results */
1335 fpregs[tm] = mtmp.ints.i1;
1336 fpregs[ta] = atmp.ints.i1;
1337 fpregs[0] = status;
1338 return(NOEXCEPTION);
1345 * routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions
1347 static u_int
1348 decode_2e(ir,fpregs)
1349 u_int ir;
1350 u_int fpregs[];
1352 u_int rm1, rm2, ra, t; /* operands */
1353 u_int fmt;
1355 fmt = extru(ir,fpfmtpos,1); /* get fmt completer */
1356 if (fmt == DBL) { /* DBL */
1357 rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int);
1358 if (rm1 == 0)
1359 rm1 = fpzeroreg;
1360 rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int);
1361 if (rm2 == 0)
1362 rm2 = fpzeroreg;
1363 ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) *
1364 sizeof(double)/sizeof(u_int);
1365 if (ra == 0)
1366 ra = fpzeroreg;
1367 t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
1368 if (t == 0)
1369 return(MAJOR_2E_EXCP);
1371 if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
1372 return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
1373 &fpregs[ra], &fpregs[0], &fpregs[t]));
1374 } else {
1375 return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
1376 &fpregs[ra], &fpregs[0], &fpregs[t]));
1378 } /* end DBL */
1379 else { /* SGL */
1380 rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1));
1381 if (rm1 == 0)
1382 rm1 = fpzeroreg;
1383 rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1));
1384 if (rm2 == 0)
1385 rm2 = fpzeroreg;
1386 ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3);
1387 if (ra == 0)
1388 ra = fpzeroreg;
1389 t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
1390 if (t == 0)
1391 return(MAJOR_2E_EXCP);
1393 if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
1394 return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
1395 &fpregs[ra], &fpregs[0], &fpregs[t]));
1396 } else {
1397 return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
1398 &fpregs[ra], &fpregs[0], &fpregs[t]));
1400 } /* end SGL */
1404 * update_status_cbit
1406 * This routine returns the correct FP status register value in
1407 * *status, based on the C-bit & V-bit returned by the FCMP
1408 * emulation routine in new_status. The architecture type
1409 * (PA83, PA89 or PA2.0) is available in fpu_type. The y_field
1410 * and the architecture type are used to determine what flavor
1411 * of FCMP is being emulated.
1413 static void
1414 update_status_cbit(status, new_status, fpu_type, y_field)
1415 u_int *status, new_status;
1416 u_int fpu_type;
1417 u_int y_field;
1420 * For PA89 FPU's which implement the Compare Queue and
1421 * for PA2.0 FPU's, update the Compare Queue if the y-field = 0,
1422 * otherwise update the specified bit in the Compare Array.
1423 * Note that the y-field will always be 0 for non-PA2.0 FPU's.
1425 if ((fpu_type & TIMEX_EXTEN_FLAG) ||
1426 (fpu_type & ROLEX_EXTEN_FLAG) ||
1427 (fpu_type & PA2_0_FPU_FLAG)) {
1428 if (y_field == 0) {
1429 *status = ((*status & 0x04000000) >> 5) | /* old Cbit */
1430 ((*status & 0x003ff000) >> 1) | /* old CQ */
1431 (new_status & 0xffc007ff); /* all other bits*/
1432 } else {
1433 *status = (*status & 0x04000000) | /* old Cbit */
1434 ((new_status & 0x04000000) >> (y_field+4)) |
1435 (new_status & ~0x04000000 & /* other bits */
1436 ~(0x04000000 >> (y_field+4)));
1439 /* if PA83, just update the C-bit */
1440 else {
1441 *status = new_status;